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SUMMARY
During the past years, there has been a growing interest in the bioproduction of pro-

pionic acid by Propionibacterium. One of the major limitations of the existing models lies 
in their low productivity yield. Hence, many strategies have been proposed in order to 
circumvent this obstacle. This article provides a comprehensive synthesis and review of 
important biotechnological aspects of propionic acid production as a common ingredi-
ent in food and biotechnology industries.

We first discuss some of the most important production processes, mainly focusing 
on biological production. Then, we provide a summary of important propionic acid pro-
ducers, including Propionibacterium freudenreichii and Propionibacterium acidipropionici, 
as well as a wide range of reported growth/production media. Furthermore, we describe 
bioprocess variables that can have impact on the production yield. Finally, we propose 
methods for the extraction and analysis of propionic acid and put forward strategies for 
overcoming the limitations of competitive microbial production from the economical 
point of view. 

Several factors influence the propionic acid concentration and productivity such as 
culture conditions, type and bioreactor scale; however, the pH value and temperature are 
the most important ones. Given that there are many reports about propionic acid produc-
tion from glucose, whey permeate, glycerol, lactic acid, hemicelluloses, hydrolyzed corn 
meal, lactose, sugarcane molasses and enzymatically hydrolyzed whole wheat flour, only 
few review articles evaluate biotechnological aspects, i.e. bioprocess variables. 

Key words: propionic acid, Propionibacterium freudenreichii, Propionibacterium acidipro-
pionici, glycerol fermentation

INTRODUCTION
Among all industrially available organic acids, propionic acid (PA) and its derivatives 

can be mentioned as important chemical intermediates, which are mostly used in a variety 
of industrial applications as antimicrobial agents for a broad spectrum of microorganisms 
(1,2), anti-inflammatory substance, exhibiting analgesic and antipyretic properties (3,4), 
herbicides, controlling both monocotyledonous and dicotyledonous plants (5,6), preser-
vatives in bakery and cheese products (7,8), artificial flavours and fragrances (9), pharma-
ceuticals (10), precursors of cellulose acetate propionate (CAP) (11), etc.

Propionic acid or ethanecarboxylic acid is one of the top 30 potential biomass candi-
dates as determined by the US Department of Energy (DOE) (12). The annual world market 
for propionic acid was 350 000 tonnes (13), which was approximately equal to 770 million 
pounds in 2006 (14). The largest and fastest growing markets are Europe and Asia Pacific, 
respectively. The highest revenue share (in %) belongs to agriculture, food and beverage, 
personal care and pharmaceutical sectors. The world market demand for PA was 38 and 
400 kilotonnes in 2007 and 2013, respectively. It is expected to reach 470 in 2020 (1.53 bil-
lion US$) (6).

The term ’propionic’ derives from the Greek words ’protos’ (first) and ’pion’ (fat) and 
was first discovered by Johann Gottlieb in 1844 as a result of the conversion of pyruvate 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/335622407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-7975-4806
https://orcid.org/0000-0001-7360-0478
https://orcid.org/0000-0001-5769-0004
https://orcid.org/0000-0001-8301-4229


V. RANAEI et al.: Current State and Perspectives of Propionic Acid Production

April-June 2020 | Vol. 58 | No. 2116

into PA via succinate decarboxylation or acrylate pathways 
(15).

Glycerol as a by-product from biodiesel production re-
ceives a great attention as a carbon source for the production 
of propionic acid (16). However, there are other cheap carbon 
sources such as glucose, lactose, lactic acid, hemicelluloses, 
whey permeate (17), hydrolyzed corn meal (18), sugarcane 
molasses (19) and enzymatically hydrolyzed whole wheat 
flour (20). Lactic acid and carbohydrates from biomass can 
be chemically transformed into propionic acid by using Zn as 
a reducing agent and Co as a catalyst with strong activity (21). 

Although expensive, anaerobic fluidized (22), plant (23) 
and multi-point fibrous (24) bed reactors (e.g. cotton fibres) 
(25), calcium alginate (26) and calcium polygalacturonate 
beads (27) and expanded bed adsorption (28) and granu-
lar sludge bed (17) reactors have been proposed for propi-
onic acid production by Propionibacterium freudenreichii. In 
this review paper, the most critical aspects of PA including its 
chemical properties, microbial production utilizing both im-
mobilized and free bacteria in recombinant and wild forms, 
consuming various sources of carbon and nitrogen, the ef-
fect of controlled culture systems and its industrial applica-
tions are reviewed.    

Microbial production of propionic acid

Propionic acid is fermented by Propionibacterium freuden-
reichii ssp. shermanii (26), Selenomonas ruminantium (29), Pro-
pionibacterium acidipropionici (30), Propionibacterium jensenii 
(31), Propionibacterium thoenii (32), Veillonella gazogenes (33), 
Veillonella criceti (34), Veillonella alcalescens (35), Veillonella 
parvula (36), Megasphaera elsdenii (37), Clostridium homopro-
pionicum (36), Bacteroides spp. and Fusobacterium necropho-
rum (38). Propionic acid can also be a by-product of biolo-
gical fermentation for vitamin B12 (dimethyl benzimidazole 
as a precursor) (39), trehalose (from levulinic acid) (40) and 
porphyrin (by δ-aminolevulinic acid and porphobilinogen) 
production (41).

Larger amounts of volatile fatty acids are produced by 
gut microbiota through anaerobic fermentation of dietary 
fibre, non-volatile fatty acids and proteins (42). Dietary fibre, 
as the primary substrate of colon microbiota, is metabolized 
to pyruvate, which is converted to PA (43). Undigested carbo-
hydrates in small intestine are fermented to propionic, bu-
tyric and acetic acids, and gases including H2, CO2 and CH4 

are released, together with heat due to exothermic reaction 
(44). Formation of volatile fatty acids in the intestine depends 
on different extrinsic and intrinsic factors regarding environ-
mental conditions, substrate availability (e.g. carbon limita-
tion) and bacterial species (45).  

In biosynthesis of propionic acid from glycerol, P. acidi-
propionici has shown higher efficiency in terms of conver-
sion yield and fermentation time than other strains such 
as Propionibacterium acnes and Clostridium propionicum 
(22,46). Mutation of P. acidipropionici has lead to the increase 
of H+-ATPase expression and resistance to pH changes (14). 

However, it should be considered that high propionic acid 
concentration causes carboxylate inhibition during fermen-
tation. Excess propionic acid can be excluded by using ex-
tractive fermentation. Low acid concentration ensures high-
er product yield and lower amounts of by-products (37). For 
propionic acid extraction, only undissociated acids are drawn 
out by hexane solution as the solvent (47). To find a solution 
to the major problem of organic acid production, acid recov-
ery of ten solvents was examined. Alcohols and 1-butanol 
were considered as the best recovery solution and cost-ef-
fective extractor, respectively (48).

Supercritical carbon dioxide (solvent) and tri-n-octyl-
amine (reactant) with high pressure (16 MPa) can be applied 
for PA extraction from aqueous solutions at low temperature 
(35 °C). These methods with 94.7 % extraction efficiency are 
superior to the physical extraction of organic acids (49).

Recovery of propionic acid by electrodialysis from cell-
free fermentation medium leads to higher product concen-
tration (50). As opposed to aerobic fermentation, anaerobic 
fermentation is difficult to monitor, which could be overcome 
by measuring the oxidoreduction potential as an easy and 
cost-effective method (51). Interconversion of NADH/NAD+ 
redox pair can be used for regulation of propionic acid pro-
duction through oxidoreduction potential control (52). 

Besides environmental pollution from fossil resources, ir-
reversible fuels should be substituted as their prices get high-
er due to depletion of petroleum (53) and necessity of specific 
catalysts (54).  However, industrial production of propionic 
acid by fermentation cannot be feasible unless process cost is 
eqiuvalent to the production of a PA by petrochemical routes 
such as ethylene carbonylation, hydrocarbons and propanol 
oxidation (55,56). The production of PA from industrial wastes 
such as glycerol or molasses makes biomass-based PA eco-
nomically competitive to fossil-based PA (22,57).

PROCESS PARAMETERS INFLUENCING  
MICROBIAL PRODUCTION AND  
PRODUCTIVITY OF PROPIONIC ACID

Fermentation of propionic acid encounters some limita-
tions such as inhibition of cell growth during the process (25) 
and formation of organic acids. Among 17 strains of Propioni-
bacterium, Propionibacterium acidipropionici AT CC 4875 has 
been reported to achieve highest propionic acid yield (58). 

The presence of KCl in glycerol medium improves the 
production of trehalose by Propionibacterium freudenreichii, 
sensitive to osmotic stress (59). Although corn mash medium 
increases product yield, this medium reduces productivity 
when it is used without cyanocobalamin (58). Megasphaera 
elsdenii prefers lactic acid (lactate) to glucose despite the pre-
growth on glucose medium. M. elsdenii converts lactic acid 
into monocarboxylic volatile fatty acids as C2-5 acids (60). 

Organic acids including n-propanol and acetic, formic 
and succinic acids are formed as the by-products of propi-
onic acid production from glycerol (46). Gases such as CO2 
from glucose (14) or lactose (61) are also limiting factors that 
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are produced by P. acidipropionici, but all the by-products can 
be significantly reduced by extractive fermentation with hol-
low fibre membrane as extractor and amine as the extract-
ing chemical (62,63).

Higher temperatures during fermentation lead to a high-
er quantity of propionic than acetic acid due to degradation 
of volatile fatty acids (>C3) (64). Electrodialysis in conjunction 
with ultrafiltration can exhibit higher volumetric productiv-
ity when used for the production of organic acids (65). The 
same results are achieved in the chemically based produc-
tion of propionic acid in electrocatalytic membrane reactors 
through oxidation of propanol (56). The self-renewable em-
bedding of propionibacteria in calcium alginate and calcium 
polygalacturonate gels is hard to achieve (23). A xylan hydro-
gel matrix for immobilization of Propionibacterium acidipropi-
onici has shown the productivity of 0.88 g/(L·h) during contin-
uous fermentation in stirred tank. This approach is associated 
with high cell adhesion to solid carrier surfaces even at high 
dilution rates, resulting in 99.7 g/L of dry cell density (66). 
Spin filters (with 5 μm pore size) can be applied for in situ cell 
retention to achieve fourfold productivity of propionic acid 
through the continuous fermentation (0.9 g/(L·h)) compared 
to common batch fermentation (67). 

 

Choice of microorganism

Propionibacteria are pleomorphic catalase- and Gram-
positive, anaerobic, aerotolerant bacteria that produce pro-
pionic acid as the main product via fermentation by Wood-
Werkman cycle (68). There are two main pathways for the 
fermentation of PA from pyruvate: via decarboxylation of 
succinate or conversion of acrylate with lactate (precursor) 
(69). Three biotin-dependent carboxylases have shown to 
control carbon flux through the dicarboxylic acid pathway 
in the cycle. Their combination with glucose and glycerol as 
carbon sources results in increased acid concentration and 
higher productivity (70). Productivity can also be improved 
by the application of metabolic engineering, for which Esch-
erichia coli is the most widely used host (71). Phosphoenol-
pyruvate carboxylase enzyme from Escherichia coli has been 
cloned into Propionibacterium freudenreichii. Higher propion-
ic acid yield was produced at a faster rate by a mutant strain 
of Propionibacterium freudenreichii than by the wild-type (72). 
High propionate concentration has been achieved through 
fermentation of glycerol by E. coli, which is comparable to an-
aerobic fermentation by Propionibacterium (73). 

Veillonella criceti as a Gram-negative bacterium can con-
vert lactate to propionate with high productivity rate of 39 
g/(L·h) (74). Bacillus coagulans and Lactobacillus zeae are able 
to convert glucose or other carbon sources to lactate (74,75). 
The mutant strain of Bacillus coagulans has shown high final 
titre (145 g/L), yield (0.98 g/g) and d-lactate purity (99.9 %) (76). 
To avoid product and substrate inhibition, PA (product) and 
lactate (substrate) should be removed from fermentor and 
kept at low concentrations (74).

Control of the pH during fermentation

Fermentation encounters feedback inhibition via propi-
onic acid. This event can be controlled by different methods 
including choosing acid/propionate-tolerant strains, pH con-
trol by the inclusion of buffers or bases and pH adjustment 
and shift control strategies (37,77,78). 

At constant pH, lactate exhibits higher product yield 
than glucose and lactose and limits succinic acid production. 
Moreover, pH control is easier when using lactate as a carbon 
source in immobilized cell bioreactors (continuous type) (61).  

The production of propionic acid can be improved by 
controlling pH during fermentation (57,79). Since the opti-
mum pH for growth of Propionibacterium is higher than for 
Clostridium, a pH shift from 6 to 8 leads to a higher propor-
tion of propionic than butyric acid from glucose medium 
(80). In Swiss-type cheese, reducing lactose and higher pH 
values (5.20-5.35) leads to acceleration of PA fermentation 
(81). 

The acid-tolerant mutant strain of Propionibacterium aci-
dipropionici has been physiologically (82) and molecularly 
(55) studied by genome shuffling and proteomics, respec-
tively. Understanding the details of acid tolerance mecha-
nisms and factors contributing to changes in acid accumu-
lation may lead to an increase in propionic acid production 
by regulation of the fermentation process (83).

Results of serial studies demonstrate that genome shuf-
fling can be used to produce the mutant by inactivated pro-
toplast fusion, and acid-tolerant mutant bacteria are affected 
by proton pump of the membrane, glutamate decarboxyl-
ase and arginine deaminase (82). The pH change caused by 
the production of acid metabolites affects the membrane 
and cell wall structures (73). Therefore, the effect of pH is 
an important issue in fermentation process due to the high 
sensibility of biological materials. Many studies have been 
performed to find optimum pH for the growth of Propioni-
bacterium. By using the strategy of pH adjustment in two 
stages (pH maintained at 6.5 for 48 h and then at 6.0), it was 
possible to increase PA yield significantly (from 14.58 to 19.21 
g/L) compared to the production at constant pH=6.0 (23).

The type of substrate is another parameter that influ-
ences propionic acid yield since its conversion ratio can be 
directly affected. Depending on the type of substrate, the pH 
control might become harder to manage. It was stated that 
lactate, as carbon basis, presented some advantages com-
pared to glycerol and sugarcane molasses (84). It was noticed 
that when glycerol and sugarcane molasses were used, faster 
pH variation was observed; however, it was slow when lac-
tate was used (19).

Temperature

Temperature is an important factor in all fermentation 
processes that affects overall process yield by directly in-
fluencing biochemical performance. Many genera of Propi-
onibacterium have been studied, and each genus requires 
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different optimum temperature. In the oldest available litera-

ture, the optimum temperature was determined in the range 

14–40 °C (85). In the following studies, the optimum tempera-

ture for PA production was recorded mostly between 30 and 

40 °C (86,87).

Carbon source

Many different types of carbon sources as the sub-
strate can be considered as the most expensive conven-
tional raw materials in the fermentation process (Table 1 
(11,14,23,24,30,58,74,88-96)). 

Table 1. Yield, productivity and final titer of propionic acid production under different experimental conditions

Strain Carbon source
Temperature/

°C
pH

Yield/
(g/g)

Productivity/
(g/(L·h))

Final titer/
(g/L)

Reference

Propionibacterium acidipropionici 
ACK-Tet (mutant of ATCC 4875)

Glucose 32 6.5 0.54 0.41 97 (14)

Propionibacterium acidipropionici 
ATCC 4875

Mature Jerusalem artichoke tubercle 
roots (40 g/L fructose and 20 g/L 

glucose)
32 6.5 0.42 3.69 22.9 (88)

Propionibacterium acidipropionici 
ATCC 4875

Glucose 32 6.5 0.45 2 45 (58)

Propionibacterium acidipropionici 
F3E8

Glucose 32 7.0 0.55 0.84 40 (92)

Propionibacterium acidipropionici 
ATCC 55737

Glucose 32 7.0 0.42 0.62 27 (92)

Propionibacterium acidipropionici 
ATCC 4875

Glucose 32 7.0 0.45 0.61 30 (92)

Propionibacterium 
acidipropionici CGMCC 1.2232 
(Propionibacterium acidipropionici 
ATCC 4875)

Whey lactose 32 6.0 0.45 0.2 27 (90)

Propionibacterium freudenreichii 
CCTCC M207015

Glucose 35 5.5–7.0 - 0.12 14.58 (24)

Propionibacterium acidipropionici 
DSM 4900

Glycerol 30 6.5 0.74 0.29 20 (91)

Propionibacterium freudenreichii 
CCTCC M207015

Glucose 35 6.0 - 0.16 34.03 (23)

Propionibacterium acidipropionici 
ATCC4965

Glucose/Glycerol 30 6.5 0.57 0.152 21.9 (89)

Propionibacterium acidipropionici 
ATCC4965

Glucose 30 6.5 0.30 0.068 11.5 (89)

Propionibacterium acidipropionici 
ATCC4965

Glycerol 30 6.5 0.47 0.108 18.1 (89)

Propionibacterium acidipropionici 
ACT-1 (adapted from ATCC 4875)

Glucose 32 5.5 0.52 0.162 52.1 (11)

Propionibacterium acidipropionici 
ACT-1 (adapted from ATCC 4875)

Glucose 32 5.5 0.62 0.159 42.7 (11)

Propionibacterium acidipropionici 
ACT-1 (adapted from ATCC 4875)

Soy molasses 32 6.5 0.39 0.35 54.1 (11)

Propionibacterium acidipropionici 
ATCC 4875

Glucose 32 6.5 0.43 2.23 55.7 (93)

Propionibacterium acidipropionici 
CGMCC 1.2230

Glycerol 30 7.0 0.57 0.19 48 (30)

Propionibacter freudenrechii ssp. 
shermanii PTCC 1661

Glycerol 30 6.5-7.0 0.724 0.113 - (94)

Propionibacter freudenrechii T82 Pure sugars 37 6.5 0.30 0.039 7.66 (95)

Propionibacter freudenrechii T82 Pure sugars 30 6.5 0.32 0.043 7.66 (95)

Propionibacterium freudenreichii 
CICC 10019

Glucose 30 7.0 0.66 0.33 85.4 (96)

Propionibacterium freudenreichii 
CICC 10019

Crop stalk hydrolysates 30 7.0 0.75 0.35 91.4 (96)

Bacillus coagulans DSMZ 2314 
and Veillonella criceti
DSMZ 20734

Glucose 37 6.2 0.35 0.63 - (74)
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sources could be proposed as an effective strategy for in-
creasing PA production through kinetics alterations.

Jerusalem artichoke-based media, which contain differ-
ent carbohydrates as mixed carbon sources, were used with 
the addition of 10 g/L yeast extract for the production of pro-
pionic acid by P. acidipropionici, with propionic acid concen-
tration and productivity of 40 g/L and 0.26 g/(L·h), respec-
tively (88). The mixture of glucose and glycerol yielded 29.2 
g/L of propionic acid (89). The yield was quite low, and the 
used medium was relatively expensive. Co-fermentation of 
glucose and glycerol at a suitable mass ratio gave higher yield 
and concentration of propionic acid. 

Fermentation time

Each microorganism has a particular growth phase, which 
depends on the fermentation variables including pH, tem-
perature, culture medium or desired properties of the final 
product. Fermentation time strongly depends on the growth 
rate of the microorganism. Selection of appropriate strains of 
Propionibacterium is also one of the most considerable fac-
tors. However, in propionic acid fermentation, its concentra-
tion could reach its maximum at a certain time of production; 
however, any prolongation of the bioprocess might cause a 
decrease in the final PA concentration. With prolongation of 
fermentation time, productivity is reduced due to the accu-
mulation of inhibitory factors in the fermentor. Therefore, the 
optimization of fermentation duration is essential in order to 
obtain maximum productivity (23).

In conventional one-step batch fermentation, production 
period lasts up to 200 h; however, this period can be prolonged 
by using advanced bioreactor systems (91). By applying sever-
al repeated batch cycles with continuous recycle of cells, pro-
duction time could be prolonged. During the cell-recycle fer-
mentation for 11 consecutive batches the production time of 
PA by P. acidipropionici DSM 4900 lasted over 500 h (101). High 
concentration of PA could be produced by using the fed-batch 
system. The considerably high concentration of PA (71.8 g/L) 
was obtained after 12 days of fermentation of hemicellulose 
hydrolysate and corncob molasses using P. acidipropionici ATCC 
4875 (9). Immobilization systems also alter PA production time 
radically. Immobilization of P. acidipropionici DSM 4900 in poly-
ethylenimine-treated Luffa (PEI-Luffa) allowed a batch fermen-
tation with a total production time of 225.5 h, which is consid-
ered longer than with free cells (126.75 h) (91). Recent studies 
have shown that the production of biofilm and exopolysac-
charides (EPS) facilitates immobilization of Propionibacterium 
freudenreichii and Propionibacterium acidipropionici. The forma-
tion of biofilm and EPS can be induced by triggering factors 
such as NaCl and citric acid (102).

Nitrogen source

Propionibacterium spp. can digest nitrogen sources includ-
ing peptone, corn steep liquor and yeast extract, which can en-
hance the PA production (16). Production of PA on corn steep 

To maintain high productivity and reduce the cost of pro-
duction, many studies have been carried out to evaluate the 
possible use of cheap renewable agro-industrial sources and 
wastes (i.e. sugarcane molasses and glycerol) (9,26). The use 
of cheap substrates including corn gluten, corn steep liquor, 
sulphite and wood pulp waste liquors, lignocelluloses, flour 
hydrolysates and whey as carbon sources (88) can be an al-
ternative for a more viable product.  

Propionibacterium is capable of consuming various sourc-
es of carbon such as glucose (89), fructose (16), sucrose (9), lac-
tose (90), glycerol (91) and molasses (86). Different productivity 
and conversion yield can be achieved dependent on the type 
of applied carbon source. Propionic acid productivity based 
on glycerol (46), hemicellulose (97) and glycerol/lactate (19) as 
carbon sources is 0.18, 0.28 and 0.113 g/(L·h), respectively. Con-
trary to lactic acid and glucose, higher glycerol concentration 
results in increased productivity and lower conversion yield 
(46). Glycerol feed with the constant rate of 0.01 L/h (72-120 
h) has led to the maximum PA production by P. acidipropionici 
that can be scaled up to industrial level (30). The productivity of 
PA is higher in fermentation of glycerol than in fermentation of 
glucose. In contrast, the increase in glucose/glycerol mass ratio 
increases the vitamin B12 productivity (98).

By application of vegetable oil, biodiesel industry pro-
vides a great amount of glycerol as a by-product, which can 
be considered as an economically viable feedstock for indus-
trial production of PA (23). Glycerol can be used in PA fer-
mentation as a carbon source (26,89). Although it is an ex-
cellent reducing agent, which favours the production of PA 
(99), it might lead to redox imbalance in the metabolism that 
might affect the cell evolution and lower the yield when 
used as the sole carbon source in fermentation. Besides low 
price and availability of glycerol, its advantage is that high-
er yields could be obtained due to the higher average de-
gree of reduction of carbon atoms (κ=4.67) than with glu-
cose (κ=4) (100). Consequently, by using glycerol, the yield of 
PA and recovery rate from glycerol will increase while acetic 
acid formation will decrease (100:1) (14,30). Therefore, reusing 
agro-industrial waste obtained from biodiesel can reduce the 
total cost of PA production up to 70 % (19).  

Coral et al. (19) used various carbon sources to test the ef-
fect of substrate on PA fermentation by 9 strains of Propion-
ibacterium. Lactate showed the highest PA productivity and 
yield. Additionally, lactate enhanced the rate of PA produc-
tion compared to molasses; it is not degraded via glycolytic 
route; therefore, acid biosynthesis is easier. Another advan-
tage of lactate is that due to low pH variation during its degra-
dation, there is no demand for constant control of pH, which 
is needed for glycerol and sugarcane molasses.

Mixed carbon source

Although common practice for propionic acid fermenta-
tion is usually the use of a single carbon source, this is gen-
erally not enough for the growth of Propionibacterium and 
production of PA. Therefore, the application of mixed carbon 
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liquor as an agro-industrial effluent exhibits relatively high 
yield (0.79 g/g) and productivity (5.20 mg/(L·h) (103). Although 
the addition of different concentrations of nitrogen source in 
the range 5-40 g/L was reported in various studies, the most 
frequent were 5 and 10 g/L (104). However, more investigations 
to find low-cost nitrogen sources is recommended. 

APPLICATION OF PROPIONIC ACID 
Propionic acid is beneficial to the human body and may 

play a role in satiety and energy homeostasis by specific 
mechanisms including activation of free fatty acid recep-
tors, reducing lipogenesis level and glucose homeostasis 
(105). Small quantities of propionic acid as a commercial an-
timicrobial agent (E 280) are available in many foods such as 
dairy products (106). It can be applied to produce character-
istic holes and nutty flavour in Swiss-type cheese (81). 

The propionic acid in low concentration can slightly pro-
mote citric acid production (107) and in combination with 
acetic acid it improves hydrogen production rates during 
fermentation (108). It can be used for enzyme-catalyzed syn-
thesis of esters from alcohols (17) as well as in ethanol fer-
mentation (17). Fig. 1 shows the properties and approximate 
price (in €) of propionic acid derivatives in different fields of 
propionic acid application. 

As shown in Fig. 1, propionic acid is sold for about 1-2 
€/kg for use in different industries including production of 
herbicides, pharmaceuticals, polymers (e.g. acrylonitrile cel-
lulose fibre and modification of carbide slag) and perfumes 
(57,109,110).

Antimicrobial agent

Numerous microorganisms can produce propionic acid 
via fermentation, while many of them can metabolize it. PA 
shows inhibitory effect against the microorganisms that me-
tabolize it by accumulation in the cells, blocking metabolic 
pathways and consequently resulting in the inhibition of en-
zymes. Depending on the concentration, PA lowers the in-
tracellular pH and inhibits microbial growth due to anion ac-
cumulation.

Propionic acid, as a relatively strong organic acid, has 
been employed as an antimicrobial agent in foodstuffs such 
as dairy and baking products, and in animal feed preserva-
tion. Instead of using antibiotics, which could lead to antibi-
otic resistance, feed can be treated with PA for its protection 
from bacterial and fungal degradation (111,112). PA is added 
to many poultry feed products to reduce the contamination 
by Salmonella spp. and undesired mould formation (113,114). 
In addition to antimicrobial activity, the PA in feed has shown 
to improve ruminal productivity by enhancing substrate 
degradation (8 %) and reducing methane production (20 %) 
(115,116). Unlike acetate, PA reduces the hydrogen transfor-
mation into methane (117). Application of lactic acid bacte-
ria (LAB) can improve the production of PA by increasing the 
concentration of lactic acid and water-soluble carbohydrates 
in the rumen (118,119). 

Anti-inflammatory agent

Since the last century, there has been increasing need to 
discover novel anti-inflammatory agents with high efficiency 

Fig. 1. Chemical structure, relative molecular mass (Mr) and approximate price (in €) of propionic acid derivatives in different fields of propionic 
acid application
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for the treatment of many diseases. Several types of organic 
acids have been used for this purpose; however, as a prereq-
uisite, in general, only nitrogen-free and non-steroidal com-
pounds have been recognized as useful agents. Propionic 
acid, in its common chemical structure (C3H6O2), is free from 
nitrogen so it is widely used to produce anti-inflammatory 
agents (120,121).

Many different chemical groups could be added to PA to 
increase the anti-inflammatory effect. Studies confirmed that 
PA with an aryl group (profens i.e. 2-arylpropionic acid deriva-
tives) is an important part of non-steroidal anti-inflammatory 
agents, which are widely prescribed against diseases such as 
arthritis and rheumatism (122).

Recently, new compounds have been introduced as pos-
sible additional agents with PA. Some propionic acid-based 
drugs used sas anti-inflammatory agents may have gastric ul-
cerogenic activity, which is an undesired effect for patients. 
2-2-Fluoro-4-(2-oxocyclopentyl)methyl]phenyl}propionic 
acid can be incorporated in the formulation to eliminate this 
gastric effect (123).

Herbicide 

Wide ranges of herbicides have been utilized in modern 
agricultural methods in order to eliminate the target organ-
isms. However, these herbicides may also affect the benefi-
cial activities of non-target organisms that grow on the crops. 
Thus, it is essential to use biodegradable, target-specified 
agents such as derivatives of PA as promising herbicides to 
avoid agricultural expenses (124).  

Far from other available artificial herbicides, propionic 
acid biodegrades firstly into acetic and formic acids, then to 
carbon dioxide and water; thus, it does not pose any threat 
to the environment. It is less caustic and corrosive than for-
mic acid, another common herbicide. If proper formulation 
and respiratory protection are used, PA does not cause any 
health hazards during apllication. Propionic acid can control 
both monocotyledonous and dicotyledonous plants and it is 
an effective pre-emergent and post-emergent herbicide (6).

Some microorganism species are capable of degrading 
herbicides, specifically chiral forms of mecoprop ((RS)-2-(4- 
-chloro-2-methylphenoxy)propionic acid) with different deg-
radation rates. Previous investigations indicated that the use 
of a certain form of propionic acid-based herbicides decreas-
es the degradation of mecoprop by these organisms, which, 
consequently, increases the effectiveness of the mentioned 
agents (125). However, after the application of herbicides, it 
is important to remove them from the applied region since 
they may be considered as a potential health hazard. In order 
to eliminate these agents, many microorganism species may 
be used efficiently (126).

Preservative and safe food additive

Regarding the unstable physical conditions such as heat, 
excessive moisture, unpredictable rainfall, and also poor 

drying conditions, the addition of preservatives into food is 
very important since they tend to prevent the possible spoil-
age that could lead to food poisoning (127).

Propionic acid and its Ca, K and Na salts are common 
food additives used for food preservation. Wheat is usual-
ly cross-contaminated during harvest and especially in unfa-
vourable storage conditions by fungi resulting in quality and 
economic losses. The use of PA and its salts may eliminate 
these contaminations during storage of crops (20).

Another method to increase the effect of PA as a food 
preservative is introducing this acid by specific carrier sub-
stances (e.g. vermiculite). The vermiculite pores of a certain 
diameter allow PA to penetrate particularly inside the grains.

Propionic acid is a generally recognised as safe (GRAS) 
food preservative. Some studies have reported that PA can 
exacerbate autism spectrum disorder (ASD) symptoms in hu-
mans. Besides Propionibacterium, gut bacteria produce PA by 
fermentation. As a result of in vivo production, PA can pass 
through the blood-brain and gut-blood barriers. Thereby, PA 
can cause neuroactive effects similar to ASD. Several cases of 
provoked ASD symptoms in children as a result of consump-
tion of processed wheat or dairy products containing PA as 
food preservative have been reported (128,129). 

CONCLUSIONS
This article presents the aspects of propionic acid (PA) 

production by Propionibacterium sp. in the submerged sys-
tem. Proper control of the substrate, culture conditions, type 
and bioreactor scale is important to ensure successful pro-
duction of the PA. The pH value and temperature are among 
the most important factors influencing the PA productivity. 
To determine substrate consumption rate, it is necessary to 
study the kinetics of Propionibacterium sp. The production 
of PA can be enhanced through the application of metaboli-
cally engineered mutants. Metabolic engineering should be 
studied as an essential tool to obtain better PA producers that 
show excellent resistance to acidic conditions, limited amount 
of substrates and are also easily adapted to different fermen-
tation systems. Application of new immobilization techniques 
can be efficiently used with bioreactor systems and can bring 
significant economic advantage for PA production. All men-
tioned techniques should be investigated more to adapt to 
industrial production of PA.
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