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ATOMISTIC SIMULATIONS AND COMPUTATIONS OF CLAY

MINERALS AT GEOLOGIC CARBON SEQUESTRATION CONDITIONS

Meysam Makaremi, PhD

University of Pittsburgh, 2015

Classical atomistic simulations are carried out to study carbon sequestration at deep under-

ground formations. In classical simulations, formulas and equations are inherently different

from those used in continuum and quantum calculations. Here, in contrast to continuum

approaches such as the finite element method, interactions of atomic particles are computed,

and unlike quantum techniques such as the density functional theory, calculations are not

restricted to a limited number of atoms, therefore a balance between accuracy and computa-

tional cost makes classical atomistic techniques the best candidate to study layered materials

in numerous situations.

The success of CO2 sequestration depends on diverse parameters related to the depth

and type of the underground formations. In this work, chemical, physical, and geometrical

characteristics of formations are investigated. Different types of interlayer cation (Na+ and

Ca2+), intercalated molecule (water and CO2), and clay structure (montmorillonite (MMT)

and beidellite (BEI), and pyrophyllite (PPT)) are investigated as chemical parameters. Ro-

tational degree of layers, pressure, temperature and chemical potential are considered as

geometrical and physical variables.

Using free energy calculations, stable energy states due to the intercalation of water and

carbon dioxide to smectite structures are predicted. For hydrated systems, three states con-

sisting of interlayer spacing values 9-10, 11.5-12.5 and 14.5-15.5 Å, respectively called 0W,

1W and 2W hydration state are found. For systems including mixed H2O-CO2 intercalation,

the amount of adsorbed CO2 alters and reaches its peak at the sub-first hydration levels.

iii



Another fascinating result emerges by simulating the binary MMT-CO2 system. The global

minimum is found at the dry (0W) state which explains why there is no experimental ob-

servation of pure CO2 adsorption on the MMT surface. Finally, ternary smectite-H2O-CO2

simulations show that the amount of adsorbed CO2 in the clay phase is higher than that of

bulk phase suggesting that the underground formation is a proper option to store extensive

volumes of the green house gas carbon dioxide.
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1.0 INTRODUCTION

1.1 MOTIVATION

Over the past few decades, rapid development of CPU’s has revolutionized scientific com-

puting and has introduced computer modeling as a robust method to probe the properties

of complex materials at the atomic and subatomic scales. Atomistic simulations can be

carried out by using two different techniques, classical molecular mechanics and quantum

mechanical methods, each of which has unique advantages, one provides the computational

efficiency by using relatively simple principles, while the other provides accuracy by including

quantum effects. Classical molecular mechanics methods are based on Newtonian mechanics

and consider atoms as the smallest particles interacting through classical force fields. Elec-

tronic structure (quantum mechanical) methods based on the Schrödinger equation explicitly

deal with electrons and nuclei. The classical force field parameters can be determined from

experimental measurements or quantum mechanics calculations. Systems with millions of

atoms can be simulated by using classical force field methods, while one is generally limited

to several hundred atoms with quantum mechanical methods, even when utilizing a large

number of parallel processors[1, 2]. Since in this work, large systems need to be modeled,

we will apply only the classical techniques to carry out the simulations.

Classical techniques can be divided into molecular dynamics (MD) and Monte Carlo

(MC) methods. Molecular dynamics is deterministic and calculates the time evolution of a

process by solving classical equations of motion, whereas Monte Carlo is a stochastic pro-

cedure, and explores the phase space by random sampling. Moreover, based on statistical

mechanics, a classical or quantum ensemble is defined as a collection of systems under the

same physical conditions, such as constant volume (V), temperature (T), pressure (P), num-
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ber of atoms (N) and chemical potential (µ)[3], by which the realistic conditions of a process

can be described. For instance, carbon sequestration requires constant chemical potential,

pressure and temperature to reach the equilibrium state at the deep sedimentary formations,

so the µPT ensemble is able to appropriately simulate this process.

In carbon sequestration supercritical CO2 (scCO2) is injected into underground sedi-

mentary formations, such as saline aquifers, depleted oil, gas resources, or coal beds. These

formations are deeper than 800 meters, where high pressures allow sha5028 filling prop-

erty for a long time[4]. CO2 storage mostly consists of three phases interacting with each

other which include liquid water, scCO2, and solid clay phases. The fluid phases (H2O and

CO2) intercalate into the interlayer of the solid phase, and may cause swelling of the clay

phase[5, 6, 7, 8, 9, 10, 11, 12, 13].

Swelling of clay minerals, a family of layered materials which swell in the presence of wa-

ter and CO2, has been the subject of several experimental and computational studies. Using

in situ XRD measurements, Schaef et al.[14] reported that the intercalation of dry scCO2 in

Ca-exchanged montmorillonites (Ca-MMTs), a type of clay mineral, can lead to either ex-

pansion or shrinkage of the clay structure depending on the initial hydration state. Giesting

et al.[15] employed XRD diffraction method for Na-exchanged montmorillonites (Na-MMTs)

and found that the partially hydrated clay experiences expansion in the presence of CO2 at

both gaseous and supercritical phases, while the dehdrated clay is unaffected in both condi-

tions. In a recent study, using XRD and IR spectroscopy, Loring et al.[16] investigated the

intercalation process by applying variably wet scCO2 (including H2O concentrations from

0 to 16 mmol/g) and observed that Na-MMT strongly adsorbs CO2 molecules at low wa-

ter concentrations (∼ 0-4 mmol/g). Botan et al.[17] applied grand canonical Monte Carlo

(µVT-MC) simulations to investigate the role of CO2 intercalation on the swelling process

and reported that the hydrated Na-MMT is able to adsorb CO2; however, no change hap-

pens to the dimensions of the clay structure upon the CO2 adsorption. In previous work[18],

molecular dynamics simulations carried out in the NPT ensemble showed that the CO2 ad-

sorption is drastically affected by the initial hydration conditions of the clay.

The expansion process is controlled by numerous parameters that can be divided into ge-

ometrical, physical, and chemical categories. Three main thermodynamics variables consist

2



of the surrounding temperature, pressure and chemical potential of the interacting compo-

nents containing counterions, water and CO2 molecules. Chemical aspects include the size

of the interlayer cations, the location of isomorphic substitutions (happening in tetrahedral,

octahedral sheets or both) and the magnitude of layer and interlayer charges[19, 20, 21, 22].

Furthermore, the multiplicity and arrangement of smectite layers can be mentioned as geo-

metrical parameters. Multiplicity includes the type of different layers in a clay sample, i.e.

they may contain only a single type, or they might be composed of dissimilar types such as

illite/smectite, and beidellite/montmorillonite. Arrangement implies the configuration and

placement of different clay layers with respect to each other, and they may not be exactly

juxtaposed and can be shifted or rotated due to mechanical and thermal stresses[23].

In the first step of this work, the response of clay to rotational (turbostratic) disorder

is investigated. Occurring due to the rotation of clay layers with respect to each other

around the normal axis of the clay surface, the disorder has been frequently observed in

natural samples[24, 25], while in the modeling of clay minerals, it is generally ignored with

the assumption that similar layers are consequently stacked in the space to decrease the

computational cost. However, it is compelling to model the rotated structures resembling

natural lab samples to precisely investigate the clay behavior due to water and carbon diox-

ide intercalation.

In the next step, the clay adsorption and expansion behaviors are studied by performing

multiphase Gibbs ensemble Monte Carlo (GEMC) simulations. In previous studies[26, 27,

28, 29, 18], mostly molecular dynamics simulations including NPT and NVT ensembles were

carried out to evaluate the smectite behavior. These simulations involve a fixed number

of components (N); while, the chemical potential (µ) of interacting phases is constant at

the equilibrium point, and the number of interlayer species may fluctuate, therefor to study

the clay adsorption behavior it is essential to employ methods containing a fixed µ allowing

water and carbon dioxide to transfer between phases. In another study[17] by Botan et

al., the grand canonical Monte Carlo (µVT-MC) approach including the constant chemical

potential was used to study the mixed H2O-CO2 intercalation, although they disregarded

the structures including small basal distances (d-spacing = 9.5− 12 Å) including significant

energy minima therefore necessary to interpret the clay behavior at the dry and nearly dry
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conditions. Moreover, chemical potential calculation in the µVT-MC method is burdensome,

and it has to be determined precisely to obtain reliable outcomes.

As a summary, we try to find answer for the following questions in the first step.

� How can one model clay mineral layers including the turbostratic disorder?

� How do the energetic and structural properties of clay change with respect to the degree

of rotation?

� How does the disorder effect on the distribution of interlayer species?

� How does the type of interlayer cations influence the response of MMT to the rotation?

� What components of the internal energy are significantly affected as a response the

disorder?

And at the second step we answer the following questions.

� How can one apply the multi-component GEMC technique to simulate interacting phases

at deep underground formations and cap rocks?

� What are the stable energy states of smectite with respect to pure H2O and CO2 inter-

calations?

� What is the swelling behavior under the influence of the mixed H2O-CO2 intercalation

for an extensive range of interlayer spacing values (9.5− 17.5 Å)?

� What is the role of isomorphic substitution on the clay expansion behavior?

� How does smectite surface adsorb water and carbon dioxide molecules?

� What values of interlayer spacing result in the maximal amounts of CO2 adsorption?

� What is the effect of isomorphic substitution on the CO2 adsorption and its behavior

inside the intelayer space?

� Can underground smectite formations be proper options to store extensive amounts of

carbon dioxide?

4



1.2 CLAY MINERALS

Smectites, also called clay minerals, are a family of layered clays which expand in the pres-

ence of water. As illustrated in Fig. 1, these materials consist of TOT (2:1) layers in which

there are three sheets, two tetrahedral (T) sheets and one octahedral (O) sheet placed be-

tween the tetrahedral ones. In the smectite structure, each silicon atom is surrounded by

four oxygen atoms, three of which, called basal oxygens, are linked together and form the

tetrahedral sheet, while the last of which, called the apical oxygen, with hydroxyl groups

together form the octahedral sheet. Another property of the clay mineral is to experience

isomorphic substitutions, in tetrahedra, octahedra or both, by which Si4+ of the tetrahedral

sheet is substituted by Al3+, or octahedra Al3+ is replaced by Mg2+ or Fe2+. The substitu-

tions result in negative charges for the layer that are neutralized by interlayer cations such

as Na+, K+, Li+, Ca2+ and Mg2+. In the octahedral sheet the main cation can be bivalent,

e.g. Fe2+, or trivalent, e.g. Al3+, creating two groups of smectites, called trioctahedral and

dioctahedral, respectively. In trioctahedral smectites, all of the octahedral sites are occupied,

while in dioctahedral smectites, two-thirds of the sites are occupied.

Moreover, depending on the location of the hydroxyl groups with respect to the octa-

hedral vacancy, there are two types of dioctahedral clays. If hydroxyl groups are placed on

the opposite sides of the vacancy, the smectite is trans-vacant, otherwise, it is called cis-

vacant. Pyrophyllite is a basic dioctaheral clay lacking substitutions, or intercalated cations,

thus having a neutral structure. A counterpart of pyrophyllite is Montmorillonite (MMT)

in which the main octahedral cation, Al3+, is replaced by a divalent cation such as Mg2+. If

instead of the octahedral sheet, tetrahedral sheets suffer an isomorphic substitution, such as

Si4+/Al3+, the clay is called beidellite (BEI). These clay minerals are named on the basis of

their interlayer cation e.g. Na-MMT when the clay is montmorillonite and the counterion

is sodium. In the rest of this study, we mainly focus on MMTs and BEIs which are major

components of the underground formations, in addition we only consider the trans-vacant

configuration of smectites in our calculations, because these kinds of minerals are more com-

mon in nature, and the previous simulations of this group and studies of other groups[30, 31]

show similar computational results for both trans and cis-configurations[21, 32].
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Figure 1: Structure of 2:1 (TOT) dioctahedral clays. Each layer consists of two tetrahedral

sheets and one octahedral sheet. Color coding of atoms consists of orange, purple, blue,

green, red and white for Si, Al, Mg, Na, O and H.

1.3 SWELLING MECHANISM

Swelling of smectite layers can be classified into two categories, crystal and osmotic swelling.

Crystal (short-range) expansion happens when the interlayer spacing is ∼ 9-20 Å. All smec-

tites can experience this process occurring in a step-wise fashion in 0W, 1W, and 2W

hydration states with zero, one and two intercalated water layers in the interlayer space,

accordingly[34, 35, 36, 37]. The hydration states are thermodynamically comparable to

phases, and the transitions between states mirror phase transitions. The second category
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Figure 2: Trans-vacant (a) and cis-vacant (b) configurations of the octahedral sheet in

dioctahedral smectites[33]. Solid black circles denote hydroxyl groups. V and M indicate

vacancies and octahedral centers, respectively.

is the osmotic (long-range) swelling consisting of larger interlayer distances (∼ 20-130 Å)

and takes place only in the clay minerals containing intercalated cations such as Li+ and

Na+ with high hydration tendency. Massive volumes of water are adsorbed into the clay as

a result of the larger concentration of cations inside the interlayer space than that of the

neighborhood region to equilibrize the concentration in both sides[38]. In this study, we

only focus on the crystal swelling which is prevalent in smectites at the deep carbon dioxide

storage conditions.

To have a better understanding of the crystal expansion, we can analyze the behavior of

Na-MMT in the presence of water. At the beginning, suppose that the montmorillonite is in

the dry state (0W), so Na+ cations are fully adsorbed on the clay surface. In the presence

of low amounts of water, the clay starts swelling due to the hydration tendency of interlayer

counterions, and it expands to the first hydration state (1W) with a H2O/Na+ ratio ∼ 3-4,

and a layer spacing ∼ 11.5-12.5 Å in which water molecules are placed in the center of the

interlayer and make hydrogen bonds to basal oxygens of the MMT surface, while the cations

still remain adsorbed to the clay surface. With adsorption of more water molecules, the clay
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Figure 3: Distribution of interspace components; water oxygen (upper left), water hydro-

gen (upper right), and Na+ (lower left) in the clay interspace during the 1W/2W swelling

transition[22]. In the lower right picture, red, white and blue circles represent oxygen, hy-

drogen and Na, respectively.

expands to the second hydration state (2W), in which counterions move to the center of the

interspace and are completely hydrated by water molecules leading to an interlayer distance

∼ 14.5-15.5 (H2O/Na+ ∼ 8-9). This process is depicted in Fig. 3[39, 22].
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1.4 SWELLING THERMODYNAMICS

Diestler et al.[40] and Bordarier et al.[10] used the slit micropore model to explain the

thermodynamics of the swelling process. The internal energy equation of a pore can be

defined as

dU =TdS + µdN + σxxsyszdsx + σyyszsxdsy

+ σzzsxsydsz + τzxsxsydlx + τzysxsydly.
(1.1)

Where i and j are index notations. T , S, µ, N , σii, τij, respectively, represent the

temperature, entropy, chemical potential, number of molecules, normal stress and shear

stress. si and li are Cartesian components of the micropore represented in Fig. 4.

Figure 4: Slit micropore structure including position and force components.

Moreover, the free energy and isostress free energy are, respectively, defined as

F = U − TS − µN, (1.2)

Φ = F − σzzAsz, (1.3)
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where A is the surface area of the clay. The difference in the swelling free energy for the wall

separation ∆sz can be written as

∆Φ = ∆F − σzzA∆sz, (1.4)

by using equations (1.1) and (1.4), and fixing dimensions in all directions except the z

direction. Considering the fact that µ and T are constant at the phase equilibrium,

∆Φ = A

∫ sz

s0z

(σzz(s
′
z)− σ′zz)ds′z, (1.5)

where σ′zz is the applied constant stress. By eliminating the isotropic part of the stress

tensor (bulk pressure) from the stress terms, the equation can be rewritten as a pressure

based equation

∆Φ = −A
∫ sz

s0z

(Pzz(s
′
z)− P ′zz)ds′z, (1.6)

in this equation Pzz(s
′
z) and P ′zz are the clay normal (disjoining) and applied pressure, re-

spectively. Therefore by the calculation and integration of the clay phase pressure, the clay

expansion and contraction behavior can be investigated.

In addition, Smith[41] suggested another method to study the phenomenon from aver-

age potential energies of the hydrated clay. He claimed that the global energy minimum

corresponds to the minimum of the immersion energy (Q),

Q = 〈U(N)〉 − 〈U(N0)〉 − (N −N0)Ub, (1.7)

in this equation, 〈U(N)〉 and 〈U(N0)〉 are, respectively, the average clay energy with N

adsorbed molecules, and the average reference energy with N0 adsorbed molecules; and Ub

is the bulk phase energy of adsorbed molecules.
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1.5 OVERVIEW AND SCOPE

The objective of this work is to use molecular mechanics methods to study the effect of H2O

and CO2 intercalation on the swelling behavior of smectites, in particular montmorillonite

and beidellite. Two techniques, classical Monte Carlo and classical molecular dynamics, are

employed to achieve this objective. The former is a successful candidate in the calculation

of structural factors of clay minerals, while the latter evaluates the dynamic properties of

the system.

In chapter 2, classical computational methods are described. The governing relations and

ensembles are briefly discussed, and finally the classical force fields used to study smectites,

water and carbon dioxide are introduced.

In chapter 3, by performing classical NPT-MD and NVT-MD simulations, energetic and

structural properties of turbostratic MMT structures including consecutive rotated layers

are analyzed. Two different approaches, the position constraining and enforced rotation,

are utilized to spell out the role of rotation; the first approach is proper for rotated layers

stemming from geological formations, and the second one is qualified for layers under short-

term torsion stresses attributed to the supercritical CO2 injection. The result suggests that

turbostratic formation leads to different effects on dry and intercalated MMT structures: in

one it has a stabilizing effect, while in the second it is energetically unfavorable. Moreover,

the effect of the disorder on the distribution of interlayer components is studied for different

structures including different amount of H2O and CO2, and it is found that the distribution

is impacted by the Moiré pattern[23] stemming from the rotation of clay surfaces.

In chapter 4, the application of multiphase Gibbs ensemble Monte Carlo (GEMC) with

constant number of molecules, pressure and temperature (NPT-GEMC) to specify clay ad-

sorption and expansion behavior is described. For the first time we use the GEMC technique

to calculate the equilibrium properties of Na-MMT and Na-BEI at fixed temperature, pres-

sure and chemical potential for a full range of basal d-spacing values (9.5 − 17.5 Å) and

for different forms of molecular intercalation consisting of the pure intercalation including

only two components, solid-fluid (MMT-H2O or MMT-CO2), and the mixed intercalation

containing three components solid-fluid-fluid, (MMT-H2O-CO2). Since CO2 has two differ-
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ent physical phases at T = 348.15 K (gaseous at lower pressures, and supercritical fluid at

higher pressures) simulations are carried out at two P-T conditions with pressures 25 and 125

bar, and the same temperature 348.15 K. Normal clay pressure and swelling free energy are

calculated to evaluate the clay stable states, and next the transport properties of interlayer

species at stable states are investigated by performing NVT-MD simulations.

In chapter 5, the results of this work are summarized, and the ongoing-future studies are

introduced.
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2.0 CLASSICAL MODELING OF CLAY MINERALS

2.1 OVERVIEW AND PERSPECTIVE

Classical molecular dynamics (MD) and Monte Carlo (MC) approaches are employed exten-

sively to simulate nanoscale processes and phenomena in computational science and engineer-

ing fields. The first approach assigns initial velocities to particles and solves the equations

of motion to deterministically calculate atomic trajectories and to probe the energy surface

of the system, while the second method evolves trajectories in the phase space by random

motions discovering the configurations with minimal internal energies. Each method offers

different advantages and abilities, and has to be chosen with respect to the system un-

der study and the desired properties. Monte Carlo simulations are carried out to compute

physical variables of the system by averaging over all accepted configurations, so they are

generally fast. Molecular dynamics calculations provide the time-dependent evolution of the

system presenting the ability to compute dynamic properties such as atomic diffusion which

can be compared with experimental NMR and FTIR data. Furthermore, broadly speaking

”as an unwritten rule”, in the modeling of layered materials, MD systems consist of flexible

layers and variable interlayer distances, while Monte Carlo systems involve rigid sheets and

constant interlayer spacing values to increase the computational efficiency[2].

In section 2.2, basic principles and relations of molecular dynamics are introduced. The

Monte Carlo approach and its different ensembles, such as Gibbs ensemble Monte Carlo,

are the topics of section 2.3. In section 2.4, classical force fields used for CO2, water and

minerals of this study are reviewed.
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Figure 5: Molecular dynamics algorithm.

2.2 MOLECULAR DYNAMICS METHOD

In a nutshell, molecular dynamics solves physical equations of motion to predict the move-

ment of particles in the phase space. At the start point, initial conditions such as initial

positions and velocities are defined, and by applying classical potential functions (force-

fields) atomic and molecular forces are determined in next step (the most computationally

expensive part). Then, by using Newton’s laws of motion and considering a time-step, the

new configuration of the system is identified. The last two steps are iteratively repeated

until the final time condition is met, and finally time averages of thermodynamic quantities

are reported. A simplified flowchart of a MD program is illustrated in Figure 5.

2.2.1 Equations of Motion

The Lagrangian function (L(~q, ~̇q)) is defined as,

L = K − U, (2.1)
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~q, ~̇q are the generalized position vector and its time derivative. K and U are the kinetic and

potential energy, respectively, and the equation of motion[42] can be written

d

dt
(∂L/∂q̇i)− ∂L/∂qi = 0, (2.2)

here, t is the time and i represents the spacial coordinate. By replacing common kinetic and

potential energy formulas in this equation, the force on atom n can be extracted as

~fn = ~∇rnL = −~∇rnU, (2.3)

in which ~r is the atomic coordination vector. If the generalized momentum is defined as

pi = ∂L/∂q̇i, equation (2.1) converts to

ṗi = ∂L/∂qi. (2.4)

The relation between the Lagrangian and Hamiltonian is defined as

H(~p, ~q) =
∑
i

q̇ipi − L(~q, ~̇q), (2.5)

and the Hamilton’s equations can be written

ṗi = −∂H/∂qi,

q̇i = ∂H/∂pi,
(2.6)

or in Cartesian coordinates, they become

~̇pn = ~fn = −~∇rnU,

~̇rn = ~pn/mn,
(2.7)

where m is the atomic mass. Also, we can extract

~fn = mn~̈rn. (2.8)

By solving differential equations (2.7) and (2.8), one can simulate the kinematic of atoms

in a thermodynamic system[3].
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Figure 6: Finite difference schemes used in MD simulations[3]. a) The leap-frog algorithm.

b)The velocity Verlet algorithm.

2.2.2 Finite Difference Method

Finite difference methods (FDM) numerically solve differential equations, therefore these

methods are implemented in the MD algorithm to generate atomic trajectories in the phase

space by solving ordinary differential equations (2.7) and (2.8). Two FDM’s, widely used for

MD simulations, are chosen for this study. The first one is the leap-frog algorithm[43] which

can be written as

r(t+ δt) = r(t) + δt v(t+ δt/2),

v(t+ δt/2) = v(t− δt/2) + δt a(t),

v(t) =
1

2
[v(t+ δt/2) + v(t− δt/2)],

(2.9)

r, v, a, t and δt are, respectively, the position, velocity, acceleration, time and time increment.

The second method, called the velocity Verlet scheme[3], can be described as
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r(t+ δt) = r(t) + δt v(t) +
1

2
δt2 a(t),

v(t+ δt/2) = v(t) +
1

2
δt a(t),

v(t+ δt) = v(t+ δt/2) +
1

2
δt a(t+ δt)],

(2.10)

these two algorithms are illustrated in Figure 6.

2.2.3 Physical Quantities

In molecular dynamics, physical quantities are calculated by averaging over the total number

of particles in the system; for instance, the temperature is computed by taking the average

of atomic velocities,

< T >=
1

3(N − 1)kB
<

∑
n

mn~vn . ~vn >, (2.11)

~vn is the velocity on atom n, kB is the Boltzmann constant, and N is the total number of

atoms. The pressure is computed as,

< P >=
NkB < T >

V
+

1

3V
<

∑
n1

∑
n2

~Fn1n2 . ~rn1n2 >, (2.12)

where V is the total volume of the system, ~Fn1n2 and ~rn1n2 are the atomic force and distance

between atoms n1 and n2.

MD simulations can be performed in various ensembles in which different physical vari-

ables such as the number of atoms (N), volume (V), temperature (T), pressure (P), and

chemical potential (µ) are kept fixed or constrained. For this study, all MD simulations are

carried out in NVT or NPT ensembles. The NVT ensemble includes the fixed number of par-

ticles and volume, and the temperature is constrained by a thermostat; such as Andersen[44],

Berendsen[45] and Nosé-Hoover[46] thermostats. In the NPT ensemble, besides the temper-

ature, the pressure is also constrained by employing a barostat, while the number of atoms

is constant. Andersen[44], ParrinelloRahman[47], Berendsen[45] and Nosé-Hoover[46] can be

mentioned as popular barostats.
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Figure 7: Monte Carlo algorithm.

2.3 MONTE CARLO METHOD

This method stands on stochastic sampling. Assume that, initially, a system is in state o.

By choosing a random move the possibility of the system’s evolution to state n is surveyed

through the evaluation of energy surface, therefore if the new configuration is more stable

than the older one, the movement will be accepted. Otherwise, the move might be rejected

or accepted depending on a random number selection, and if the move is rejected the system

will remain in state o. The process is repeated in a loop to probe all of the possible energy

minima of the system.

2.3.1 Metropolis Monte Carlo

The heart of Monte Carlo is random sampling, but it must be efficient and acute, especially

when we deal with systems including atomic interactions which may consist of an incalculable

number of states, seldom of which involve low energy. To resolve this issue, Metropolis
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et al.[48] suggested to use importance sampling which considers only a limited number of

random states according to their state probabilities. The state probability (ρ) means the

probability that a system is in a certain state and is related to the ensemble of the system,

e.g for NVT system the state probability can be defined as

ρ(~r) =
exp(−βU(~r)∫
d~r exp(−βU(~r)

, (2.13)

here, β = (kBT )−1, in which kB and T are the Boltzmann constant and temperature, re-

spectively. This sampling procedure imposes a chain of states called a Markov chain which

contains two properties: first, the number of possible states is finite, and second, every new

state is only related to its preceding one[3].

The Monte Carlo detailed balance condition describes that for an infinitely long simula-

tion,

ρ(~ro)π(o→ n) = ρ(~rn)π(n→ o), (2.14)

in which o and n defines old and new states, π(o → n) and π(n → o) are probabilities of

moving from the old state to the new one and vice versa, and π can be expressed as

π(o→ n) = α(o→ n) acc(o→ n), (2.15)

where, α and acc are the probabilities of selection and acceptance of a move, accordingly.

One can assume α(o → n) is equal to α(n → o) due to microscopic reversibility, so the

detailed balanced relation can be described as

acc(o→ n) = exp[−β(U(n)− U(o))] acc(n→ o). (2.16)

As a result, the acceptance conditions can be defined

acc(o→ n) = min{1, exp[−β(U(n)− U(o))]}. (2.17)

A Metropolis Monte Carlo schematic is shown in Figure 7.
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2.3.2 Monte Carlo Ensembles

Each MC system depending on its ensemble needs a sort of random moves to evolve in

the phase space. For instance, to simulate a NPT system, one needs to consider particle

transfer and volume adjustment moves to insure that the temperature and pressure are in

equilibration, while the number of particles is fixed. Some popular Monte Carlo ensembles

are introduced as follows:

1. Canonical Ensemble (NVT)

The number of atoms N and the volume V of the system are constant in this ensemble,

therefore the system only needs atomic transfer moves to gain thermal equilibrium,

acc(o→ n) = min{1, exp[−β(U(n)− U(o))]}. (2.18)

2. Isobaric-Isothermal Ensemble (NPT)

This system includes two types of movement, the particle transfer and volume change,

to equiliberate the temperature (T) and pressure (P). The transfer attempt is similar to

that of the previous ensemble, whereas the volume adjustment move can be described as

acc(o→ n) = min{1, exp[−β(U(n)− U(o) + P (V (n)− V (o))

−Nβ−1 ln(V (n)/V (o)))]},
(2.19)

where, V (n) and V (o) contain the energies of the new and old configuration, accordingly.

3. Grand-Canonical Ensemble (µVT)

Grand-canonical ensemble encapsulates constant chemical potential (µ), volume (V) and

temprature (T), and it consists of two different moves involving internal and external

particle transfers, accordingly for the thermal and chemical equilibration at a fixed vol-

ume. Again the acceptance condition for the first move is similar to equation (2.16), but

external transfers can be classified into two categories: particle insertion and particle

deletion attempts; respectively, as follows:

acc(N → N + 1) = min{1, V

Λ3(N + 1)
exp[−β(U(N + 1)− U(N)− µ)]}, (2.20)
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acc(N → N − 1) = min{1, NΛ3

V
exp[−β(U(N − 1)− U(N) + µ)]}, (2.21)

here, Λ is the thermal de Broglie wavelength.

4. The Gibbs Ensemble

A system of interacting particles necessitates constant chemical potential, pressure and

temperature at the equilibrium point. To have a well-defined ensemble, atleast one of

the variables needs to be extensive, and since all of the three quantities are intensive, a

µPT ensemble is not imaginable. To solve this issue, one might consider a large NPT

system where different phases coexist and lead to the chemical equilibrium inside the box.

Although, in theory this solution is possible, when there are several interacting phases

in a single box, we need to consider an extensively large system, because, typically, there

are mountainous energy barriers between phases due to phase interfaces consisting of

substantial number of particles. As a result this, solution can be inefficient and costly,

especially for the systems containing more than two coexisting phases[49].

The Gibbs ensemble Monte Carlo (GEMC)[50, 51] was suggested to remedy this difficulty.

This method considers several boxes (one per each phase) directly interacting without

any interface through three sorts of movement: intra-box transfer, inter-box displacement

and volume adjustment. The intra-box transfer requires the acceptance condition (2.16),

whereas, inter-box exchange moves are defined as,

acc(N1, N2 → N1 + 1, N2 − 1) = min{1, N1V2
(N2 + 1)V1

exp[−β(U(n)− U(o))]},

acc(N1, N2 → N1 − 1, N2 + 1) = min{1, N2V1
(N1 + 1)V2

exp[−β(U(n)− U(o))]},
(2.22)

here, the first condition checks the possibility of an atomic transfer from box 1 to box 2,

while the second relation investigates the possibility of the opposite move from box 2 to

box 1. The volume move can be written as

acc(o→ n) = min{1, V1(n)

V1(o)

N1 V2(n)

V2(o)

N2

exp[−β(U(n)− U(o))]}, (2.23)
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Figure 8: A schematic of a multiphase Gibbs ensemble monte carlo simulation including

three different boxes (phases).

Moreover, GEMC simulations can be carried out in the canonical Gibbs ensemble (NVT-

GEMC); involving a fixed number of molecules, volume and temperature; or in the

isobaric-isothermal Gibbs ensemble (NPT-GEMC); with a constant number of molecules,

pressure and temperature. To evaluate the phase transition of a pure substance; e.g. wa-

ter vapor-liquid phase transition; the NPT-GEMC method is not applicable because the

phase transition happens in a 1-D line in the two dimensional P-T phase diagram. As a

consequence, both of the intensive variables, pressure and temperature, can not be pre-

determined, so NVT-GEMC approach is employed at a fixed temperature, and the other

variable, the pressure, is evaluated by fixing its conjugate extensive variable, volume[49].

To study the equilibrium conditions of a multiple-substance system, such as the ternary

smectite-H2O-CO2 system at carbon sequestration P-T conditions, NPT-GEMC is cho-

sen to provide thermal, mechanical and chemical equilibration for the system.
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2.4 POTENTIAL FUNCTION

Force-fields (potential functions) consist of atomic interaction parameters and formula, and

generally divided into two terms, nonbonded and bonded energies. The nonbonded (nonco-

valent) part includes pairwise energy components such as electrostatic and Lennard-Jones

(called L-J and containing attractive dispersion (van der Waals) and repulsive terms); while,

bonded (covalent) part involves covalent energy terms like bond stretching, angle bending

and dihedral energies.

To carry out exact classical simulations, considering accurate force-fields is vitally im-

portant, therefore we select Clayff[52] force-field developed in Sandia National Laboratory,

which is widely used to study clay minerals. This force-field has the following equation

Etotal = ECoul + EL−J + Estretch + Ebend, (2.24)

in which, ECoul, EL−J , Estretch and Ebend are electrostatic (Coulombic), L-J, bond stretching

and angle bending energy terms and they can be described as

ECoul =
qiqj

4πε0rij
,

EL-J = 4εij[(
σij
rij

)12 − (
σij
rij

)6],

EStretch =
1

2
ks(rij − r0)2,

EBend =
1

2
kb(θijk − θ0)2.

(2.25)

where, q is the atomic charge, e is the elementary charge of an electron, ε0 is the vacuum

permittivity, and εij and σij are the Lennard-Jones energy and distance parameters, respec-

tively. rij and r0 denote the distance between atoms i and j, and the reference distance,

while θijk and θ0 define the angle between vectors rij and rjk, and the reference angle. Also,

ks and kb are the bond stretching and angle bending stiffness constants, accordingly. The

bonded and nonbonded parameters of this force-field are depicted in table 1, 2 and 3. In

addition pairwise parameters for dissimilar atoms are calculated from the Lorentz-Berthelot

mixing rules[3]

σij =
1

2
(σi + σj), εij =

√
εiεj. (2.26)
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Table 1: Clayff Force-field[52] Nonbonded Potential Parameters.

atom type symbol charge [e] ε [kcal/mol] σ [Å]

water hydrogen h* 0.4100

hydroxyl hydrogen ho 0.4250

water oxygen o* -0.8200 0.1554 3.5532

hydroxyl oxygen oh -0.9500 0.1554 3.5532

bridging oxygen ob -1.0500 0.1554 3.5532

bridging oxygen with oct. substitution obos -1.1808 0.1554 3.5532

bridging oxygen with tet. substitution obts -1.1688 0.1554 3.5532

bridging oxygen with double substitution obss -1.2996 0.1554 3.5532

hydroxyl oxygen with substitution ohs -1.0808 0.1554 3.5532

tetrahedral silicon st 2.1000 1.8405 ×10−6 3.7064

octahedral aluminum ao 1.5750 1.3298 ×10−6 4.7943

tetrahedral aluminum at 1.5750 1.8405 ×10−6 3.7064

octahedral magnesium mgo 1.3600 9.0298 ×10−7 5.9090

hydroxide magnesium mgh 1.0500 9.0298 ×10−7 5.9090

octahedral calcium cao 1.3600 5.0298 ×10−6 6.2484

hydroxide calcium cah 1.0500 5.0298 ×10−6 6.2428

octahedral iron feo 1.5750 9.0298 ×10−6 5.5070

octahedral lithium lio 0.5250 9.0298 ×10−6 4.7257

aqueous sodium ion Na 1.0 0.1301 2.6378

aqueous potassium ion K 1.0 0.1000 3.7423

aqueous cesium ion Cs 1.0 0.1000 4.3002

aqueous calcium ion Ca 2.0 0.1000 3.2237

aqueous barium ion Ba 2.0 0.0470 4.2840

aqueous chloride ion Cl -1.0 0.1001 4.9388
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Figure 9: Bond stretching and angle bending configurations.

To deal with CO2 interactions, a model[53] recently developed by the Sandia Lab group

is applied, and the SPC model[54] is considered for water molecules.

Table 2: Clayff Force-field[52] Bond Stretching Potential Parameters.

atom i atom j ks [kcal/mol Å2] r0 [Å]

o* h* 554.1349 1.0000

oh ho 554.1349 1.0000

ohs ho 554.1349 1.0000

Table 3: Clayff Force-field[52] Angle Bend Potential Parameters.

atom i atom j atom k kb [kcal/mol rad2] θ0 [deg]

h* o* h* 45.7696 109.47

Metal oh ho 30.0 109.47

Metal ohs ho 30.0 109.47
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3.0 RESPONSE OF DRY AND HYDRATED MONTMORILLONITES TO

TURBOSTRATIC DISORDERING

3.1 INTRODUCTION

Carbon capture and storage technologies offer an important option for reducing CO2 emis-

sions and mitigating global climate change[55]. The technology of geologic CO2 storage

involves injection of supercritical CO2 (scCO2) into deep geologic formations overlain by

sealing rocks that prevent buoyant CO2 from migrating upward and out of the storage reser-

voir. The ability of cap rocks to retain injected CO2 depends on their ability to maintain

low permeability[56]. Cap rocks are often composed of shale or mudstone enriched with

swelling clay minerals that may expand or contract upon interaction with scCO2 that, in

turn, could impact seal permeability, CO2 mobility, or both[57, 58, 14]. Intercalation of CO2

into the interlayer of swelling clay can cause geomechanical stress and affect the integrity

of cap rocks and the ability of geological formations to contain stored CO2[14, 59, 60]. The

integrity of the cap rock is important because CO2, being more buoyant than saline water

and oil, will tend to migrate above these relatively immiscible fluids. Moreover, swelling clay

minerals may also provide sites for sorption of CO2[14, 61, 62, 63, 15] or environments for

its transformation into carbonates[64].

Swelling clay minerals generally fall into the smectite group, which consists of a group

of layered aluminosilicate mineral species with a wide range in compositional variability.

We have focused our study specifically on montmorillonite (MMT), for which the central

dioctahedral sheet is composed of octahedrally coordinated aluminum (Al) atoms and the

adjacent sheets contain tetrahedrally coordinated silicon (Si) atoms. These sheets comprise

a 2:1 or tetrahedral octahedral tetrahedral (TOT) layer. In MMT, the TOT layers are neg-

26



atively charged due to substitution of divalent metals (e.g., Mg2+ for Al3+ in the octahedral

sites). The negative charge of the TOT layers is counterbalanced by interlayer cations (e.g.,

Na+, K+, Ca2+, etc.) that can exhibit a variety of hydration states, causing expansion or

contraction of the interlayer distance of the clay, depending on the relative humidity[65]

Recent X-ray diffraction (XRD), excess sorption, and neutron diffraction studies showed

that the spacing between the mineral layers (basal d-spacing) of Na-rich-MMT expands upon

interaction with gaseous CO2 and scCO2 and that the degree of expansion depends on the

initial water content in the interlayers[60, 15, 13]. Those measurements indicated that the

largest expansion is accompanied by an increase in the basal d-spacing from 11.3 to 12.3

Å, the number corresponding to a stable monolayer (the 1W hydration state characterized

with basal d-spacings in the range of 11.5-12.5 Å; upon incorporation of more water, the

d-spacing increases to 14.5-15.5 Å to the stable 2W hydration state where water forms a

bilayer structure)[65, 11]. Interaction of anhydrous scCO2 with smectite clay in the 2W and

higher hydration states may lead to a collapse of the d-spacing to that of the 1W state[58, 14].

However, interaction of Na-exchanged Wyoming montmorillonite (SWy)and Ca-exchanged

Texas montmorillonite (STx) samples with variably wet scCO2 (2-100 % saturation of H2O)

induces swelling even to the values equal to the 3W state with a d-spacing of 18.8 Å[58, 14].

Thus, dry scCO2 injected in a target reservoir has the capacity to dehydrate clay and to

promote fracturing of cap rocks. On the other hand, after CO2 becomes saturated by brine,

it can induce further swelling of clay. Loring et al.[63] confirmed intercalation of CO2 by

means of NMR spectroscopy and attenuated total reflection infrared spectroscopy. Using

diffuse-reflectance infrared spectroscopy, Romanov[61] reported a red shift of the character-

istic fundamental frequency of CO2 trapped in SWy and STx samples. The source of that

shift was attributed to interaction of the intercalated CO2 molecules with dipoles of water

molecules[18].

Botan et al.[17] carried out Monte Carlo (MC) and molecular dynamics (MD) simu-

lations of CO2 intercalation into Na-MMT using a force field for clay from Smith[41] and

the SPC[54] and EPM2[66] models for water and carbon dioxide, respectively. In line with

experimental data[58, 14, 60, 15, 13], their simulations showed that hydrated clay interca-

lates CO2 and that the thermodynamically stable structures are characterized with basal
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d-spacings corresponding to the 1W and 2W hydration states. Other modeling studies using

different force fields also point out that CO2 molecules can exist in the interlayers of clay

minerals[67, 68, 69, 70]. Krishnan et al.[70] recently reported information on the molecular-

scale structure and dynamics of interlayer species in MMT-CO2 systems. An excellent review

of the recent advances in molecular modeling of CO2-brine-mineral interactions is given in

ref [71].

Another major feature of swelling clay minerals is related to rotational disorder inher-

ently present in natural samples and manifesting itself through turbostratically stacked clay

layers[23, 24, 25, 72]. Turbostratic disorder, a disorder in which different layers have differ-

ent rotations with respect to an axis, is commonly found in naturally occurring samples of

montmorillonite[25, 72]. To reconcile apparent discrepancies between high resolution trans-

mission electron microscopy (HRTEM) images and powder X-ray diffraction (XRD)[73, 74],

Guthrie and Reynolds[18] offered a model in which adjacent TOT layers of smectite are tur-

bostratically stacked within ∼ 2 − 10° rotation of each other[73, 74, 75, 76]. In this model,

rotation of adjacent TOT layers results in breaking of coherency between the ditrigonal rings

in the silica sheets on either side of the interlayer, thereby changing the framework structure

that bounds the interlayer region. Instead of having a coherent alignment of ditrigonal rings

on either side of the interlayer region, rotational disorder results in a Moiré pattern with a

periodic variation in alignment of ditrigonal rings across the interlayer. In the simulations,

smectite models are assumed to be perfectly oriented, and any impacts of rotational disor-

der are generally ignored. However, understanding interactions between interlayer species

and rotationally disordered clay systems is mandatory to properly predict the behavior of

geological formations and cap rocks under carbon dioxide invasion.

In the present study, classical MD simulations are used to investigate rotational disor-

dering in MMT at various water and carbon dioxide contents. The simulations were carried

out at P-T conditions relevant to geological formations for CO2 storage. The main focus of

the study is placed on comparison of energetic and structural changes associated with de-

viation of the clay layers from their ideally stacked positions. In addition, one-dimensional

density profiles and two-dimensional density maps are engaged to study the distributions of

interlayer species as a function of the rotational angle between adjacent TOT layers.
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3.2 COMPUTIONAL DETAILS

3.2.1 Classical Force Field Simulations

The force field calculations were carried out using the GROMACS package[77]. For the

clay system, the Clayff force field[52] that consists of nonbonded (electrostatic and van der

Waals) terms parametrized for use with layered minerals was employed. For atoms i and j

separated by a distance rij, the pairwise energy is given by

Eij =
qiqje

2

4πε0rij
+ 4εij[(

σij
rij

)12 − (
σij
rij

)6] (3.1)

where qi is the charge on atom i, ε0 is the vacuum permittivity, and εij and σij are the

Lennard-Jones (LJ) energy and distance parameters, respectively. The flexible SPC[54]

model was used for the water molecules placed in the interlayer space and for the layer hy-

droxyl groups. For CO2, a recently developed flexible potential[53] including intramolecular

bond stretch and angle bend was used. The general expression for the total potential energy

is

Etotal = ECoul + EV dw + Estretch + Ebend (3.2)

where harmonic potentials are used for the bond stretching and angle bending terms.

The LorentzBerthelot mixing rule[3] was used to obtain the LJ parameters for interac-

tions between unlike atoms. It is worth mentioning that in an earlier paper[18] we showed

that the description of CO2 in liquid water using the force fields described above closely

reproduces that obtained with simulations using ”polarization-corrected” LJ parameters for

the unlike pair interactions in water-carbon dioxide mixtures[78]. The authors of ref [78]

used the SPC/E and EPM2 force fields to simulate CO2 in liquid water and to accurately

reproduce the experimental solubilities.

In the present study, the simulations were performed under periodic boundary condi-

tions (PBC) and used the particle-particle particle-mesh (PPPM) Ewald method to treat

long range electrostatics[3]. The cutoff radii for the nonbonded van der Waals interactions

and for the Ewald summation of the electrostatics were chosen to be 11 Å, with switching

distances starting from 10 Å. Because of the use of cutoffs for the LJ interactions, long-range
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dispersion corrections for energy and pressure were applied[77]. The leap frog algorithm[43]

was used to update positions every 0.5 fs.

Simulations of the turbostratically disordered clay layers is not a trivial task. Rotation of

one clay layer relative to another destroys the periodicity of the systems which is problematic

in simulations using PBC. To preserve periodicity, the clay systems represent a rectangular

box with uneven sizes of alternating clay layers (designated as ”small” and ”large”). Thus,

within a chosen angular range, rotation of small layers proceeds within the boundaries of

the simulation box defined by large ones. This approach allows us to use PBC and to pro-

vide external clay surfaces (clay edges) and the interstitial space between the alternating

layers accessible to the interlayer species. The interstitial space is produced because of gaps

between adjacent replicas of small layers. In turbostratic clay systems, the clay layers are

stacked in the z direction, so the rotation of a small layer relative to a large one occurs in the

xy plane around the axis connecting geometrical centers of the layers and perpendicular to

the internal clay surfaces. The [100] and [010] edges introduced by the presence of the small

layers are determined by the structure of the unit cell. Because the Clayff force field[52]

contains no bonding terms except for the hydroxyl groups, there are no broken chemical

bonds at the edges.

The general chemical formula used for sodium montmorillonite is NaxMgxAl3−xSi4O10(OH)2-

nH2O, where the layer charge resides on the octahedral sheet (tetrahedral substitutions such

as Al3+ for Si4+ can also occur in natural samples but they are not considered here). In

addition to sodium ions, calcium and potassium (dry clay systems only) ions were also used

as interlayer ions in the simulation models. The MMT structural model was created by

replicating a pyrophyllite unit cell with an isomorphic octahedral Al3+/Mg2+ substitution

to produce a rectangular 22× 14× 1(18× 10× 1) supercell, in which the first set of numbers

designates the size of the large layer and the second one (in parentheses) designates the size

of the smaller layer. The initial dimensions of the simulation box in the x and y directions

were 114.4 and 128.8 Å, respectively. The dimension in the z direction varies depending on

the interlayer composition. The negative charge introduced by the substitutions is compen-

sated by 366 sodium ions (or 183 calcium ions) residing in the interlayers.
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The stoichiometry is Na0.75Mg0.75Al3.25(OH)4(Si4O10)2, with a layer charge of 0.75 per

O20(OH)4. This results in a total of 19520 atoms constituting the clay phase. Additional

simulations were performed for the dehydrated systems using a simulation box doubled in

size in the z direction to ensure that there is no size effect on the results of simulations. In

these tests, the systems are described with a 22× 14× 2(18× 10× 2) supercell. In addition,

a 22 × 12 × 2(18 × 10 × 2) supercell was used to confirm independence of reported below

results on the size of the interstitial space. MD simulations using a 8× 4× 4 supercell were

also carried out for dehydrated MMT systems to estimate equilibrium d001-spacing values

for clay systems providing exposure of the ions to internal surfaces only (i.e., without edges).

The water-CO2 composition in the interlayer region is designated as X − Y , where X

and Y are, respectively, the numbers of water and CO2 molecules per unit cell. There are

four types of interlayer compositions used in the simulations: the first one (0 − 0) contains

only interlayer ions without water and represents the dehydrated clay phase; the second

(X − 0) contains X water molecules per unit cell; the third (0− Y ) includes Y carbon diox-

ide molecules per unit cell only, and the fourth (X − Y ) contains both X water and Y CO2

molecules per unit cell. The maximum number of atoms engaged in the simulations was

40214 in the case of the clay system (Na-MMT with a 22× 14× 2 (18× 10× 2) supercell)

with the 14-0 composition.

The initial positions of the ions, water, and carbon dioxide molecules were chosen ran-

domly in a plane at the middle of the interlayers. They are placed nearly equidistantly from

each other, and the plane dimensions are equal to the x and y dimensions of the large layer.

For the dry, CO2 only, and hydrated clay systems, multiple independent simulations starting

from different initial structures were performed to ensure that the computed trends were

consistent and were not affected by different initial positions. Because of the gaps between

small layers, direct comparison of the energetic and structural parameters with those com-

puted for systems without explicit presence of edges is not straightforward. Particularly, the

numbers of water molecules per unit cell corresponding to the d001-spacings at the stable

hydration states (1W, 2W, etc.)[70, 53] are not the same for the systems considered in this

work because water molecules reside in both the interlayer and the interstitial space. For the

X−Y compositions, the concentrations of CO2 and H2O in the interlayer and the interstitial
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space could vary and depend on the initial positions of the species. However, regardless of

that, the relative energetic and d001-spacing trends as a function of the rotational angle (θ)

remain the same. For the X − Y compositions, the results are reported using the initial

distribution of the species similar to that described above.

MMT with intercalated species was initially relaxed using MD simulations in the NVT

ensemble carried out for 50 ps at T = 348.15 K. Subsequent equilibration was conducted for

1 ns using the NPT ensemble with the weak coupling Berendsen thermostat and barostat[45]

at T = 348.15 K and P = 130 bar, conditions close to those existing in subsurface geological

reservoirs and cap rocks and also close to those used in CO2 intercalation experiments in clays

carried out at National Energy Technology Laboratory (NETL)[61]. That step was followed

by 20 ns production runs in the NPT ensemble at the same P-T conditions with semi-isotropic

pressure coupling permitting the z-dimension to fluctuate independently from the x and y di-

rections. Pressure was controlled by a Parrinello-Rahman barostat[47, 79] with a relaxation

time of 4 ps, and the temperature was controlled by a Nose-Hoover thermostat[80, 46] with a

relaxation time of 2 ps. The analysis of different terms contributing to the net potential en-

ergy was performed using the equilibrated clay structures. For that purpose, MD simulations

were performed over 300 ps in the NVT ensemble using a Nose-Hoover thermostat[80, 46]

with a relaxation time of 2 ps.

3.2.2 Rotational Pattern Model

Figure 10 shows a schematic diagram of two adjacent tetrahedral sheets formed by basal

oxygens and silicon atoms starting from perfectly juxtaposed sheets and with rotation an-

gles of 3, 6, 9, and 12° together with the 3D smectite structure (pyrophyllite was taken for

simplicity with the expanded size of the sheets to fully capture the pattern at θ = 3°). For

perfectly aligned sheets, two ditrigonal rings of silicon tetrahedra linked by shared basal

oxygens locate above each other and create a cavity shown in Figure 11a. Rotational mis-

match results in complex cavities reflecting a variation in alignment of the ditrigonal rings

across adjacent clay sheets. The variation in cavity structure is periodic, forming a Moiré

32



Figure 10: The [100] edge face of the 2:1 smectite clay structure (pyrophyllite) and Moiré

patterns formed by two adjacent basal surfaces at 0-12° (from the [001] view). Color desig-

nation: red balls, oxygen; yellow, silicon; white, hydrogen; cyan, aluminum.

pattern with concentric circles of partially aligned ditrigonal rings separated by regions of

no alignment (Figures 10 and 11b).

For small rotational shifts, the distances between the centers of the circles along a layer

are given by

dMP =
da

2sin( θ
2
)

(3.3)

where dMP is the distance between centers of two circles in the Moiré pattern, da is the

distance between centers of ditrigonal rings of the same layer and equal to the a lattice, and

θ is the angle by which one layer is rotated relative to another. Assuming a da value equal to

5.20 /AA (a typical distance for the a lattice constant of MMT[81]) the calculated dMP values

are 99, 50, 33, and 25 Å for θ = 3°, 6°, 9°, and 12°, respectively. Those numbers dictate that

to capture the patterns, a sufficiently large model is required. To fulfill this requirement, the
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size of the simulation box was chosen as described in section 2.1. The area of one unit cell

(Figure 11b; inside the blue arrows) formed by the rotational pattern is further determined

as

SMP = d2MPsin(π/3) =

√
3

2

d2a
(2sin( θ

2
))2

(3.4)

The area of the concentric circle itself is computed as

SIS = πd2IS =
πd2a

(2Fsin( θ
2
))2

(3.5)

where dIS is the radius within which the shifted ditrigonal rings are still viewed as forming

concentric circles, θ has the same meaning as in eq 3, and F is a factor determining the

fraction of the unit cell that belongs to the circles. This formula is valid until dIS is larger

than the lattice parameter a. Assuming that the concentric circles occupy 1/3 of the unit cell

area, the limiting value of the θ angle is 17.4°, after which the rotational pattern disappears.

Thus, the chosen range of the rotational angles, [0-12°], passes through the various Moiré

patterns and reflects the interval of angles consistent with TEM observations[72, 73, 74, 75]

Another implication of this model is that the ratio of the unit cell area to the concentric circle

area does not depend on θ. This means that the fraction of the concentric circles remains fixed

during the limited range of rotation considered. From the mathematical model presented

above, it follows that the number of cavities formed by basal oxygens of the adjacent layers

(Figure 11a) is constant within the rotation range, although their distribution is varied. By

definition, that number is smaller than the number of (undistorted) cavities for the 0° case,

in which clay layers are perfectly aligned.

3.2.3 Methods To Study Rotational Disordering

The question of the time scales of rotational motion of clay layers is most intriguing. On one

hand, the clay minerals in a geological formation could be exposed to geomechanical stress

for decades, which essentially implies nearly equilibrium conditions for interlayer species dur-

ing rotation. On the other hand, local perturbations of a subsurface geological reservoir due
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Figure 11: (a) A “cavity” formed by basal atoms of adjacent clay layers and (b) the unit cell

of the Moiré pattern.

to CO2 injection could create mechanical forces acting on clay-rich deposits to impose rota-

tional motion of the layers at non-equilibrium conditions. Hence, our simulation approaches

stem from the intention to simulate both rotational disordering occurring on geological time

scales and during injection of a mobile phase into porous media of target formations. The

method mimicking geological conditions deals with rotated clay systems with predetermined

θ angles, at which interlayer species are equilibrated. The second method rotates alternating

clay layers around a fixed axis with a constant angular velocity. Details of the two methods

are given below.

I) Position Restraining:

In this approach, the rotationally disordered and 0° systems were initially prepared as

described in section 2.1. The clay systems were equilibrated at θ = 0°, 3°, 6°, 9°, and 12°.

The production runs with various compositions of the interlayer species were carried out

using the procedure described above. To keep the atomic positions of the clay phase at

the predetermined angles, the atoms were harmonically restrained in the xy plane at their

reference positions using a force constant of 5000 kJ/mol.nm2. This approach provides no

translational motion of the clay layers relative to each other. Those degrees of freedom
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might be important for equilibration[82]. The z coordinates remained unconstrained, al-

lowing the simulation box to adjust its dimension in that direction during the simulations.

This approach provides equilibration of interlayer species in the turbostratic clay systems

(monitored using constancy of potential energies and d001-spacings over simulation time) at

the rotational angles of interest.

II) Enforced Rotation:

Various methods for enforcing the rotation of subsets of atoms have been reported by

Kutzner et al.[32] In the approach engaged in this work, a force is imposed on the group

of atoms constituting the small clay layer by means of rotating a reference set of atomic

positions, y0i (coinciding with initial atomic positions of the small clay layer), at a constant

angular velocity, ω, around a fixed axis defined through a geometrical center of the clay

layer and that is perpendicular to the clay surfaces. The rotation is performed in such a

manner that each atom with position xi is connected by a ”virtual spring” represented by

a harmonic potential to its moving reference position: yi = Ω(t)(y0i − y0c ), where Ω(t) given

below is a dimensionless matrix describing the rotation around the axis, t is time, and y0c is

the geometrical center of the initial reference positions (in this case, it corresponds to the

geometrical center of the small clay layer).

Ω(t) =


cosωt+ ν2xξ νxνyξ − νzsinωt νxνzξ + νysinωt

νxνyξ + νzsinωt cosωt+ ν2yξ νxνzξ − νxsinωt

νxνzξ − νysinωt νxνzξ + νxsinωt cosωt+ ν2z ξ

 (3.6)

where νx, νy, and νz are the components of the normalized rotation vector, ν and ξ =

1− cosωt. To achieve unrestrained motion along the rotational axis and to allow adjustment

of the d001-spacing during rotation, the components of the potential parallel to the axis are

removed. This is done by projecting the distance vectors between the reference and actual

atomic positions onto the plane perpendicular to the rotation axis. Thus, the final form of

the potential is

V rot =
k

2

N∑
i=1

{Ω(t)(y0i − y0c )− (xi − xc)− {{Ω(t)(y0i − y0i )− (xi − xc)}ν}ν}2 (3.7)
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where k is a spring constant and xc is the geometrical center of the group (the small clay

layer), and xi, y
0
i , y

0
c , ν, ω, and t are defined above. The details of the implementation can

be found elsewhere[82]. The k value was chosen to be 100 kJ/mol.nm2, which is low enough

to ensure smooth transitions between atomic positions. To perform the enforced rotation,

the clay systems were first equilibrated at various compositions of the interlayer species at

θ = 0°. Rotation was induced around the axis at an angular rate of ω = 0.01°/ps over 1.2

ns with a step size of 0.5 fs. This produces a 12° rotation of the clay layers passing various

Moiré patterns. Additional simulations were conducted using ω = 0.001° /ps to study the

dependence of potential energy on the angular rate.

3.3 RESULTS AND DISCUSSION

Table 4 compares the d001-spacings of dry M-MMT (M = metal ion) computed in this work

with those from DFT calculations with dispersion corrections[32] and from experiment as

inferred from the relative proportions of the different layer types as a function of relative

humidity[83, 84, 85]. There is an overall good agreement between the computed and mea-

sured data, although the experimental d001-spacing values are prone to large uncertainties

because the experimental samples were prepared by dehydrating humidity-exposed clays,

which may have caused the original structure not to be preserved[86, 87].

Table 4: d001-Spacing Parameters for Dry M-MMT Systems.

ion this work DFT(vdW-TS) exptl

Na+ 9.52± 0.02;(9.43± 0.01) 9.47b 9.6c; 9.6d

Ca2+ 9.56± 0.02;(9.42± 0.01) 9.33b 10.0c; 9.6d

K+ 10.24± 0.03;(9.83± 0.02) 9.88b 10.0c; 10.0d; 10.2e

a The values in parentheses are computed using a 8 × 4 × 4 supercell. bRef [32]. cRef[83].

dRef[84]. eRef[85].
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Figure 12 depicts equilibrated structures of dry Na-MMT at θ = 6° (as an example).

The disordering is represented as alternating clay layers rotated around an axis perpendicu-

lar to the internal clay surfaces. In a previous paper[18] using the same force fields[52, 53],

we demonstrated that the expansion of the d001-spacing of Na-MMT upon intercalation of

water closely reproduces the experimental dependence of the d001-spacing as a function of

interlayer water content[65].

Figure 12: Equilibrium structure of the dehydrated Na-MMT system at θ = 6°. Color

designation: red balls, oxygen; yellow, silicon; cyan, aluminum; green, magnesium; purple,

sodium ion; white, hydrogen.

The d001-spacing displays plateaux corresponding to a stable hydration states[65]. The

predicted d001-spacings are also consistent with recently reported data on Na-montmorillonite

and Na-hectorite[70, 53, 88].

Figures 13 and 14 display, respectively, the relative changes in the potential energy and

the d001-spacing as a function of X −Y interlayer compositions and the θ angle. These data

were obtained using atomic positions constrained to predetermined θ angles. The upper part

of each figure shows data without carbon dioxide, and the lower part reports results with

intercalated CO2. The interlayer spacing changes within a narrow 0.2 Å range (except the

Ca-MMT system at the 5-2 composition, which displays a variation of up to 0.35 Å) upon

rotation. The differences between the calculated enthalpy and potential energy changes are
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negligible, so in the subsequent analysis, we use the potential energy as the quantity to an-

alyze energy dependencies.

Figure 13: Relative potential energy change in M-MMT systems as a function of interlayer

compositions and θ.

In general, the largest changes in the energy and structural parameters occur during ro-

tation from 0° to 3°, and a further increase in θ perturbs the systems to a lesser extent(except

for the 0.2 composition). This might be related to the fact that the ratio of the unit cell

area to the concentric circle area does not depend on θ (see Computational Details). Con-

sequently, the numbers of distorted and undistorted cavities remain fixed. Introduction of

Ca2+ and K+ counterions produce more noticeable changes in the energy and interlayer dis-

tance than found for the Na+ ion. Thus, cations having larger ionic radii and charge affect

the energy and the interlayer distance more. Below, we consider the dehydrated, hydrated,
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Figure 14: Relative d001-spacing change in M-MMT systems as a function of interlayer

compositions and θ.

and clay systems with intercalated carbon dioxide, paying attention to the energetic and

structural changes and the density distributions of the interlayer species as a function of θ.

3.3.1 Rotation of Dry Clay Systems

For the dehydrated clay systems, the potential energies for the twisted structures are lower

than for the structure at θ = 0 ° (Figure 13). The corresponding d001-spacings also demon-

strate decreased values compared with the θ = 0 ° case (Figure 14). The figures depict the

intriguing result that the energy and the d001-spacing are lower for the rotated dehydrated

Na- and Ca-MMT systems than for the clay structures at θ = 0° . The ions can be co-

ordinated equidistantly to negatively charged basal oxygens of ditrigonal rings in perfectly
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juxtaposed clay sheets (Figure 11a). Such coordination provides optimal interaction, re-

sulting in lowering of total energy. Because rotation causes reduction in a number of those

cavities, as evidenced by the formation of the Moiré patterns (Figure 10), the total energy of

the system would have been expected to increase. Before addressing this issue, it is impor-

tant to mention that the dry clay systems considered in this study are idealized structures.

In reality, a smectite sample in the 0W hydration state is expected to have residual water

bound to interlayer ions[83]. To check the effect of trace amounts of water on the potential

energy and interlayer distance, a set of simulations using 0.25 water molecule per unit cell

of Na-MMT was conducted. These simulations gave energies and d001-spacings of rotated

structures at θ > 0° lower than the corresponding values at θ = 0°. Thus, even with a small

amount of water present, the distribution of interlayer ions still controls the trends in relative

energy and d001-spacing depicted in Figures 13 and 14. We now turn to the results for the

fully dehydrated Na- and Ca-MMT systems.

The atomic density profiles for the 0.0 composition depicted in Figure 15a indicate that

Na+ ions (and Ca2+, not shown) display two asymmetric peaks located near the basal planes

designated by the dashed lines. The asymmetry is caused by different sizes of the alternat-

ing clay layers, as described in Computational Details. This trend does not depend on the

initial positions of the ions. The analysis of the distances between the ions and the basal

oxygens shows that ions associated with the density peaks are preferentially coordinated at

the middle of the ditrigonal rings within 2.9 Å (estimated for sodium ions) from three and

more basal oxygen atoms, thus meeting the criterion used to assign an ion as adsorbed[18].

This coordination does not depend on initial positions and is reproduced with indepen-

dent simulations. Morrow et al.[88] also found that in dehydrated samples of Na-hectorite,

the Na+ ions lie at the center of the hexagonal rings on the sheet to which they are closest.

Similar observation was made in the MD simulations of Na-rectorate[89]. The number of

ions is 0.75 (two times smaller in the case of Ca-MMT) per four ditrigonal rings (two on each

surface) in a unit cell so that there is no competition for a coordination place that would oth-

erwise force them to stay close to the interlayer center plane. At the middle of the ditrigonal

rings, the counterbalancing ions are strongly electrostatically bound to surrounding basal

oxygens. The equilibration step allows the interlayer ions to find their energetically favor-
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Figure 15: (a) Density profiles showing sodium ion distribution along the distance perpen-

dicular to the internal surfaces of Na-MMT with the 0-0 composition at various θ values.

Double dashed lines designate the range of positions of basal planes as a result of rotation.

Profiles obtained by averaging over 5 ns of simulation time. (b) Density map (density in

number/nm3) showing the sodium ion distribution in the interlayer projected on a plane

parallel to the internal surfaces of Na-MMT with the 0-0 composition at θ = 6°. Results

obtained by averaging over 5 ns of simulation time.

able configurations at each θ value considered. Such a process might mimic the situation

occurring during dehydration of clay samples upon heating. Thus, under (geo)mechanical

stress, the interlayer ions in smectite clay minerals slowly losing water would have sufficient

time to adjust their positions and promote rotational disordering at least within the range

of θ values considered in this work. Figure 15b depicts the two-dimensional density map for

the sodium ions in the interlayer. The map was obtained by scanning the interlayer space

to obtain density distributions in planes parallel to the clay surfaces with a step size of 0.1

Å. Then the distributions were projected on a plane and averaged for 5 ns of simulation

time. The map shows that the sodium ions are localized with respect to their xy coordinates

(similar distributions were obtained for the other θ angles). This, together with the density

profile data, also confirms ion localization near the surfaces.
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Figure 16: Comparison of real-space electrostatic (SR EL), reciprocal electrostatic (rec EL),

Lennard-Jones (LJ) contributions and their total sum (sum) as a function of θ for the (a)

6-0 and (b) 0-0 compositions of Ca-MMT.

To gain insight into the interactions responsible for the computed energy trend, contribu-

tions from the various terms in the force field were extracted and analyzed. Figure 16 reports

short-range (real-space sum accounting for pairwise interactions within a sphere of 11 Å, the

cutoff radius), reciprocal space electrostatics and LJ contributions into the relative potential

energies as a function of θ for the 6-0 (upper part) and 0-0 (lower part) compositions. The

”position-restraining” and ”long-range dispersion correction” (a minor modification to the

Lennard-Jones terms to remove the noise caused by cutoff effects) terms provide insignificant

contributions to the relative potential energies at different θ values (it should be mentioned
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Figure 17: Comparison of (a) relative potential energies (PotEn) and real-space electro-

static contributions (SR EL) and (b) atomic pairwise electrostatic contributions to relative

potential energies in dry Ca-MMT and pyrophyllite with the 0-0 composition at various θ’s.

that the weighted histogram analysis method[77] would be valuable for removing the bias

due to the restraint and for estimating free energies as a function of θ, but it requires a

special effort to be applied for these systems and was not considered in this work). For

the hydrated system, rotation of the small layer relative to the large one leads to a large

electrostatic destabilization, whereas the LJ contribution is energetically favorable. On the

other hand, for the dehydrated system, the electrostatics favors the rotated structures with

the LJ contribution being positive. Comparing the relative influence of the different terms in

the force field, it is seen that short range electrostatic contributions are the most important

for the overall energy change as a function of θ for both hydrated and dry MMT systems.
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Figure 18: Potential energy changes during enforced rotation for three independently equi-

librated Na-MMT systems (strs 1-3) with the 0-0 composition.

To estimate the role of electrostatic contributions involving interlayer ions, simulations

were also carried out for pyrophyllite, which does not have octahedral and tetrahedral substi-

tutions in TOT clay layers and, thus, bears neutral layers without interlayer ions. Figure 17

(upper part) depicts the relative potential energies and the relative real-space electrostatic

contributions for pyrophyllite and Ca-MMT. The key atomic pairwise electrostatic contribu-

tions involving the ions and atoms of basal surfaces are depicted in the lower part of Figure

17. In contrast to Ca-MMT, the rotation of dry pyrophyllite is an energetically demanding

process, and for both minerals, the electrostatic contribution to the relative potential energies

determines the overall decrease/increase in the potential energies with rotation. The atomic

pairwise contributions from the basal oxygen and silicon atoms provide a similar destabi-

lizing impact for the rotated pyrophyllite and Ca-MMT systems. However, in the case of

Ca-MMT, the electrostatic contribution involving interlayer ions induces a large stabilization

upon rotation. Therefore, the overall decrease of the potential energy of nonhydrated MMT

systems with rotation is primarily caused by interactions of interlayer ions with atoms of the

clay surfaces.
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We now turn our attention to exploring the energetic and structural changes during

rotational motion of the small clay layer at a constant angular velocity using the enforced

rotation approach. Figure 18 depicts the evolution of the potential energy as a function of

θ. Three independently equilibrated Na-MMT systems with the 0-0 composition at θ = 0°

were used as starting points to initiate simulations, allowing for rotational movement of the

small layer relative to the large one. The initial motion from θ = 0° to θ = 0.1-0.2° requires

overcoming a potential barrier of around 25.50 kJ/mol. The barrier is associated with a

deviation of the system from its equilibrium while the Moiré pattern is not yet developed

(for the size of the clay system employed). After that, as soon as the Moiré pattern begins to

form, further rotation leads to a decrease in the energy (and in the d001-spacing, not shown)

up to θ = 1.5-2°. The energy (and d001-spacing) then increases upon further increase in θ

(Figure 18). Analysis of the distribution of the interlayer ions during the enforced rotation

shows that the rotational motion does not induce rearrangement of the ions adsorbed at the

centers of ditrigonal rings. The energy decreases for θ = 0.2 - 2 ° because the ions remain

close to equilibrated positions at θ = 0°. However, rotation to larger angles (> 3°) causes

more unfavorable ion-ion interactions between ions adsorbed at the opposite internal clay

surfaces. Those interactions counterbalance the energy decrease that would otherwise result

because of rotation. As a result, further disordering beyond 2-3° would be significantly re-

tarded.

The simulated rotational motion models the disordering occurring in dehydrated or nearly

dehydrated smectite minerals. The energy trends obtained using the enforced rotation are

different from those found with the position constraints. The differences originate from the

fact that the latter approach allows relaxation of the ion positions at fixed rotational an-

gles, whereas in the former, the ions remain adsorbed at positions corresponding to θ = 0°.

The rate of the motion, which is limited by computational cost, is apparently much greater

than that occurring in nature and proceeds under nonequilibrium conditions. To explore

rotational motion at a reduced angular speed, simulations were performed using a rotational

velocity of 0.001°/ps. The predicted trends in energy and d001-spacing remain similar to

those discussed above. This implies that under mechanical stress, nearly dry smectite clay

minerals would be susceptible to rotational disordering within the narrow θ range.
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Figure 19: (a; left) Density profiles showing (a) sodium ion and (b) water molecule dis-

tributions along the distance perpendicular to the internal surfaces of Na-MMT with the

6-0 composition at various θ. Double dashed lines designate the range of positions of basal

planes as a result of rotation. Profiles obtained by averaging over 5 ns of simulation time.

(b; right) Density maps (density in number/nm3) showing (a) sodium ion and (b) water

molecule distributions in the interlayer projected on a plane parallel to the internal surfaces

of Na-MMT with the 6-0 composition at θ = 6°. Results obtained by averaging over 5 ns of

simulation time. The Moiré pattern is highlighted with dotted circles.

To explore an effect of the Moiré patterns on the potential energy of dry smectites, simu-

lations with backward enforced rotation of MMT systems were carried out for clay structures

at nonzero θ values. Figure 35 (Appendix) collects potential energy curves computed dur-

ing backward rotation for Na-MMT structures with interlayer ions equilibrated using the
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position restraining method at θ = 3°, 6°, and 9°. The curves develop distinct peaks when

rotation of the small layers passes the position of perfectly juxtaposed clay layers at θ = 0°.

The deviation from that position in both clockwise and counterclockwise directions leads to

a decrease in energy. Thus, formation of the rotational patterns of adjacent clay surfaces

induces a decrease in the potential energy (and d001-spacing) of the dehydrated smectites.

3.3.2 Rotation of Hydrated Clay Systems

According to Figures 13 and 14, rotation of the clay layers of hydrated Na- and Ca-MMT

requires energy and is accompanied by expansion of the interlayer distance. The overall

trends in energies, d001-spacings, atomic density distributions, and radial distribution func-

tions are similar for the 2-0, 4-0, 6-0, and 8-0 compositions. We now examine in more detail

the results of the simulations for the 6-0 composition, which provides a water monolayer

and a d001-spacing equal to 12.10 ± 0.03 Å (θ = 0°). That equilibrated spacing falls within

the experimentally determined range of the 1W hydration state (11.5-12.5 Å)[65] and corre-

sponds to the calculated stable hydration state[11, 52, 90, 91]. As a function of θ, Figure 16

(upper part) displays the various contributions to the relative potential energy. The figure

shows that electrostatics plays the primary role in the overall increase of the relative po-

tential energy upon rotation. Detailed analysis of the pairwise contributions relative to the

zero-degree system shows that the electrostatic contributions from the basal oxygen-basal

silicon, ion-basal oxygen, and water-water interactions contribute to the overall increase in

the relative potential energy. Hence, the electrostatic contribution due to the water network

is less stabilizing for rotated than nonrotated clay layers (Appendix Figure 36).

As a function of θ, Figure 19a displays the density profiles of the sodium ions and water

molecules (the profile does not distinguish individual atoms in the molecules) in the interlayer

for the 6-0 composition. The density profile of water develops a maximum at the interlayer

center with a low shoulder caused by coordination of water molecules to the clay layer edges.

The density profile of the sodium ions is characterized by two peaks that occur close to the

interlayer center. Interestingly, beginning with the θ = 3° system, the profiles develop more
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Figure 20: (a; left) Density profiles showing (a) sodium ion and (b) carbon dioxide molecule

distributions along the distance perpendicular to the internal surfaces of Na-MMT with the

0-2 composition at various θ values. Double dashed lines designate the range of positions of

basal planes as a result of rotation. Profiles obtained by averaging over 5 ns of simulation

time. (b; right) Density maps (density in number/nm3) showing carbon dioxide molecule

distributions in the interlayer projected on a plane parallel to the internal surfaces of Na-

MMT with the 0-2 composition at θ = 6°. Results obtained by averaging over 5 ns of

simulation time.

pronounced peaks relative to θ = 0°. This indicates that upon rotation, ions are driven away

from the interlayer center toward the basal planes.
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The process might be related to the less stabilizing impact of water-water electrostatics

to the potential energy of the rotated systems.

Figure 19b shows the 2D density maps of the ions and water molecules for the 6-0 com-

position. Examination of Figures 10, 19b, and Supporting Information 37 (given for θ =

0°) shows that the H2O molecules and sodium ions create patterns reminiscent of the Moiré

patterns for nonzero θ values. This striking feature indicates that rotational disordering

affects the structural arrangement of the interlayer species for hydrated montmorillonite.

Similar results are obtained from analysis of the simulation data for Ca-MMT. The density

distribution map also demonstrates that the ions actively explore the interlayer space in

the xy planes parallel to the clay surfaces. This is distinctly different from the distribution

of the ions at the 0-0 composition that revealed sharp localization in the xy plane (Figure

15b). This is a consequence of the fact that solvation by water molecules provides greater

ion mobility in the interior.

In the simulations of Na-MMT with the 6-0 composition using enforced rotation, the

energy and d001 spacing are higher for rotated structures than for the system with θ = 0°

(not shown). The energy curve reaches a plateau and stays relatively constant during the

rotation starting from θ > 2− 3°.

So far, we have considered the hydrated clay systems with water monolayer exposed to

the Moiré. patterns of clay sheets. Supporting Information Figure 38 shows the potential en-

ergy changes as a function of θ computed using both the position constraining and enforced

rotation methods for the Na-MMT with the 14-0 composition. This composition produces

a bilayer configuration of water molecules (as confirmed by the density profile) in the inter-

layer with the equilibrated d001 − spacing equal to 14.67 ± 0.03 Å, the value that falls into

the experimentally determined 2W hydration state range (14.5-15.5 Å)[65] and close to the

calculated stable hydration state[11, 52, 90]. In this case, both methods predict that rotation

from θ = 0° is an endothermic process accompanied by the increase in the d001-spacing. The

density profiles (not shown) support the preferential location of the sodium ions near the

center of the interlayer space and their solvation by water molecules. This is in line with

the recent DFT-based molecular dynamics and Monte Carlo simulations of optimal ion posi-

tions in the interlayer space of hydrated montmorillonite[92]. In contrast to the system with
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the 6-0 composition, the calculated density maps indicate that ion distribution is relatively

unaffected by the Moiré pattern; the same is true for the water molecules, although they

develop a cage-like pattern owing to the presence of an adjacent basal surface (Supporting

Information Figures 39-41). The pictures provide the distribution maps computed for the

ions and separately for water layers in a bilayer configuration at θ = 6° as an example (the

distributions for the other angles are similar). Thus, the Moiré pattern exerts little influence

on the distribution of the interlayer species for clay expanded into the 2W (and presumably

also higher) hydration state.

3.3.3 Rotation of Clay Systems with Intercalated CO2

As seen from Figures 13 and 14 the potential energy of the clay systems with 0-2 composition

undergoes a slight increase as θ increases from 0° to 3°, then decreases for higher rotational

angles relative to the 0° case. The corresponding d001-spacing experiences a marginal expan-

sion upon rotation. Under experimental conditions, intercalation of carbon dioxide requires

a residual amount of water present in the interlayer space[14, 63, 15]. The 0-2 composition

considered here is an idealized system not likely observable experimentally. In contrast to

this, rotation of the clay system with the 5-2 composition is accompanied by an increase in

both the potential energy and the d001-spacing (Figures 13 and 14).

Figure 20a and b depicts the density profiles for Na+ ions and carbon dioxide molecules

and density distribution maps for carbon dioxide molecules in Na-MMT with the 0-2 com-

position. The resulting profiles of the sodium ions are reminiscent of those found for the 0-0

composition (Figure 15a). The density map of the Na+ ions (not shown) is also similar to

that depicted in Figure 15b. Krishnan et al[70]. reported a detailed analysis of the dynam-

ics of sodium ions and carbon dioxide molecules in the interlayer space of Na-MMT. They

found that the ions primarily adsorbed at the surfaces, with some ions being located in the

interior. Similar results are obtained in this work and depicted in Figure 20a, showing two

minor peaks near the interlayer center.
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The density profile of carbon dioxide displays a maximum at the middle of the inter-

layer (Figure 20a). Thus, carbon dioxide and the sodium ions avoid each other, consistent

with previous data[18, 70].

Comparison of the density maps for the nonzero θ value (Figure 20b) and for θ = 0° (Ap-

pendix Figure 42) has revealed that the CO2 distribution is affected by the Moiré patterns

formed by the basal surfaces. However, the distribution is less structured, to be recognized

as the Moiré pattern like that depicted in Figure 19b for water molecules. Similar trends

were found for the Ca-MMT system.

Figure 21 reports the density profiles at various θ values and density distribution maps

of the interlayer species for the 5-2 composition of Na-MMT. The sodium ion profile displays

two peaks located in the interior of the interlayer space similar to the profile for the 6-0

composition (Figure 19a), suggesting that the ions become preferentially solvated by water

molecules. Moreover, in line with Figure 19a, rotation of the clay sheets causes a slight

increase in the separation of the peaks in the Na+ distribution. For the 5-2 composition, the

CO2-H2O mixture forms a monolayer correlating with the maxima of the density profiles. At

the positions of the layer edges, the carbon dioxide profile develops a distinct broad shoulder

and the density profile of water demonstrates a small peak (Figure 21a). The density dis-

tribution map of carbon dioxide shows elevated density in the interstitial space and at the

edges of the small layer that gives rise to the shoulder seen in the density profile.

Similarly, the density distribution map of water displays an increase in density around

the layer edges, although to a much lesser extent (Figure 21b). Apparently, the 5-2 compo-

sition (and 5-1, not shown) creates a mixture with a supersaturated concentration of carbon

dioxide, and during equilibration, the excess of CO2 moves from the interlayer to the intersti-

tial space. In our earlier work, the 5-2 composition resulted in the equilibrium d001-spacing

equal to 14.49 ± 0.02 Å, which falls within the range of the 2W hydration state[18]. The

Na-MMT model employed in that work provides exposure of the interlayer species only to

the internal clay surfaces (no edge effects). In this study, because the interlayer species have

access to the interstitial space and edges, the equilibrium d001-spacing decreased to 12.17

± 0.02 A (θ = 0°), close to the value for the 6-0 composition (see section 3-2). Interest-

ingly, the carbon dioxide remaining in the interlayer region tends to agglomerate and form
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elongated clusters (conglomerates) separated by water molecules with a residual amount of

solvated CO2 (Figure 21b). To explore the stability of such clusters, production simulations

of Na- and Ca-MMT at θ = 6° were conducted up to 200 ns to monitor potential energy,

d001-spacing changes, and density distribution maps. At the end of the simulations, the

density distributions remain unchanged, as reported in Figure 21. Density maps of water

molecules display nonuniform distributions reflecting the presence of agglomerated carbon

dioxide molecules in the interlayer. There are no noticeable patterns formed by water that

might be connected to the Moiré patterns of basal surfaces, as found for the 6-0 composition

(Figure 21b). The hydrogen bonding between the interlayer species and the basal oxygens

affects the energetic properties of clay systems. In this regard, it is instructive to explore

hydrogen bond lifetimes as a function of interlayer composition and θ. To accomplish this,

the approach described in ref [93] was engaged.

The analysis of the calculated hydrogen-bond lifetimes for water-clay, water-water, and

water-carbon dioxide pairs in Na- and Ca-MMT at different θ values shows that the rota-

tional disordering does not significantly impact the H-bond lifetimes. The water-water and

water-basal oxygen hydrogen lifetimes computed for the 6-0 and 5-2 compositions have com-

parable values (the water-carbon dioxide values are an order of magnitude smaller, consistent

with our previous results)[18]. This means that in the interlayer, the water molecules are

strongly engaged in interactions with the basal surfaces. On the other hand, in the open

environment, the H-bonding of water to a single smectite surface is weaker than H-bonds

between water molecules[94, 95, 96].

The simulations of Na-MMT systems for the 0-2 and 5-2 compositions using the enforced

rotation approach demonstrate a rise in the relative potential energy (and d001-spacing) upon

rotation (not shown). The energy increases even for the 0-2 composition that is found to

demonstrate the opposite trend using the position restraint approach. This is attributed to

nonequilibrium configurations of the interlayer species during enforced rotation. Specifically,

deviation of the clay layers from θ = 0° induces an increase in the potential energy of the

system.

To provide smoother rotation motion, the angular speed was decreased by an order of

magnitude to 0.001°/ps. However, it did not reverse the trend, meaning that the 0-2 system
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is more sensitive to equilibration of the interlayer species than the 0-0 system, which displays

a decrease in the energy and the interlayer distance at the small θ values (0-2°) (Figure 18).

In the discussion above, it was assumed that interlayer species possess the ability to leave

the interlayer and enter the interstitial space between clay particles. This is possible if clay

generally exists as particles of a limited size and thickness. In the series of works by Nadeau

et al.[97, 98] it was found using XRD and TEM measurements that naturally occurring inter-

stratified illite-smectite and chlorite-smectite and pure smectite are mixtures of thin particles

of finite sizes rather than a continuous crystal phase. Interestingly, the samples of illite-

smectite and chlorite-smectite display rotational turbostratic electron diffraction patterns,

presumably as a consequence of clay particle agglomerates[97, 98]. For Wyoming montmoril-

lonite, the samples show a predominance of clay particles a few thousand angstroms in size

but only 10-20 Å thick. A mobile phase migrating through a geological formation enriched

with swelling clays can fill the interstitial space between the clay particles and, thus, be

exposed to external mineral interfaces.

Carbon dioxide molecules can become trapped in the interlayer in amounts exceeding an

expected CO2 solubility at the prevailing P-T conditions. It has been shown experimentally

that exposure of dry scCO2 to montmorillonite in the > 2W hydration state may result in a

collapse of the d-spacing to that of the 1W state[58, 14]. During that process, a portion of

the water molecules leaving the interlayer can be substituted with carbon dioxide molecules.

A significant portion of (wet) scCO2 might remain in the interstitial region between clay

particles. Recently, MD simulations were used to study the exchange of water and counter-

balancing ions between the micropores and clay interlayers in Na-montmorillonite with open

[010] edges[99]. It was found that for water content at the 2W hydration state, the exchange

proceeds practically without a barrier for water and the ions. Energy barriers for exchange

of carbon dioxide, water, and ions between the interlayer and (wet) scCO2 in the interstitial

space and pores are unknown. A study aiming at an estimation of those barriers would be a

valuable addition to our understanding of the mechanism of carbon dioxide interaction with

swelling clay minerals.

Another scenario involves intercalation of CO2 during expansion of swelling clay minerals

that might be at fractional hydration states[88, 100, 101] (although it is generally believed

54



that smectite samples exist as a set of ”quantized” hydration states, i.e., (0W, 1W, 2W,

3W))[83, 102, 103] Experimentally, it was found that a residual amount of water is required

for successful intercalation of CO2 in the interlayer space that expands until the d001-spacing

corresponds to that of the 1W hydration state[15, 13]. Interaction of Na- and Ca-exchanged-

MMT samples at the 2W hydration state with variably wet scCO2 can lead to swelling to

the d001-spacing equal to the 3W state[58, 14]. As mentioned in the Introduction, the largest

expansion occurs for MMT samples at a sub-1W hydration state and is accompanied by an

increase in the d001-spacing from 11.3 to 12.3 Å after exposure to gaseous CO2[15] or to 12.1

Å after interaction with anhydrous scCO2[58, 14].

The formation of CO2 conglomerates trapped in the interlayer is supported by Schaef et

al.[14] and Rother et al.[60], who indicated that CO2 does not displace H2O when entering

the sub-1W interlayer but ”rather makes room by pushing the structural units apart”, and

by simulation data of Yong and Smith[20], who reported the interlayer of Sr-MMT showing

water molecules clustering around the ions and away from substitutions in the octahedral

layer and formation of unoccupied regions. That unoccupied space might be filled in by an-

other species such as carbon dioxide in a two-step mechanism (“prop and fill”) implying the

existence of (meta)stable partially filled hydration states. In our work, we found conglomer-

ate formations for both Na- and Ca-MMT clay systems, suggesting that CO2 can be a filler

to stabilize swelling clays during expansion. It is also important to realize that hydration

energies of interlayer ions, isomorphic substitutions in octahedral, and especially tetrahedral

layers would be leading factors determining trapping of CO2 as conglomerates in smectites

minerals. In the models employed in this work, only substitutions in the octahedral layer

were made, so the interlayer species exposed to the basal surface were indirectly affected by

charge imbalance brought by the magnesium for aluminum substitutions.

3.4 SUMMARY

This study has shown that rotational disordering, a common naturally occurring process,

affects the distribution of ions, water, and carbon dioxide molecules in the interlayer of
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swelling clays. The computed density maps reveal that the interlayer species in a monolayer

configuration follow the rotational Moiré patterns formed by the basal surfaces of adjacent

clay layers. The simulations indicate that rotational disordering of hydrated montmorillonite

and montmorillonite with intercalated water and carbon dioxide is an energetically demand-

ing process, as found using the position constraining and enforced rotation approaches for θ

= 0-12°. For all compositions considered, the potential energy demonstrates a tendency to

reach a plateau for θ = 6-12° that is attributed to a fixed number of undistorted/distorted

cavities for Moiré patterns. Turbostratically stacked clay layers with intercalated water and

water-CO2 also experienced expansion of interlayer space by 0.1-0.2 Å, depending on the

nature of interlayer ions.

Turbostratic dry and nearly dry montmorillonite systems are predicted to be more sta-

ble than the nonrotated system. Rotation is accompanied by a decrease in the d001-spacing

by ∼0.1 Å. This process is explained in terms of favorable interactions of interlayer ions

adsorbed at the clay surfaces. During equilibration, the ions find optimal positions in the

interlayer, causing a decrease in the potential energy and the d001-spacing. In a geological

formation, this process may be anticipated during slow dehydration of expandable clays un-

der geomechanical stress. Under such conditions, the clay layers would be prone to rotational

disorder and to become turbostatically stacked in the presence of external forces shifting the

clay particles. The calculation using enforced rotation of clay layers shows that perfectly

oriented dehydrated montmorillonite has only a limited range (θ = 0-2°) for rotational dis-

ordering, and further rotation would be energetically restricted.

The results of the simulations have also shown that CO2 might be trapped in the inter-

layer of hydrated montmorillonite in an amount exceeding its solubility in water at prevailing

P-T conditions in subsurface geological formations. This is possible because carbon dioxide

conglomerates become trapped in the interlayer and are surrounded by water molecules with

solvated CO2. Thus, the expandable clay layers provide a confining environment for such

carbon dioxide retention. This trapping mechanism could be important in estimations of a

storage capacity for selected geological sites.
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3.5 SUPPORTING INFORMATION

Eight figures, describing potential energy change, electrostatic contributions of various atom

pairs, 2D density maps, relative potential energy and d001 spacing change in Na-MMT sys-

tems, are included in the Appendix section. This material is also available free of charge via

the Internet at http://pubs.acs.org.
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Figure 21: (a; left) Density profiles showing (a) sodium ion, (b) carbon dioxide, and (c) water

molecule distributions along the distance perpendicular to the internal surfaces of Na-MMT

for the 5-2 composition at various θ. Double dashed lines designate the range of positions of

basal planes as a result of rotation. Profiles obtained by averaging over 20 ns of simulation

time. (b; right) Density maps (density in number/nm3) showing (a) sodium ion, (b) carbon

dioxide, and (c) water molecule distributions in the interlayer projected on a plane parallel

to the internal surfaces of Na-MMT with the 5-2 composition at θ = 6°. Results obtained

by averaging over 20 ns of simulation time.

58



4.0 FREE ENERGY CALCULATIONS TO PREDICT CLAY SWELLING

BEHAVIOR

4.1 INTRODUCTION

Burning of fossil fuels releases large quantities of CO2, a greenhouse gas, into the atmo-

sphere, and there is compelling evidence that this is having a significant impact on the

global temperature[104]. Sequestration of CO2 in deep underground sedimentary layers is

an approach widely suggested to reduce greenhouse gas emission[4]. In this approach, super-

critical CO2 (scCO2) would be injected into deep rock formations. Successful sequestration

depends on cap rocks being impermeable to CO2. Cap rocks and host rock matrix can

be enriched with swelling clays (smectites) such as montmorillonite and beidellite. The in-

teraction of scCO2 with hydrated smectites results in intercalation of CO2 into interlayer

regions[15, 13, 60, 58].

Montmorillonite (MMT) and beidellite (BEI), which is a less common smectite clay min-

eral, are layered 2:1 dioctahedral phyllosilicates comprised of octahedral (O) sheets sand-

wiched between tetrahedral (T) sheets giving a TOT structure as show in Figure 22. In

the absence of substitutions, the T sites are comprised of SiO4 units and the O sites of

AlO6 units. Structural hydroxyl groups are also present in the coordination sphere of the

octahedral metal. In 2:1 phyllosilicates one of three symmetrically unique octahedral sites

is not occupied by a cation. MMT has predominant isomorphic substitutions of Al3+ ions

by Mg2+ ions in the O sheet, while BEI samples tend to be dominated by isomorphic sub-

stitutions of Si4+ ions by Al3+ in the T sheets. Both types of substitution result in a net

negative charge for the clay layer, which is balanced by interlayer cations such as Na+, Li+,

and Ca2+. Hydration of the cations causes swelling of smectites and an increase of the d001-
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spacing[105, 22]. In natural samples of MMT, some substitutions can also occur in the T

and O sheets. Similarly, in natural samples of BEI, some substitutions occur in O sites.

However, for simplicity we consider the ideal substitutions described above. This allows us

to study the effect of location of the negative charges, exposed directly to interlayer species

or screened by the silicon-oxygen polyhedra, on swelling behavior. Other factors affecting

swelling behavior include the size and charge of the interlayer cations[19, 20], the positions

of the hydroxyl groups in the octahedral layer with respect to the vacancies in octahedral

sites, resulting in cis-vacant or trans-vacant smectites[21], and the magnitude of negative

charges on the clay sheets[22]. The expansion of smectites due to exposure to water and

CO2 improves the sealing properties of cap rocks, whereas shrinkage could lead to fracturing

and undesirable release of injected CO2 into the atmosphere[13].

Figure 22: Smectite structure containing TOT sheets, counterions, and intercalated water

and CO2 molecules. The color coding of atoms is: purple, red, white, grey, yellow, pink and

green for Na, O, H, C, Si, Al and Mg, respectively.

The swelling of smectite clays due to water intercalation is well understood from previous

studies with emphasis on montmorillonite as one of the most abundant smectite minerals[106,

6, 7, 107, 108, 8, 9, 10, 11], while beidellite has received less attention[92, 109, 110]. Previous

calculations on MMT indicate that at equilibrium water can form a monolayer with basal
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d001-spacings ranging from 11.5 to 12.5 Å (the 1W hydration state) or a bilayer with basal

d001-spacings ranging from 14.5 to 15.5 Å (the 2W hydration state)[11, 92, 65, 52]. The rela-

tive stability of the 1W and 2W hydration states depends on the type of interlayer ions[41].

In this work 1W and 2W are used, respectively, to refer to the monolayer and bilayer con-

figurations of interlayer molecules for both the pure water and for CO2-H2O mixtures.

Smith used Monte Carlo simulations to investigate the swelling of hydrated Cs-MMT

and to calculate the immersion energy to establish the hydration state corresponding to

the global free energy minimum[41]. The minimum was found to be consistent with the

experimental result[34, 111]. In subsequent work, Young and Smith[20] calculated the struc-

tural parameters for three different MMTs and found that for Cs-MMT-H2O formation of

a single water layer in the interlayer region leads to the most stable structure, while for

Na-MMT-H2O and Sr-MMT-H2O the 2W hydration state was predicted to be more stable

than 1W. The energetic contributions to the swelling free energy were calculated by Whitley

and Smith[90], who reported that hydration of the counter-ions plays a dominant role in the

swelling behavior of MMTs.

Interaction of carbon dioxide with hydrated smectites is a complex phenomenon[58, 14].

For example, exposure of dry scCO2 to MMT samples in the 2W and higher hydration states

can induce a collapse of the d001-spacing to that of the 1W state[58, 14]. On the other hand,

interaction of MMT samples with wet scCO2 promotes swelling of clays to either 1W or 2W

hydration states[15, 13, 58, 14].

The interaction of carbon dioxide and simple hydrocarbons with hydrated swelling clays

has been studied using computer simulation methods[92, 109, 110, 112, 113, 114, 94, 53,

18, 115, 116, 26, 27, 28, 29]. Molecular dynamics (MD) simulations have been engaged

to characterize the swelling process as well as the structure and transport of interlayer

species[18, 26, 27, 28, 29]. Botan et al.[17] applied grand canonical Monte Carlo (VT-MC)

simulations to study the effect of water and CO2 intercalation on Na-MMT swelling at pre-

vailing (P, T) conditions of an underground formation. They considered basal d001-spacings

over the range of 12 to 17 Å that excluded important d001-spacings corresponding to sub-1W

hydration levels. In addition, we note that the VT-MC method needs precise calculation of

chemical potentials for the binary CO2-H2O mixture which is quite challenging.

61



The goal of the present study is to characterize intercalation of pure carbon dioxide,

pure water, and CO2-H2O mixtures into Na-MMT and Na-BEI at two (P, T) conditions,

one relevant to the geological carbon storage via injection of scCO2 and the other corre-

sponding to exposure of clay to CO2 in the gas phase. Na-MMT and Na-BEI have different

localization of the negative charges in their mineral layers allowing us to study whether

this is an important factor in CO2 uptake. The simulations employed the Gibbs ensemble

Monte Carlo (GEMC) method[50, 51] in which knowledge of chemical potentials is not re-

quired to equilibrate non-interacting systems representing different phases of interest. In

addition, molecular dynamics simulations in the canonical ensemble were used to analyze

the properties of equilibrium water-CO2 mixtures in the interlayer region of clays.

4.2 COMPUTATIONAL DETAILS

4.2.1 Swelling thermodynamics

The thermodynamics of swelling of layered materials was outlined by Diestler et al.[40] and

Bordarier et al.[10] As shown in those publications, the internal energy of a slit micropore

can be expressed as:

dU =TdS + µdN + σxxsyszdsx + σyyszsxdsy

+ σzzsxsydsz + τzxsxsydlx + τzysxsydly.
(4.1)

Where T , S, µ, N , σii, τij (i and j represent index notations) are, respectively, the temper-

ature, entropy, chemical potential, number of molecules, and normal and shear stress terms.

si and li are Cartesian components of the micropore defined in Figure 23.

Taking into account only the normal stress term in the z direction, the free energy, F,

and isostress free energy , Φ, are defined as

F = U − TS − µN, (4.2)

Φ = F − σzzAsz, (4.3)
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Figure 23: Slit micropore structure including position and force components.

where A is the surface area of the clay. Thus the difference in the swelling free energy for

the wall separation ∆sz can be written as

∆Φ = ∆F − σzzA∆sz, (4.4)

By using equations 1 and 4, eliminating the x and y directions, and also considering the fact

that µ and T are fixed at phase equilibrium, gives

∆Φ = A

∫ sz

s0z

(σzz(s
′
z)− σ′zz)ds′z, (4.5)

σ′zz is the applied constant stress. By eliminating the isotropic part of stress (bulk pressure)

from the stress terms, the equation can be converted into a pressure based equation

∆Φ = −A
∫ sz

s0z

(Pzz(s
′
z)− P ′zz)ds′z. (4.6)

Where Pzz(s
′
z) and P ′zz are the slit normal (disjoining) and applied pressure, respectively.

Equation 6 has been used by Smith[41] and by Botan et al.[17] to calculate the free energy

of swelling as a function of the distance between layers.
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4.2.2 Gibbs Monte Carlo Method

The use of the multiphase Gibbs approach to study equilibrium of multi-component sys-

tems is well-documented in literature[117, 118, 119, 120, 121, 122]. Lopes and Tildesley[117]

evaluated the multicomponent GEMC approach to calculate two-phase, three-phase and

four-phase equilibria. Kristof et al.[120] applied the approach to the three-component, CO2-

water-methanol system at high pressure conditions, obtaining good agreement between the

results of their simulations and the experimental data.

The Gibbs ensemble Monte Carlo (GEMC) method[50, 51]uses separate boxes for each

phase to calculate the phase equilibrium for a target (P,T) condition and to achieve equiv-

alence of chemical potentials of interacting species. The algorithm employs three basic trial

moves: particle displacement, particle exchange, and volume change. The displacement

moves include a transitional or moves in a single box to satisfy temperature equilibrium.

The exchange moves involve deletion of a particle in one box and its insertion into another

box, to assure chemical potential equilibration. The volume moves expand or contract boxes

to fulfill the pressure equilibration. Figure 24 shows the simulation setup with three boxes

representing water, carbon dioxide, and clay phases.

4.2.3 Models and Force Fields

In this work, we used Na-MMT and Na-BEI clay structures with the stoichiometric chem-

ical formulas Na0.75Mg0.75Al3.25(OH)4(Si4O10)2 and Na0.75Al4(OH)4(Al0.375Si3.625O10)2, re-

spectively, where each clay TOT layer bears a negative charge -0.75 |e| per unit cell that

it is counterbalanced by interlayer Na+ cations. The isomorphic substitutions in the TOT

sheets were placed in such a way that they show a repeated pattern in the directions of a

and b lattice vectors. The Al-O-Al linkage in the T sheets was avoided according to Loewen-

stains rule[123]. The clay structure is described by the Clayff force field[52], while the rigid

SPC[54] and the rigid EPM2-based model of Cygan et al.[53] are employed for water and

CO2, respectively. The total potential energy can be written as:

ENon-bond = EVDW + ECoul + EStretch + EBend, (4.7)
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Figure 24: Illustration of Gibbs Monte Carlo method including three phases and three types

of trial moves: i) displacement move, ii) exchange move, and iii) volume move.

with

EVDW = 4εij[(
σij
rij

)12 − (
σij
rij

)6], ECoul =
qiqje

2

4πε0rij
,

where atoms i and j are separated by a distance rij, and qi is the charge on the atom i, e

is the elementary charge of an electron, ε0 is the vacuum permittivity, and εij and σij are

the Lennard-Jones energy and distance parameters, respectively. The parameters for unlike

atoms were calculated by using the Lorentz-Berthelot classical combining rules[3].

σij =
1

2
(σi + σj), εij =

√
εiεj. (4.8)

The bond stretch (EStretch) potential term is employed only for the hydroxyl groups of the

clay layer and is taken to be harmonic.
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4.2.4 Simulation methodology

The NPT-GEMC method was applied to the ternary clay-H2O-CO2 and binary H2O-CO2

systems at two (P, T) conditions, (25 bar, 348.15 K and 125 bar, 348.15 K). The binary

system was included to allow comparison of the results of our calculations with previous

experimental[124, 125]and computational[17, 126] data, and also to provide a reference for

the subsequent simulations of the ternary system.

In the MC simulations of the Na-MMT and Na-BEI phases, 4 × 3 × 2 (20.8 × 27.6

× 2h Å) supercells, requiring 18 counterions for neutrality, were employed. Calculations

were carried out for d001-spacings, h, ranging from 9.5 to 18 Å in steps of 0.5 Å to cover

separations ranging from nearly dry clays to the interlayer distances corresponding to the

3W hydration state. For spacings ¿3W, the behavior of interlayer species becomes similar to

that in the bulk[106, 6, 7, 107, 108, 8, 9, 10, 11]. The MC simulations were carried out for 2

× 105 equilibration cycles, followed by 1.5 × 105 production cycles. Each cycle consisted of

818 attempted moves, including volume exchange, configurational-bias interbox and intra-

box molecule transfer, molecule regrowth, translational, and rotational moves[127, 128, 129].

Exploratory calculations were carried out to determine optimal probabilities of the various

types of moves with the initial values being 0.5% volume exchange, 39.5% configurational-

bias consisting of both inter- and intra-box moves, 10% regrowth, and 50% displacement,

including translational and rotational moves. During the exploratory simulations, the prob-

abilities of different moves and the components in the boxes were adjusted to ensure that

the calculated chemical potentials of water and CO2 in the various phases agreed to within

the standard deviations. The positions of the atoms in the clay layers were held fixed, while

the Na+ ions were allowed to move within the interlayer space. The H2O and CO2 molecules

were allowed to migrate between the ”H2O-rich”, ”CO2-rich,” and clay boxes. The cut-off

radii for the non-bonded van der Waals interactions and for the real-space part of the Ewald

summation of the electrostatics were chosen to be 9.5 Å, with switching distances starting

from 6.5 Å in the Ewald summation. Standard deviations of all ensemble averages were

determined by the standard block average technique[49]. The NPT-GEMC simulations were

carried out using the Towhee simulation package[130].
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In addition to the GEMC simulations described above, molecular dynamics simulations

in the canonical ensemble (NVT-MD) were carried out to analyze various dynamical proper-

ties of the molecules in the clay phase. These simulations used a triclinic 8 × 4 × 4 supercell

with 5120 atoms constituting the mineral portion of the clay phase. The negative charge

introduced by the isomorphic substitutions is compensated by 96 sodium ions residing in all

interlayers. The carbon dioxide and water content (mole fractions) were taken to correspond

to those obtained for the minimum free-energy structures from the Monte Carlo simulations.

Equilibration runs of 1 ns were carried out, followed by 5 ns production runs with tempera-

ture controlled by a Nse-Hoover thermostat[80, 46] with a relaxation time of 2 ps. The cut-off

radii for the non-bonded van der Waals interactions and for the Ewald summation of the

electrostatics were chosen to be 9.5 Å, with the switching distance for the latter starting from

8.5 Å. Due to the use of cut-offs for the LJ interactions, long-range dispersion corrections for

energy and pressure were applied. The leap-frog algorithm[43] was used to update positions

every 1 fs. The MD simulations were carried out using the GROMACS package[77].

The radial distribution function (RDF) for species B around species A was calculated

using:

GA−B(r) =
1

4πρBr2
∆NA−B

∆r
(4.9)

where ρB is the number density of species B, and ∆NA−B is the average number of type B

particles lying in the region r to r + ∆r from a type A particle. NA−B is the coordination

number n(r) for B around A.

The diffusion coefficients of the interlayer species were calculated using the Einstein

relation and equilibrated atomic trajectories from the NVT ensemble simulations with 1 ps

sampling to evaluate the mean square displacement of the species of interest:

D =
1

6Nmt

〈 Nm∑
j=1

[rj(t)− rj(0)]2
〉
, (4.10)

where Nm is a number of a selected species and rj(t) is the center-of-mass position of the jth

species at time t. The averages were over 5 ns trajectories. The diffusion coefficients were

derived from the linear slope of the mean square displacement as a function of the simulation

time. Different restart points in the analysis were taken to monitor convergence.
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4.3 RESULTS AND DISCUSSION

4.3.1 Monte Carlo simulations

Table 5 compares the CO2 mole fractions and the densities of the CO2-rich and water-rich

phases of the two-phase water-CO2 and three-phase water-CO2-clay systems. In the latter

case, calculated results are reported for both Na-MMT and Na-BEI at d001 = 12.5 Å.

Table 5: Mole fractions of CO2 (X) and densities (ρ) of H2O and CO2 in multiphase systems

from previous studies and current work (T=348.15 K).

system P [bar] ρH2O [g/cm3] ρCO2 [g/cm3] XH2O XCO2 Xa
clay

H2O-CO2 25.3 0.0054 0.9818

(Experiment)[125] 126.7 0.9915

H2O-CO2 24.2 0.934(3) 0.039(1) 0.004(1) 0.982(1)

(µVT-MC)[17] 122.4 0.940(5) 0.298(3) 0.014(1) 0.994(1)

H2O-CO2 25 0.939(4) 0.040(1) 0.004(1) 0.980(4)

(GEMC) 125 0.947(4) 0.314(7) 0.016(3) 0.994(2)

MMT-H2O-CO2 25 0.937(5) 0.040(1) 0.004(1) 0.980(2) 0.014(2)

(GEMC) 125 0.947(5) 0.317(5) 0.016(3) 0.994(1) 0.056(2)

BEI-H2O-CO2 25 0.933(4) 0.040(1) 0.005(2) 0.983(2) 0.022(2)

(GEMC) 125 0.945(4) 0.321(5) 0.017(3) 0.993(1) 0.036(3)

aClay is in the monolayer hydration state (d001=12.5 Å).

For the CO2-water system, the calculated mole fractions are in excellent agreement with

the results of experimental measurements and with the results of grand canonical Monte

Carlo simulations by Botan et al.[17]Similar mole fractions of CO2 are found in the CO2

and water phases of the three-phase systems as for the water-CO2 two-phase system. Also,

the densities calculated for the water-rich and CO2-rich phases are nearly identical for the

two-phase and three-phase systems. Most significantly, the concentration of carbon dioxide
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in the clay phase coexisting at equilibrium with the CO2-H2O binary system greatly exceeds

that in the bulk water-rich phase.

Figure 25: Calculated swelling free energy of Na-MMT as a function of the basal d001-spacing

for intercalation of pure CO2, pure H2O, and the H2O-CO2 mixture at P = 25 and 125 bar,

T = 348.15 K.

The calculated swelling free energies as a function of the d001-spacing for pure CO2, pure

H2O and mixed H2O-CO2 intercalation into Na-MMT are depicted in Figure 25. Similar

profiles for Na-BEI-H2O and Na-BEI-CO2-H2O are given in Figure 26. The smallest (9.5 Å)

d001-spacing in the figures corresponds to dry clays in their 0W hydration state, character-

ized by the absence of intercalated molecules and provides a common origin for the swelling

free energy curves. From the profiles, it is seen that in the absence of water, intercalation

of CO2 is highly unfavorable thermodynamically. For Na-MMT-CO2 the minimum at 12.5

Å is about 10 kcal/mol/nm2 less stable than that at 9.5 Å, i.e. the 0W hydration state.

This result is consistent with experimental studies that show that carbon dioxide does not

intercalate into MMTs in the absence of water[15, 14, 63]. Our calculations also show that,

in the absence of water, intercalation of CO2 into Na-BEI is even more unfavorable than into

Na-MMT.
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Figure 26: Calculated swelling free energy of Na-BEI as a function of the basal d001-spacing

for intercalation of pure CO2 (insert), pure H2O, and the H2O-CO2 mixture at P = 25 and

125 bar, T = 348.15 K.

For the intercalation of pure water into montmorillonite, two minima corresponding to

1W and 2W are identified with energies below that of 0W. The stability of the 1W and 2W

states is a consequence of ion hydration and hydrogen bonding between the intercalated wa-

ter molecules and the basal oxygen atoms[22]. The existence of two stable hydration states

of Na-MMT is supported by previous studies[34, 35, 36, 37, 38]. The present calculations

predict the 2W hydration state to be more stable than the 1W hydration state as found in

earlier MC simulations[90, 91] For pure water in Na-MMT, the barrier for going from the

0W to the 1W state is calculated to be about 10 kcal/mol/nm2 and is relatively insensitive

to pressure. In contrast to Na-MMT-H2O, Na-BEI-H2O does not have a stable 2W state

(Figure 26). The inability of Na-BEI-H2O to swell beyond 1W has been documented in the

literature[131], and factors responsible for this behavior will be discussed later in Section

3.2.
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The swelling free energy curves for the clay systems with intercalated binary H2O-CO2

mixtures display trends similar to those for pure water (Figures 25 and 26). For both Na-

MMT-CO2-H2O and Na-BEI-CO2-H2O, the free energy minima at d001-spacings correspond-

ing to the 1W hydration states are deeper and the barriers separating 0W and 1W are several

kcal/mol/nm2 lower than those for swelling induced by pure water. For Na-MMT-CO2-H2O

the free energy barriers between the minima at 12.5 and 15 Å spacing is calculated to be

only about 3 kcal/mol/nm2 with the minimum at 15.5 Å being more stable. This indicates

that in geological aquifers, both mono- and bilayer arrangements of CO2-H2O may occur in

clays rich with MMT. Increasing the pressure is found to stabilize the free-energy minima

near d001 = 12.5 Å (1W) of both clay systems.

Figure 27: Equilibrium CO2 mole fraction as a function of basal d001-spacing for Na-MMT-

CO2-H2O and Na-BEI-CO2-H2O at T= 348.15 K and P = 25 or 125 bar. The horizontal

dotted lines represent the CO2 mole fractions in the bulk H2O-rich phase at P = 125 bar

(black) and P = 25 bar (red), both at T=348.15 K.

The calculated mole fraction of CO2 as a function of the basal d001-spacing of Na-MMT

and Na-BEI is reported in Figure 27. In both systems, there is a pronounced peak in the

CO2 mole fraction at a d001-spacing corresponding to the 1W state and a second weaker
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peak (or shoulder) at a distance corresponding to 2W. Experimental studies of Na- and

Ca-MMT[15, 63, 16] have shown that the maximum expansion of the interlayer due to CO2

exposure occurs at the sub 1W hydration state. Increasing the pressure causes an eleva-

tion of the CO2 concentration in the interlayer region, with the increase being greater for

Na-MMT than for Na-BEI. For both Na-MMT-CO2-H2O and Na-BEI-CO2-H2O the concen-

tration of CO2 in the interlayer region greatly exceeds that in the bulk water-rich phase. For

Na-MMT-CO2-H2O, the calculated mole fractions of CO2 in the interlayer region obtained in

the present study in fairly good agreement with those reported by Botan et al.[17], although

the CO2 concentrations predicted in this work are lower. The different concentrations may

be the result of the different force fields used in the two theoretical studies.

4.3.2 Molecular dynamics simulations

The Na-MMT-CO2-H2O and Na-BEI-CO2-H2O systems at d001-spacing of 12.5 Å (1W) and

15.5 Å (2W) equilibrated in the GEMC simulations were further characterized by molecular

dynamics using the NVT ensemble. In particular, the MD simulations were used to calcu-

late the structural and transport properties of the interlayer species. The Na-BEI-CO2-H2O

system at d001 = 15.5 Å does not correspond to a free energy minimum and is considered

primarily for comparison with Na-MMT-CO2-H2O at the same d001-spacing.

I) Structural details of the interlayer species

Figure 28 reports for Na-MMT and Na-BEI the calculated atomic density profiles for water

oxygen (Ow), carbon (CCO2), and sodium ions (Na+) at d001-spacings equal to 12.5 and

15.5 Å. The profiles were computed along the z axis (perpendicular to the clay surface)

and averaged over the interlayer region of the simulation box using a 3 ns production time

frame. For each species of interest, the density profiles computed for P = 25 and 125 bars are

close agreement, and only the P = 125 bar data are shown in the figure. The Ow and Na+

density profiles for pure water are qualitatively similar to those for the H2O-CO2 mixtures

and, therefore, are not reported. For both Na-MMT and Na-BEI, the density profiles for

Ow and CCO2 display a single peak in the case of d001 = 12.5 Å and two peaks in the case of
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Figure 28: Density profiles of Ow, CCO2 , and Na+ along the interlayer distance perpendicular

to the internal surfaces of Na-MMT-CO2-H2O (solid lines) and Na-BEI-CO2-H2O (dashed

lines). The distributions of the intercalated species are reported for d001-spacings of a) 12.5

Å and b) 15.5 Å For b) the densities of CCO2 are magnified by a factor of 10 for clarity.

Vertical black dotted lines designate the planes of the basal oxygen atoms.

d001 = 15.5 Å. For Na-MMT-CO2-H2O the compositions of carbon dioxide and water in the

monolayer and the bilayer structures are ∼ 4.1 H2O - 0.3 CO2 and ∼ 8.9 H2O - 0.2 CO2 per

unit cell, respectively. These numbers are in reasonable agreement with the results of grand

canonical MC simulations of Botan et al.[17] (monolayer: 3.7 H2O - 0.6 CO2 and bilayer:

8.6 H2O - 0.4 CO2 per unit cell). For Na-BEI-CO2-H2O our simulations give ∼ 4.4 H2O -

0.2 CO2 and ∼ 8.6 H2O - 0.2 CO2 per unit cell for the monolayer and bilayer arrangement,

respectively.
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In an earlier paper[18], we reported the d001-spacing of Na-MMT as a function of the

number of water molecules at fixed numbers of CO2 molecules per unit cell in order to

estimate the effect of CO2 intercalation on the interlayer distance of Na-MMT-CO2-H2O. It

was deduced that the addition of 0.2-0.3 CO2 molecules per unit cell led to an expansion

of the d001-spacing by ∼ 0.5-0.6 Å. In experimental studies performed at elevated (P,T)

conditions the maximum expansion of Na-MMT upon interaction with dry scCO2 was found

at an initial d001-spacing below 11.5 Å, which corresponds to a sub-1W state of hydrated

Na-montmorillonite and was capped at a d001-spacing equal to about 12.5 Å suggesting that

expansion due to interaction with scCO2 can be as much as ∼ 1 Å[15, 58]. Further, Loring

et al.[16] estimated that the maximum CO2 absorption in the interlayer of Na-exchanged

MMT occurs at water concentrations close to the transition between 0W and 1W hydration

states. Thus, the values of the equilibrium concentrations of intercalated CO2 predicted in

this work appear to be somewhat underestimated.

In contrast to the density profiles of Ow and CCO2 , the density profiles of Na+ are quite

different for Na-MMT-CO2-H2O and Na-BEI-CO2-H2O. Since the major difference in these

two phyllosilicates is the location of the negative charge in the mineral layers, we conclude

that this is an important factor determining the sodium ion distributions. For the d001 = 12.5

Å case, the Na+ density distribution is bimodal for both Na-MMT and Na-BEI. However,

for Na-BEI, the positions of the peaks are shifted closer to the basal surfaces as a result of

preferential coordination of sodium cations at the middle of the hexagonal rings formed by

the silicon-oxygen polyhedra with isomorphic substitutions[18]. Effectively, the peak shift

reflects a change from predominantly Na+ outer-sphere coordination with water in case of

Na-MMT to inner-sphere adsorption at the internal clay surfaces for Na-BEI where basal

oxygens participate in the first solvation shell of sodium ions. Intercalation of carbon dioxide

disrupts the water network[113] and also causes the Na+ ions to be displaced toward the

clay surfaces[18].

In the 2W state of the Na-MMT-CO2-H2O system, the Na+ distribution peaks at the

middle of interlayer. However, for Na-BEI-CO2-H2O, it is split into three peaks, with two

more pronounced peaks corresponding to sodium ions adsorbed at the surfaces and a weaker

central peak corresponding to Na+ ions more fully solvated by water molecules. The surface-
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adsorbed Na+ ions have in their first solvation shell both basal oxygens of the ditrigonal rings

and interlayer water molecules. Additional information on the solvation structure of the ions

can be gained by examining the radial distribution functions (RDFs) for atomic pairs of

interest. Figure 29 reports the RDFs for the sodium ion water oxygen pair computed for

Na-MMT-CO2-H2O and Na-BEI-CO2-H2O at monolayer and bilayer arrangement and P =

125 bar. Figure 30 depicts the corresponding RDFs for the sodium ion basal oxygen pair.

Additionally, cumulative number RDFs, i.e. the average number of atoms within a distance,

r, were calculated.

For the monolayer arrangements of Na-MMT-CO2-H2O of Na-BEI-CO2-H2O, the Na+

ions are hydrated on average by 4.0 and 3.6 water molecules, respectively. On the other

hand, the average number of basal O atoms directly bonded to the Na+ ions is 1.2 for Na-

MMT, but 1.9 for Na-BEI. Thus, the total Na+ coordination numbers in the monolayer case

is about 5.3 in both cases. For the bilayer (d001=15.5 Å) of Na-MMT-CO2-H2O the Na+

ions tend to be coordinated by water molecules alone, achieving on average a coordination

number of 5.5. On the other hand, for Na-BEI-CO2-H2O in the 2W state, the average Na+

coordination number, 5.7, derives from 4.3 of water oxygens and 1.4 of basal oxygens (Figure

30). A simulation of sodium ions in bulk water using the same (P,T) conditions and force

fields as used in the clay simulations gives an average Na+ coordination number 5.6 for

the first hydration shell, essentially the same as that calculated for Na+ in the bilayer in

Na-MMT. Experimental studies of Na+ in bulk water lead to Na+ coordination numbers in

the range 4.4-5.4[132, 133] consistent with the results of CPMD simulations[134] which give

an average coordination number of 4.9 at 300K. Thus, it appears that our simulations tend

to slightly overestimate the average number of water molecules coordinating the Na+ ions.

This probably reflects a deficiency of the force field used in the simulations.

In Na-BEI the strong electrostatic interaction between ions and the surfaces makes it

more favorable for the cations to be adsorbed at a surface than to be located at the middle

of the interlayer. In Na-MMT, in which the negative charges are screened by the T sheets,

the Na+ ions are more stable near the center of the bilayer where they are essentially fully

hydrated. Suter et al.[92] explored the thermodynamics of Li+, Na+ and K+-montmorillonote

and beidellite using ab initio molecular dynamics. These authors found that smectites with
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Figure 29: Radial distribution functions (solid curves) and cumulative number RDFs (dashed

curves) of the Na+-Ow pair for a) Na-MMT-CO2-H2O and b) Na-BEI-CO2-H2O at P = 125

bar and T=348.15 K. Dotted lines designate the cumulative number RDF, i.e. the average

number of particles within a Na+-Ow distance.

the free energy minimum in the middle of the interlayer for bilayer swell to the 2W hydration

state with the ions forming a full hydration sphere. In Na-beidellite the position of the lowest

energy region remains unchanged from monolayer to bilayer indicating that swelling would

stop at monolayer. At that position, basal oxygens form a part of sodium hydration sphere.

Thus, the interplay between the hydration of counter-balancing ions and the attraction to

the basal surface determines the swelling behavior of smectites. Localization of charge in the

O clay sheets supports swelling to 2W (and higher) while localization of the negative charge

in the T sheets favors 1W (Figure 25 and 26).

We now consider the effects of layer charge localization and the interlayer ions on the CO2-

H2O distributions. Figure 31 shows the calculated RDFs of carbon-water oxygen (C-Ow) and

CO2 oxygen water hydrogen (OCO2-HW ) pairs for Na-MMT-CO2-H2O for both monolayer
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Figure 30: Radial distribution functions (solid curves) and cumulative number RDFs (dashed

curves) of the Na+-Ob pair for a) Na-MMT-CO2-H2O b) Na-BEI-CO2-H2O at P = 125 bar

and T=348.15 K . the cumulative number RDF, i.e. the average number of particles within

a Na+-Ob distance.

and bilayer conditions at P = 125 bar. The corresponding RDFs for Na-BEI-CO2-H2O

(monolayer and bilayer) display qualitatively similar shapes and are not shown here. The C-

Ow RDF displays only a weak shoulder near 3.1 Å, corresponding to coordination of water to

carbon of CO2. The shoulder is more pronounced in the bilayer than in the monolayer case,

consistent with a larger number of water oxygens surrounding CO2 molecules in the former.

However, the RDF of carbon basal oxygens indicates that the coordination number of basal

oxygens is larger for the monolayer than for the bilayer, so on average the CO2 molecules

are surrounded by similar numbers of oxygens atoms in the monolayer and bilayer. This

result is consistent with a prior analysis of the nearest-neighbor coordination numbers for

CO2 carbon atoms in hydrated Na-MMT[17]. For the monolayer arrangement of Na-MMT-

H2O-CO2, the OCO2-HW RDF displays a well-defined shoulder near 2.3 Å, consistent with
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Figure 31: Radial distribution functions for a) carbon water oxygen (water) and b) CO2

oxygen water hydrogen in Na-MMT-CO2-H2O at P = 125 bar and T = 348.15 K.

H-bond formation between H2O and CO2. This shoulder is much less pronounced for the

bilayer. These results are consistent with the calculated average lifetimes[134] of the H bonds

between the OCO2 atoms and the hydrogen atoms of the water molecules. The values are 1.3

and 0.2 ps (P = 125 bar, Na-MMT-CO2-H2O) for the monolayer and the bilayer, respectively,

implying stronger H-bonding in the former case. For Na-BEI-CO2-H2O the corresponding

computed lifetimes are 2.2 and 0.4 ps for 1W and 2W, respectively. The different lifetimes

in the two clays can be related to details of the CO2 distributions in the interlayers.

Figure 32 depicts number density maps for carbon dioxide molecules residing in a selected

monolayer or bilayer of Na-MMT-CO2-H2O, in a monolayer of Na-BEI-CO2-H2O, and in

pyrophyllite at a CO2-H2O composition corresponding to that of the monolayer of Na-MMT-

CO2-H2O. The maps were obtained by scanning the interlayer space to compute density

distributions in planes parallel to the clay surfaces with a step size of 0.1 Å. Then, the

distributions were projected onto the xy plane and averaged for 10 ns of simulation time.
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Figure 32: Density maps (number of molecules / nm3) showing carbon dioxide molecule

distributions at P = 125 bar and T=348.15 K in the interlayer at d001-spacing a) 12.5 Å for

Na-MMT-CO2-H2O, b) 15.5 Å for Na-MMT-CO2-H2O, c) 12.5 Å for pyrophyllite, and d)

12.5 Å for Na-BEI-CO2-H2O with positions of Al substitutions in the adjacent tetrahedral

layers given in blue. Results obtained by averaging over 10 ns of simulation time.

Pyrophyllite is a 2:1 dioctahedral phyllosilicate without charges on the mineral layers

and, hence, no interlayer cations. The density map for pyrophyllite is included to provide

additional insight into the effect of interlayer ions on the CO2 distribution. For Na-MMT-

CO2-H2O the distribution of CO2 molecules is distinctly different in the monolayer and

bilayer arrangements.
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For the monolayer of Na-MMT-CO2-H2O, the density map reveals that the CO2 molecules

are non-uniformly distributed with respect to their xy coordinates and tend to conglomerate

as represented by the dark regions in Figure 32. Analysis of distributions computed over

various time frames shows that the clustered carbon dioxide molecules move over time in

the interlayer. Migrating CO2 clusters persist even in simulations carried out as long as

for 50 ns. However, it is expected that averaged over sufficiently long times, the structure

would smear out. The formation of CO2 conglomerates in clay monolayers is supported

by other studies that speculated that CO2 enters the sub-1W interlayer ”by pushing the

structural units apart”[13]. Young and Smith[20] reported that for Sr-MMT under sub 1W

conditions the water molecule aggregates around the cations leaving voids. The voids can

be filled by carbon dioxide in a ”prop-and-fill” mechanism[20] in which the clay is propped

open by hydrated cations making possible entrance of CO2. In this work, it is found that

the instantaneous spatial distribution of the clustered CO2 molecules in Na-MMT is not

correlated with the positions of the substitutions in the O sheets. However, it should be

kept in mind that we have used a periodic rather than random distribution of substitution

sites in the T or O layers, and that the distribution of CO2 conglomerates could depend on

the distribution of substitution sites. Earlier Monte Carlo simulations of cation distributions

in the octahedral sheets of phyllosilicates suggest a tendency for Mg cations not to cluster

in the Al/Mg systems[135] whereas in some montmorillonite samples Mg2+ were observed

to form clusters[136]. Palin et al.[137] using Monte Carlo simulations show short-range Al-

Si ordering across the tetrahedral sheets of muscovite that depends on the Al:Si ratio and

temperature. So, the ordering calculated in T sheets of muscovite supports the ordered

placement of isomorphic substitutions in T sheets adopted in this work. In a previous study,

we also found conglomerate formation of CO2 for both Na- and Ca-MMT[53]. Thus, this

behavior is not limited to clays with Na+ ions.

We hypothesize that the interlayer ions facilitate CO2 conglomeration in the monolayer of

the clay systems by ”tying” up water molecules. To investigate this possibility, a simulation

was conducted on pyrophyllite using the equilibrium CO2-H2O compositions computed for

monolayer of Na-MMT-CO2-H2O at P = 125 bar. The resulting density distribution map,

depicted in Figure 32, shows that CO2 develops a periodic pattern reminiscent of ditrigonal
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rings of the basal surfaces. Thus, in the absence of interlayer ions, the tendency of CO2 to

conglomerate is suppressed, and its distribution is determined by the basal atoms of adja-

cent internal clay surfaces. In a previous paper devoted to turbostratic smectites, we showed

that a rotational shift of one adjacent clay layer relative to the other creates Moir patterns

consisting of basal atoms[53]. Those patterns play a role in determining the distribution of

interlayer species including carbon dioxide.

The distribution of CO2 in the monolayer of Na-BEI-CO2-H2O (Figure 32) is particu-

larly striking. The CO2 molecules are clustered in the regions defined by the positions of the

isomorphic substitutions in the T sheets (depicted by blue dots in Figure 32). CO2 clearly

tends to locate in the areas away from the charge originated from the substitutions, while the

interlayer space near substitutions is occupied by water and hydrated cations. In the bilayer,

the CO2 density profile displays two-peaks (Figure 28) implying that the CO2 molecules are

exposed to the internal surfaces at the comparable distances as in monolayer. Indeed, the

corresponding distribution map (not shown) also reveals localized density regions controlled

by the substitution positions, however, the structure is more smeared than in the monolayer

Obviously, in natural samples the substitution pattern could be irregular, and the CO2 dis-

tribution would be more complex than shown in Figure 32. Nonetheless, the location of the

layer charges in Na-BEI is a key factor in determining the CO2 distribution in monolayer

and bilayer. In Na-BEI-CO2-H2O the CO2 motion is significantly restricted compared to the

more mobile CO2 conglomerates in Na-MMT-CO2-H2O. To quantify the transport proper-

ties of the interlayer species, diffusion coefficients were calculated and analyzed for both clays.

II) Diffusion of the interlayer species

Table 6 reports the computed diffusion coefficients for the interlayer species in Na-MMT,

Na-BEI, and bulk phases obtained in this work and in other studies[27, 138, 139, 140, 11] as

well as from experimental measurements on similar systems. Both 3D and 2D (xy) values of

the diffusion constants are given. In general, the diffusion constants for lateral motion of in-

terlayer species are about 25-35% greater than those computed for 3D motion. As expected,

the diffusion coefficients for CO2, H2O, and sodium ions increase in going from monolayer to

bilayer arrangements, with the bilayer values being 5-10 times larger than the corresponding
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monolayer values. For Na-MMT-CO2-H2O the diffusion coefficients computed in this work

are systematically higher than those calculated by Botan et al.[17] (Table 6). This is at-

tributed to differences in the force fields used in the two works. Nevertheless, the calculated

values of the diffusion constants of water from the two studies are close to the experimental

result obtained using QENS spectroscopy. Also, our calculated diffusion constant for lateral

motion of H2O in Na-MMT is comparable to that measured for water in the interlayer re-

gion of Na-hectorite[138, 139] (a trioctahedral smectite with isomorphous substitution in the

octahedral sheet that displays swelling properties similar to those of MMT)[140]. The cal-

culated diffusion coefficient of water in the bulk phase at is 8.4 × 10−5 cm2/s, in reasonable

agreement with the experimental value of 5.97(6) × 10−5 cm2/s[141] at T = 347 K. More

importantly, the calculated diffusion constant for water in the bulk is 9-28 times greater than

that for water in the monolayer and about 2-6 times larger than that of the bilayer for the

two clays[17].

For both the monolayer and bilayer cases, the diffusion constant for water in Na-BEI-

CO2-H2O is about two times smaller than for water in Na-MMT-CO2-H2O. Similarly, the

measured diffusion constant for CO2 in bulk water, 5.40 0.10 × 10−5 cm2/s (T = 348

K)[142], is about 1.5-3.0 times larger than for lateral motion of CO2 in the clay bilayer and

about an order of magnitude larger than that for lateral diffusion of CO2 in the monolayer

of Na-MMT-CO2-H2O. Due to the constrained motion of CO2 in the monolayer of Na-BEI-

CO2-H2O, the diffusion coefficient of CO2 in that system is much smaller (by 5-10 times)

than for Na-MMT-CO2-H2O.

Our calculated value of the Na+ diffusion constant in bulk water, 2.7 × 10−7 cm2/s,

in reasonable agreement with the experimental value of 3.5 × 10−5 cm2/s[143]. It is also

about twice as large as that for diffusion in Na+ in the bilayer and more than an order of

magnitude larger than that for diffusion of Na+ in the monolayer of Na-MMT-CO2-H2O.

Predictably, Na-BEI-CO2-H2O, for which the Na+ ions tend to be adsorbed at the internal

surfaces, has much smaller Na+ diffusion constants than for Na-MMT-CO2-H2O in both the

monolayer and bilayer cases. Kozaki et al.[144] reported a diffusion constant of 1.8 × 10−6

cm2/s for interlayer sodium ions in the 2W hydration state of MMT at 323 K and 0.1-0.3 M

concentrations of NaCl. Even though that value is in good agreement with that calculated
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Table 6: Diffusion coefficients (x 10−5 cm2/s) of water, carbon dioxide molecules, and Na+

cations in the interlayer spaces of Na-MMT and Na-BEI for the equilibrium CO2-H2O com-

positions corresponding to d001-spacing of 12.5 and 15.5 Å at T=347.15 K.

system P D

[bar] (H2O) (H2O)axy (CO2) (CO2)
a
xy (Na+) (Na+)axy

Monolayer

BEI-CO2-H2O 125 0.23(1) 0.32(2) 0.03(0) 0.04(0) 0.01(0) 0.01(0)

25 0.33(3) 0.49(3) 0.05(1) 0.08(1) 0.01(0) 0.02(0)

MMT-CO2-H2O 125 0.41(3) 0.62(4) 0.28(3) 0.43(1) 0.11(1) 0.16(2)

25 0.61(2) 0.91(4) 0.24(3) 0.35(4) 0.20(1) 0.27(1)

Bulk water 125 8.4(7) 10.3(8) 2.7(5)

MMT-CO2-H2O[17] 125 0.32(2) 0.17(2) 0.13(2)

25 0.51(2) 0.24(4) 0.19(2)

Hectorite-H2O[138] 1 1.0(1) 0.13(2)[96]

(Expt., T=347K)

Bilayer

BEI-CO2-H2O 125 0.98(4) 1.48(4) 0.93(5) 1.50(6) 0.10(2) 0.14(2)

25 1.39(5) 2.04(7) 1.29(4) 2.05(7) 0.11(3) 0.17(4)

MMT-CO2-H2O 125 2.39(3) 3.58(6) 1.55(6) 2.50(1) 1.12(2) 1.73(2)

25 2.42(4) 3.63(7) 1.64(8) 2.81(5) 1.38(2) 1.92(3)

MMT-CO2-H2O[17] 125 3.2(1) 1.5(1) 1.4(1)

25 3.5(1) 1.6(2) 1.3(1)

Hectorite-H2O[139] 1 2.2(2)

(Expt., T=347K)

a
xy denotes the lateral diffusion coefficient of the motion parallel to clay surfaces.

in the present study for the 2W state of Na-MMT, direct comparison between calculated

and measured ionic mobilities of smectite samples should be done with caution since the
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experimental values can include substantial contributions from ions residing in pores and at

external surfaces depending on experimental conditions and ionic strength[144].

4.4 SUMMARY

Molecular dynamics and multiphase Gibbs ensemble Monte Carlo simulations were carried

out to study adsorption of carbon dioxide and water in the interlayer regions of Na-MMT

and Na-BEI. The free energy calculations indicate that intercalation of pure CO2 into the

clay interlayers is not favorable, while pure H2O adsorption may occur naturally at the (P,

T) conditions relevant to carbon sequestration in deep geological formations. For Na-MMT-

CO2-H2O the free energy of swelling shows two minima corresponding to monolayer and

bilayer arrangements of the interlayer species, whereas for Na-BEI-CO2-H2O the expansion

of the interlayer is limited to monolayer for both pure water and CO2-water mixtures. This

is a consequence of the strong interaction between the cations and the negatively charged

clay layers.

The calculations predict the carbon dioxide concentrations in the interlayer of both clays

greatly exceeding the solubility of CO2 in bulk water at the (P, T) conditions of interest.

In agreement with experiment, the maximum carbon dioxide adsorption occurs at the d001-

spacing range (11.5-12.5 Å) corresponding to the 1W hydration state. For both clays, CO2

can fill the available space in sub-1W interlayer arrangements, resulting in expansion of d001

to 12.5 Å. The presence of interlayer cations leads to CO2 conglomeration in the monolayer

of Na-MMT-CO2-H2O. For Na-BEI-CO2-H2O, both the cations and the negative charges

in the tetrahedral layers significantly impact the distributions of water and carbon dioxide

molecules. CO2 is driven away from the positions of isomorphic substitutions, whereas

hydrated cations molecules are located close to Al3+/Si4+ substitution sites. The results

showed that in smectites, hydrated cations and substitutions into tetrahedral sheets promote

segregation of water and CO2 in the interlayers and affects the ability of the clay minerals

to retain carbon dioxide.
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Not surprisingly, in the monolayer region of smectite clays, the mobilities of all interlayer

species: water, CO2, and Na+ are significantly retarded compared to the bulk phase. The

corresponding diffusion constants in the bilayer regions are significantly less reduced com-

pared to their values in bulk water. The most prominent reduction in mobility is found for

CO2 and Na+ in Na-BEI-CO2-H2O.

The simulations predict that at equilibrium with a CO2-bearing aquifer, carbon diox-

ide intercalation into hydrated clay phases is accompanied by expansion of the interlayer

distance causing increase of clay volume, which, in turn, influences the porosity and perme-

ability of formations enriched in expandable clay minerals. The greater solubility of CO2

in the interlayer region of smectites than in bulk water suggests that smectite minerals are

good candidates for carbon dioxide storage.

4.5 ACKNOWLEDGMENT

This technical effort was performed in support of the National Energy Technology Labora-

tory’s ongoing research in Subtask 4000.4.641.061.002.254 under the RES contract DE −

FE0004000. The simulations were carried out on NETL’s High-Performance Computer for

Energy and the Environment (HPCEE) and on computers in the University of Pittsburgh’s

Center for Simulation and Modeling.

This chapter is taken from a manuscript: ”Multiphase Monte Carlo and Molecular Dy-

namics Simulations of Water and CO2 Intercalation in Montmorillonite and Beidellite”

which has already been submitted and has been performed in collaboration with K. Jor-

dan, G. Guthrie and E. Myshakin.

85



5.0 CONCLUSION

In summary, the objective of this study was to investigate the behavioral response of smec-

tites to the intercalation of CO2 and H2O molecules by employing classical atomistic simula-

tions, and the work was divided into five chapters. In chapter 1, the motivation, introduction

and outline of the work were described. In chapter 2, basics of classical molecular dynam-

ics and Monte Carlo methods were introduced, different ensembles were defined and the

force fields, employed for our simulations, were reviewed. The objective of chapter 3 was

to carry out classical modeling to probe the effect of rotational disordering on the energetic

and structural properties of Na-MMT and Ca-MMT clay minerals. Next, in chapter 4, we

employed clay disjoining pressure and free energy computations to investigate the water and

carbon dioxide adsorption in Na-MMT and Na-BEI by means of molecular dynamics and

Monte Carlo techniques. Finally, in chapter 5, the significant results and contributions are

outlined, and ongoing and future research is discussed.

5.1 FINDINGS AND CONTRIBUTIONS

5.1.1 Effect of Rotational Disordering on clay Energetic and Structuractural

Parameters

We studied the role of rotational disordering, a naturally occurring defect in smectite, by

two different approaches: position constraining and enforced rotation methods. The former

was employed to investigate the stationary disordering, and the simulations were carried for

the clay layers at constant rotational degrees (θ = 0, 3, 6, 9 and 12 °), while the latter was
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used to deal with continuous rotational disordering evolving with time; therefore, clay layers

with a constant angular rotation around the center of mass of the clay were simulated by

using fixed velocities(ω = 0.01 and 0.001 °/ps).

We found that rotational disordering influences both internal energy and basal distance.

The hydrated clay and the clay with intercalated water and CO2 molecules showed resistance

to rotation by increasing the potential energy, and expanding the basal spacing (0.1-0.2 Å),

while the disordering was energetically favorable in the dry clay and led to the decrease of

internal energy and interlayer spacing (about 0.1 Å). Moreover, the rotation of basal surfaces

with respect to each other generates a configurational Moiré pattern. By investigating the

density map of different species, we observed that the distribution of interlayer molecules

(water and CO2) and counterions depends on the Moiré pattern.

5.1.2 Role of Interlayer Cation Type on clay Parameters and disordering pro-

cess

Counterions in the interlayer space can be from numerous metallic elements (such as Li+,

Na+, K+, Ca2+ and Mg2+), including different charges and sizes, resulting in different physi-

cal and geometrical properties of the clay. To probe the effect of counterion type on the clay

properties, molecular dynamics simulations were carried out to calculate the equilibrium d001-

spacing values of dry Na-MMT, Ca-MMT and K-MMT structures. These values, consistent

with the previous DFT results of this group[32] and experimental data[83, 84], illustrated

that K-MMT, with the largest atomic radius of the counterion, involves the largest lattice

parameter in the z direction; therefore, by using this result and previous ones[83, 84, 32]

there is a direct relation between the cation size and the interlayer spacing. In the second

step, we simulated rotationally disordered (turbostratic) structures of the three montmoril-

lointes (consisting of different interlayer cations) and also pyrophyllite (with no counterion

inclusion). The simulations described that, due to rotation of layers, K-MMT and Ca-MMT

experience larger fluctuations in potential energy and interlayer spacing than Na-MMT, thus

suggesting that larger sizes and charges of the cations lead to larger fluctuations.
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Next, the rotation of pyrophyllite layers was modeled by the position constraining method.

Since pyrophyllite includes neutral layers and lacks interlayer cations, it is unable to adsorb

water molecules; therefore, only the rotation of dry pyrophyillite was simulated. These sim-

ulations indicated that the disordering of this clay mineral is not energetically favorable and

leads to the increase in both energy and basal d001-spacing. We also investigated different

components of the potential energy (such as electrostatic and VDW terms) and compared

them to those of dry montmorillonites. The comparisons confirmed that the interaction

of counterions with the clay surface atoms decreases the energy and makes the disordering

favorable for the clay.

5.1.3 Swelling of Clay Minerals as a Consequence of Intercalation of Water and

Carbon Dioxide

The swelling of smectites was studied by using multiphase Gibbs ensemble Monte Carlo

and molecular dynamics simulations consisting of three different systems (binary clay-H2O,

binary clay-CO2 and ternary clay-H2O-CO2 systems). To probe all hydration states in clay

minerals, a full range of basal distance (9.5-17.5 Åwith an incremental distance 0.5 Å) was

considered. To find stable hydration states, swelling free energy was computed from the

normal disjoining pressure of clay layers.

Pure water intercalation to smectite was simulated by the two component clay-water

system leading to three hydration states (including dry (0W), first hydration (1W) and

second hydration (2W) states), for MMT, suggesting that the 0W state is highly unstable

compared to the others and answering why it is almost impossible to find a completely dry

clay sample in nature. Next, the clay-CO2 system was modeled to consider the effect of pure

CO2 adsorption, and we found that in contrast to the previous system, the dry state is the

most stable configuration for this system. As a result, we suggested that, while pure water

intercalation is thermodynamically favorable, pure carbon dioxide adsorption is energetically

demanding in deep underground formations.

We modeled the ternary clay-H2O-CO2 system to study CO2 adsorption in hydrated

smectites. We noticed that in this system water behaves similarly to how it does in the

88



binary clay-water system, while CO2 has a totally different behavior and extensively depends

on the amount of the intercalated water. Maximal CO2 adsorption takes place at the first

and sub-first hydration levels in which the amount of adsorbed water is limited. Hence, CO2

can form conglomerations in the interlayer space resulting in the remarkably higher amount

of adsorbed CO2 in the mixed system, compared to that of the bulk phase. This confirms

that underground smectite reservoirs can be suggested as appropriate candidates to resolve

the CO2 problem of earth’s atmosphere.

5.1.4 Effect of Isomorphic Substitution on Swelling

We studied the effect of the isomorphic substitution by considering two kinds of clay miner-

als, Na-montmorillonite and Na-Beidellite. In the first, the Mg2+/Al3+ substitution happens

in the clay octahedral sheet, while in the second, the Al3+/Si4+ occurs in tetrahedral sheets.

These substitutions result in two different swelling profiles including three hydration (0W,

1W and 2W) states for the first clay and two hydration (0W and 1W) states for the second

one. The place of substitution not only affects the hydration states of clay, but also influ-

ences the distribution of intercalated water and carbon dioxide molecules, and counterions.

While, in the MMT-H2O-CO2 system, CO2 conglomerations are moving and disordered in

the interlayer space, in the ternary BEI-H2O-CO2 system, they are organized, and CO2 con-

glomerations avoid isomorphic substitution sites, whereas cation-water complexes position

close to those sites. Therefore beidellite could have a strong ability to retain CO2 molecules.

This was also confirmed by the MD diffusion calculations.
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5.2 ONGOING AND FUTURE WORK

5.2.1 Response of Pyrophyllite to the Intercalation of Water and CO2

This is ongoing research in which we study the swelling behavior of other structures to find

the best possible structures for carbon sequestration. We have begun to simulate the pyro-

phyllite structure where there are no isomorphic substitutions in tetrahedral or octahedral

sheets, leading to the charge neutrality of clay layers and the lack of interlayer cations.

Figure 33: Pyrophyllite phase lacks any interlayer cations and any isomorphic substitutions.

Blue color represents pyrophyllite layers, and the color coding of interlayer atoms includes

red, white and gray for O, H and C, respectively.

Even though pyrophyllite is non-swelling in the presence of pure water, it might inter-

act differently with pure CO2 and mixed water-CO2. The motivation for this work stems

from our MMT-H2O-CO2 and BEI-H2O-CO2 simulations illustrating that montmorillonite

involving isomorphic substitutions in octahedral sheets and thus providing less charge ex-

posure in the interlayer space compared to beidellite, favors more CO2 adsorption and less

water intercalation. As a consequence, we are now investigating how the neutral layers of

pyrophyllite may affect CO2 adsorption to the surface.
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5.2.2 Role of Open Surfaces in Water and Carbon Dioxide Adsorption

In lab experiments, it is observed that smectite layers are not purely continuous but naturally

include discontinuities and breakage due to environmental cracks and defects. As a result,

in another ongoing work, we have started investigating not only usual 001 surfaces, but also

surfaces in other geometrical directions; such as 010 and 100; which include reactive sites

and in the case of exposure to the interlayer species, they may impact the clay behavioral

response. Therefore we consider discontinuous layers to study different clay reactive surfaces

and to find if they can improve swelling or they might promote shrinking.

Figure 34: Nonopores involve open surfaces. orange color represents clay layers, and the

color coding of interlayer atoms includes purple, red, white and gray for Na, O, H and C,

respectively.
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APPENDIX

SUPPORTING INFORMATION

Figure 35: Potential energy change during backward enforced rotation using Na-MMT sys-

tems with the 0-0 composition equilibrated at θ = 3, 6, and 9.
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Figure 36: Comparison of real-space electrostatic contributions of various atomic pairs into

the relative potential energy as a function of θ for Ca-MMT with the 6-0 (red lines) and 0-0

(black lines) compositions.
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Figure 37: 2D density maps (density in number/ nm3) of sodium ions (a) and water molecules

(b) residing in the interlayer of hydrated Na-MMT with 6-0 composition at θ = 0°(averaged

over 5 ns of production run).
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Figure 38: a) Relative potential energy and d001-spacing change in Na-MMT systems with

the 14-0 composition as a function of θ obtained using the position constraining method.

b) Potential energy changes during enforced rotation for three independently equilibrated

Na-MMT systems (strs 1-3) with the 14-0 composition.
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Figure 39: Density distribution computed for sodium ions.

Figure 40: Density distribution computed for the first water layer in a bilayer.
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Figure 41: Density distribution computed for the second water layer in a bilayer.

Figure 42: 2D density maps (density in number/ nm3) of carbon dioxide molecules residing

in the interlayer of hydrated Na-MMT with 0-2 composition at θ = 0° (averaged over 5 ns

of production run).
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[74] N. Güven, “Montmorillonite: Electron-optical observations,” Science, vol. 181,
no. 4104, pp. 1049–1051, 1973.

[75] J. Mering, “Electron-optical study of smectites,” Clays and Clay Minerals, vol. 15,
pp. 3–25, 1967.

[76] R. Reynolds, “X-ray diffraction studies of illite/smectite from rocks,< 1 m randomly
oriented powders, and< 1 m oriented powder aggregates: The absence of laboratory-
induced artifacts,” Clays and Clay Minerals, vol. 40, pp. 387–387, 1992.

[77] B. H. D. van der Spoel, E. Lindahl and the GROMACS development team, “GRO-
MACS user manual version 4.6.5, www.gromacs.org,” 2013.

[78] L. Vlcek, A. A. Chialvo, and D. R. Cole, “Optimized unlike-pair interactions for water–
carbon dioxide mixtures described by the SPC/E and EPM2 models,” The Journal of
Physical Chemistry B, vol. 115, no. 27, pp. 8775–8784, 2011.
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Université VI, Faculté des Sciences Physiques, 1972.
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