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Abstract: In order to achieve optimal flow velocity in stationary flow condition in pressurized pipe systems, it is necessary to determine an optimal value of pipe diameter. It 
should be noted that even for a simple pipe network with pipes connected in only few numbers of loops, the determination of the optimal pipe diameter is an unintuitive 
problem and from the mathematical point of view a nonlinear problem that requires some iterative process with a relatively complicated update procedure between iterations. 
Usually, the optimization algorithms are based on stochastic methods. A deterministic approach is proposed that satisfies the prescribed constrains in terms of the specified 
flow velocity in the pressurized system of pipes. The presented iterative algorithm for optimizing the pipe diameter is implemented in computer code PIPENET3D (written in 
FORTRAN90) and used for hydraulic analysis of steady flow in an arbitrary pressured pipe system. 
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1 INTRODUCTION 
 

For given steady flow conditions in an arbitrary 
pressurized pipe system with various pipes diameter and 
output flow rate of the pressurized system, it is practically 
impossible to achieve optimal values of flow velocity vj by 
manually selecting the pipe diameter Dj, where the index j 
denotes a particular geometrical or kinematical property of 
a pipe associated to a count number j. Hence, the need for 
developing a computer algorithm which would 
independently find the optimal pipes diameter D is 
obvious. Namely, by an iterative process, the required 
algorithm should properly adjust the pipe diameter and 
consequently the flow velocity v which will lead to a 
reduction of operative cost by reducing the pressure head 
loss Δh in the pressurized system. 

Currently, there are various optimization methods that 
can be used for solving complex engineering problems 
such as the problem of optimizing pipes diameter in 
pressurized pipe system. From the mathematical point of 
view, optimizing pipes diameter in interconnected 
pressurized pipe systems i.e. looped networks systems 
represents a so-called NP-hard problem as pipe flows 
velocities are unknown variables and the time to find a 
solution grows exponentially with problem size (number of 
pipes). 

First method used for optimizing pressurized pipe 
system was linear programming (subgroup of convex 
programming). Alperovits and Shamir [1] suggested 
successive linear programming gradient method. 
Development of linear method approach continued but still 
had same basic problem. Namely, it uses linear functions 
for solving nonlinear problems and consequently does not 
provide accurate solution. On the other hand, dynamic 
programming approach requires too much computer 
storage capacity as it requires making huge amount of 
combinations. As a logical development, after the 
development of a linear approach, nonlinear methods were 
used for solving this problem. Accordingly, Lansey and 
Mays proposed [2] the generalized reduced gradient 
method combined with a network simulator while Varma 
et al. suggested successive quadratic programming [3]. 

Similar to a linear method approach, the development 
of this approach continued but still had its limits. Basically, 
in nonlinear programming finding the global optima 

hugely depends on the initial solution. In some cases, if 
initial solution is too far from the global optima, it cannot 
escape the local optima. All these attempts have led to the 
development of methods inspired by natural evolution 
phenomenon known as Darwin's principle of the survival 
of the fittest. These kinds of algorithms are classified as 
naturally inspired meta-heuristics. Among them many 
have been used to find optimal design system such as 
Genetic Algorithm [4], Tabu Search [5], Particle Swarm 
Optimization [6], Ant Colony Optimization [7], Simulated 
Annealing [8] and Harmony Search [9]. 

The newest optimization methods used for optimizing 
water network system are Genetic Heritage Evolution by 
Stochastic Transmission [10], NLP-Differential Evolution 
algorithm [11], Hybrid Particle Swarm Optimization, 
Differential Evolution [12] and Charged System Search 
algorithm [13]. It should be noted that the aim of all these 
studies has been to minimize the network investment cost. 
Basically, the goal is to find the minimum required cost to 
a certain network topology while satisfying boundary 
conditions which reduce a problem of constraints for 
velocity range, pipe size restrictions and pressure at 
demand nodes. 

To minimize the pressure head loss Δh, an iterative 
optimization algorithm that will accordingly adjust the pipe 
diameter Dj is hereafter presented and proposed. The 
algorithm is implemented in a previously written computer 
code PIPENET3D written in FORTRAN90 and primarily 
developed for the steady flow analysis and afterward 
expanded to handle unsteady flow conditions [14]. As the 
main condition that a pipe diameter D has to satisfy, in 
order to be considered as optimal Dopt, is to achieve optimal 
flow velocity. Furthermore, a low flow rate Q contributes 
to the process of depositions while high one is considered 
economically unjustified. Accordingly, higher flow rates Q 
lead to high energy losses which grow with mean square 
velocity. Optimal water velocity value should be chosen 
before starting computation, and for that condition 
algorithm will find the optimal pipe diameters. In this 
respect, this paper assumes that 1 m/s is the optimum water 
velocity value v within the circular pipes [15]. 
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2 PRELIMINARY CONSIDERATIONS 
 

Since the actual physical processes of the flow are a 
complex matter, some assumptions had to be made. In 
PIPENET3D major pressure head losses Δh are calculated 
by the Darcy-Weisbach equation [16] and the minor i.e. 
local losses are computed by common coefficients ξ related 
to geometry variation in the flow (valves, pipe diameter 
reductions, pipe diameter expansion, etc.). As usual, the 
dominant components of velocity vector are parallel to the 
pipe axis and therefore, the dimensional reduction of the 
flow field was implemented, and the original three-
dimensional flow field was reduced to one dimension. 
Consequently, the flow rate Q is calculated as average 
velocity v of the local velocity profile. The computational 
model is based on continuity equation written for 
incompressible fluid and on Bernoulli's equation for steady 
flow. 
 
2.1 Kirchhoff's Laws 
 

The governing equations for steady flow analysis are 
given by Kirchhoff. Generally, there are two Kirchhoff's 
laws. The First law can be interpreted as the principle of 
conservation of flow rate Q. The algebraic sum of all flow 
into and out of the junction must be equal to zero. 
Mathematically, this law can be written as: 
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                                                                         (1) 

 
where Qj represents the volumetric flow rate in pipe j(L3/T) 
and q consumption in junction i(L3/T). The index j 
represents a pipe counter which goes from 1 to n, where n 
denotes the total number of pipes connected to junction i. 

The Second law defines the algebraic sum of all 
pressure head loss Δh along pipes inside a closed loop. This 
sum should be equal to zero by performing the summation 
in respect to the assumed and obtained direction of the flow 
in pipes of the loop. In other words, this requirement is 
essential for avoiding different pressure values at the same 
junction. From the mathematical point of view, the 
requirement can be defined as: 
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where n is total number of pipes which forms a loop. The 
pressure head loss Δhj for a pipe j can be expressed by 
using the Darcy-Weisbach equation: 
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where Lj denotes the pipe j length, Dj denotes the pipe 
diameter and λj denotes the Darcy friction factor which for 
turbulent pipe flow can be computed from the Haaland 
explicit approximation [17] of the implicit Colebrook-
White equation developed for a full-flowing circular pipe 
(which is attractive for computational implementation). 
 

2.2 Pipe Network Topology 
 

In order to recognize the domain of application of the 
presented algorithm, it is appropriate to mention that the 
topology of pipe networks can be generally divided in two 
main categories: (i) branched or tree-like configurations 
and (ii) looped or closed configurations. Namely, as would 
be hereafter presented, the optimization of pipe diameter 
for the first type of pipe network is trivial. On the other 
hand, as previously mentioned, the second type needs some 
iterative procedure. However, it should be noted that water 
distribution networks are mainly designed as a 
combination of these two types which could be considered 
as a third category and in that case a selective procedure 
should be used. The selection of a particular type of pipe 
network depends on available funds as well as the required 
security of consumer supply. 
 
2.2.1 Branched or Tree-Like Configuration 
 

For a steady flow analysis in a branched network the 
flow direction in pipes is unambiguously identified. 
Accordingly, the flow occurs from the reservoirs or the 
water sources through the pipes to consumption in 
junctions. Thus, this case of configuration is significantly 
simpler than the looped one. A generic type of such pipe 
network is illustrated in Fig. 1. 
 

 
Figure 1 Branched or tree-like configuration of pipes connections in a 

pressurized system 
 

Similarly to flow direction, the flow amount is 
unambiguously defined by the water consumption. 
Therefore, the value of mean velocity is simply identified 
by the formula: vj = Qj / Aj for each pipe j, where Aj denotes 
the area of the flow of the same pipe. Consequently, the 
ideal pipe diameter, which follows from the same 
expression, is trivially determined by adjusting the 
diameter Dj. However, it should be noted that this type of 
pipe network configuration is avoided for several reasons. 
Firstly, for this type of configuration the pressure loss is 
usually higher than the looped network defined for the 
same ground area. Furthermore, water staleness is more 
common and in the case of water network failure, flow to 
consumers behind the breakdown area is interrupted. 
Moreover, this configuration type is more susceptible to 
the adverse effects of water hammer. Therefore, 
notwithstanding its simplicity of pipe diameter 
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optimization, it is more convenient to produce looped 
network configuration. 
 
2.2.2 Looped or Closed Configuration 
 

Looped or closed configuration type of pipe networks 
is a configuration where every junction I is connected to at 
least two neighboring junctions. A generic type of such 
pipe network is illustrated in Fig. 2. Consequently, if one 
or more pipelines are closed for repair, water can still reach 
its consumers by the alternate route [18]. Furthermore, 
looped network has a significantly better adjustment to the 
water consumption oscillations and to mitigation of the 
negative effects of water hammer [19]. 
 

 
Figure 2 Looped or closed configuration of pipes connections in a pressurized 

system 
 

However, because the looped networks require more 
pipes installation, they consequently require higher initial 
financial investment. Furthermore, the flow distribution is 
much more undefined, because by changing consumption 
demand, not only amount of flow, but also its direction can 
be changed [18]. Besides, the flow distribution will not 
only depend on the network topology and consumption 
demand, but also on pipe diameter, which is an unintuitive 
attribute. Hence, changing just one pipe diameter affects 
flow distribution in the entire network. Consequently, the 
optimal pipe diameter determination is a very complex 
problem and impossible feat without the computer 
algorithms specifically developed for this task. As 
mentioned previously, even analytical analysis without 
optimization is impractical for this type of pipe network. 

The basic equations for such an analysis are given by 
Kirchhoff. For a looped type of pipe network Eq. (2) and 
Eq. (3) form a system of nonlinear algebraic equations and 
to solve them different methods are used (e.g. Hardy Cross 
Method [20], Newton-Raphson Method [21] or Linear 
Theory Method [22]). The program code PIPENET3D is 
based on the Newton-Raphson Method. 
 
3 PIPE DIAMETER OPTIMIZATION 
 

The main criterion used for optimization is the value 
of flow velocity. Pipe diameter is considered as optimal if 
the value of velocity is equal to 1 m/s. However, developed 
algorithm, implemented in PIPENET3D, allows it to be 
manually selected, as well as the fluid properties. Likewise, 
it can be selected if steady flow analysis is carried out with 

or without diameter optimization. Pipe diameter 
optimization for branched or tree-like configuration, as 
well as looped configuration will be hereafter described. 
 
3.1 Pipe Diameter Optimization for Branched or Tree-Like 

Configuration 
 

For branched or tree-like configuration optimal pipe 
diameter can simply be found by using the formula for 
circular pipes: 
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                                                                 (4) 

 
where Dopt represents optimal pipe diameter, vopt 

represents the optimal velocity i.e. the velocity specified by 
the user and Q represents the flow rate in pipe. Since vopt is 
the same for every pipe, for water network distribution 
systems, it can be noticed that the optimal pipe diameter 
depends only on flow rate Q in each pipe. On the other 
hand, the flow rate Q depends only on consumption and is 
constant for any pipe diameter D. Under those 
circumstances, and for a generic case, the velocity 
dependence on pipe diameter can be seen in Fig. 3. 
 

Figure 3 Diameter-velocity dependence diagram for branched or tree-like 
configuration 

 
As seen in the diagram, optimal velocity is uniquely 

determined and there can be only one diameter for which 
optimal velocity is achieved (Fig. 3). For looped or closed 
configuration, the solution is far from trivial. 
 
3.2 Pipe Diameter Optimization for Looped or Closed 

Configuration 
 

For networks with looped or closed configuration, it is 
not possible to solve the optimization problem analytically. 
Therefore, in PIPENET3D this nonlinear problem was 
solved by using the Newton-Raphson Method. The initial 
idea for optimizing the pipe diameter was to implement Eq. 
(4) after the network analysis was done for the given flow 
conditions. This computational procedure defines one 
iteration cycle. Those new values of pipe diameters would 
then be used in next analysis i.e. iteration. This iterative 
procedure would repeat itself until optimal values are 
found. However, there were two main problems in this 
simple idea. Firstly, if the pipe diameter in a looped system 
changes, so does the flow rate of each pipe inside a loop 
and consequently its velocities. Secondly, diameter-
velocity dependence diagram is different for looped 
configuration networks (Fig. 5).  
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To develop a control mechanism for the adoption of 
pipe diameters between the iteration, and overcome the 
mentioned problems, an extensive parametric analysis for 
a variety of flow situations was performed to study the 
behavior of the pipe diameter-velocity dependence 
between iterations. For all the analysis the hereafter 
conclusion was the same. Namely, for an arbitrary 
pressurized system, during the course of optimization i.e. 
iteration, it was noticed that for each pipe inside a loop the 
flow velocity decreased by reducing the pipe diameter. 
Depending on the initial kinematical and geometrical 
properties of the flow, this behavior was observed once the 
pipe diameter becomes smaller than a particular value 
(denoted with Dt) which numerically varies depending on 
the problem. The same behavior was detected regardless of 
the kinematical and geometrical properties of the flow. 
That was contrary to expectation and it was shown that the 
main reason for this unusual feature was flow variability 
observed during the optimization process conducted for 
any pipe in a loop. The observed behavior is illustrated in 
Fig. 4, where the flow rate Q remains constant within the 
iterations after increasing the pipe diameter above the value 
Dt. During iteration procedure it was also registered that 
reducing the pipe diameter below this value firstly 
gradually decreases the flow velocity and then starts to 
decrease it rapidly. 
 

 
Figure 4 A typical diameter-flow rate dependence diagram for looped or closed 

networks evidenced for each pipe subject to optimization process 
 

As seen on a diameter-flow rate dependence diagram 
(Fig. 4) the flow variability is present between the 
iterations when the pipe diameter is changed but still 
smaller than the value Dt. On the other hand, for relatively 
large pipe diameters, greater than Dt, the flow rate remains 
constant during the iterations and adaptations of D, even by 
increasing the pipe diameter. 

The tricky part of optimization was reduced to the 
question "how to use Eq. (4) in variable flow zone (Fig. 4) 
i.e. below the value Dt". Namely, if there was relatively 
small pipe velocity, the trivial application of Eq. (4) in the 
optimizing algorithm would reduce pipe diameter in order 
to increase its velocity which will result exactly in the 
opposite scenarios i.e. the flow velocity will decrease. In 
other word, the application of Eq. (4) in the in variable flow 
zone (Fig. 4) would case reverse effect from the expected. 

To address this problem, a new general remark is 
drawn from extensive parametric analysis carried out for 
different pipe networks. Namely, by plotting the 

dependence between the velocity in a pipe in an arbitrary 
closed loop and the change in pipe diameters between 
iterations, a characteristic function always appears. For a 
generic case the function is illustrated on Fig. 5 where vopt 
denotes the prescribed i.e. desiderated flow velocity in a 
particular pipe. By increasing the pipe diameter above 
some value of D, the velocity decreases and finally obtains 
a constant value that does not change by further increasing 
the pipe diameter D. This is complementary to the observed 
behavior in Fig. 4, where the flow rate does not increase by 
increasing D above Dt in the next iteration. On the other 
hand, note that velocity rapidly decreases if in the next 
iteration pipe diameter decreases above some threshold 
value. 
 

 
Figure 5 Optimal pipe diameter determination for looped or closed networks 

 
The most important conclusion from Fig. 5 is 

dissimilarity to the branched network and illustrated by the 
fact that in the looped network two different pipe diameters 
exist for which optimal flow velocity vopt could be 
achieved. The question which arises is whether the optimal 
pipe diameter is smaller or larger. As shown in Fig. 5, the 
larger pipe diameter is considered as optimal (the non-
optimal diameter Dnopt and the optimal one Dopt). There are 
two main reasons for such a conclusion. Firstly, the smaller 
pipe diameter is in a zone of highly changeable flow 
distribution, and thus more sensitive to variable consumer 
needs. In other words, by just partially changing a 
consumer demand, the pipe velocity would significantly 
increase or decrease. Secondly, for a larger pipe diameter 
there are smaller operating costs (lower energy losses). 

It is important to note that the conclusion retrieved 
form Fig. 5 indicates that there is a maximal value of flow 
velocity that can be achieved. This is important to note in 
a context of an optimal velocity that is specified greater 
than the pick of the function. In that case, the optimal pipe 
diameter is one from which maximal pipe velocity vmax is 
achieved (Fig. 6) since it is closest to the optimal velocity. 
However, this value can be still smaller than the specified 
one for that pipe, therefore some other corrections were 
required.  

Nevertheless, the conviction that the optimal pipe 
velocity could be achieved for each pipe brought us to a 
conclusion that some additional adjustments could have 
been made. In that sense, it was essential to understand why 
the maximal pipe velocity in the particular pipe is smaller 
than the specified optimal velocity of 1 m/s. It was noticed 
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that the main cause for that was small flow rate through the 
considered pipe, and thus additional algorithm for 
increasing the flow rate between iterations was conducted. 
 

 
Figure 6 Optimal pipe diameter determination for looped networks where 

optimal pipe velocity could not be achieved 
 

In order to obtain the desired flow velocity vopt, an 
additional algorithm is developed and implemented in 
PIPENET3D. In order to increase velocity in considered 
pipe from vmax to vopt, it is necessary to increase the flow 
rate through that pipe. Therefore, the algorithm increases 
the hydraulic head gradient ΔH between the junctions that 
connects the considered pipe. The graphical explanation is 
given in Fig. 7 where the velocity in the pipe between 
hydraulic head H1 and H2 reached the value vmax instead of 
the prescribed value vopt. In order to increase the flow rate 
in the next iteration, and consequently increase the velocity 
toward the value vopt, the adequate changes in the related 
pipe diameters should be done. For the given example, 
which can be analogically adapted to any situation, the 
arrows on the right side of the notations indicate if the 
value in considerations must be increased or decreased. 
 

 
Figure 7 Changing the pipe diameter of neighboring pipes in order to increase 

hydraulic head potential (H1 - H2) 
 

To increase the difference of hydraulic head (H1 − H2), 
and consequently pipe flow Q5, it is necessary to increase 
the value H1 and/or decrease the value H2. This is achieved 
by carefully adjusting the neighboring pipe diameters (D1, 
D2, D3 and D4). By increasing the pipe diameter D1, the 
hydraulic head loss is decreased and thus the hydraulic 
head value of H1 is increased. By the same logic, 
decreasing the pipe diameter D3, increases the hydraulic 
head loss in that pipe and consequently decreases hydraulic 
head value of H2. How and why changing the pipe diameter 
D2 and D4 affects the pipe flow distribution inside pipe 5 is 
seemingly a more complex problem. This was tested and 

the conclusion is as follows. By decreasing the pipe 
diameter D2, the flow inside it decreases also. Since the 
flow rate inside the junction is preserved (which follows 
from the first Kirchhoff law or continuity equation), the 
flow inside the pipe 5 increases. Similarly, by increasing 
the pipe diameter D4, the flow inside pipe 4 increases also. 
In this way, by applying the small adjustment to the 
neighboring pipe diameters, significant increase in 
hydraulic head for a given pipe could be achieved. 
Therefore, the flow rate is increased, hence optimal pipe 
velocity can be reached. 
 
4 THE ITERATIVE ALGORITHM 
 

The algorithm process necessary to conduct the 
optimization, based on the previous conclusions is 
presented hereafter. It should be noted that each flow 
distribution calculation represents one repetition. Hence, 
this procedure is iterative (since the problem is nonlinear). 
 
4.1 Computational Step #1 
 

Before starting the proposed optimization algorithm, 
the pipe diameters should be initially assumed so the flow 
network distribution could be calculated. After that, rough 
optimization should be carried out which is done by 
implementing Eq. (4) i.e. according to the algorithm given 
in Fig. 8. Once new pipe diameters are calculated they 
become new inputs for flow rate distribution calculation. 
 

 
Figure 8 Algorithm for a computational step #1 

 

 
Figure 9 Algorithm for a computational step #2 

 
 
 

ALGORITHM 1: First pipe diameter correction
INPUT: Number of pipes inside network nj ,

Pipe flow distribution Q,
Optimal pipe velocity v opt

OUTPUT: Pipe diameters D
FOR i  from  1 to  nj  DO

RETURN D
opt

i
i v

Q
D

⋅
←

π
||4

ALGORITHM 2: Finding the worst optimized pipe 
diameter

INPUT: Number of pipes inside network nj ,
Pipe velocity v,
Optimal pipe velocity v opt

OUTPUT: The maximal difference between 
real pipe velocity and optimal
 velocity in absolute value 
MaxDistance ,
The worst optimized pipe w
MaxDistance  ← 0
FOR i  from  1 to  nj  DO
       Distance i  ← |v i  - v opt |
FOR i  from  1 to  nj  DO
      IF Distance i  > MaxDistance  THEN
           MaxDistance  ← Distance i

            w  ← i
RETURN MaxDistance , w



Davor STIPANIĆ et al.: An Iterative Algorithm for Optimizing Pipe Diameter in Pressurized System 

Tehnički vjesnik 27, 4(2020), 1284-1292                                                                                                                                                                                                       1289 

4.2 Computational Step #2 
 

After rough optimization is done, it is necessary to 
conduct more precise one. This should be done by 
optimizing the pipe diameter for which pipe velocity 
deviates the most from the optimal velocity (maximal |v − 
vopt|). This step refers to finding the worst optimized pipe 
diameter according to the algorithm given in Fig. 9. 
 

 
Figure 10 Algorithm for a computational step #3 

 
4.3 Computational Step #3 
 

In order to conduct the diameter optimization for the 
worst optimized pipe, it is necessary to know diameter-
velocity dependence diagram (Fig. 5) for that particular 
pipe. Therefore, quadratic equation for that pipe should be 
found. For this purpose, three points on diameter-velocity 
dependence diagram should be known of which two 
already are. Those two points are (0, 0) and (Dw, vw). Index 
w like in algorithm 2 (Fig. 9) represents the worst 
optimized pipe. Consequently, one additional point should 
be found in order to define the quadratic equation. In this 
case, the new diameter for the worst optimized pipe is 
assumed and once again flow network distribution and pipe 
velocities are calculated. Now, all three points are known 
and the quadratic equation v = aD2 + bD + c can be defined 
by defining the coefficients a, b and c. In case optimal 
velocity from this quadratic equation can be obtained then 
two solutions are possible (since quadratic equation has 
two solutions), from which the larger one is considered as 
optimal (Fig. 5). On the other hand, if the optimal flow 

velocity vopt cannot be obtained from quadratic equation, 
optimal solution is the maximum of the function, as seen in 
Fig. 6 (highest possible velocity). The resulting algorithm 
is illustrated in Fig. 10. 

 

 
Figure 11 Algorithm for a computational step #4 

 
4.4 Computational Step #4 
 

If the same pipe proves to be the worst optimized for 
more than three times in the row, neighboring pipes 
diameters should be corrected in order to increase the flow 
rate through that pipe (Fig. 6). This principle is previously 
described and shown in Fig. 7. Topological matrix TOP 
mentioned in the algorithm illustrated in Fig. 11 defines 
which two neighboring junctions form a pipe. Matrix rows 
represent the counting number of a pipe while columns 
represent first and second junction of the same pipe. 
 
4.5 Computational Step #5 
 

The penultimate algorithm step is to return to step 2 
(after which step 3, 4 and 5 are repeated) until the 
difference |v − vopt| becomes less than required precision. If 
for some reason the required precision is a too small 
number (e.g. zero) this step would repeat itself endlessly. 
Hence, there should be a counter included which counts 
how many times this step is repeated. After some finite 
number of computational procedures is reached, the 
algorithm should skip the computation and go to the next 
step (this is needed only if the tolerance value is too small). 
For practical purposes it is recommended that the tolerance 
value should be greater that 10−4. 
 
4.6 Computational Step #6 
 

Final step is to compute the new adopted pipe 
diameters that will converge to the specified velocity in 
pipes. The resulting algorithm is illustrated in Fig. 12. 

ALGORITHM 3:  Optimizing the pipe diameter for the 
worst optimized pipe

INPUT: Optimal pipe velocity v opt ,
Quadratic equation 
coefficients a , b , c

OUTPUT: New optimized diameter of
previously worst optimized 
pipe D w ,
First solution of quadratic 
equation D1,
Second solution of quadratic
equation D2,
The maximal possible velocity for 
the observed quadratic equation 
(vertex of the parabola) vmax

IF v max < v opt  THEN

IF v max  > v opt  THEN

IF D1 > D2  THEN 
               D w  ←D1
IF D2 > D1 THEN 
               D w  ←D2
RETURN D w

a
acbv

4
42

max
−

−←

a
bDw 2

−←

a
acbbD

2
41

2 −+−
←

a
acbbD

2
42

2 −−−
←

ALGORITHM 4:  Increasing the flow through the pipe by 
changing the diameter of neighboring 
pipes

INPUT: The worst optimized pipe w ,
Counter for detecting how many times 
was the same pipe the worst optimized 
CNT ,
topological matrix TOP,
hydraulic head potential H

OUTPUT: junction with higher hydraulic head of 
the worst optimized pipe wh ,
junction with lower hydraulic head of 
the worst optimized pipe wl ,

OUTPUT: Pipe diameters D
IF CNT  > 3 THEN
      IF H TOP(w,1)  > H TOP(w,2)  THEN
            wh ← TOP(w,1)
            wl ← TOP(w,2)
      IF H TOP(w,2)  > H TOP(w,1)  THEN
            wh ← TOP(w,2)
            wl ← TOP(w,1)
     CALL NEIGHBOR
RETURN D
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It should be noted that the algorithm presented in Fig. 
12 is called in the computation procedure at the end of the 
algorithm presented in Fig. 11 and uses some array quantity 
that is defined according to the topological structure of the 
analyzed network. Namely, to adopt the presented 
algorithm to a generic pipe network, like every other 
algorithm with the same purpose, the interconnection data 
of junctions and pipes should be known in advance. 
Accordingly, the array idJUCTIONonJUNCTION defines 
for each junction the junctions that are attached at the 
considered one. Similarly, the array idPIPEonJUNCTION 
defines the counting number of pipes attached to a 
particular junction. 
 

 
Figure 12 Algorithm for a computational step #5. 

 
Apart from the mentioned array in the algorithm 5 

(Fig. 12), a correction factor denoted as cor is introduced 
to regulate the change in diameter of pipes connected to 
junctions of the pipe for which the optimization of the 
diameter is conducted. The performed numerical 
experiments indicate that the correction factor cor equal to 

1/15 leads to a result with reasonable accuracy in a 
reasonable time of computations. However, if a more 
accurate solution is demanded, the correction factor can be 
reduced and consequently the computation time will 
increase. 
 
5 NUMERICAL EXAMPLE 
 

The numerical example will be conducted for a pipe 
system with geometrical and topological data illustrated in 
Fig. 13. For the considered numerical example the sections 
lengths are given as: Δx = 1000 m, Δy = 1000 m, where Δx 
and Δy define the orthogonal distance between junctions. 
The density of fluid is ρ = 1000 kg/m3 and dynamic 
viscosity μ = 0.001307 Pa·s (usual value for water at 
temperature of 10ºC). It is interesting to examine the 
optimization for the same consumption load in all 
junctions, mainly to see how gradually pipe diameters 
decrease from water reservoir to the final junction. Hence, 
given consumptions in all junctions are q = 60 l/s. The only 
exception is junction 1, which represents the reservoir. 
Sections diameters are all 200 mm. The hydraulic head on 
junction 1 is set to H1 = 50 m. Absolute roughness is 
assumed to be ε = 0.01 mm for all pipes.  
 

 
Figure 13 Pipe system used for numerical example 

 
As a result of numerical computation, the distribution 

of pipe flow rate Q, velocity distribution, hydraulic heads 
H in junctions and optimal pipe diameters Dopt are obtained 
(so that the prescribed velocity vopt should be obtained). 
The results of the achieved optimal pipe diameters Dopt and 
velocities for those diameters v are given in Fig. 14 and Fig. 
15, respectively. In Fig. 14 the velocity values are given in 
m/s up to the third decimal. Pipe diameters are given in mm 
with the same precision. It is worth mentioning that the 
calculation precision goes up to eleventh decimal (if 
necessary, it could be carried out with greater precision). 

As seen in Fig. 14, the achieved velocity distribution 
is in the range of 0.943 to 1.061 m/s and pipe diameters 
from 190 to 972 mm. The only condition for conducting 
the optimization analysis was achieving the optimal flow 
velocity, thus the values of achieved pipe diameters are not 

ALGORITHM 5:  NEIGHBOR
INPUT: The worst optimized pipe w,

corection factor cor ,
Nubmer of neighboring junctions of 
worst optimized pipe junction with 
higher hydraulic head 
noJUNCTUREonJUNCTUREwh ,
Nubmer of neighboring junctions of 
worst optimized pipe junction with 
lower hydraulic head 
noJUNCTIONonJUNCTIONwl,
vector that shows which junctions are 
neighbors of the observed junction 
idJUNCTIONonJUNCTION,
vector that shows which pipes are 
neighbors of the observed junction 
idPIPEonJUNCTION,
hydraulic head potentials H,
pipe diameters D,

OUTPUT: Pipe diameters D

CYCLE

CYCLE
           IF H ineighbor  > H wl  THEN
                  D jneighbor  ← D jneighbor  + cor · D jneighbor 

           IF H ineighbor  < H wl  THEN
                  D jneighbor  ← D jneighbor  - cor · D jneighbor 

RETURN D

           IF H ineighbor  < H wh  THEN
                  D jneighbor  ← D jneighbor  - cor · D jneighbor 

FOR i  from  1 to  noJUNCTUREonJUNCTURE wl  DO
           ineighbor ← idJUNCTIONonJUNCTION(wl, i) 
           jneighbor ← idPIPEonJUNCTION(wl, i) 
           IF jneighbor = w  THEN

           ineighbor ← idJUNCTIONonJUNCTION(wh, i) 
           jneighbor ← idPIPEonJUNCTION(wh, i) 

FOR i  from  1 to  noJUNCTUREonJUNCTURE wh  DO

           IF jneighbor = w  THEN

           IF H ineighbor  > H wh  THEN
                  D jneighbor  ← D jneighbor  + cor · D jneighbor 



Davor STIPANIĆ et al.: An Iterative Algorithm for Optimizing Pipe Diameter in Pressurized System 

Tehnički vjesnik 27, 4(2020), 1284-1292                                                                                                                                                                                                       1291 

commercially available and are given as a result of the 
computational procedure. 

 

 
Figure 14 Computed flow velocities. 

 
Usually commercial pipe diameters go from DN 100 

mm, DN 150 mm, DN 200 mm and so on. If needed, those 
values could be implemented as additional term in 
algorithm. Moreover, some additional constrains can be 
incorporated in the presented procedure to force i.e. round 
obtained pipe diameters from iteration to iteration 
according to the commercial pipe diameters. However, in 
that case the convergence to a prescribed velocity vopt is not 
guaranteed. 
 

 
Figure 15 Computed optimal pipe diameters. 

 
The presented numerical example is characterized by 

25 junctions, 40 pipes and 16 loops were given. The 
achieved range of velocity distribution was from 0.943 to 
1.061 m/s. However, it should be noted that by increasing 
the topological complexity and the number of connected 
loops, that range is additionally increased, but at the same 
time it can be controlled by the correction factor cor 
specified in the algorithm 5 (Fig. 12). Accordingly, for a 
tested network with 45 junctions, 76 pipes and 32 loops 
range of velocity distribution was from 0.871 to 1.121 m/s. 
 
6 CONCLUSIONS 
 

For looped configuration systems it is more than 
enough to change the diameter of just one pipe to alter the 
flow distribution inside the pressurized pipe network. 

Hence, optimization is a nonlinear problem and only 
solvable iteratively. For example, if the correction of pipe 
diameters is conducted based on the performed steady 
analysis, it has been shown that reduction of pipe diameter 
could reduce the water velocity through that pipe in the 
next steady flow analyses. It is an unintuitive feature which 
proved to be of great importance and should be considered. 
To resolve this problem in a deterministic manner, an 
iterative procedure was developed and here presented. 

The iterative procedure is conducted by defining the 
pressure distribution for initial guess of pipe diameters and 
then by invoking the presented algorithm where the 
corrections of pipe diameters are performed according to 
the obtained result of the first iteration. The next iteration 
cycle is conducted for the new pipe diameters suggested by 
the presented algorithm. The iterative process is conducted 
until the variation of all pipe diameters in two neighboring 
iterations is smaller than the prescribed tolerance. 

It is important to note that the presented algorithm is 
relatively simple and so it can be implemented in any 
computational procedure used for the computation of 
pressured distribution in pressurized pipe systems. 
Although the presented procedure is here elaborated in a 
context of water pipe system distribution, for which the 
velocity of 1 m/s can be interpreted as optimal, the 
presented iterative algorithm can easily handle different 
scenarios i.e. situations in which the demand for the flow 
velocity can be different. The iterative procedure will 
identify the pipe diameters needed to obtain the prescribed 
velocity in the pipes. 
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