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KINETICALLY CONSISTENT THERMAL LATTICE BOLTZMANN

MODELS

Parthib R. Rao, PhD

University of Pittsburgh, 2015

The lattice Boltzmann (LB) method has developed into a numerically robust and efficient

technique for simulating a wide variety of complex fluid flows. Unlike conventional CFD

methods, the LB method is based on microscopic models and mesoscopic kinetic equations

in which the collective long-term behavior of pseudo-particles is used to simulate the hydro-

dynamic limit of a system. Due to its kinetic basis, the LB method is particularly useful in

applications involving interfacial dynamics and complex boundaries, such as multiphase or

multicomponent flows. However, most of the LB models, both single and multiphase, do not

satisfy the energy conservation principle, thus limiting their ability to provide quantitatively

accurate predictions for cases with substantial heat transfer rates. To address this issue, this

dissertation focuses on developing kinetically consistent and energy conserving LB models

for single phase flows, in particular.

Firstly, we present a mathematical formulation of the LB method based on the concept

of projection of the distributions onto a Hermite-polynomial basis and their systematic trun-

cation. This formulation is shown to be capable of approximating the near incompressible,

weakly compressible, and fully compressible (thermal) limits of the continuous Boltzmann

equation, thus obviating the previous low-Mach number assumption. Physically it means

that this formulation allows a kinetically-accurate description of flows involving large heat

transfer rates. The various higher-order discrete-velocity sets (lattices) that follow from this

formulation are also compiled. The resulting higher-order thermal model is validated for

benchmark thermal flows, such as Rayleigh-Benard convection and thermal Couette flow,
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in an off-lattice framework. Our tests indicate that the D2Q39-based thermal models are

capable of modeling incompressible and weakly compressible thermal flows accurately. In

the validation process, through a finite-difference-type boundary treatment, we also extend

the applicability of higher-order la ttices to flow-domains with solid boundaries, which was

previously restricted.

Secondly, we present various off-lattice time-marching schemes for solving the discrete

Boltzmann equation. Specifically, the various temporal schemes are analyzed with respect

to their numerical stability as a function of the maximum allowable time-step . We show

that the characteristics-based temporal schemes offer the best numerical stability among

all other comparable schemes. Due to this enhanced numerical stability, we show that the

usual restriction no longer applies, enabling larger time-steps, and thereby reducing the

computational run-time. The off-lattice scheme were also successfully extended to higher-

order LB models.

Finally, we present the algorithm and single-core optimization techniques for a off-lattice,

higher-order LB code. Using simple cache optimization techniques and a proper choice of the

data-structure, we obtain a 5-7X improvement in performance compared to an unoptimized

code. Thereafter, the optimized code is parallelized using OpenMP. Scalability tests indicate

a parallel efficiency of 80% on shared-memory systems with up to 50 cores (strong scaling).

An analysis of the higher-order LB models also show that they are less memory-bound if

the off-lattice temporal schemes are used, thus making them more scalable compared to the

stream-collide type scheme.
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1.0 INTRODUCTION

This dissertation primarily deals with a mathematical description of singlephase fluid flows.

The choice of the description depends on the level of abstraction used to to describe or

model a fluid and its dynamics. A fluid can be modeled using three broad levels (scales) of

abstraction: the microscale, mesoscale, and macroscale. The choice of a particular abstrac-

tion ultimately depends upon the flow physics of interest, length and time-scales driving

the flow, and increasingly, on the computational costs of the investigation. At each level of

abstraction, the governing equations describing the physics are different.

As described in the sections below, the Newton-Hamilton equation governs the mi-

croscale, the Boltzmann equation governs the mesoscale, and the Navier-Stokes (N-S) equa-

tion governs the macroscale description. An approximate quantitative metric for the demar-

cation of the levels is the Knudsen number (Kn), which is the ratio of the molecular mean

free path and the macroscale characteristic length scale of the flow. Fig. 1 describes the

levels of abstraction based on Kn. Therefore, this chapter will first discuss the implications

of each level of abstraction, before providing an overview of one approach (the lattice Boltz-

mann method) that can be used to overcome some of the computational complexities. The

shortcomings of the lattice Boltzmann method will also be discussed, especially for ther-

mal flows, as well as a brief summary of the improvements to the method proposed in this

dissertation.
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Figure 1: Classification of flow regimes based on the Knudsen number, Kn. The lower

and upper limits for Kn number correspond to the macroscale (hydrodynamic regime) and

microscale (free molecular flow regime), respectively. Adapted from [18]

1.1 LEVELS OF ABSTRACTIONS FOR FLUID FLOW

1.1.1 Microscale Description

In the microscale description, the motion of N number of particles (molecules or atoms)

in an ensemble is modeled, such that their position and momentum can be obtained. The

dynamics of the particles are governed by the Newton’s laws of motion, which form a set of

N, non-linear ordinary differential equations, given as:

mi
dx2

i

dt2
= F i = fij +Gi (1.1)

where xi are a particle’s position vectors, N is typically of the order of the Avagadro’s

number NA ∼ 6 × 1023, fij is the force exerted upon the ith molecule by the jth molecule,

and G is an external body force, such as gravity [18]. The pairwise intermolecular forces,

fij, driving the system can be expressed in terms of the gradient of a potential function V :

fij = −∇i

∑
j

V (xi,xj) (1.2)

A popular model of V , for example, is the Lennard-Jones 12 − 6 potential. Integration of

the above equations of motion for the N−particle system yields the position and velocity
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of each molecule in time. This detailed microscale information can then be related to their

macroscale counterpart through ensemble averaging, using laws of statistical mechanics. This

methodology is broadly termed as Molecular Dynamics (MD) [93]. However, to describe even

a small volume of fluid behavior, this procedure requires a very large number of particles

(> 1023), and complex interactions between the particles. Computationally, this implies

tracking at least 6N variables (three positions and three velocities). An alternate description

is to consider the Hamiltonian, H , of the N−particle system, where H is the total energy

of the system, including the kinetic and the potential energy due to molecular interactions.

Given a definition of the Hamiltonian, the time evolution of N−particle system is governed

by Hamilton’s equation:
∂pi
∂t

= −∂H
∂qi

∂qi
∂t

=
∂H

∂pi
(1.3)

with (q,p) being the generalized co-ordinates. However, with either formulations (Newto-

nian or Hamiltonian), due to the large number of required particles even for a small volume

of fluid, the computational run-time is prohibitively expensive even with state of the art

supercomputers and software techniques. Molecular dynamics is therefore usually used in

the more fundamental investigations, such as computational chemistry, biology, material sci-

ence, etc., where properties of molecules and their interactions (resulting in various physical

phenomena) are more pertinent.
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1.1.2 Mesoscale Description

1.1.2.1 Liouville Equation In the mesocale description of fluids, the N−particle sys-

tem and their motion are coarse-grained using the concept of probability distribution func-

tions (pdf). That is, instead of individual molecular trajectories, the N−particle mesoscale

or kinetic level deals with distribution functions, fN(x1,v1...xN ,vN , t), which are smooth

fields, that describe the joint probability of finding molecule 1 at position x1 with speed v1,

and molecule 2 at position x2 with speed v2, and so on, up to molecule N around position

xN with speed vN , all at the same time t. Trajectories are here replaced by the notion of a

fluid in a phase-space (v,x, t) obeying a 6N -dimensional equation, known as the Liouville

equation [61, 53]:

∂fN
∂t

+
N∑
i=1

vi ·
∂fN
∂xi

+ ai ·
∂fN
∂vi

= 0, (1.4)

where a = F i/mi are the particle accelerations. The Liouville equation, valid for both

equilibrium and non-equilibrium systems, is considered as bridge from classical mechanics

(of particles) to statistical physics. However, although we have simplified the description of

the N -body system by considering the probability distribution over N -particle phase space,

this equation is still of limited practical use, since fN is a still a continuum 6N− dimensional

field.

1.1.2.2 Boltzmann Equation We can further simplify the description by simply in-

tegrating fN over unwanted coordinates, by defining low-order reduced particle distribu-

tion functions (PDFs), which are defined as fM ≡ f12...M<N =
´
f12...NdzM+1...dzN , where

dzk ≡ dxkdvk, for k = M + 1, ...N . This results in a chain of equations, called as the

BBGKY hierarchy in the literature, since it was deduced independently by the researchers

Bogoliubov, Born and Green, Kirkwood and Yvon:

∂fM
∂t

+
M∑
i=1

vi ·
∂fM
∂xi

+ ai ·
∂fM
∂vi

= CM (1.5)

Notice that the right hand side now gathers all the effects of intermolecular interactions.

A key feature of this hierarchy is that the one-particle PDF f1 equation contains the two-

particle PDF f2, the two-particle PDF equation contains the three-particle PDF f3, and so
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on. It is therefore clear that, numerically, the BBGKY hierarchy is as difficult to solve as

the original Liouville equation due to its fully-coupled nature. Fortunately, most practical

macroscale observables, such as density, pressure, temperature, and energy, only depend

on 1 or 2-body distributions, and therefore, only the lowest order elements in the BBGKY

hierarchy are of practical interest. The Boltzmann equation [43, 45], discussed in detail in

Chap. 2, is a result of such an approximation. Essentially, in the Boltzmann equation, the

N -body distribution fN is approximated by a one-body pdf, or a single-body distribution

function (SPDF) f(x,v, t) ∝ f1(x1,v1, t):

∂f

∂t
+ v · ∇xf + g · ∇vf = C(f, f) (1.6)

Ludwig Boltzmann, however, derived the equation that bears his name from heuristic ar-

guments, and not from the BBGKY hierarchy itself. Derivation of the Boltzmann equation

from the BBGKY hierarchy can be found in the classic texts [53] and [61], a more recent

one in [65].

The Boltzmann-like equations are fundamental to the notion of quasi-particles. By shift-

ing the focus from actual particles (real atoms or molecules) to quasi-particles, the Boltzmann

equation goes far beyond the original framework from which it was derived (i.e., rarefied gas

dynamics), and is employed in a huge variety of fields in statistical mechanics, including neu-

tron and radiation transport, electron transport in semiconductors, and many others. For

hydrodynamics, a great deal of information can be extracted from the Boltzmann equation

even without solving this equation fully. Mesoscale methods such as the Lattice Boltzmann

method aim to do just that. The key observation is that even though the traditional kinetic

theory of gases was originally derived for weakly-interacting (dilute) molecules, kinetic-like

equations can be applied whenever strong interactions between elementary degrees of free-

dom (particles) can be cast in the form of weak interactions between collective degrees of

freedom (quasi-particles) [114].
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1.1.3 Macroscale Description

In the macroscale level of abstraction, the fluid is treated as a continuum regardless of its

molecular structure. The continuum assumption implies that the hydrodynamic variables,

such as density, (ρ), temperature, (T ), and velocity u = (ux, uy,uz), as well as their gradients,

are continuous functions of space and time co-ordinates. It is also assumed that the spatial

and temporal gradients of the hydrodynamic variables are small enough; i.e., the gradients

are sufficiently smooth functions. At this level, the dynamics of a fluid can be described on

the basis of conservation laws (mass, momentum and energy), which are a set of coupled

non-linear partial differential equations [13, 66]:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ (1.7)

∂(ρE)

∂t
+∇ · (ρuE) = ∇ · q − p∇ · u+ τ : ∇u

where p is the pressure, q is the heat flux and τ is the deviatoric stress-tensor or shear

stress. These equations are not closed since there are no first-principle relations for τ and q.

The above equations can be qualitatively described as the statistically averaged equations

of individual motions of fluid particles, with the critical property of satisfying the conserva-

tion laws exactly. Additionally, assuming a linear constitutive relationship between viscous

stresses and strain rate (Newtonian fluid), and between heat flux and temperature gradi-

ent (Fourier’s law), we obtain the widely used Navier-Stokes equations (N-S) for fluid flow

1. The N-S equations describe a wide variety of single-phase flow regimes - incompressible

and compressible flows, laminar and turbulent flows, viscous and inviscid flows, etc. It is

important, however, to recognize the range of applicability, and therefore the limitations of

the N-S equations. Due to their coarse-grained nature, the N-S equations surely cannot de-

scribe the macroscale phenomena caused or influenced by the omitted physical mechanisms,

such as the phase transition (two-phase flows), the non-Newtonian stress-strain relationships

1In the literature, some authors refer only to the momentum equation as the Navier-Stokes equation, while
others refer the entire set of conservation equations (mass, momentum, and energy) as the Navier-Stokes
equations.
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(soft-matter flows of such as polymers, bio-fluids, etc.), flows at the scale of the mean free

path of particles (micro-scale flows), and other non-continuum effects.

In spite of the intuitive simplicity of the N-S equation, solving them in reality is a

numerically very challenging. In fact, the existence and smoothness of N-S solutions is one

of the six remaining Clay Millennium Prize problems in classical (non-quantum) physics

[39]. From a computational perspective, much effort is invested in developing numerical

approaches to solving this equation, rather than adding more complexity through additional

physical phenomena, except for, perhaps, the field of turbulence modeling. The general

procedure to solve N-S equations is to discretize the governing equations in the computational

domain by different methods, such as FD, FV, or FE, and then the corresponding algebraic

equations are solved iteratively to obtain macroscopic variables at each mesh point in a

particular numerical grid [60].

Having discussed the levels of abstractions for fluid flows, in conclusion, we can infer that

a series of systematic assumptions, approximations, and averaging lead us from the Newton-

Hamilton equations for a N−particle system, through Liouville and Boltzmann equation for

the spdf, to the continuum-based Navier-Stokes/Euler equations. Fig. 2 shows a pictorial

view of this hierarchy [112].

1.1.4 Why Mesoscale Methods?

Continuum-assumption based modeling is sufficient for many fluid flow problems; however,

many macroscale fluid phenomena have significant effects from the underlying microscopic

world. Surface tension is a prime example: cohesive (attractive) forces between molecules

are responsible for phase separation on the macroscopic scale and the concomitant interfa-

cial dynamics. However, modeling such a phenomena using continuum-based methods leads

to difficulties, since the governing equations are on the macroscale, whereas the fundamen-

tal mechanism giving rise the interfacial dynamics is on the microscale. Gaseous flow in

microchannels, especially in the presence of wall boundaries (large Kn flows) is another

example, where continuum-based methods are insufficient. Mesoscale modeling techniques

are useful in such contexts, where we need to simulate macroscale flows, which also exhibit
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significant underlying microscale phenomena. Mesoscale methods provide the linkage to the

microscale and macroscale worlds, through the fields of statistical mechanics and kinetic the-

ory. Many such mesoscale methods have been developed, some of which solve the Boltzmann

equation directly, such as the lattice Boltzmann (LB) method, the discrete velocity method

(DVM), the gas-kinetic scheme (GKS), etc.; and some of which simulate psuedo-particles

directly, such as the Lattice Gas Cellular Automata (LGCA), Dissipative Particle Dynamics

(DPD), and Direct Simulation Monte Carlo (DSMC) method. All of these techniques do not

track individual particles as in MD, but a cluster of pseudo-particles, statistically represented

by their PDFs.
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1.2 LATTICE BOLTZMANN METHOD

Among the mesoscale methods, the LB method has increasingly been adopted as an alterna-

tive numerical scheme for the simulation of a wide variety of fluid flows-not just singlephase

flows. [4, 27, 112, 128]. The theoretical foundation for using simplified kinetic models to

simulate hydrodynamic systems (or other complex systems) is based upon the observation

that in nature macroscale phenomena, such as hydrodynamics, are rather insensitive to the

underlying details of the microscale dynamics. In hydrodynamic systems, details of micro-

scopic dynamics can affect the numerical values of the transport coefficients, but not the

overall form of the Navier–Stokes equations.

The LB method, is therefore, a minimal form of the discrete Boltzmann equation, that

primarily reproduces Navier-Stokes level hydrodynamics in the limit of small Kn. It is mini-

mal, because only a handful of discrete values v → vi are retained from velocity space, that

are required to preserve conservation laws and to recover the correct continuum space-time

symmetries (Galilean, translational and rotational invariance). This makes the LB method

an indirect N-S solver. Additionally, the LB method can also accommodate inter-particle

forces that describe many complex flow phenomena, without having to solve the complicated

kinetic equations or their molecular dynamics. Thus, the LB method is suited for problems

involving interfacial dynamics, particulate/suspension flows, multiphase flows, Kn-transition

flows, porous media flows, and binary and ternary complex flows, etc. It can be argued that

the versatile nature of the LB method is an asset, but at the same time, also a potential

source of confusion regarding its applicability [112].

1.2.1 A Brief History

Although the history of the LB method is documented in several places, a brief discussion

on it is useful here, because many of the new model developments in state-of-the-art LB

advances still have their basis in the older formulations and models, upon which they are

built. Consistent with most numerical techniques, the LB method has gone through an

evolutionary process over the past three decades, the highlights of which are described below:
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LGCA-based formulation

The LB method originated from its predecessor - the lattice gas cellular automata

(LGCA), and in particular the FHP model [40], quite independent of the kinetic theory.

The fundamental idea behind LGCA is that microscopic interactions of pseudo-particles on

a microscopic lattice can lead to averaged macroscopic equations. For the interaction, which

consists of collision and propagation (or streaming) of particles with lattice velocities, lat-

tice (discrete) symmetry plays a key role for conserving mass and momentum, as well as

ensuring the angular momentum conservation. However, the FHP model had several short-

comings, such as statistical noise, lack of Galilean invariance, low Reynolds number, difficult

extension in three-dimensions, etc. The LB method originated from the efforts to address

these shortcomings of LGCA. Through a series of landmark advancements, such as replace-

ment of Boolean variables by real-valued variables, linearization of collision operator, etc.,

the field of the lattice Boltzmann-BGK (LBGK) model was developed, which addressed the

shortcomings of LGCA successfully [14, 58, 59, 63, 77]. It is noted that the original LBM

formulations of Qian et al. [90], and Chen et al. [29] were limited to isothermal low-Mach

number (near-incompressible) flows, and did not provide a systematic way of deriving non-

isothermal lattice Boltzmann models that also required conservation of energy. The earliest

LB models, derived from LGCA, are sometimes termed as the first-generation LB models.

Continuous Boltzmann-BGK based formulation

The LGCA-based formulation did not have a formal connection to the Boltzmann equa-

tion or the kinetic theory of gases. The link to LGCA was broken in the seminal papers by

Abe [2] and He and Luo [55], where the LB method was derived from the direct phase-space

discretization of the (continuous) Boltzmann-BGK equation. That is, the LB method was

proven to be a special finite-difference form of the continuous Boltzmann-BGK equation.

Although the resulting method retained the structural form as the previous LGCA-based

formulation, it was mathematically rigorous, (partially) consistent with kinetic theory, and

had better stability and accuracy. More importantly, this formulation enabled large-scale

extension of the LB method to practical engineering flows problems through adaptive grids,

non-Cartesian grids, etc. However, just like the LGCA-based formulation, due to the small

Mach number (near-incompressibility) assumption implicit in the derivation [55], this for-
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mulation is restricted primarily to isothermal, low-speed flows. The LB models based on He

and Luo’s formulation are termed as the second-generation LB models.

Grad’s Hermite-expansion based formulation

Inspired by Harold Grad’s original work on the kinetic theory of rarefied gases [45], Shan

and He [104, 105] proposed a new theoretical formulation for discretizing the Boltzmann-

BGK equation in phase-space, which links the lattice Boltzmann method to the Grad 13-

moment system. The idea of this formulation is to project the distribution functions on

Hermite polynomials, and the subsequent Gauss–Hermite quadrature to discretize the con-

tinuous microscopic velocity space. Truncation of the Hermite expansion of the distribution

functions at a particular order can be done a priori, depending upon the flow physics to

be modeled. This kinetically-consistent formulation is general in nature and can recover

the previous LB models as special or limiting cases. It also places the LB method on a

more sound and systematic mathematical basis. This formulation can construct models that

can not only simulate the incompressible limit of the Navier–Stokes equations as previous

models, but also isothermal compressible fluids, and theoretically, also model thermal flows

or flows that require energy conservations. Similarly, two other LB formulations, namely

the multiple-relaxation time models (MRT) and entropic LB models (ELB) were also devel-

oped with different collision models to address the shortcomings of the BGK approximation,

such as fixed Prandtl number (addressed by the MRT models), stability at high Reynolds

number flow and thermohydrodynamics (addressed by the entropic LB models), etc. The

Hermite-based LB formulation, MRT models [37], and the entropic LB models [8, 31] are

all, in general, called the third-generation LB models.

1.3 MOTIVATION

Over the past twenty years, the LB method has undergone a rapid evolution in terms of

physical models, numerics, computer implementations, and engineering-scale applications.

Despite this progress, there are still several deficiencies and areas of potential progress. One

of the most important voids in the the LB field is the lack of a kinetically-consistent ther-
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mohydrodynamic model or a thermal LB model. By thermal model we mean a model that

guarantees not only momentum conservation, but also energy conservation. For example,

flows with significant heat transfer, flows without/beyond the Boussinesq approximation, etc.

The most widely used LB model, across a wide spectrum of simple and complex flows, is

based on the so-called D2Q9 velocity lattice, which is fundamentally based on an isothermal

assumption, and therefore energy conservation cannot be strictly enforced. Thus, although

this lattice configuration has been proven successful for a large number of low-speed isother-

mal fluid flows, extending this lattice configuration for simulating flows with large heat

transfer has not been nearly as successful. Several attempts have been made to develop

thermal LB models, a brief review of which is given in Sec. 5.2. However, many of these

are phenomenological models, and may not be kinetically consistent with respect to energy

and its conservation, and therefore limited in their applicability. A consistent kinetic scheme

for thermohydrodynamics requires that pressure, temperature and density are related to

each other, for example through equations of state, the definition of speed of sound, etc.,

throughout the entire evolution process.

The inability to model energy conservation by the D2Q9 lattice is manifested in the flow

simulations based upon it. For example, although many of the current multiphase models

based on D2Q9 describe the multiphase flow dynamics qualitatively, numerically stable and

quantitatively accurate models are still lacking. The problem is even more severe when a

phase change takes place at the interface, for example, during droplet evaporation or vapor-

bubble growth. Heuristic thermal models for single-phase flows, such as the passive-scalar

model, therefore, cannot be accurately extended to multiphase flows. Energy conserving

models are also necessary for singlephase compressible flows, aeroacoustics simulations, mi-

croscale flows, etc. Thus, given the wide potential of the LB method in modeling various

fluid flows, it is essential that an accurate and stable underlying thermal model is developed.

In spite of the previous limited success and the theoretical challenges in developing a

consistent thermal LB model, the third generation LB models, namely the entropic LB and

the Hermite polynomial based LB formulations, offer promise. In this dissertation we will

focus on the Hermite polynomial based LB formulation. Specifically, in this method, through

a mathematically rigorous procedure, the LB method is derived as a moment solution of
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the continuous Boltzmann-BGK equation using the Hermite polynomials as the expansion

basis. The equilibrium distribution in the discrete model is obtained by truncating the

Hermite expansion of the Maxwellian distribution. Importantly, the choice of the order of

truncation is done on a priori basis. The resulting kinetic equations thus guarantee the

correct hydrodynamic equations as long as sufficient number of moments (flow variables) are

preserved by the truncation, and accurately represented by the discrete velocities. Through

this systematic formulation, the N-S energy equation can be approximately recovered up to a

small error in the thermal diffusivity if the third moments of the Maxwellian are preserved. It

is exactly recovered if the fourth order moments are preserved. This way, thermal LB models

can be constructed consistently without using the previous small-Mach number assumption.

1.4 OBJECTIVES

Although the theory of the Hermite-based LB formulation has been established recently,

several implementation aspects remain to be thoroughly investigated. One of the main

challenges is the nature of the higher-order lattices which are required for thermal models

under the new formulation. Unlike the popular D2Q9 lattice which has only one speed in each

coordinate direction, the lattices required for a thermal model have multiple speeds in each

direction (extended neighborhood). Due to this feature, higher-order lattices are challenging

from an implementation point of view, especially in the presence of wall boundaries, since the

commonly used bounce-back scheme cannot be extended easily. In fact, it has been observed

that a particular extension of the bounceback scheme for the higher-order lattices results in

severe inaccuracies [97]. Therefore, alternate schemes to solve the kinetic Boltzmann-BGK

equation in the presence of wall boundaries are required. Off-lattice temporal evolution

schemes-an Eulerian analogue of the Lagrangian stream-collide scheme- may provide such an

alternative. These temporal schemes are also commonly referred to as off-lattice Boltzmann

schemes.
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In summary, then, the main focus of this work is the detailed, implementation aspects of

the Hermite-based LB formulation for thermal flows, especially in the off-lattice Boltzmann

framework. Specifically the broad objectives of this work are two-fold:

1. To develop, analyze, and implement off-lattice Boltzmann schemes in presence of wall

boundaries, and analyze its numerical stability and accuracy; and

2. To extend the off-lattice Boltzmann scheme to solve the Boltzmann-BGK equation with

higher-order lattices (D2Q37, for example) for singlephase thermal flows.

1.5 ORGANIZATION

This dissertation is organized in two parts. Part I, consisting of Chaps. 2 and 3 (along

with Appendices. A and B), lays the mathematical foundations of the new LB formulation;

while Part II, consisting of Chaps. 4, 5, and 6 presents the implementation aspects of the

models developed in Part I. Specifically, in Chap. 2, we present a brief background on the

Boltzmann equation and its connection to hydrodynamics, and then, a systematic derivation

of the hydrodynamic equations from the Boltzmann-BGK equation, based on the method

of projection of the distributions on to a Hermite polynomial basis. This procedure per-

mits a a priori construction of the discrete thermal LB models directly from the continuous

Boltzmann-BGK equation. Chap. 3 discusses the velocity discretization procedure, based

on Gauss-Hermite quadrature, that is necessary to capture the moments of the truncated

distribution, especially those relevant to thermal flows. Chap. 4 discusses various alternate

space-time discretization schemes for the discrete Boltzmann equations, and their numerical

stability and accuracy. In Chap. 5, the models developed in Part I are validated on bench-

mark thermal flows, especially in an off-lattice framework. We then, in Chap. 6, discuss

the computer implementation, along with optimization and parallelization techniques that

can be used for simulations with the higher-order models. Finally, in Chap. 7, the work is

summarized, conclusion are provided, and avenues for future work are identified.
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2.0 THE BOLTZMANN EQUATION FOR HYDRODYNAMICS

Within the context of this dissertation, it is not practical to write a complete, self-contained

account of the evolution of the Boltzmann equation. For that, an interested reader can

refer to the classic texts by Cercignani [21], Harris [53] or Huang [61]. Only the essential

concepts from the kinetic theory of gases, which have considerable base in the derivation of

the numerical models are presented in Sec. 2.1. Next, in Sec. 2.2, the reasoning is shown

that leads from the Boltzmann equation to the macroscopic conservation equations governing

fluid flow. Within that context, a detailed mathematical derivation of the Euler and Navier-

Stokes-like equations is presented in Sec. 2.3, based on the projection of the Boltzmann

distribution on the Hermite polynomial bases - a method first formulated by Grad in 1949

[45], and recently extended by Shan et al. [105]. This is done with an overarching goal of

obtaining conservation laws suitable for thermal flows, directly from the Boltzmann equation.

2.1 THE BOLTZMANN EQUATION

Ludwig Boltzmann laid the foundations for kinetic theory - a special case of statical mechan-

ics. In essence, he postulated that the knowledge of the position and velocity of individual

particles is not important, but rather their distribution in the velocity and configuration

space, i.e., what percentage of molecules at a particular location have velocities within a

certain range, and at a certain time. Accordingly, the single-particle distribution function

(SPDF), f(ξ,x, t), gives the probability of finding a particular particle with a given posi-

tion, x, and velocity, ξ, at a particular time t. For example, for a gas with N number of

particles, the number of particles having velocities in the x direction between ξx and ξx+dξx
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is Nf(ξx). Thus, f(ξ,x, t)d3xd3ξ gives the total number of particles, at time t, located in a

control volume d3x around position x, and which have a velocity located in the volume d3ξ

around ξ. The evolution of the SPDF, a fundamental variable in kinetic theory, is described

by the Boltzmann equation:

∂f

∂t
+ ξ · ∇xf + g · ∇ξf = Q(f, f), (2.1)

where the left hand side represents free streaming of the particles in the phase space, the

collision term, Q(f, f), represents the time rate of change in f due to inter-particle collisions,

and g(x, t) is the acceleration due to the force field, such that F (ξ) = −g ·∇ξf . The gradient

operators in the configuration and velocity spaces are denoted by ∇x and ∇ξ, respectively.

Hereafter, we will use the term distributions to imply the single-particle distribution function.

The Boltzmann equation in itself can be derived from the BBGKY hierarchy using as-

sumptions known as the Boltzmann-Grad limit (BGL). The physical and mathematical im-

plications of the Boltzmann-Grad limit are provided in the classic works [21, 43, 45, 65], and

a more intuitive description in [22]. A few of the most significant assumptions are:

1. Density of the gas is low enough so that only binary collisions take place between the

constituent particles under a short-range two-body potential;

2. Collisions are localized in physical space;

3. The effect of external forces on the particles during the mean collision time is negligible

in comparison with the interacting molecular forces;

4. Since the probability of multi-particle configurations is separated into a probability of

single particle configurations, the velocities before and after the collision do not corre-

late with each other. This assumption is also called the molecular chaos assumption:

f12(x1,ξ1,x2, ξ2, t) = f1(x1, ξ1, t)f2(x2, ξ2, t). This also means that the period between

two collisions is much longer than the duration of the collision itself.
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2.1.1 Link to Hydrodynamic Variables

The distribution function enables us to calculate the macroscopic flow variables involved in

the hydrodynamic description of the fluid. In general, the hydrodynamic variables can be

expressed as the first few velocity moments of the distribution function. Moments are easily

defined up to an arbitrary order, but it is the first few moments (≤ 3) that have a physical

meaning.

To repeat, the quantity fd3ξd3x gives the average number of particles, N , contained

in a volume element d3x about x, and a velocity-space element d3ξ about ξ at time t.

So, when this distribution is integrated in phase space between ξ and ξ + dξ, we lose this

detailed information (coarse-graining), and we get statistically averaged values, which are the

macroscopic hydrodynamic variables of interest. Specifically, the number density n, density

ρ, velocity u, and the internal energy per unit mass, ε, are given as:

ρ(x, t) ≡ mn(x, t) = m

ˆ
fdξ,

ρu(x, t) = m

ˆ
ξdξ, (2.2)

ρε(x, t) =
1

2
m

ˆ
|ξ − u|2dξ

where m is the molecular mass of the gas particle, and f ≡ f(ξ,x, t) for brevity. Density

is referred as the zeroth moment, momentum as the first, and internal energy as the second

moment of the distribution function. These are conventional hydrodynamic variables that

correspond to conservation of mass, momentum and energy. The higher-order (n ≥ 2)

moments of the distribution function are described more conveniently on the basis of the so-

called peculiar or intrinsic velocity, c ≡ ξ − u(x, t). The peculiar velocity gives the particle

speed as measured by an observer moving with the fluid at the local bulk flow velocity u,

i.e., an stationary observer.

Some other hydrodynamic quantities of interest are the pressure p and heat flux q. They

are related to the second P and third moments Q, respectively, which are defined as:

P = m

ˆ
(ξ − u)(ξ − u)dξ = m

ˆ
ccfdc, (2.3)

Q = m

ˆ
(ξ − u)(ξ − u)(ξ − u)dξ = m

ˆ
cccfdc. (2.4)
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The elements of the second-order tensor Pαβ represent the the rate of momentum trans-

fer of the α component in the β direction. Under the assumption of negligible long-range

intermolecular interactions, which is consistent with the Boltzmann-Grad limit, the hydro-

dynamic pressure p can be found as the average of the diagonal components of Pαβ:

p =
Pαα
D

=
2ρε

D
(2.5)

Further, if we assume a monatomic gas under consideration, we can relate the internal energy

of the gas to its temperature, θ, using the the equipartition theorem:

ρε =
D

2

ρkB
m

θ or θ =
2mε

DkB
(2.6)

where D is the physical dimensions of space, and kB is the Boltzmann constant. From Eqs.

(2.5) and (2.6), we obtain an equation of state relating pressure, temperature and density:

p = nkBθ (2.7)

Eq. (2.7) is same as the ideal-gas equation of state, which is consistent with our previous

assumptions of the gas being monatomic. Heat or internal energy flux through the fluid due

to molecular motion, q, which is one of the component of the total energy flux through the

fluid, is by definition the contraction of the third-order moment Q:

q =

ˆ
f |ξ − u|2(ξ − u)dξ =

1

2

ˆ
cc2dc (2.8)

19



2.1.2 Boltzmann-BGK equation

2.1.2.1 Collision Models Due to the complexity of the collision integral and the large

phase-space dimensions, a direct solution of the full Boltzmann equation with the non-linear

collision is difficult to solve both analytically and numerically. Hence, simpler model ex-

pressions for the collision operator are employed depending upon the physics to be modeled.

From a continuum-based flow modeling perspective, the idea behind collision models (as-

sumptions) is that the large amount of small-scale details of binary particle interactions does

not significantly influence macroscopic hydrodynamic quantities [21, 128].

In order to simply the collision integral Q(f, f) to a more tractable integral Ω(f), i.e,

Q(f, f) → Ω(f), a potential collision model has to obey two inviolable rules. The first one

is that the collision model Ω(f) conserves all the collision invariants, ψk(ξ), such that:

ˆ
ψk(ξ)Ω(f) = 0 (2.9)

where the five elementary collision invariants defined as ψ0 = 1, ψ1, ψ2, ψ3 = ξ, and ψ4 = ξ2

are related to mass, momentum, and kinetic energy. A corollary of the requirement of con-

servation of collisional invariants is that a collision model should conserve mass, momentum

and energy. The second rule is that a collision model should have the tendency of leading

the distributions towards a local equilibrium distribution function through the H theorem

[128].

Local Equilibrium: The concept of local equilibrium is critical to the Boltzmann

equation’s ability to model Navier-Stokes flows. Local equilibrium is that special positive

value of the distribution function, denoted by f (0), such that the collision integral vanishes:

Q(f (0), f (0)) = 0 (2.10)

Without going into the details of the derivation, it can be shown the Maxwell-Boltzmann

distribution (Maxwellian), given below in a reference frame moving with the fluid, is such a

special distribution function:

f (0)(ξ,x, t) = ρ
( m

2πkBθ

)D/2
exp

[
− m(ξ − u)2

2kBθ

]
(2.11)
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The condition given by Eq. (2.11) represents a local or metastable equilibrium. In other

words, if the system is in local equilibrium, the distribution function is Maxwellian.

It is important to distinguish between the concepts of global and local equilibrium. A

system is in global equilibrium when the macroscale velocity and internal energy (temper-

ature) are constant throughout the physical flow domain. This happens on a much larger

time-scales, T ≫ τ . On the other hand, at time-scales O(τ), the system reaches equilibrium

locally, such that the right hand term of Boltzmann equation goes to zero, but not neces-

sarily the left hand side. So, on time-scales O(τ), it is still possible to have spatial or time

gradients of the distributions, and therefore of the macroscale quantities.

2.1.2.2 BGK Collision Model All of the above collision constraints are fulfilled by the

so-called Bhatnagar-Gross-Krook (BGK) approximation, also known as the Single Relaxation

Time (SRT) model [16]. The BGK approximation-the most widely used collision approxi-

mation for modeling hydrodynamic flows-is a milestone development in the LB method [58]

and, was the key to the development of LBM as a tool to model Navier-Stokes flows. The

BGK approximation linearizes the collision integral by assuming the collision process changes

f by an amount proportional to the departure of f from the local Maxwellian distribution

function f (0). The BGK model is given as:

Ω(f)BGK = −1

τ
(f(ξ,x, t)− f (0)(ξ,x, t)) (2.12)

The coefficient τ , is the characteristic time between collisions, also called the relaxation time.

On the microscale, τ influences the details of the collision process, while at the macroscale

level, it influences the magnitude of the transport coefficients ν, α,through the the Chapman-

Enskog expansion procedure, as explained in Sec. 2.3. That is, τ is a free parameter which

can be tuned to match the transport properties of the fluid being modeled. However, with

just a single relaxation time, the BGK approximation implies that mass, momentum, and

energy all relax at the same rate, which is true only for ideal gases. In physical terms, this

approximation also implies that momentum diffusivity (ν), and thermal diffusivity (α) are

equal, or Pr = 1.
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It is mentioned in passing that the BGK approximation is, in fact, a special case of

the general quasi-linear collision operator, Aij, such that Ω(f) = Aij(f − f (0)). Aij is also

called as the scattering matrix, whose eigenvalues and eigenvectors control the fluid flow

through relaxation of macroscopic quantities, as the mass, the momentum, the viscosity and

the energy [63, 59]. With the BGK approximation, it is assumed that the whole scattering

matrix is replaced by only one leading non-zero eigenvalue of Aij that controls the viscosity,

i.e. Aij → −ωδij [112].

Incorporating the BGK approximation, Eq. (2.1) can be re-written as:

∂f

∂t
+ ξ · ∇xf + g · ∇ξf = −1

τ
(f − f (0)), (2.13)

This equation is called as the Boltzmann-BGK equation. Although the BGK collision appears

linearized, it is highly non-linear, since f (0) is a complicated function of the hydrodynamic

variables which are themselves moments of f in the velocity phase.

2.1.2.3 Non-dimensionalisation The Boltzmann-BGK equation has to be recast in

a non-dimensional form so that it is amenable to general computations. The choice of

the characteristic speed to be chosen is critical since its has significant implication of the

subsequent discretization process. The characteristic speed is chosen to be cs ≡
√
kBθ0/m0,

where θ0 andm0 are the characteristic temperature and molecular mass of a single-component

fluid, respectively. cs can be identified as the speed of sound corresponding to θ0
1. The

characteristic length scale l0 and time scale t0 are chosen such that cs = l0t0. With these

characteristic variables, the other variables in Eq. (2.13) can be non-dimensionalized as

described in Tab. 1:

Omitting the caret notation for convenience, the non-dimensional Boltzmann-BGK re-

tains its original form, except that now all the variables are non-dimensional:

∂f

∂t
+ ξ · ∇xf + g · ∇ξf = −1

τ
(f − f (0)), (2.14)

1The notation for characteristic speed is purposely chosen to be cs and not c0 so as to maintain consistency
with literature
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Table 1: Non-dimensional variables in the Boltzmann-BGK equation.

Variable Non-dimensional form Variable Non-dimensional form

PDF f̂ = f
ρ0

Macroscale velocity ûα = uα
cs

Microscale velocity ξ̂ = ξ
cs

, Body force ĝα = gαl0
c2s

Length x̂α = xα
l0

Time t̂ = tcs
l0

Density ρ̂ = ρ
ρ0

Relaxation time τ̂ = csτ
l0

= τ
to

Spatial derivative ∂
∂x

= ∂
∂x̂

∂x̂
∂x

= 1
l0

∂
∂x̂

Temporal derivative ∂
∂t

= ∂
∂t̂
∂t̂
∂t

= cs
l0

∂
∂t̂

where the non-dimensional local equilibrium function, f (0), becomes:

f (0) =
ρ

(2πθ)D/2
exp

[
− c

2

2θ

]
, (2.15)

and the equation of state is:

p = ρθ (2.16)

for isothermal flows (θ = 1), and the non-dimensional speed of sound, c0 = 1. Note that

here the non-dimensional relaxation time τ = csτ/l0 = λ/l0, where λ is the mean free path

of the particles, and Kn = λ/l0. As a result τ = O(Kn). The Boltzmann-BGK equation

forms the basis for the majority of research in the lattice Boltzmann field.

2.1.3 Boltzmann-BGK to Conservation Laws

We are now interested in the continuum or conservation laws that result from the limiting

behavior of the Boltzmann-BGK equation. From Eq. (2.2), we can see that the hydrody-

namic variables, ρ, u, ε are the low-order moments of the distribution function. Therefore, the

hydrodynamic equations can be obtained by taking various moments of the Boltzmann-BGK

equation. This procedure is available in the classic texts [61, 53], and hence not detailed

here. In brief, the procedure consists of taking moments or multiplying Eq. (2.13) with

1, ξ, 1
2
ξ2, integrating the resulting equations over the velocity space, and using Eqs. (2.2)

and (2.9). This procedure leads to the following conservation laws:
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∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuu) +∇ · P = ρg (2.17)

∂(ρε+ 1
2
ρu2)

∂t
+∇ ·

[
u

(
ρε+

1

2
ρu2

)
+ P · u+ q

]
= 0

which are the generic hydrodynamic equations for conservation of mass, momentum and

energy.

From a mesoscale point of view, there are 13 independent variables (moments) in the

flow system. Namely, one moment for the density ρ, three for the velocity uα, six for the

stress tensor Pαβ, and three for the energy flux qα. So, thirteen equations are needed to close

this system. However, Eq. (2.17) represents five equations in total. Clearly, the conservation

equations are not closed because of the presence of the higher-order moments of the stress

tensor and energy flux. Therefore, to write a closed set of equations, one has to approximate

the stress tensor and the energy flux in terms of the lower-order, conserved moments.

Two different approaches have been developed to handle the closure problem. One is

the well known method of moments of Grad [45], also known as the Grad’s 13 moment

equations, and the other is the popular Chapman-Enskog multiscale expansion [24]. In the

former approach, Grad stated that the above five equations are not sufficient to describe

all the properties of the fluid, and hence another set of equations were proposed for stress

tensor and energy flux, by projecting the distribution function on Hermite polynomials.

While in the latter approach, according to Chapman and Cowling, the distribution function,

as well as temporal and spatial variables, are expanded asymptotically in different powers

of Kn, so that the system is separated to multiple length and time scales. By investigating

the projection of the distributions on lattice symmetries (rooted in lattice gas automata)

in different scales, approximations can be made for the stress tensor and energy flux using

the lower-order moments and their derivatives with respect to time and space, and thus

finally the hydrodynamic equations of Euler and Navier-Stokes can be derived. However,

the Chapman-Enskog expansion procedure becomes difficult for systems requiring moments

higher than second-order, or in other words, the expansion can be easily applied to obtain the
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isothermal Navier-Stokes, but obtaining thermal (compressible) Navier-Stokes and beyond

becomes difficult.

Comparatively, Grad’s representation approach of projecting the distribution function on

Hermite polynomials and truncating it at a certain order is relatively easy without loss of the

accuracy up to the truncated order. Unfortunately, the Grad 13-moment equations are just

as difficult to solve as the Chapman-Enskog expansion for higher moments. Nevertheless, as

put forth in [105], the Chapman–Enskog expansion as a procedure can be useful for providing

a theoretical measure in determining the order of truncation in the Hermite series for a given

desired accuracy requirement. In other words, we can use the Chapman–Enskog expansion

to infer a sufficient condition for the terms retained in the truncated Hermite basis that is

required for describing flows of certain Knudsen number orders. We will follow this idea, the

details of which are provided in the subsequent sections.
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2.2 HERMITE POLYNOMIALS-BASED LB FORMULATION

The following theoretical formulation of the LB method is based on the projection of dis-

tribution function onto a Hermite polynomial bases, originally proposed by Harold Grad in

1949 [45, 46], and developed further recently by Shan, Chen, and co-workers [80, 104, 105,

103, 101]. Specifically, the solutions to the Boltzmann-BGK equation are sought by project-

ing the distribution function, f, onto a sub-space spanned by the Hermite polynomials in

velocity space, H(ξ). The reason Hermite polynomials are chosen as the expansion basis

rather than any other orthogonal function is that the expansion coefficients of the projection

correspond exactly to the velocity moment (macroscopic flow variables) up to the chosen

degree [105]. In brief, the entire procedure involves the following three broad steps:

1. Projection of the distribution function and equilibrium distribution function onto a

Hilbert sub-space via their expansion as orthogonal Hermite polynomials in the velocity

space (Sec. 2.2.1);

2. Truncation of the distributions up to a arbitrarily chosen degree, N , which depends on

the velocity moments to be accurately captured for the flow physics under consideration

(Sec. 2.3.1 and Chap. 3); and

3. Application of a Gauss-Hermite quadrature for the truncated distributions, yielding the

discrete velocity set (lattice), followed by the space-time discretization (Chap. 3).

The necessary properties of Hermite polynomials required for the following presentation is

compiled are Appx. A.

2.2.1 Projection on Hermite bases

The distribution function expanded on the dimensionless Hermite polynomial bases reads:

f(x, ξ, t) = ω(ξ)
∞∑
i=0

1

n!
a(n)(x, t)H(n)(ξ), (2.18)
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where ω(ξ) is a weight function, and a(n) andH(n) are the expansion coefficients and Hermite

polynomials, respectively [45, 65]. Both are tensors of rank n. The weight function is:

ω(ξ) =
1

(2π)D/2
exp

[
− ξ2

2

]
(2.19)

The dimensionless expansion coefficients a(n)(x, t) are associated with hydrodynamic quan-

tities, which are defined below:

a(n)(x, t) =

ˆ
f(x, ξ, t)H(n)(ξ)dξ (2.20)

where the first five expansion coefficient tensors are explicitly given as:

Density : a(0) =
´
fdξ = ρ,

Momentum : a(1) =
´
ξfdξ = ρu,

Energy : a(2) =

ˆ
f(ξ2 − δ)dξ = P + ρ(u2 − δ),

Energy Flux : a(3) =

ˆ
f(ξ3 − ξ)dξ = Q+ ua(2) − (D − 1)ρuuu, (2.21)

a(4) = R+ 4uQ+ 6uuP − 6Pδ − 6ρuu+ 3ρ,

and Q and R are the third and fourth moments, given by:

Q =

ˆ
cccfdc, R =

ˆ
ccccfdc (2.22)

The energy flux tensor is related to heat flux by contraction:

qα = Qαββ (2.23)

Here, D is the space dimension, and δ is the Kronecker delta function, also sometimes

termed as identity matrix I, in n-dimensions depending on the rank of the tensor a(n), i.e.

(In)ij = δij. Some of the tensor notations followed here are the same as those adopted by Shan

et al. [105] and Grad [44]. For example, the product of two tensors, such that ua(2) means

the sum of all possible permutations of the tensor product, i.e. ua(2) = uia
(2)
jk +uia

(2)
jk +uia

(2)
jk .
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However, in departure with [105], where uu is denoted as u2 and uuu ≡ u3, etc., we follow

the full notation, or uu, uuu, for clarity 2.

By rearranging Eq. (2.21), we can observe that the five fundamental thermohydrody-

namic variables, ρ, u and θ, and the momentum flux tensor P (or its traceless part, the

stress tensor, σ) are completely determined by the first three Hermite expansion coefficients

(a(0), a(1), a(2)) alone, whereas the third moment, i.e. the heat flux q, is completely deter-

mined by the fourth coefficient a(3).

In a similar fashion, we can project the equilibrium distribution function (Eq. (2.15)) to

get:

f (0)(x, ξ, t) = ω(ξ)
∞∑
n=0

1

n!
a

(n)
0 (x, t)H(n)(ξ) (2.24)

where the first five equilibrium expansion coefficient tensor, a
(n)
0 , are:

a
(0)
0 = ρ

a
(1)
0 = ρu

a
(2)
0 = ρuu+ ρ(θ − 1)δ (2.25)

a
(3)
0 = ρuuu+ ρu(θ − 1)δ

a
(4)
0 = ρuuuu+ ρuu(θ − 1)δ + ρ(θ − 1)2δ2

With the moments defined as above, we can now project the Boltzmann-BGK equation on

the Hermite polynomial bases. To repeat, the Boltzmann-BGK equation is:(
∂

∂t
+ ξ · ∇x + g · ∇ξ

)
f(x, ξ, t) = −1

τ
(f − f 0), (2.26)

Therefore, the projection of Eq. (2.26) on the Hermite-polynomials yields:

ˆ (
∂

∂t
+ (ξ · ∇x + g · ∇ξ

)
f(x, ξ, t)H(n)(ξ) = −

ˆ
1

τ
(f − f 0)H(n)(ξ)dξ (2.27)

2· u is a vector and a(2) is second-order tensor. So, for example in 2D, where we have {i, j, k} ={x, y},
ua(2) can be expanded as ua(2) = axx(ux + uy) + 2axy(ux + uy) + ayy(ux + uy).

· Note that u2 ≡ uu is a second-order tensor, u =
√
u2x + u2y + u2z is the L-2 norm (magnitude) of u, and

u2 is the power (second) of the norm of the vector u.
· Also, the fourth-order tensor δ2 is defined by: δ2 ≡ δδ = δijδkl + δikδjl + δilδjl. See [44], [35] and Appx. A
for more details.
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For further analysis, consider the left hand side: (
∂

∂t
+ ξ · ∇x + g · ∇ξ

)
fH(n)(ξ)

=
∂

∂t

(ˆ
fH(n)(ξ)dξ︸ ︷︷ ︸

Eqn. 2.20

)
+

ˆ
∇x ·

(
ξH(n)(ξ)dξ︸ ︷︷ ︸

Appx.A

)
+

ˆ
∇ξ ·

(
g(x, t)f

)
H(n)(ξ)dξ︸ ︷︷ ︸

Green′s identities

=
∂
(
an
)

∂t
+∇x ·

(ˆ (
Hn+1(ξ)f + nH(n−1)(ξ)δf

)
dξ

)
+

ˆ (
g(x, t)f

)
H(n)(ξ) · ndψ︸ ︷︷ ︸

=0

−
ˆ (

g(x, t)f
)
· ∇ξHn(ξ)dξ︸ ︷︷ ︸

Appx.A

We have used the Green’s theorem, and relations and properties of Hermite polynomials

from Appx. A, to obtain simplifications for the left hand side.

The right hand side of Eq. (2.27) yields:

ˆ
−1

τ

(
f − f (0)

)
H(n)(ξ)dξ︸ ︷︷ ︸

Eqn. 2.20

= −1

τ

(
a(n) − a(n)

0

)
(2.28)

Combining the left and right hand sides, we obtain the Hermite-projected Boltzmann-BGK:

∂a(n)

∂t
+∇x · (a(n+1)) + n∇x · (a(n−1)δ)− ng · (an−1δ) = −1

τ

(
a(n) − a(n)

0

)
(2.29)

2.3 CHAPMAN-ENSKOG ACCURACY ESTIMATE

Up to this point the procedure above is, in essence, similar to the one outlined by Grad.

However, as mentioned before, instead of using the 13-moment equation for closing the

equation, we want general accuracy estimates for capturing physical effects in terms of the

deviation of the distributions from equilibrium [105]. By these estimates, we can still remain

in the kinetic space with f as the primary variable, instead of ρ, uα, θ, Pαβ, and qα, as in the

13-moment equations. Using Chapman-Enskog expansion to analyze the effect of the loss

of information due to the truncation at a certain order, The estimation is primarily done

through procedure of the Chapman-Enskog expansion. The Chapman-Enskog expansion
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can be interpreted as an asymptotic expansion in the power of an expansion parameter, ε,

which provides a quantitative measure for the deviation of the distribution from its local

equilibrium, f (0) :

f = f (0) + εf (1) + ε2f (2) + . . . (2.30)

The expansion parameter is of the same order of magnitude as the Knudsen number, ε ∼ Kn.

The expansion can be viewed as an infinite sum of terms which mimics the shape of the real

function. The main idea behind truncation is that, by taking a leading part of it, is possible

to find an estimate of the function treating the residual terms as negligible.

For macroscale hydrodynamic flows, where time-scales are slow (compared to τ), and

spatial variations are large (compared to the mean free path), Kn is very small. Typical

values are τ ≈ 10−11 sec and λ ≈ 10−7 cm for H2. Hydrodynamic flows, governed by Euler or

the Navier-Stokes equations, are therefore valid only in the limit of small Kn. Consequently,

a Chapman-Enskog expansion procedure of the Boltzmann-BGK equation results in a hier-

archy of equations, corresponding to different levels of expansion in Eq. (2.30). That is, a

zeroth order approximation in the expansion parameter yields the Euler equation, the first

order approximation yields the Navier-Stokes, and so on. In the following section, we use

this principle on the projected Boltzmann-BGK equation (Eq. (2.29), instead of the original

equation, in order to obtain Euler and Navier-Stokes level approximations.

2.3.1 Zeroth-Order Approximation

In an equilibrium state, the distribution function is given as Maxwell-Boltzmann distribution,

Eq. (2.15). Therefore, by setting f = f (0), it can be shown the projected Boltzmann-BGK

equation (Eq. (2.29)) leads to the Euler equations for fluid flow. Towards that end, we repeat

the same procedure as detailed in Sec. 2.2.1, except that now we substitute f (0) instead of

the f, which results in an equation similar to Eq. (2.29):

∂a
(n)
0

∂t
+∇x · (a(n+1)

0 ) + n∇x · (a(n−1)
0 δ)− ng · (an−1

0 δ) = −1

τ

(
a

(n)
0 − a(n)

0

)
(2.31)
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Using the definitions of equilibrium expansion tensors (Eq. (2.25)), we can write the explicit

equations for n = 0, 1, 2, which are:

n = 0⇒ ∂ρ

∂t
+∇ · (ρu) = 0

n = 1⇒ ∂(ρu)

∂t
+∇ · (ρuu) +∇·)ρθδ = ρg

n = 2⇒ ∂ρε

∂t
− u · ∇(ρθ) +

D + 2

2
∇ · (ρuθ) = 0

(2.32)

where the equation corresponding to n = 2 is obtained by taking a term-by-term trace of Eq.

(2.31) and the subsequent division by two. Eq. (2.32) is recognized as the Euler equation

for fluid flow. Therefore, we can conclude that the kinetic equation for Hermite-projected

f (0) results in the Euler equations. Also, notice the absence of transport coefficients, which

implies that the viscosity and thermal conductivity are both zero for this ideal, imaginary

fluid. Most fluids, however, have non-zero transport coefficients, which from a kinetic point

of view, corresponds to the non-equilibrium state, i.e. f 6= f (0). In the following section,

we will derive the compressible Navier-Stokes equations, using approximations for this non-

equilibrium state, via the Chapman-Enskog expansion.

2.3.2 First-Order Approximation

A gas is not in equilibrium when the distribution is different from the Maxwell-Boltzmann

distribution, f 6= f (0) [61]. This might arise due to non-uniform density, velocity or temper-

ature. Since we are interested in continuum flows, for which Kn � 1 (c.f. Fig. 1 and Eq.

(2.30)), we will assume f (1) � f (0), where f (1) = O(Kn). Consequently, the full distribution

can be reduced to just two parts, an equilibrium part f (0) as given by Equation 2.15, and an

off-equilibrium or non-equilibrium part, f (1), such that:

f = f (0) + f (1) (2.33)

In light of Eq. (2.33), the Boltzmann-BGK equation is:

(
∂

∂t
+ ξ · ∇x + g · ∇ξ

)
(f (0) + f (1)) ≈ −1

τ
f (1)(x, ξ, t), (2.34)
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Further, with Kn � 1, the above Equation can be approximated by neglecting the f (1) on

the left hand side:

(
∂

∂t
+ ξ · ∇x + g · ∇ξ

)
f (0) ≈ −1

τ
f (1)(x, ξ, t), (2.35)

Now, using a similar procedure as detailed in Sec. 2.2.1, we project Eq. (2.35) on to

the Hermite bases, following which we get an equation for the evolution of the expansion

coefficients, similar to (2.29):

∂

∂t

(
a

(n)
0

)
+∇x ·

(
a

(n+1)
0

)
+ n∇x ·

(
a

(n−1)
0 δ

)
− ng ·

(
a

(n−1)
0 δ

)
≈ −1

τ
a

(n)
1 (2.36)

where the formal definitions of f (1), and the non-equilibrium expansion coefficient tensor,

a
(n)
1 , are given as:

f (1)(x, ξ, t) =
∞∑
n=0

1

n!
H(n)(ξ)a

(n)
1 (x, t) (2.37)

a
(n)
1 (x, t) =

ˆ
f (1)(x, ξ, t)H(n)(ξ) (2.38)

It is evident from Eq. (2.37) that to obtain f (1), we need the non-equilibrium coefficient a
(n)
1 .

Towards that end, Eq. (2.36), which relates the equilibrium and non-equilibrium coefficients,

can be used.
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2.3.3 Compressible Navier-Stokes

From Eq. (2.25), the first five equilibrium coefficients, (a
(0)
0 . . .a

(4)
0 ), imply that the equilib-

rium coefficients up to fourth order depend on the conserved quantities: density ρ, momen-

tum j ≡ ρu, and energy E ≡ ρε, but not explicitly on time. For the first term on the left

hand side of Eq. (2.36), which involves the temporal derivative, we then can apply the chain

rule as:

∂

∂t

(
a

(n)
0

)
=

∂

∂ρ

(
a

(n)
0

) ∂ρ

∂t︸︷︷︸
Eqn. 2.32

+
∂

∂j

(
a

(n)
0

)
· ∂(ρu)

∂t︸ ︷︷ ︸
Eqn. 2.32

+
∂

∂E

(
a

(n)
0

) ∂(ρε)

∂t︸ ︷︷ ︸
Eqn. 2.32

(2.39)

which can be simplified term-by-term using the Euler’s equation for mass, momentum, and

energy, respectively as:

∂

∂t

(
a

(n)
0

)
= − ∂

∂ρ

(
a

(n)
0

)
∇ · (ρu) +

∂

∂j

(
a

(n)
0

)
·
(
ρg −∇ · (ρuu)− 2

D
∇ · (ρεδ)

)
(2.40)

+
∂

∂E

(
a

(n)
0

)(D + 2

2
ρg · u+

2

D
u · ∇(ρε)− D + 2

D
∇ · (ρεu)

)
.

From the definition of the equilibrium coefficients (Eq. (2.25)), we can obtain expressions for

the partial derivatives of the first four a
(n)
0 , with respect to density, momentum and energy,

i.e. for n = 0, 1, 2, 3, we have [84]:

∂a
(0)
0

∂ρ
= 1,

∂a
(0)
0

∂j
= 0,

∂a
(0)
0

∂E
= 1

∂a
(1)
0

∂ρ
= 0,

∂a
(1)
0

∂j
= 1,

∂a
(1)
0

∂E
= 0

∂a
(2)
0

∂ρ
= −uu− δ, ∂a

(2)
0

∂j
= 2uδ,

∂a
(2)
0

∂E
=

2

D
δ (2.41)

∂a
(3)
0

∂ρ
= −2uuu− 3θuδ,

∂a
(3)
0

∂j
= 3uuδ + 3(θ − 1)δ,

∂a
(3)
0

∂E
= 3

2

D
uδ
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Combining Eqs. (2.36), (2.41), and (2.25), we obtain the explicit expression for first four

non-equilibrium distribution coefficient tensors as:

a
(0)
1 = 0,

a
(1)
1 = 0,

a
(2)
1 = τρθ

(
2∇u− 2

D
(∇ · u)δ

)
, (2.42)

a
(3)
1 = τρθ

(
3u
(
2∇u− 2

D
(∇ · u)δ

)
+ 3∇θδ

)
In explicit component notation, a

(2)
1 and a

(3)
1 are:

a
(2)
1αβ

= −τρθΓαβ (2.43)

a
(3)
1αβ

= −τρθ
(

Γαβuγ + Γαγuβ + Γβγuα +
(
δαβ

∂θ

∂xγ
+ δαγ

∂θ

∂xβ
+ δβγ

∂θ

∂xα

))
(2.44)

where Γ is a tensor similar to the strain-rate tensor [66, 124]:

Γ ≡ Γαβ =
∂uβ
∂xα

+
∂uα
∂xβ
− 2

D

∂uγδαβ
∂xγ

(2.45)

With the knowledge of the non-equilibrium coefficients (Eq. (2.42)), we can therefore recon-

struct the off-equilibrium distribution function:

f (1) =
3∑

n=0

1

n!
H(n)(ξ)a

(n)
1 (x, t)

=

(
1

2
H(2)a

(2)
1 +

1

6
H(3)a

(3)
1

)
(2.46)

Finally, in order to close the conservations laws (Eq. (2.17)), we need expressions for P

and q. Given the knowledge of equilibrium and non-equilibrium coefficients, we can develop

approximations in terms of the conserved quantities:

P =

ˆ
ccfdξ =

ˆ
(ξ − u)(ξ − u)

(
f (0) + f (1)

)
= ρTδ︸︷︷︸

Eqn. 2.25

+

ˆ
(ξξ − ξu− uξ + uu)f (1)dξ (2.47)

= ρTδ − τρθΓ︸ ︷︷ ︸
Eqn. 2.46
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and, by the definition of heat flux, we have:

q =
1

2

ˆ
cc2fdc =

1

2

ˆ
(ξ − u)(ξ − u)2

(
f (0) + f (1)

)
dξ

= 0︸︷︷︸
Eqn. 2.25

+
1

2

ˆ
(ξ − u)(ξ − u)2f (1)dξ (2.48)

= −τρθ
(D + 2

D

)
∇θ︸ ︷︷ ︸

Eqn. 2.46

.

Finally, substituting the expressions for P and q in the conservation laws, and applying

some algebraic manipulation, we have:

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuu+ pδ − µΓ) = ρg, (2.49)

ρ
dε

dt
+ (pδ − µΓ) : (∇u)− D + 2

2
∇ · (k∇θ) = 0

The above equation can be recognized as the compressible Navier–Stokes equations, with

the following transport coefficients:

p = ρθ

µ = k = ρθτ (2.50)

This rigorous, but straightforward, derivation shows that the Hermite-basis projected Boltz-

mann BGK equation, in the limit of small Kn, leads to the compressible Navier–Stokes

equations. In the equations derived above, the dynamic viscosity and the thermal conduc-

tivity are equal (Eq. (2.50)). This results from the BGK collision model, where it is assumed

that all moments of the distribution relax at the same rate. A consequence of this, relevant

especially for thermal flows, is that it predicts a Prandtl number of one rather than a value

close to the 2/3 appropriate for monoatomic gas. A multiple-relaxation time model, devel-

oped in the Hermite-LB framework, has been proposed by Shan and Chen [103] which may

overcome this constraint. Moreover, the bulk viscosity, λ, in Eq. (2.49) is also forced to

be zero. The bulk viscosity does not affect a truly incompressible fluid, but it does affect

certain phenomena occurring in nearly incompressible fluids, e.g., sound absorption in liq-

uids. It also cannot be generally neglected for fully compressible flows, for e.g., sound wave

absorption attenuation, and shock waves.
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2.4 DISCUSSION

In summary, we have shown that, to obtain the non-equilibrium expansion coefficients up

to the third order, only the fourth order and the lower orders of equilibrium coefficients

required. That is, to obtain a
(3)
1 , we need a

(4)
0 , a

(3)
0 , a

(2)
0 , a

(1)
0 and a

(0)
0 [80]. In general,

if nth non-equilibrium coefficient, we need the (n + 1)th equilibrium coefficient for Navier-

Stokes level physics, and therefore the Maxwell-Boltzmann equilibrium distribution has to

be truncated at the (n + 1)th order. Physically this means that if the heat flux, q, and

energy dynamics have to be recovered, as required by a thermal model, then the equilibrium

distribution has to be expanded up to fourth order, since q is the third moment.

On the other hand, if we are only interested in the density and momentum and its flux,

rather than energy or higher moments, momentum flux, P , is completely determined by

a
(2)
1 , which in turn depends only on the equilibrium coefficients up to the third-order i.e.

a
(3)
0 , a

(2)
0 , a

(1)
0 , a

(0)
0 , since P is the second-moment. This approximation leads to an isother-

mal model, i.e. (θ = 1), since energy dynamics is not being captured. Most importantly, this

procedure can be generalized systematically, which shows up to which order the equilibrium

distribution has to be expanded, in order to capture the right macroscopic equations. In fact,

using this theoretical procedure, it is claimed that physics even beyond the Navier-Stokes

level (Burnett-level) can be obtained [80, 105, 129].

2.5 SUMMARY

In this chapter, we presented the derivation of compressible Navier-Stokes equation from

the continuous Boltzmann-BGK equation. We started by taking moments of the continuous

BGK equation leading to the conservation equations of mass, momentum, and energy, but

with an unknown pressure tensor and energy flux. In order to close the system (i.e., find

constitutive equations for the pressure tensor and the energy flux), we followed the idea of

Grad, by projecting the Boltzmann-BGK equation on the Hermite basis, and truncating the

equilibrium distribution, a priori, at the fourth order. Then, using the Chapman–Enskog
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type accuracy estimation, we derived constitutive equations relating the pressure tensor to

velocity gradients, and the heat flux to temperature gradients. Furthermore, we derived

relations for the viscosity and thermal conductivity, in terms of the relaxation time.

The preceding equations are all still in continuous space. Obviously for computer im-

plementation, the independent variables in the kinetic space, i.e., ξ, x, and t, have to be

discretized. The key question concerning the discretization process is how accurately the

macroscopic thermo-hydrodynamics of the continuum kinetic system can be reproduced by

the much simplified (discretized) systems. That is, the discrete model should faithfully re-

produce the continuous behavior, without any artifacts. The discretization of velocity and

space-time, as required for the thermal model, is covered in the next chapter.
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3.0 VELOCITY AND SPACE-TIME DISCRETIZATION

3.1 INTRODUCTION

In the previous chapter, we concluded that the compressible Navier-Stokes-like equations can

be derived using a Hermite series expansion of the continuous Boltzmann-BGK equation,

in a manner similar to the Grad 13-moment equation. Still, in order for us to use the

kinetic (Boltzmann) equation to simulate flows of practical interest, the previously presented

theoretical work has two important remaining tasks: (i) the choice of the order of truncation

of the distributions; and (ii) discretization of the velocity (ξ) and space-time (x, t). A fully

discrete kinetic, scheme suitable for fluid-flow computations, should have the following three

essential components:

1. A discrete equilibrium distribution that is formulated to recover a specific thermohydro-

dynamic regime, such as the Euler, (isothermal) incompressible Navier-Stokes, (thermal)

compressible Navier-Stokes equations. The discrete functional form of the equilibrium

distribution depends on its order of truncation. In the previous chapter, we showed

that by truncating the equilibrium distribution a priori at the 4th order, we recover the

compressible Navier-Stokes-like equation. The choice of 4th order was deliberate so as

to obtain a thermal model. In this chapter, we discuss some additional aspects of the

truncation which are relevant for the velocity discretization. This is discussed in Sec.

3.2.

2. A discrete velocity set that represents the entire continuous velocity space, ξ, by some

discrete velocities ξi, i = 0, . . . b. The flow variables are (velocity) moments of the distri-

butions, and hence, the macroscopic behavior of the kinetic equation must be preserved
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by the discretization of the velocity space. The set of discrete velocities are termed as

a lattice, a legacy of LGCA. In the discussion hereinafter, we shall use the terms lattice

and discrete velocities indistinguishably. Velocity discretization is discussed in Sec. 3.3

and Appx. B.

3. A evolution or kinetic equation for the distributions: The evolution equation can be the

widely used lattice Boltzmann equation (LBE), or other temporal schemes based on a

finite difference method, finite-element method, volumetric formulations, etc. This is

discussed in Sec. 3.4.

The three components listed above are collectively called a lattice Boltzmann model. In fact,

all LB models have the above three components, although the particular form and details of

each component may vary.

3.2 TRUNCATION OF THE HERMITE-EXPANDED DISTRIBUTIONS

In Sec. 2.3.3, we truncated the Hermite expansion of the distributions at the fourth-order and

obtained the macroscopic behavior of the truncated Boltzmann-BGK equation. However,

the choice of fourth-order was not elucidated. In this section, we provide the necessary back-

ground and justification behind that choice and generalization of the choice of the truncation

order.

Consider f (0,N)(x, ξ, t) to be the truncated approximation of the full equilibrium distri-

bution, f (0)(x, ξ, t), which is defined by:

f (0,N)(x, ξ, t) = ω(ξ)
N∑
n=0

1

n!
a

(n)
0 (x, t)H(n)(ξ), (3.1)

where N is the order of truncation. Here, the question to which we seek an answer is: at what

order should the equilibrium distribution be truncated? The answer lies in the Chapman-

Enskog accuracy estimation procedure outlined in Chap. 2. For the Navier-Stokes level

approximation, we observed that moments up to one order higher are needed of the equi-

librium distribution, so that the transport of conserved moments is recovered. Specifically,
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we showed that, in order to recover the heat flux and energy dynamics, as required by a

thermal model, the equilibrium distribution has to expanded up to 4th order, since heat flux

is the 3rd moment. That is, for a thermal LB model, N = 4. On the other hand, if we are

interested only in an isothermal case, to recover the required pressure tensor and momentum

dynamics, the equilibrium distribution function has to be expanded only to the 3rd order,

since momentum is the 2nd moment. Hence, for an accurate, isothermal LB model, N = 3.

It is useful to point out that the most widely used LB model is based on only a second-order

expansion of the equilibrium distribution (N = 2) around the local velocity (or Mach num-

ber) u2, instead of a third-order expansion, which results in a well-known error of O(u3)

and non-Galilean invariant behavior [80, 90]. More on this in Sec. 3.3.2.

It is clear that once the order of truncation is chosen to be N , the higher-order (f (N+1))

truncated terms should not affect the lower-order terms and their moments. The mutual

orthogonality of the Hermite polynomials is useful in this regard. Due to this property, the

leading moments of a distribution function up to N th order are preserved by truncations

of the higher-order terms (> N + 1) in its Hermite expansion. Therefore, a distribution

function can be approximated by its projection onto a Hilbert subspace spanned by the first

N Hermite polynomials, without changing the first N moments, i.e., up to the N th order,

f (N)(x, ξ, t) has exactly the same moments as the full f(x, ξ, t):

f (0)(x, ξ, t) ≈ f (0,N)(x, ξ, t) = ω(ξ)
N∑
n=0

1

n!
a(n)(x, t)H(n)(ξ). (3.2)

Now, given f (0,N), the next question is, how do we obtain the discrete velocity moments

of the truncated distributions required for computing the hydrodynamic variables? The

answer to this lies in the velocity-space discretization process outlined below. Of paramount

importance in the discretization procedure is ensuring that the moments of f (0,N) in the

discrete space are exactly the same as those in continuous space.
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3.3 VELOCITY DISCRETIZATION

From the definition of expansion coefficients, we know that a
(n)
0 does not depend on higher-

order terms a
(n+1)
0 ,a

(n+2)
0 . . . . Therefore, a

(n)
0 in Eq. (3.2) can be evaluated exactly by f (0,N)

for n = 1 . . . N, instead of the complete f (0), i.e.:

a
(n)
0 (x, t) =

ˆ
f (0,N)(x, ξ, t)H(n)(ξ)dξ. (3.3)

Note that here f (0,N)(x, ξ, t)/ω(ξ) and H(n)(ξ) both are polynomials of the order no more

than N. Therefore, we have a polynomial p(ξ,x, t) in ξ, of the order 2N, such that:

ω(ξ)p(ξ,x, t) = f (N)(x, ξ, t)H(n)(ξ). (3.4)

Given this fact, a(n) in Eq. (3.3) can be computed exactly using the Gauss-Hermite quadra-

ture in multiple dimensions, and with precision of quadrature, Q ≥ 2N. That is:

a
(n)
0 (x, t) =

ˆ
ω(ξ)p(x, ξ, t) =

q−1∑
i=0

ωip(x, ξi, t)

=

q−1∑
i=0

wi
ω(ξi)

f (0,N)(x, ξi, t)H
(n)(ξi). (3.5)

Q ≡ {(wi, ξi) : i = 0, . . . , q − 1} represents a Gauss-Hermite quadrature set with weights,

wi and abscissae ξi. Therefore, the discrete distributions {f (N)(x, ξi, t) : i = 0, ..., q=1},
completely determine f (N), and therefore its first N moments and vice versa. That is, f (0,N)

has exactly the same velocity moments as the full f (0)(x, ξ, t) does. Appx. B lists the results

of the Gauss-Hermite quadrature for Q = 5, 7, and 9 for both two- and three dimensions.
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3.3.1 On-lattice and Off-lattice Velocity Sets

Next, consider the following fully discretized (velocity and space-time), standard fully dis-

cretized form of the Boltzmann-BGK equation, termed as the lattice BGK equation:

fi(x+ ei, t+ 1)− fi(x, t) = −1

τ

[
fi − f (0)

i

]
(3.6)

For this evolution equation to be used, the spatial grid should be invariant under the trans-

form x → x + ei. This means that, if x is a node on the grid, x + ei are also nodes on

the grid. In the case of an extended neighborhood (more than one neighbor), also called

higher-order lattices, x+ 2ei, x+ 3ei, etc., should also be nodes on the grid. For this to be

realized, the higher-order speeds should be expressed as an integer multiple of the smallest,

non-trivial constant (speed). Or, in other words, each Cartesian component of every discrete

velocity must be an integer (in units of lattice spacing). Accordingly, a velocity-set that

can be expressed as integers or integer multiple of a common (lattice) constant are called

as space-filling or on-(Cartesian) lattice velocity sets. Otherwise, they are termed as non-

space-filling or off-lattice velocity sets. Fig. 3 shows a pictorial view of this concept in one

dimension. Besides being a defining feature of LBGK due to its particle analog (streaming

and collision processes), Eq. (3.6) also has an important advantage of ensuring an exact

advection (zero diffusion) of the distribution, regardless of the distance it travels. This com-

pared to the fractional advection common in finite-difference or finite-volume schemes. The

fact that exact advection also makes a simple and fully parallel algorithm is an added LBGK

asset.

Coming back to the discretization process omitted in the presentation of Eq. (3.6), in

the Hermite-based LB formulation, the discrete velocities in Eq. (3.6) are now abscissas of

a Gauss-Hermite quadrature, and not some predefined ’lattice’ vectors. However, as listed

in Appx. B, the abscissas in many of the discrete velocity-sets cannot be expressed as

integer multiples of a common constant cl, therefore making them off-lattice. Since these

off-lattice discrete velocities do not coincide with nodes of a regular lattice, they preclude

the simple and exact discretization of LBGK. For example, the D2Q12 and D2Q16 lattices

in two-dimensions, and D3Q27 in two-dimensions are off-lattice velocity sets. Consequently,
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b) 

c) 

ei 

Figure 3: Schematic representation of space-filling and non-space-filling lattices in one di-

mension. (•) symbols represent nodes on a uniform Cartesian grid and × symbols repre-

sent discrete (non-dimensional) velocities. a. A uniform Cartesian grid (a lattice); b. A

space-filling (on-lattice) velocity-set where all discrete velocities coincide with a lattice; c.

A non-space-filling (off-lattice) velocity-set where discrete velocities do not coincide with a

lattice.

Eq. (3.6) type evolution of distributions with off-lattice sets require additional numerical

treatment, such as point-wise interpolation, which increases the computational cost, and also

introduces extra numerical error.

To construct higher-order on-lattice discrete velocities, Shan et al. suggested a special

quadrature technique in which abscissae are searched on the grid points of Cartesian coor-

dinates, such that integer-valued discrete velocity values can be constructed [80, 103, 101].

The D2Q17, D2Q21, and D2Q37 velocity sets listed in Appx. B are examples of on-lattice

sets. A similar method was employed by Phillipi et al. for thermal LB models, based on

’quadrature with prescribed abscissas’ [86, 107, 108]. Some of the velocity sets proposed by

them are the same as the one proposed by Shan et al., for example D2Q17 and D2Q37. Fur-

thermore, Chikatamarla et al. also developed higher-order integer-valued discrete velocity,

such as D2Q16 and D2Q25 models, based on the entropic lattice Boltzmann formulation

[32, 31].

Another important aspect of the higher-order velocity sets to be noted is their extended

neighborhood. While in D2Q9, the distributions stream (advect) to their nearest neighbor,
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in the higher-order lattices, such as D2Q17 and D2Q37, the distributions have to stream to

their next-nearest and next-next-nearest neighbors. This feature leads to a major difficulty

in imposing boundary conditions through the simple bounce-back technique.

3.3.2 Galilean Invariance

Galilean invariance is a principle requires that the laws of physics (and hydrodynamics) are

the same in all inertial frames of reference. In the LBGK context, obtaining Galilean in-

variance involves finding a discrete velocity set that makes isotropic tensors, up to a desired

order. This is because, the hydrodynamic variables (moments) are expressed as weighted

sums of tensors constructed from discrete velocities, which are not always isotropic as their

continuum counterparts. Provided that the discrete moments agree with those of the con-

tinuous Maxwell distribution, the macroscopic hydrodynamics of the LBGK equation is the

same as that of the continuum BGK equation, which is known to be fully Galilean invariant.

The insufficient isotropy of certain moments has long been recognized as one of the reasons

responsible for the deviations from the continuum hydrodynamics. For the Hermite-based

LB formulation Nie, Shan and Chen [80, 26] showed that the sufficient conditions for discrete

moments, and therefore, macroscopic hydrodynamics to be the same as the continuum sys-

tem described by the Boltzmann-BGK system on a regular lattice, the following condition

has to be met:

N ≥M and Q ≥M +N (3.7)

where M is the highest order of the moments that determines the hydrodynamic equations

of interest, for example M = 4, if the energy equation at the Navier-Stokes level is sought,

and M = 3 if the momentum equation is sought. N, as before, is the order of truncation of

equilibrium distribution and Q is the order of precision of the quadrature.

Per rule (3.7), it is clear that, to obtain the fully Galilean invariant momentum equation

(without any ’cubic’ dependence of viscosity on velocity), M = 3, N ≥ 3 and Q ≥ 6. The

widely used D2Q9 belongs to the Q = 5 quadrature rule, which results in the lack of Galilean

invariance of certain moments. D2Q17 and D2Q21 are examples of the Q = 6 rule. Similarly,

to obtain the fully Galilean invariant energy equation (without a velocity-dependent thermal
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diffusivity), M = 4, N ≥ 4 and Q ≥ 8. D2Q37 and D2Q121 are examples of the Q = 9

quadrature rule.

It should be remarked that, usually, for the same degree of precision of the quadrature,

the discrete velocities in a off-lattice velocity-set are fewer in number compared to those

in a on-lattice set. For example, the off-lattice velocity set, D2Q16, has the same degree

of precision as the on-lattice D2Q21 (Q = 7), but obviously has fewer velocities. The

disadvantage is that, unlike in D2Q21, the simple stream-collision type evolution cannot be

used with D2Q16. The choice of a particular velocity set therefore involves a tradeoff between

the (potential) computational savings obtained using D2Q16 versus the numerical-diffusion

free results from D2Q21. Moreover, in general the difference in number of velocities in off-

and on- lattices tends to increase as the precision of the quadrature increases. For off-lattice

velocity sets, alternate time-evolution schemes for the distributions have to be used, which

are called off-lattice Boltzmann schemes.

3.3.3 Rescaling

The derivations thus far, here and in Chap. 2, were based on the non-dimensional, lattice

speed of sound, cs, set to unity. The results of the quadrature presented in Appx. B

are also based on cs = 1. With this values of cs, the results of the quadrature procedure

reveals irrational numbers, for example, the roots in the D2Q9 quadrature sets are ±
√

3. In

the original formulation, and the results presented by Shan and co-workers elsewhere, cs is

maintained to be unity and the abscissas presented in their irrational form. However, the

speed of sound, in fact, can be chosen arbitrarily per convenience.

Therefore, in order to avoid irrational number representation, we can rescale (normalize)

the abscissae ξi with a different speed of sound, related to the respective lattice constant

through cs ≡ 1/cl, such that:

ei = csξi (3.8)

where ei are integer valued discrete velocities (vectors), i.e., {ei} = [−m,m], m ∈ Z. There-

fore, for D2Q9, the speed of sound is cs = 1/
√

3, and for D2Q37 the speed of sound is

cs = 1/1.1969. Thus, cs is nothing but a scaling factor used to obtain integer-valued discrete
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velocities from the abscissas. A rescaling of the abscissas leads to integer-valued discrete ve-

locities suitable for the stream-collide scheme. However, rescaling of abscissas also requires

a suitable rescaling of the expansion coefficients and equilibrium distribution function. To-

wards that end, the scaled equilibrium expansion coefficients are given by:

a
(0)
0 = ρ

a
(1)
0 = ρu

a
(2)
0 = ρuu+ c2

sρ(θ − 1)δ (3.9)

a
(3)
0 = ρuuu+ 3c2

sρ(θ − 1)δu

a
(4)
0 = ρuuuu+ 6c2

sρ(θ − 1)uuδ + 3c4
sρ(θ − 1)2δδ

For convenience, we can redefine fi(x, t) ≡ wi
ω(ξi)

f(x, ξi, t) so that the rescaled N th-order,

truncated, equilibrium distribution function, f
(0,N)
i can be written as:

f
(0,N)
i = wi

4∑
n=0

1

c2n
s n!

a
(n)
0 H(n)(ξi). (3.10)

In explicit terms, the rescaled, 4th-order truncated equilibrium distribution is:

f
(0,4)
i = wiρ

(
1 +

ξi · u
c2
s

+
1

2c4
s

[
(ξi · u)2 − c2

su
2 + c2

s(θ − 1)(ξ2
i − c2

sD)
]

+
ξi · u
6c6
s

[
(ξi · u)2 − 3c2

su
2 + 3c2

s(θ − 1)(ξ2
i − c2

s(D + 2))
]

+
1

24c8
s

[
(ξi · u)4 − 6c2

su(ξi · u)2 + 3c4
su

4 (3.11)

+ 6c2
s(θ − 1)

(
(ξi · u)2(ξ2

i − c2
s(D + 4)) + c2

su
2(c2

s(D + 2)− ξ2
i )
)

+ 3c4
s(θ − 1)2

(
ξ4
i − 2c2

s(D + 2)ξ2
i + c4

sD(D + 2)
) ])

.

From Eq. (3.11), we observe that for N = 2 , θ = 1, (isothermal flow), and for the D2Q9

discrete velocity set (cl =
√

3), we obtain the most widely used (second-order) functional

form of the equilibrium distribution, which is given as:

fi(x, t) = wiρ

(
1 + 3ξi · u+

9(ξi · u)2

2
− 3u · u

2

)
(3.12)
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Importantly, we can infer that this rigorously obtained result mimics the original somewhat

ad hoc coefficient-matching procedure utilized in most LBM analysis.

Similarly, the fourth-order discretized force term is given as:

F i =
4−1∑
n=1

1

n!c2n
s

H(n)a
(n)
0

= wiρ

(
ξi · g
c2
s

+
1

2c4
s

[
(ξi · u)(ξi · g

)
− c2

s(g · u)

]
+

1

6c6
s

[
(ξi · g)

(
(ξi · u)2 + c2

sξ
2
i (θ − 1)

)
(3.13)

− c2
s

[
(ξi · u)

(
2(g · u) + u2 + c2

sD(θ − 1)
)

+ 2c2
s(θ − 1)(ξi · g)

]])
.

It should be pointed out that, in actual simulations, the effects of a body force are seldom

incorporated by computing F i as written above. In fact, in the original formulation [105],

the authors absorb the body force term F i into the equilibrium distribution f
(0)
i to form an

effective equilibrium, such that f eqi ≡ f
(0)
i +τFi. In addition to truncation of the above F i to

the first and second-order terms, velocity is also corrected (or shifted) in order to incorporate

the effects of force. This method, just one of the many ways to incorporate forces in LB

simulations, is called as the shifted-equilibrium method. See [96, 97] for more details.
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Finally, omitting the superscript N in the subsequent expressions, and incorporating

f eqi ≡ f
(0)
i + τFi, we now have the Boltzmann-BGK equation discretized in velocity space,

for fN :

∂fi
∂t

+ ξi · ∇fi = −1

τ

(
fi − f (eq)

i

)
(3.14)

This discrete velocity form of the Boltzmann-BGK equation is called as the discrete-velocity

Boltzmann equation (DVBE ). The different moments that we used to describe the hydrody-

namic observables are no longer computed as integrals over an infinite velocity set, but as

weighted sums over a finite number of discrete velocities:

ρ =

q−1∑
i=0

fi

ρu =

q−1∑
i=0

fiξi

ρε =
1

2

q−1∑
i=0

fic
2
i (3.15)

P =

q−1∑
i=0

ficici

q =
1

2

q−1∑
i=0

ficic
2
i

where ci(x, t) = ξi−u(x, t) is the discrete peculiar velocity. It must be noted that because of

the rescaling of the Hermite basis we have the following expressions for the viscosity, thermal

conductivity and the perfect gas law:

µ = c2
sρθτ

k = c4
sρθτ (3.16)

p = c2
sρθ
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3.4 SPACE-TIME DISCRETIZATION

Having discussed the velocity-discretization in detail, the next task in building a complete LB

model is to discretize the configuration space (space-time). While there are several options

for this, such as the volumetric formulation [25, 79], the finite-element formulation [70], etc.,

in this work we will focus on the finite-difference type of spatial discretization.

3.4.1 Method of Characteristics

The most widely used method of space-time discretization of the discrete velocity Boltzmann

equation (Eq. (3.14)) is based on the method of characteristics. Essentially, for a first-

order partial differential equation (PDE) like Eq. (3.14), the method of characteristics finds

lines (called characteristic lines or characteristics) along which the PDE degenerates into an

ordinary differential equation (ODE). Once these characteristics are found, the ODE can be

solved along the characteristics in a much simpler way. To begin with, the Eq. (3.14) with

forcing is:
∂fi
∂t

+ ξi ·
∂fi
∂x

= −1

τ

(
fi − f (0)

i

)
+ Fi (3.17)

For clarity of presentation, we choose to use two notations: f eqi = f
(0)
i + τFi and Ωi =

− 1
τ
(fi − f (eq)

i ). Therefore, Eq. (3.17) is:

∂fi
∂t

+ ξi ·
∂fi
∂x

= Ωi (3.18)

First, we analyze the left hand side of Eq. (3.18). Towards that end, we apply the chain

rule to the term fi
(
x(s), t(s)

)
, where s is a characteristic, and x(s), t(s), are still unknown.

This leads to:
dfi
(
x(s), t(s)

)
ds

=
dt

ds

∂fi
∂t

+
dx

ds

∂fi
∂x

(3.19)

Comparing Eq. (3.19) with the left hand side of Eq. (3.18), we see that:

dt

ds
= 1 (3.20)

dx

ds
= ξi
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In view of Eq.(3.19), Eq. (3.18) can be written as:

dfi
(
x(s), t(s)

)
ds

= Ωi. (3.21)

It is evident from the form of Eq. (3.21) that the original PDE has now been converted into

an ODE along the characteristics s. Integrating Eq. (3.20) we get:

t(s) = t0 + s− s0 (3.22)

x(s) = x0 + ξi(s− s0)

Substituting Eq. (3.22) in Eq. (3.21), and integrating over the characteristics we get

ˆ
s

dfi(x0 + ξi(s− s0), t0 + s− s0)

ds
=

ˆ
s

Ωi (3.23)

The left hand side of Eq. (3.23) is an integral of a differential with respect to the same

variable s. The result is the argument of the integral itself, but evaluated at the boundaries

of integration:

fi(x0 + ξi(s− s0), t0 + s− s0)− fi(x0, t) =

ˆ
s

Ωi. (3.24)

From Eq. (3.22) we can set s− s0 = t− t0 = ∆t, so that:

fi(x+ ξi∆t, t+ ∆t)− f(x, t) =

ˆ t+∆t

t

Ωi. (3.25)

The evaluation of the collision integral can be generalized using the θ−method used in the

theory in ODE. That is, we can write:

f̃n+1
i − f̃ni = ∆t

[
(1− θ)Ω̃n

i + θΩ̃n+1
i

]
, (3.26)

with 0 ≤ θ ≤ 1, and the superscript n denoting a time-level. The tilde indicates a quantity

on the characteristic i.e. f̃n+1
i = fi(x+ ξi∆t, tn + ∆t) and f̃ni = fi(x, tn). For θ = {0, 1

2
, 1},

we obtain an explicit O(∆t), an implicit O(∆t2), and an implicit O(∆t) approximation of

the collision term, respectively. The O(∆t) schemes are Euler-type schemes, and the O(∆t2)

is a Crank-Nicholson-type scheme.
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3.4.2 Lattice Boltzmann Equation

The most straightforward method to evaluate the collision integral is to use an explicit Euler

method where θ = 0. This leads to:

fi
(
x+ ξi∆t, t+ ∆t

)
− fi(x, t) = −∆t

τ

(
fi(x, t)− f eqi (x, t)

)
(3.27)

Eq. (3.27) can be identified as the lattice-BGK equation (LBGK) equation, or sometimes, just

the lattice Boltzmann equation (LBE). It represents the simplest update-type scheme/rule

possible for solving the Boltzmann equation. In practice, the computation consists of the

following two steps:

1. Collision or Relaxation Step: At time instant t, a collision in x occurs. The collision

term is evaluated to compute the new (temporary) distribution, f ci :

Collision: f ci (x, t) = fi(x, t)−
∆t

τ

[
fi(x, t)− f eqi (x, t)

]
(3.28)

2. Streaming Step: Each collided distribution f ci is streamed along the characteristics

depending upon its discrete velocity ξi:

Streaming: fi(x+ ξi∆t, t+ ∆t) = f ci (x, t) (3.29)

The easiest way is to discretize the physical space, x → xa, is to have a regular lattice

(uniform Cartesian mesh, in CFD terminology), such that for each x, x + ξi∆t is also a

node. This way, the information at all the grid nodes is automatically known at the next

time step. Importantly, this means that the spatial step (grid-spacing) and temporal size

are tightly coupled through the relation: ∆x = ξi∆t. Furthermore, if we assume ∆t and ∆x

as unity, as commonly done in LB simulations (lattice units), we get:

fi
(
x+ ξi, t+ 1

)
= fi(x, t)−

1

τ

[
fi(x, t)− f eqi (x, t)

]
(3.30)

Eq. (3.30), along with the second-order form of the equilibrium distribution (Eq. (3.12)) and

the D2Q9 discrete velocity set constitutes the most widely used lattice Boltzmann model.

Traditionally, this equilibrium distribution was expanded as a Taylor series in terms of the

local velocity, and truncated at the second order. Note that here τ = O(1) and not O(Kn).
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Figure 4: A uniform Cartesian grid (lattice) as used in LB simulations overlaid on the D2Q9

velocity set

This approach was derived from the lattice gas automata (LGA), the precursor to the LBM.

The order of the of truncation was chosen a posteriori in order to recover the Navier-Stokes

equations upon application of the coefficient-matching Chapman-Enskog multiscale analysis

or an inverse Chapman-Enskog expansion. This model is suitable for simulating isothermal

(near-incompressible or low-Mach number) flows, which are encountered extensively in engi-

neering fluid flows. In fact, with suitable force models, they form the basis for even complex

flows, such as multiphase, multicomponent flows. Numerical-diffusion-free advection, com-

putational efficiency, simplicity of the algorithm, etc. are part of the appeal that makes

the LB method a popular choice to simulate a variety of macroscopic flows. A thorough

comparison between LBM and conventional PDE-based CFD is provided in Chapter 11 of

[112].

3.5 SUMMARY

This chapter concludes the presentation on the theoretical background of the Hermite-based

LB formulation. Here, we discussed a general approach to truncation of the equilibrium

distribution depending upon the hydrodynamics regime needed to be recovered. Thereafter,

we discussed how we can obtain the exact and Galilean-invariant discrete moments of the

truncated distributions using the Gauss-Hermite quadrature. The resulting on-lattice and
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off-lattice discrete velocity sets were presented and discussed in detail. From a thermal

LB model perspective, we saw that to recover a Galilean-invariant energy equation at the

Navier-Stokes level, we need a fourth-order truncated equilibrium distribution, along with

a ninth-order quadrature (D2Q37 or D3Q121). We also discretized the discrete velocity

Boltzmann equation in space-time to obtain the popular LBGK equation. We consider

alternative, more stable space-time discretizations in Chap. 4. Finally, we can conclude

that the Hermite-based formulation of the lattice Boltzmann method not only offers another

interpretation of the known lattice Boltzmann models, but also offers a systematic procedure

for deriving higher-order models.
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4.0 OFF-LATTICE TEMPORAL SCHEMES

4.1 INTRODUCTION

A defining feature of the LBGK scheme is the coupling between the velocity and space-time

discretizations. That is, for a particular discrete-velocity set, ξi, the coupling automatically

fixes the temporal and spatial steps through the relation ∆x = ξi∆t. The coupling is, in

fact, a carryover from the earliest LB models, which were based on LGA. However, as shown

in Chap. 3, and originally in [2, 55, 105], the LGCA link can be severed by noticing that

LBGK is nothing but a special finite difference scheme of the discrete velocity Boltzmann

equation on a regular uniform lattice, which also defines the associated discrete particle

velocities. This implies that once we select a suitable set of discrete velocities, space may

be discretized into any curvi-linear coordinates, independent of the discrete velocities. The

discretization of space and time is thus a numerical requirement and, importantly, is not tied

to the discretization of the velocity-space. This important idea opens up a gamut of spatial

discretization schemes that can be applied to the discrete velocity Boltzmann equation, such

as the finite element, finite volume, or the finite difference method.

As a consequence, a subset of the LB method, called the off-lattice Boltzmann (OLB)

method, was developed where space and time are independently discretized, i.e., ∆x 6= ξi∆t.

Consequently, in the OLB method, we do not have the simplicity of a Lagrangian-type

of evolution (streaming), rather the evolution of fi takes place in an Eulerian sense. In

that sense, any evolution equation for distributions that is not of the stream-collide type

is an OLB scheme. The earliest OLB schemes were geared mainly towards extending the

geometric flexibility of the LB method, which was previously limited, due to the requirement

of a uniform Cartesian mesh. Several OLB schemes with different spatial discretization
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methods, such as finite-volume (FV), finite-element (FE), and finite-difference (FD), along

with their variants, have been developed for use with body-fitted grids.

In addition to improving the geometric flexibility of the LB method, OLB method can

also be used to solve the DVBE with higher-order lattices. As described in Chap. 2, higher-

order lattices are sets of discrete velocities which are more suited to model more complex

flows, such as thermal flows, micro-scale (high Knudsen number) flows, etc. In many of these

velocity sets (non-space-filling or off-lattice), the discrete velocities cannot be expressed as

an integer multiple of the smallest non-trivial speed. Since the regular stream-collide type

of evolution scheme cannot be employed with such velocity sets, the OLB schemes provide

a viable evolution scheme for the DVBE. Moreover, even if stream-collide can be used with

higher-order on-lattice velocity sets, implementations in the presence of wall boundaries have

been limited so far, due to difficulties in extending the bounce-back boundary treatment

[97]. On the other hand, in OLB scheme, boundary conditions can be prescribed in simpler

manner, similar to FD schemes. In short, OLB schemes enable both geometric flexibility

and an ability to use off-lattice velocity sets.

In this chapter, we analyze the various off-lattice temporal schemes in detail. In partic-

ular, we focus on explicit and implicit models of the collision involved in time-integration

schemes.

4.2 BACKGROUND

The basis for all OLB schemes is the discrete velocity Boltzmann equation, which is given

as:

∂fi
∂t

+ ξi · ∇xfi = −1

τ
(fi − f eqi ) (4.1)

Since the discrete velocities ξi are constants, the DVBE can be considered as a system of

linear, first-order, ordinary differential equations (ODEs) with a weak source (collision) term.

This assumption is generally valid only if the gradients of the conserved quantities in the

flow are not too high, i.e., the collision term is not highly non-linear. The number of ODEs
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in the system equals the number of discrete velocities; for example; nine equations in case of

the D2Q9 lattice. Therefore, in principle, commonly used time marching schemes for ODEs,

such as Euler, Runge-Kutta, etc. can be employed for temporal discretization of Eq. (4.1).

A second-order Runge-Kutta (RK2) based OLB scheme for Eq. (4.1) can be written as:

f
n+ 1

2
i = fni −

∆t

2
Rn
i (4.2)

fn+1
i = fni −∆tR

n+ 1
2

i

where:

Rn
i ≡ −

(
ξiα

∂fni
∂xα

)
− 1

τ
(fni − f eq,ni ) (4.3)

with the gradient term expanded in 2D Cartesian co-ordinates as:

ξi · ∇fni = ξiα
∂fni
∂xα

= ξix
∂fni
∂x

+ ξiy
∂fni
∂y

. (4.4)

Here f
n+ 1

2
i ≡ fi(x, tn + ∆t

2
), fn+1

i ≡ fi(x, tn + ∆t), etc. Similar expressions can be written

for the fourth-order RK scheme (RK4) [94]. In these schemes, the viscosity was related to

the relaxation time through ν = c2
sτ .

Many of the earliest OLB schemes employed the forward Euler, RK2 or RK4 schemes,

in combination with a variety of spatial discretization schemes. Using the RK-based time

marching schemes, the geometric flexibility of the LB method was extended to non-Cartesian

domains, non-uniform grids, body-fitted, stretched grids, etc. [19, 62, 94, 116]. In the case

of FD spatial discretization, the spatial order-of-accuracy can also be increased arbitrarily,

using higher-order Taylor approximations of the gradient terms. On the other hand, several

discrete velocity models with non-space-filling velocity-sets also employed the RK-based

schemes as the evolution equation [122].

Despite the geometric flexibility made possible by the RK-based schemes, the size of the

∆t relative to τ has to be kept very small to maintain numerical stability. The constraint

on ∆t comes from an explicit approximation of the advection and collision terms of the Eq.

(4.1). An explicit advection approximation imposes a stability criterion on the size of ∆t

through the CFL condition, CFL = ξi∆t/∆x < 1. The CFL condition is well-understood

to be a necessary condition for the stability of advection type of equation. However, the
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overall stability of the scheme is governed by the more restrictive condition on ∆t due to an

explicit approximation of collision, given by the approximate condition ∆t < τ [120, ?].

The small ∆t requirement is particularly restrictive in the case of high Reynolds number

(Re) flows where τ is very small. Moreover, in the LB method, the Mach number Ma in

the simulations has to be kept small (generally less than 0.1) to limit the compressibility

errors. Small values of Ma lead to a slower convergence rate, especially for steady-state

flow problems [50, 118]. Thus, the combined effects of small Ma and ∆t increase the overall

computational cost of the RK-based OLB schemes. Therefore, OLB schemes that permit

∆t/τ are needed to address this issue. The schemes presented in the next section aim to do

that.

4.3 CHARACTERISTICS-BASED SCHEMES

To develop OLB alternatives to the RK-based methods, consider the θ−method based time

integrated form of the Eq. (4.1) along the characteristics (c.f. Eq. (3.26)). We rewrite that

equation here:

f̃n+1
i = f̃ni + ∆t

[
(1− θ)Ω̃n

i + θΩ̃n+1
i

]
, (4.5)

where Ωi ≡ − 1
τ
(fi − f eqi ); a tilde indicates a term on the characteristic line, i.e., f̃n+1

i =

fi(x + ξi∆t, t + ∆t), f̃ni = fi(x, t); and 0 ≤ θ ≤ 1 [11, 71]. For θ = {0, 1
2
, 1}, we obtain an

explicit O(∆t), an implicit O(∆t2), and an implicit O(∆t) approximations of the collision

term, respectively. The O(∆t) schemes are Euler-type schemes, and the O(∆t2) is a Crank-

Nicholson-type or a trapezoidal scheme. The LBGK equation (c.f. Eq. (3.27)) was derived

for the particular case θ = 0.

4.3.1 Implicit-Collision Formulation

It is well-known in the ODE theory that an implicit approximation of the relaxation (colli-

sion) term is critical for numerical stability, especially for stiff equations (highly non-linear

flows). So, we first develop semi-implicit formulation for the LBGK scheme, after which it
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is extended to the off-lattice case. Employing θ = 1
2
, we obtain an implicit O(∆t2) approxi-

mation of the collision term, whereby Eq.(4.5) becomes:

f̃n+1
i = f̃ni +

∆t

2τ

(
Ω̃n+1
i

)
− ∆t

2τ

(
Ω̃n
i

)
+O(∆t2) (4.6)

On inspection of Eq. (4.6) we can find that it is a non-linear equation. This is because, to

evaluate f eqi in Ωi at n + 1, we need ρ,u, θ values at time n + 1, which are unknown since

fn+1
i is unknown. Of course we can solve the non-linear equation: f eq,n+1

i = G
(
fn+1
i

)
, where

G is a non-linear function. However, the iterative procedure for solving non-linear equation

destroys the fully explicit and simple algorithm of the LB method, in addition to adding

extra computational cost.

In order to avoid an iterative procedure to approximate an implicit-collision, an ingenious

variable transformation is often employed in the LB method to mask the implicitness of the

collision term, first proposed by He, Chen, and Doolen [54]. In the variable transformation

technique, a new distribution gi, is defined as:

gi(x, t) = fi(x, t)−∆tθΩi(fi(x, t)), (4.7)

for a generic collision kernel Ωi(f(x, t)) [11]. With the variable transformation, and for the

specific case of θ = 1
2

and BGK kernel, Eq. (4.5) transforms to:

gi
(
x+ ξi∆t, t+ ∆t

)
− gi(x, t) = −∆t

λ

(
gi(x, t)− geqi (x, t)

)
(4.8)

where we have expanded the terms with the tilde. Eq. (4.8) can be viewed as an implicit

LBGK formulation, but which is computationally still fully explicit. The term λ is called

the modified relaxation time, which is related to the original relaxation time, τ, by:

λ = τ +
∆t

2
. (4.9)

In the presence of external forces, it is important to observe that in the system represented

by the new distribution gi, the macro variables have to be adjusted:

ρ̂ =

q−1∑
i=0

gi =

q−1∑
i=0

fi = ρ (4.10)

ρ̂û =

q−1∑
i=0

ξigi =

q−1∑
i=0

ξi

(
fi +

∆t

2τ
(fi − f (0)

i )− 1

2
Fi

)
= ρu− ∆t

2
ρg (4.11)
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where ρ̂, û are the density and velocity based on the new distribution gi. It should be noted

that û is not the ’physical velocity,’ which in fact, is given by fi. From Eqs. (4.10) and

(4.11), the actual physical velocity u is computed as:

u = û+
∆t

2
g. (4.12)

Importantly, the equilibrium distribution function, f
(0)
i should be computed with u and not

û in order to get accurate results. Denoting g
(0)
i (ρ,u) ≡ f

(0)
i (ρ,u) for notational consistency,

we finally obtain the implicit formulation, complete with the force term:

gi
(
x+ ξi∆t, t+ ∆t

)
= gi(x, t)−

∆t

λ

(
gi(x, t)− g(0)

i (x, t)

)
+ ∆t

(
1− ∆t

2λ

)
F i(ρ,u) (4.13)

Denoting Gi ≡ (1− ∆t
2λ

)F i, we obtain:

gi
(
x+ ξi∆t, t+ ∆t

)
= gi(x, t)−

∆t

λ

(
gi(x, t)− g(0)

i (x, t)
)

+ ∆tGi (4.14)

Due to the implicit approximation of the collision term through variable transformation, the

∆t < τ constraint no longer applies. This observation is validated through extensive testing

in the following sections. The only constraint on ∆t is the CFL condition due to an explicit

approximation of advection.

4.3.2 Off-lattice Boltzmann Schemes

In the LBGK scheme, with implicit or explicit collision approximation, the advection of

the distributions is explicit and happens on the characteristic line in a Lagrangian fashion.

In order to develop off-lattice schemes, we need to be able to set ∆t independent of ∆x.

Towards that consider the implicit formulation that was developed in the previous section,

but now written in the tilde:

g̃n+1
i = g̃ni −

∆t

λ

(
g̃ni − g̃eq,ni

)
(4.15)

Now, consider a characteristic line x̃(xref , tref , t) passing through the spatial point xref =

x + ξi∆t at time tref = t + ∆t. This choice of the reference point is known to enhance the

the stability of the numerical scheme [130]. Another point on the same characteristic, but
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Figure 5: Reference points for discretization along characteristics. Adapted from [130]

located backwards in time with respect to x̃(t + ∆t) can be expressed as (See Fig. 5 for

illustration):

x̃(t) = x̃(t+ ∆t)−∆tξi. (4.16)

We want to express gi(x̃(t)) in Eq. (4.15) in terms of xref . For that, consider the Taylor-

series expansion of gi(x̃(t)) around ξi∆t [11]:

gi(x̃(t), t) = gi(x̃(t+ ∆t)− ξi∆t, t)

= gi(x(t+ ∆t), t)−∆tξiα
∂gi(x(t+ ∆t), t)

∂xα
+

∆t2

2
ξiαξβ

∂2gi(x(t+ ∆t), t)

∂xα∂xβ

= gi(xref , t)−∆tξiα
∂gi(xref , t)

∂xα
+

∆t2

2
ξiαξiβ

∂2gi(xref , t)

∂xα∂xβ
+O(∆t3). (4.17)
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In the same fashion, we can Taylor expand g̃eq,ni ≡ geqi (x̃(t), t). Here ξiα represents the

components ξi along the Cartesian coordinates; for example, ξiα = {ξix, ξiy, ξiz} along the

x, y, z coordinate system. Substituting the above equation in Eq. (4.15), and recognizing

that g̃n+1
i ≡ gi(x+ ξi∆t, t+ ∆t) = gi(xref , t+ ∆t), we obtain:

gn+1
i = gni −∆t

[
ξiα

∂gni
∂xα

+
1

λ
(gni − geq,ni )

]
+

∆t2

2
ξiα

∂

∂xα

[
ξiβ
∂gni
∂xβ

+
2

λ
(gni − geq,ni )

]
(4.18)

−∆t3

2λ
ξiα

∂

∂xα

[
ξiβ
∂(gni − geq,ni )

∂xβ

]
,

where gni ≡ gi(xref , t) and gn+1
i ≡ gi(xref , t+ ∆t).

Eq. (4.18) represents a general off-lattice time-marching scheme applicable in three-

dimensions. It is noted that, although the collision approximation in the scheme looks

explicit, it is implicit nonetheless, and hence unconditionally stable for θ ≥ 1/2, within the

CFL limit for advection. For comparison purposes, we will also describe some alternative off-

lattice time-marching schemes that are available in the literature. These alternative schemes

are useful for validation purposes of Eq. (4.18).

Lee and Lin proposed two off-lattice time-marching scheme, and used the FE method

to discretize the spatial domain [71]. One of their proposed schemes, termed as AE/CE,

approximated both advection and collision explicitly. The other proposed scheme, termed as

AE/CI, approximated the advection explicitly, but collision implicitly, much like Eq. (4.18).

However, they did not use the variable transformation technique to hide the implicitness,

and hence an iterative predictor-corrector scheme was required, which increased the compu-

tational cost and complexity of the simulations. The AE/CE scheme is given by:

fn+1
i = fni −∆t

[
ξiα
∂fni
∂xα

+
1

λ
(fni − f eq,ni )

]
+ ∆t2ξiα

∂

∂xα

[
1

2
ξiβ
∂fni
∂xβ

+
1

λ
(fni − f eq,ni )

]
−∆t3

2

1

λ
ξiα

∂

∂xα

[
ξiβ

∂

∂xβ
(fni − f eq,ni )

]
. (4.19)

Guo and Zhao also used a variable transformation to obtain an implicit approximation of

the collision [49], however their advection approximation was only O(∆t). Their scheme,

termed as the GZ scheme in this work, can be written as:

gn+1
i = fni −∆tξiα

∂fni
∂xα
− ∆t

2τ
(fni − f eq,ni ). (4.20)
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Table 2: Summary of various off-lattice Boltzmann time-marching schemes. Here E indicates

explicit, and I indicates implicit. Spatial order-of-accuracy for advection depends upon the

spatial discretization method and schemes used, and hence is excluded.

Scheme Advection Collision ν − λ relation

RK2 O(∆t2) E O(∆t2) E λ = ν/c2
s

AE/CE O(∆t2) E O(∆t2) E λ = ν/c2
s + 0.5∆t

AE/CI O(∆t2) E O(∆t2) I λ = ν/c2
s

GZ O(∆t) E O(∆t2) I λ = ν/c2
s

Eq.(4.18) (BKG) O(∆t2) E O(∆t2) I λ = ν/c2
s + 0.5∆t

Finally, the various off-lattice time-marching schemes described above are summarized in

Table 2.

4.3.3 Implementation of an OLB scheme

Eq. (4.18) represents a typical temporal evolution scheme for the distributions used in the

OLB method. Clearly, the usual stream-collide scheme type of evolution on the standard

LBM is replaced by a procedure that involves solving a set of ODEs at each node. For the

scheme given by Eq.(4.18), the algorithm consists of the following steps:

1. Initialize g0
i according to prescribed initial conditions, i.e., set g0

i = geq,0i , where geq,0i =

geqi (ρ0,u0). ρ0 and u0 are the prescribed initial conditions.

2. Evaluate the gradient terms
∂gni
∂x
,
∂2gni
∂x2

, etc. In the case of FD spatial discretization, with

a central-differencing scheme, these quantities can be computed as:

∂gni
∂x

=
gi(x+ ∆x, y, tn)− gi(x−∆x, y, tn)

2∆x
+O(∆x2),

∂2gni
∂x2

=
gi(x+ ∆x, y, tn)− 2gi(x, y, tn) + gi(x−∆x, y, tn)

∆x2
+O(∆x2). (4.21)
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Similar expressions can be written for the first-order derivatives in the y-direction, and

the second-order mixed derivatives ∂2gi
∂x∂y

. Other schemes such as upwind-differencing can

also be employed.

3. Evaluate gn+1
i per Eq. (4.18).

4. Evaluate ρn+1, ûn+1, un+1. Compute geq,n+1
i based on un+1.

5. If un+1 has converged, then stop, if not, repeat steps 2-5.
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4.4 BOUNDARY TREATMENT

In LB simulations, it can be argued that developing accurate and efficient boundary schemes

is as important as developing accurate physics models, since they influence the stability and

accuracy of the solutions. Normally in flow simulations, boundary conditions are prescribed

on the primitive flow (macroscopic) variables, such as no-slip velocity wall or velocity inlet,

pressure outlet, etc. In the LB method, however, the primitive variable of the simulation are

the distributions. Although obtaining macroscopic variables from the distributions is trivial

(through moment summations), the reverse is not so easy. This is because, the distributions

are not unique for a particular prescribed value of macroscopic variables. Treatment of

various boundary conditions is too vast a topic to be covered in this dissertation, so only a

brief overview is provided. Moreover, since we are focusing on flow domains with straight

walls/boundaries, only such boundary schemes are discussed. Two broad methods are used

to deal with this issue:

1. Heuristic or modified distributions : In this method, only the unknown distributions at

the boundaries are obtained using some (heuristic) physical rules, such as the bounceback

rule, or the mass and momentum conservation principle. The most widely used scheme,

viz., the full-way and half-way bounce-back rule, as well as the Inamuro scheme, Zou/He

scheme, are some of the schemes which belong to this method. Such schemes, however,

cannot be extended easily to velocity sets with larger neighborhoods, such as D2Q37.

Specifying gradients of flow variables and handling moving boundaries are also difficult

in this method.

2. Reconstructed distributions: In this method, all the distributions (known and unknown)

at the boundaries are reconstructed based on the prescribed density (pressure), velocity,

and temperature. Among the schemes of this methods are the finite-difference type LB

boundary scheme [109, 28], Guo and Zhao’s extrapolation scheme [51] and the regularized

boundary [68]. These boundary schemes are found to be more stable for coarser meshes

and more importantly, can be extended for off-lattice or non-D2Q9 cases. A thorough

review of various boundary schemes for flat (straight) boundaries is provided in [69, 112],

and for curved boundaries in [47].
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𝑥 = −1 (Buffer nodes) 

𝑥 = 0 (Wall nodes) 

𝑥 = 1 (Fluid nodes) 

Figure 6: Schematic for extrapolation boundary scheme

In this work, for both isothermal and thermal flows, we employ the extrapolation type bound-

ary scheme, first proposed by Chen et al. [28]. It is based on the fact that the LB method is

a special finite-difference scheme for the discrete velocity Boltzmann equation. The imple-

mentation follows of the scheme is as follows: As shown in Fig. 6, a ghost or buffer layer of

nodes is inserted beyond the physical wall boundary. The nodes of the physical wall are as

considered fluid nodes, in the sense that, the regular collision (which involves computation

of local equilibrium distributions, f eq,ni ) and time-update (computation of gn+1
i per (4.18))

are both performed on them. The equilibrium distributions on the wall nodes, however, are

computed on the basis of the prescribed wall velocity and/or temperature. Finally, before

gn+1
i is computed as the wall boundary nodes, the distributions on the buffer nodes, are

obtained using a second-order extrapolation of the distributions of the inner fluid nodes:

gi(x−1) = 2gi(x0)− gi(x1) (4.22)

where −1, 0, 1 are the labels for the nodes on the ghost, (wall) boundary, and the first fluid

layer, respectively. This scheme, conceptually, is similar to the boundary schemes used in

conventional finite-difference methods. It can be shown that this scheme is second-order,

O(∆x2), consistent with the order of the rest of simulation domain, and more importantly

in our case, can be easily applied to higher-order lattices. Compared to a single layer of

buffer nodes required in this scheme, attempts to develop bounce-back-type schemes for the
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D2Q39 require three buffer nodes, resulting in a more complicated scheme [97]. In theory,

the extrapolation scheme can also be extended to curvilinear coordinates through suitable

coordinate transformation.

4.5 NUMERICAL VALIDATION

To test the numerical stability of the various schemes, as a function of the maximum stable

∆t/τ , several steady and unsteady, incompressible, two-dimensional flows were simulated,

and their results are presented in this section. Since the focus of this work is on evaluation

of the temporal schemes, the simpler finite-difference method is used to discretize the spatial

domains. For uniformity, Eq. (4.21) is used to evaluate the derivatives in the gradient term

for all the OLB schemes tested here. The central-difference scheme is chosen since they

are less diffusive than other O(∆x2) schemes. This minimizes the contribution of numerical

diffusion to the overall stability of the scheme. The numerical stability of a scheme can be

concluded by the maximum allowable ∆t for a particular Re and grid size. In other words,

for a particular flow problem, we fix the Re (fixed τ) and grid size (fixed ∆x) and vary ∆t,

until the simulation becomes unstable.

The schemes were coded in C++ using the Armadillo linear algebra library [95], and

parallelized for a shared-memory architecture using OpenMP. The detailed implementation

and pseudo code is presented in Chap. 6.

4.5.1 Taylor Vortex Flow

To test the stability and accuracy of various schemes without the artifacts of a boundary

treatment, we first simulate the Taylor-Green vortex flow. This flow represents the unsteady

flow of a freely decaying two-dimensional vortex, and is often used to evaluate the effective

viscosity and temporal and spatial accuracy of a scheme. Here, the flow is computed within

a periodic square box defined as −π ≤ x, y ≤ π with a uniform Cartesian mesh of size

100× 100 on the domain. The analytical solutions of the flow-field are given by:

66



u(x, y, t) = −uref cos(k1x) sin(k2y) exp[−ν(k2
1 + k2

2)t], (4.23)

v(x, y, t) = uref
k1

k2

sin(k1x) cos(k2y) exp[−ν(k2
1 + k2

2)t],

p(x, y, t) = pref −
u2

0

4

[
cos(2k1x) +

k2
1

k2
2

cos(2k2y)

]
exp[−2ν(k2

1 + k2
2)t].

In our simulations, to minimize compressibility effects, the Mach number is set as 0.01.

The reference velocity is uref = Ma × cs, the reference density is ρref = 1, the reference

pressure is pref = ρref/c
2
s, and the wave numbers k1 and k2 are constants set to 1.0 and 4.0,

respectively. The non-equilibrium initialization scheme proposed by [109] is used to initialize

the DFs, and periodic boundary conditions are applied in the x and y directions. The Re of

the flow is 100.

Figs. 7 and 8 show the horizontal and vertical velocity profiles at different times as

obtained using the BKG scheme. The velocity profiles are shown for t/tc = 0.5, 1, and

2, where tc = ln 2/ν(k2
1 + k2

2) is the time at which the amplitude of the decay is halved.

Importantly, these simulation have been obtained with ∆t = 10τ , where τ = ν/c2
s. The

corresponding CFL number is 0.7. This confirms the observations of high ∆t/τ made in

[11]. Moreover, the average relative error as defined by:

E =

∑
y (|unum − uexact|+ |vnum − vexact|)∑

,y (|uexact|+ |vexact|)
is < 1%. Here unum is the simulated velocity, uexact is the analytical velocity, and the

summation is over vertical plane at x = 0. This result demonstrates that the BKG scheme

successfully overcomes the ∆t < τ restriction imposed by the RK-based OLB schemes.

The only remaining restriction on ∆t is the local CFL number which is due to an explicit

advection approximation.

For comparison, we also simulated the Taylor-Green vortex flow using the GZ and the

AE/CE schemes. The GZ scheme, although having treated the collision term implicitly, could

not achieve higher ∆t/τ values. In fact, in their simulations, ∆t/τ ≈ 1.6 for a Re ≈ 63 with

a mixed (central-upwind) differencing scheme. Furthermore, for a purely central-difference

67



−1.0 −0.5 0.0 0.5 1.0

x/π

−0.5

0.0

0.5

1.0

u
(π 2
,y
)/
u
0

Analytical

t = 0.5tc

t = tc

t = 2tc

Figure 7: Horizontal velocity profile of

Taylor-Vortex flow at various times. The

numerical results have been obtained with

a ∆t = 10τ using the BKG scheme.
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Figure 8: Vertical velocity profile of

Taylor-Vortex flow at various times with

∆t = 10τ using the BKG scheme.

scheme, i.e., without the additional marginal stability of upwind schemes, the authors showed

analytically using the von-Neumann stability analysis, that the maximum ∆t/τ that can be

attained is less than 1.5, and that at low CFL numbers. We have observed that the AE/CE

permits ∆t > τ , but stable simulations are obtained at much lower values of CFL number

(CFL < 0.2) compared to the BKG scheme.

4.5.2 2-D Plane Poiseuille Flow

Another useful numerical test is Poiseuille flow. A plane Poiseuille flow describes the steady,

laminar flow of an incompressible fluid in a rectangular channel driven by a pressure gradient.

Assuming symmetry and incompressibility, it can be shown that for Poiseuille flow, the

Navier-Stokes momentum equation reduces to:

µ
∂2u

∂y2
=
∂p

∂x
(4.24)

which has a exact steady state solution for velocity given by:
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u(y) = 4umax
y

H

(
1− y

H

)
for 0 ≤ y ≤ H (4.25)

v(x, y) = 0

where H is the channel height and umax is the center-line velocity where the magnitude of

velocity is the maximum. The Reynolds number of the flow is defined by Re = umaxH/ν.

In a LB simulation, imposing a pressure difference by specifying inlet and outlet densities

increases the compressibility errors [112]. Therefore, the effect of ∆p is imposed on the flow

through an equivalent body-force F . This force has the same effect as having a pressure-

gradient in the channel which produces the chosen umax. This body force can be evaluated

from F = 8umaxρν/H
2.

For the reference case, the BKG scheme is used to obtain the results presented here. In

the simulation, we set H = 1 and L = 1, where L is the channel length. The domain is

discretized into a uniform Cartesian mesh of size 100 × 100. The Mach number based on

umax is set to 0.1732, which corresponds to a umax of 0.1. The velocity is initialized to zero

everywhere and the average density is set to one. Since a steady-state flow is simulated, the

equilibrium initial condition is applied to the distributions. The boundary scheme described

in Sec. 4.4 is applied on the no-slip top and bottom walls, and a periodic boundary condition

is applied at the inlet and outlets. Various Re flows are simulated by varying the viscosity

but keeping the Ma constant. The simulations are run until a steady state criterion, defined

as:

C =

∑
i,j
|uni,j − un−50

i,j |∑
i,j |uni,j|

< 10−6

is attained. Here uni,j ≡ u(xi, yj, n∆t), where n is the time-step number, and the summation

is over the entire flow field.

The simulated steady-state stream-wise velocity profile for Re = 100, along with the

analytical solution is shown in Fig. 9. Clearly, the simulated and the analytical values are

in excellent agreement with each other. The inset shows the velocity profile close to the

wall, which is also in close agreement to analytical values. This serves as validation for the
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applicability and accuracy of the non-equilibrium boundary condition used in the simulation.

It is worth noting that the velocity profile was generated on a 100×100 grid with a ∆t = 5τ .

Even at such a high ∆t, the average relative error, as defined earlier, is ∼ 2%.

For comparison, the plane Poiseuille flow is also simulated using the AE/CE scheme,

and the GZ scheme. Fig. 10 shows the maximum allowable CFL number versus Re for the

steady Poiseuille flow for the different schemes. This plot is obtained by fixing the grid size

to 100× 100 for each scheme, and then varying ∆t. This is repeated for the various Re, as

shown in the figure.

It can be seen that at low Re, both the AE/CE and BKG schemes have almost similar

maximum CFL numbers. However, as Re increases, the maximum allowable CFL number

is clearly much higher with the BKG scheme, as compared to the AE/CE scheme. This

enhanced stability at higher Re results from the implicit treatment of the collision term,

which becomes highly non-linear as Re increases, thus directly benefiting from the local

implicit treatment. Importantly, the implicit treatment of collision, allows for ∆t > τ , thus

resulting in large ∆t and thereby reducing the computational effort.

4.5.3 Lid-Driven Cavity Flow

Isothermal, 2-D lid-driven cavity flow is commonly used as a benchmark case to test and

evaluate numerical schemes for incompressible viscous flows. The flow domain consists of a

square cavity with three stationary walls on the sides and bottom, and a top wall (lid) that

moves with a uniform tangential velocity ulid. Despite the simple geometry, this flow exhibits

many complex flow patterns such as formation of vortices near corners due to singularities.

In our context, the lid-driven cavity case is also useful for quantitatively evaluating the effects

of collision approximations (explicit/implicit) on flows with moderately large non-linearities

(high Re), and thus quantifying the overall stability of different schemes.

The computational domain consists of a square with height L = H = 1. The top

wall moves with a constant velocity of ulid = 0.1, and the Reynolds number of the flow is

Re = ulidH/ν. The domain is discretized on a uniform mesh of size 257 × 257. The non-

equilibrium extrapolation scheme is applied for all of the walls. The flow is initialized by
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Figure 9: Steady-state horizontal velocity profile for Poiseuille flow at Re = 100. The results

were obtained using ∆t = 5τ on a 100× 100 mesh using the BKG scheme.
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Figure 10: Maximum allowable CFL number vs. Re for steady Poiseuille flow.

setting ρ = 1 and u = 0 in the entire flow. The flow is simulated using four schemes: BKG,

AE/CE, GZ, and also a RK2-based scheme.

As before, for the reference case, we present the results of simulations using the BKG

scheme. Steady-state velocity components along the horizontal and vertical centerlines at

various Re are shown in Figs. 11 and 12. These results have been obtained with ∆t = 4τ

and CFL = 0.5. The results are compared with results from Ghia et al. who obtained

their results with a 257 × 257 grid using the coupled strongly implicit multi-grid method,

and a vorticity-stream-function formulation [41] . The velocity profiles change from curved

at lower Re to linear for higher Re, which is consistent with the benchmark solutions. The

near-linear velocity profiles at higher Re in the central core of the cavity indicates a region

of uniform vorticity.

To assess and quantify the effects of the size of ∆t on numerical stability, in Figs. 13-18,

we plot the stability region for each scheme, as determined by two parameters: ∆t/τ and

∆t/∆x (please note that the scales of the axes vary across the figures). Broadly speaking,
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Figure 13: Stability region for the RK2

scheme at Re = 100.
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Figure 14: Stability region for the GZ

scheme at Re = 100.

while ∆t/τ represents the non-linear stability constraint imposed by collision, ∆t/∆x rep-

resent the linear-stability constraints of explicit advection. ∆t/∆x also represents the CFL

number in the case of a D2Q9 lattice. Hence, a map determined by these two parameters

should serve a guide to gauge the overall numerical stability of the schemes with respect

to size of ∆t. In all of the maps, • indicates a stable solution and ◦ indicates an unstable

solution. Fig. 13 shows the stability region for the RK2-based OLB scheme with central

differencing for Re = 100.

From Fig. 13, we can observe that the RK2-based scheme is unstable beyond ∆t/τ > 2,

irrespective of the CFL number. Moreover, the stable solutions which are obtained at

∆t/τ < 2 are done so at very low CFL values. As described before, the small ∆t requirement

stems from the fact that as Re increases, the collision term becomes more non-linear and

stiff, which requires an implicit approximation for numerical stability. Stability of RK2-based

schemes can be increased slightly by adopting second-order upwind schemes; however, the

marginal stability is added at the cost of increasing numerical diffusion. Similarly, multi-

stage Runge-Kutta schemes such as RK4 can also increase stability. However, all RK-based

OLB schemes involve multiple evaluation of the f eqi term for each advancement in ∆t, the
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Figure 15: Stability region for the AE/CE

scheme at Re = 400.
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Figure 16: Stability region for the AE/CE

scheme at Re = 1000.

number of evaluations depending upon the stages in the scheme. Since evaluation of f eq

is a computationally intensive step, RK-based schemes are also computationally inefficient.

Therefore, we can conclude that RK2 based OLB schemes are not particularly suitable for

flows with large non-linearities.

Fig. 14 shows the stability region for the GZ scheme for Re = 100. From the stability-

region plot, we can again see that the scheme is unstable for all ∆t/τ > 2, irrespective of

the CFL number. Thus, in spite of the implicit collision approximation, large ∆t could not

be used in the scheme. This observation is consistent with the stability analysis presented

by the authors of the scheme.

The stability regions of the AE/CE scheme are shown in Figs. 15 and 16. From the

figures, it is evident that the AE/CE scheme does allow ∆t/τ > 2, but does so only at lower

CFL number (CFL < 0.2). As Re increases, however, the explicit collision approximation

becomes inadequate, and hence the ∆t has to be smaller.

Finally, Fig. 17 and 18 show the stability regions for the BKG scheme at Re = 400 and

1000. We can observe that the simulations are stable at ∆t/τ as high as 30, and that at high

CFL numbers. The trend also does not deteriorate with increasing Re in the range that
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Figure 17: Stability region for the BKG

scheme at Re = 400.

Figure 18: Stability region for the BKG

scheme at Re = 1000.

we have tested. This demonstrates the unconditional collision stability of the BKG scheme,

with ∆t restricted only by the local CFL number due to explicit advection.

The BKG scheme is also computationally more efficient than the comparable AE/CI

scheme. This is because whereas a predictor-corrector type of scheme is needed for the

implicit collision approximation in the AE/CI scheme, a simple variable transformation

given by Eq. (4.7) is required in the BKG scheme. Additionally, the BKG scheme, as with

all advection-explicit OLB schemes, retains the data-locality feature of the LB method, and

hence can be easily parallelized.

Finally, it is important to note that we have discussed only the numerical stability of

different OLB schemes in terms of maximum allowable ∆t. However, as for all explicit ad-

vection schemes, including the BKG scheme, much smaller values of ∆x and ∆t are required

to get accurate solutions.
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4.6 DISCUSSION

In this chapter, several explicit OLB schemes were analyzed and compared by implement-

ing them for benchmark flow problems. The following conclusions can be drawn from the

observations [92]:

1. The characteristics-based OLB schemes provide higher numerical stability compared to

RK-based schemes.

2. In characteristics based-schemes, the ∆t < τ constraint no longer applies, even at high

Re.

3. The scheme proposed by Bardow et al. is stable over a much wider range of simulation

parameters (∆t/τ, ∆t/∆x) compared to other similar characteristics-based OLB schemes

for the problems tested in this work. The BKG scheme also retains the simple explicit

form of the LB method, while providing unconditional collision-stability.

These conclusions indicate that the BKG scheme provides the most stable and efficient

explicit time-marching scheme, which can be extended to flow problems with FV or FD

discretization. This scheme, in theory, can also be adopted for thermal problems with both

off- and on-lattice discrete-velocity sets [10]. There are, of course, disadvantages to using an

off-lattice scheme like the BKG scheme instead of the stream-collide scheme. Some of them

are:

1. The exact advection operation (stream-collide) is lost by using finite-difference schemes.

This leads to addition of numerical diffusion to the solution and thus reduces the overall

accuracy. This is a major disadvantage, especially for simulating turbulent flows.

2. The Lagrangian perspective of the LB method, where particles stream from one node

to another and equilibrate (collide) at the nodes is lost. In off-lattice schemes, we no

longer take a particle view. Instead, we have a set of ODEs (nine, in case of D2Q9) to

be solved at each node. Thus, the algorithmic simplicity and ease of programming of the

stream-collide-scheme is lost by using a off-lattice scheme.

3. Off-lattice are computationally more expensive than LBGK due the additional need to

calculate the spatial gradients of distributions.
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4. While LBGK has unconditional linear stability and conditional non-linear stability, off-

lattice schemes have conditional linear and non-linear stability.
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5.0 VALIDATION OF THERMAL MODEL

In Chap. 4, various alternate numerical schemes for the temporal evolution of the dis-

tributions were presented and analyzed. In this chapter, we return to the original topic

of the development of thermal LB models. Previously, we showed that the new Hermite

polynomial-based LB formulation presents a kinetically consistent way to achieve full en-

ergy conservation for both weakly and fully compressible flow cases. However, before we

present the numerical validation for it, for the sake of completeness and proper context,

a brief review and qualitative analysis of the existing thermal LB models is presented in

Secs. 5.1 and 5.2. Thereafter, in Secs. 5.3 and 5.4, we present the numerical validation of

the thermal LB models developed in Chaps. 2 and 3. More specifically, we combine the

BKG-type off-lattice Boltzmann scheme and a higher-order lattice (D2Q37, in particular) to

simulate benchmark thermal flows. The complexity is added incrementally as we move from

the off-lattice, isothermal simulations with the D2Q9 lattice, as presented in Chap. 4, to an

off-lattice, isothermal simulations with the D2Q37 lattice, presented in Sec. 5.3, finally to

the off-lattice thermal simulation with the D2Q37 lattice in Sec. 5.4.

5.1 INTRODUCTION

Conventional LB models simulate incompressible flows by solving the (weakly) compressible,

isothermal form of the Navier-Stokes equation at small Mach numbers. When the Mach

number is small, temperature and density fluctuations are O(Ma2), and hence the flow

is approximately isothermal and incompressible. This modeling error associated with this

technique is termed as the compressibility error. Although the conventional LB method
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has proven to be largely successful in solving flow problems involving many complex flow

phenomena, most of the LB models are isothermal (athermal) in nature. Thermal LB (TLB)

models, on the other hand, have not been as successful. By a thermal model, we mean a

kinetically-consistent discrete model that solves for the true temperature evolution of a

system along with ensuring full conservation of energy and a correct equation of state. In

addition, the discrete model should all incorporate of the above without introducing any

physical or numerical artifacts. Several existing TLB models are hampered by numerical

instabilities and limited parameter range. In the following paragraphs, we present some

plausible, qualitative reasons for the numerical instabilities that arise in thermal LB models.

It can be argued that a fluid flow is rarely isothermal in nature, even in the case of low-

speed flows. Consider, for example, the case of a fluid flow between two adiabatic parallel

plates. Due to the viscous conversion of mechanical energy into thermal energy, temperature

will vary spatially; and this temperature variation attains a minimum at the channel sym-

metry axis, where the local speed is at a maximum. The temperature variation can be very

small in many cases, but it increases with the local average speed and the fluid’s Prandtl

number. In the LB method, the temperature at a given node is related to the expected value,

E, of the lattice-particle’s kinetic energy; and the temperature variation is already captured,

since E varies from node to node in accordance to the local macroscopic velocity. How-

ever, in the athermal LB model (D2Q9-based models), the spatial non-equilibrium arising

from the thermal gradients is not captured numerically, in terms of heat (energy) flow, since

athermal models are not formulated for describing this energy transfer. Thus, temperature

gradients in athermal LB simulation cannot be avoided-they can only be kept small. When

the gradients are not accounted for through heat transfer (ensuring energy conservation, in

essence), they can, possibly, become sources of instabilities in the numerical scheme. It can

be conjectured that the numerical stability issues in other simulations, such as multiphase

flow, can be attributed to the lack of energy conservation in the athermal model.

On the other hand, Luo and his co-workers argued that the lack of energy conservation

may not be the only fundamental cause of instabilities in thermal LB models [67]. They

argued that the single-relaxation time (BGK) collision model may itself be the source of

the instabilities [36], and proposed the multiple relaxation time (MRT) model to address
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them. The MRT model can be considered as an extension of the linearized collision operator

discussed briefly in Chap. 2. However, the main aim of MRT models was to address stability

issues when the local flow velocity increases, and not thermal LB in itself. Some authors

have also argued that the cause of instability comes from a numerical analysis perspective by

pointing towards the tight coupling between the velocity space and the physical space for the

advection scheme leading to CFL = ξi∆t/∆x = 1. From a more fundamental (statistical

mechanics) point of view, the origin of the reduced stability of thermal lattice Boltzmann

models was attributed to the lack of a global H-theorem [7, 117]. The H-theorem aims to

links the reversible processes at the microscale to the irreversible processes at the macroscale.

Although the validity of theH-theorem is still being debated, compliance with theH-theorem

is often considered as a requirement for numerical stability in computational physics [113].

Thus, in spite of these works, to the best of the author’s knowledge, a consensus still has

not been reached on the fundamental cause of the numerical instabilities of the thermal

LB models. In the absence of a general thermal LB model that models all types of flows

(incompressible and compressible), several thermal LB models have been developed that are

applicable for specific situations. An overview of them is presented below.

5.2 EXISTING THERMAL LB MODELS

This section describes, in brief, the previous attempts made at developing thermal lattice

Boltzmann models. The thermal LB models that have been proposed can be broadly classi-

fied as: the passive-scalar (including a hybrid variation) model, the double-distribution, and

the multispeed models1. Only, the essential features of these models are presented below. A

detailed survey of the proposed thermal models can be found in [47] (N.B. Chapter 5).

1Thermal LB can also be classified into energy conserving and non-energy conserving models. While
the double distribution and most multispeed thermal LB models are, in a limited sense, energy conserving,
passive scalar is not.
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5.2.1 Passive Scalar Model

The passive scalar (PS) model is the most popular and straightforward approach to imple-

menting a thermal LB model. This method is based on an assumption that the macroscopic

temperature field satisfies an evolution equation that is the same as that of a ’passive-scalar’

In this context, a passive scalar implies a variable (scalar) that is just advected by the flow,

but does not affect the flow (density and velocity) by itself, i.e., θ(x, t)← u(x, t). Moreover,

by assumption, there are no sources or sinks for the temperature, and it has no effects on

the fluid material properties. This is a reasonable assumption in the case of incompressible

single-phase flows, where the viscous heat dissipation and the compression work are often

negligible. Physically, the passive-scalar approximation is applicable not just for tempera-

ture, but for any conserved scalar, for example, it can be used for modeling concentration of

trace species (pollutants, tracers, chemical species) etc. In fact, the passive-scalar originated

from the more general multicomponent flow LB model[102].

In terms of the algorithm, two distributions are used in the passive scalar model: a

density distribution, fi, for density and momentum fields, which satisfy the Navier-Stokes

equation; and a thermal distribution, hi, for the temperature field which satisfies the following

advection-diffusion type equation:

∂T

∂t
+ u · ∇T = α∇2T, (5.1)

where α is the thermal diffusivity. The evolution of hi is identical to that of fi:

hi(x+ ∆x, t, t+ ∆t) = hi(x, t)−
1

τT
(hi(x, t)− heqi (x, t), (5.2)

where τT is a dimensionless thermal relaxation time corresponding to the rate at which the

temperature dynamics approach their equilibrium heqi . Numerically, Eq. (5.2) is solved on

the same numerical grid as that of the density distribution. heqi is the second-order thermal

equilibrium distribution:

heqi = wiT

[
1 + ξi · u+

1

2
(ξi · u)2 − 1

2
u2

]
. (5.3)
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Analogous to density, the temperature at a node is the defined as the sum of all the thermal

distributions at a node:

T =
∑
i

hi, (5.4)

and the thermal diffusivity is related to the thermal relaxation time through (in lattice units):

α =
1

3
(τT −

1

2
). (5.5)

It should be noted that for a numerically stable and accurate simulation using the passive

scalar method, thermal diffusivity cannot be faster than the momentum diffusivity, ν, leading

to the restriction on the Prandtl number that Pr = ν
α
≤ 1. Since passive-scalar method

was not formulated to ensure energy conservation, it serves as a good approximation only for

thermal flows involving liquids and low-speed incompressible gas flows, where the Boussinesq

approximation is valid (as discussed in Sec. 5.4.2).

5.2.2 Double Distribution Model

The work of He and Luo [55] showed that the isothermal lattice Boltzmann equation can

be derived directly from the Boltzmann equation through a suitable phase and space-time

discretization. Using the same principle, He et al. [54] proposed the double-distribution

function model (DDF), or multi-lattice thermal model, where the thermal effects in a flow

can be modeled by independently discretizing the continuous Boltzmann equation for the

internal energy distribution, in addition to the density distribution. Consequently, there

are two separate distributions and two separate evolution equations: one equation for the

density distribution, which governs the evolution of the density and velocity fields; and the

other for the internal energy distribution, which governs the evolution of the temperature

field.

It has been shown that this model is simple and applicable to problems with different

Prandtl numbers. More importantly, this model requires a low-order moment of the internal

energy distribution, and its numerical stability is similar to that of the passive-scalar method.

On the other hand, because the new scheme directly simulates the evolution of the internal
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energy, the viscous heat dissipation and compression work done by the pressure can be

naturally incorporated, unlike the passive scalar model. Lattice velocities for this method

are the same as in the D2Q9 model, and the both the equilibrium distributions are expanded

to second-order in local flow velocity. A major shortcoming of this model, from a multiphase

and fully compressible flows perspective, is that the equation of state is independent of the

temperature. This deficiency means that, like the passive scalar model, the DDF model

is suitable for thermal flows where Boussinesq approximations can be made or flows where

Mach number is small.
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5.2.3 Multispeed Model

Multispeed thermal models based on the LGA theory were built by an extension of the

isothermal LB formulation of Qian et al. [90]. In general, multispeed models have more

than nine velocities in the lattice in two dimensions, involve the equilibrium distribution

expanded to the third order or more O(u3), and attempt to ensure to full energy conser-

vation. The first multispeed thermal model was proposed by Alexander et al. [5], who

extended the second-order equilibrium distribution of Qian et al. to a third-order model,

along with a thirteen-velocity discrete lattice. Thereafter, McNamara and Alder found a

set of thirteen and twenty-six moment restrictions that the equilibrium distribution must

satisfy in order to retrieve the correct advection-diffusion macroscopic equations in two and

three dimensions, respectively [75]. Some nonlinear artifacts (deviations) in the momentum

and energy equations present in the model of Alexander et al. were observed by Chen et

al. [30], who corrected them by introducing a fourth-order polynomial expansion of the

equilibrium distribution by fitting adjustable parameters. They used combinations of square

lattices for satisfying the restrictions imposed by the Chapman-Enskog analysis and found

a sixteen velocity lattice in two dimensions and a lattice with forty-one velocities in three

dimensions. McNamara et al. further attempted to improve the numerical stability of their

thermal model [75] by adding numerical diffusion via a finite-difference based Lax-Wendroff

type advection scheme, instead of the standard first-order upwind (streaming scheme) [76].

Vahala et al. proposed velocity lattices with better and higher order symmetry that do not

coincide with a physical lattice (non-space filling lattices) [121].

Unlike the unconditionally stability of the isothermal LB method, all of the above ther-

mal models have stability issues and a limited parameter range. The LGA-based thermal

models were devised in a top-down fashion, where both the discrete velocities and functional

form of the equilibrium distribution were set a priori, and coefficient matching was done

through the Chapman-Enskog expansion to obtain the required thermohydrodynamics. The

coefficient-matching procedure is somewhat empirical, and therefore does not have a funda-

mental mathematical or physical footing in kinetic theory. That is, there is no formal link

connecting the multispeed thermal LB models to the Boltzmann equation.
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It should be emphasized that some of the above methods (and their variations) present an

accurate and efficient method to incorporate heat transfer and thermal effects for low-speed,

moderate Rayleigh number, incompressible flows with the Boussinesq approximation, with

varying Prandtl numbers. However, when these models are extended for use with multiphase

or multicomponent flows, they become numerically unstable, or their applicability range is

limited. Moreover, the temperature described in the above models does not coincide with true

temperature in the sense of thermodynamics and statistical mechanics (kinetic consistency).

Hence, as mentioned before in Chap. 1, we formulated the Hermite-based thermal LB model,

which provides us a kinetically-consistent thermal LB model that can be extended to a wider

parameter range and to other complex flows. The validation of the thermal models that were

developed in Chaps. 2 and 3 is presented in the following sections.
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5.3 OFF-LATTICE SCHEMES WITH HIGHER-ORDER LATTICES

(ISOTHERMAL CASE)

As mentioned before, due to the ease with which wall-boundaries can be handled with

finite-difference discretization, we employ the off-lattice temporal evolution of distributions

to model thermal flows, instead of the standard stream-collide scheme. However, before

extending the off-lattice scheme to thermal flows, we first validate the use of the BKG

scheme, in particular, with the D2Q39 velocity-set, for isothermal flows. The numerical

experiments involved in this validation are presented below.

The numerical testing and validation performed previously was done in order to com-

pare and analyze the numerical stability of the various off-lattice schemes. The question of

numerical accuracy, especially in conjunction with higher-order velocity-sets, was not ad-

dressed. The numerical accuracy of a simulation depends on the effective viscosity of the

OLB scheme used. The effective (overall) viscosity can be considered as a combination of

the actual physical viscosity and the artifact of numerical viscosity. While, the physical

viscosity of the fluid is controlled by the relaxation time τ, through the relation ν = c2
sτ,

additional non-physical (numerical) viscosity is effected on the simulations due to the finite

space-time discretization. Although, numerical viscosity marginally adds to the stability of

the scheme, it nonetheless decreases the accuracy of the simulation. On the other hand,

in the stream-collide type LB scheme, the numerical viscosity can be quantified a priori

through the Chapman-Enskog procedure, and hence can compensated (corrected) by incor-

porating it in the viscosity-relaxation-time relationship. Due to this fact, the conventional

LB method is said to have exact advection (diffusion and dispersion free). However, for the

off-lattice temporal schemes and different spatial discretizations (FD or FV), it is difficult

to obtain such compensating factors, beforehand. Therefore, it is important to numerically

characterize and quantify the effects of finite discretization (through parameters) on the

overall accuracy of the scheme.

In the following section, we investigate the effects of discretization parameters (∆x,∆t)

of numerical accuracy resulting from using the BKG scheme along with the D2Q39 lattice.

This investigation will allow us to find the correct ν − τ − λ relationship which would be
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useful for the subsequent validation tests. It also provides us a useful test to implement the

BKG scheme with the D2Q39 lattice (a first to the author’s knowledge); although it has

been used with a entropic lattice Boltzmann based higher-order velocity-set [10].

5.3.0.1 Decay of a shear-wave In order to check and quantify the effects of the

discretization parameters (∆x and ∆t) on the effective viscosity, we model the attenuation

(decay) of a two dimensional shear-wave, whose wavelength equals the system size L. The

shear-wave decay problem is often used to check the effective (overall) viscosity of a numerical

scheme since exact closed-form solutions are available for both velocity and effective viscosity.

As the initial conditions, the shear wave is initialized with the following velocity profile:ux(x, y)|t=0 = u0 sin(2πy)

uy(x, y)|t=0 = 0

(5.6)

Assuming ux = ux(y, t), and negligible pressure difference, the decay of the shear wave is

governed by following simplified isothermal Navier-Stokes momentum equation:

∂ux
∂t
− ν ∂

2ux
∂y2

= 0 (5.7)

where ν is the physical viscosity. Given the initial velocity condition per Eq. (5.6), an

analytical solution of Eq. (5.7), at time t, can be calculated in a closed-form as:

ux(y, t) = u0 exp(−k2νt) sin(ky) (5.8)

When the decay of the shear-wave is solved numerically on a grid, the effective value of the

kinematic viscosity νe observed in the simulation results can be obtained from:

νe =
1

k2t
log
A(0)

A(t)
, (5.9)

where A(t) is the Fourier coefficient given by [110]:

A(t) =

ˆ L

0

ux(y, t) sin(ky). (5.10)

The objective of performing this investigation is to compute νe through simulations which

can then be compared to the physical velocity ν = c2
sτ. This will provide us a measure of
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the difference between the actual and effective viscosity. From the simulation results, A(t)

can be computed with the knowledge of the velocity profile ux(y, t), and therefore νe can

be computed per Eq. (5.9)2. The apparent viscosity is a function of the numerical scheme

(BKG scheme in this case) used to solve the shear-wave decay, and thus a function of ∆t

and ∆x. That is, for a finite ∆x and ∆t, νe has contribution from both the physical and

numerical viscosity. In an ideal numerical simulation, of course, the apparent viscosity will

be equal to the physical viscosity.

5.3.0.2 Simulation Setup We now test the accuracy of the off-lattice BKG scheme

along with D2Q37 velocity set for the isothermal shear wave decay problem (θ = 1) described

above. The discrete velocities of D2Q37 are as listed in Appx. B and the discrete, fourth-

order equilibrium is per Eq. (3.11). It should be noted that, in the BKG scheme, the

relaxation time is related to the modified relaxation time through:

λ = τ +
∆t

2
. (5.11)

In the simulations, u0 = 0.01, so that incompressible flow limit is ensured, and τ is kept

constant at τ = 0.01. The physical viscosity is calculated on the basis of τ and not λ.

Also note that here we have taken cs = 1, and therefore ν = c2
sτ = 0.01. The system size

is assumed to L = H = 1, the magnitude of the wave-vector is k = 2π/L, and periodic

boundary conditions are applied in both the x- and y- directions.

5.3.0.3 Results For the above mentioned flow parameters, Fig. 19 shows the time his-

tory of the decay of the shear wave, expressed through the velocity profile of ux(y, t). An

exponential decay, as predicted by the analytical solution (Eq. (5.8)), can be observed. More

importantly, this solution provides a validation for the use of an off-lattice (BKG) scheme

with the D2Q37 lattice.

We now discuss the accuracy estimates for the BKG scheme. Fig. 20 plots the effective

velocity, and the percentage error between the effective and actual viscosity, a for particular

2The matplotlib’s (Python) simps functionality can be used to evaluate the integral in Eq. (5.10), given
that ux(y, t) is available.
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Figure 19: Time history of decay of shear wave. Results are obtained on a 100 × 100 grid

with ∆t = τ = 0.01.
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size of ∆x. We can observe that for a given grid size, reducing ∆t decreases the difference

between the two viscosities, thus enabling better accuracy in the simulations.

Similarly, Tab. 3 shows the percentage difference between the effective and physical

viscosity for fixed size of ∆t. Once again, we can infer that for a given ∆t, reducing ∆x

gives more accurate simulations. These observations are consistent with explicit schemes

for solving PDEs, where much smaller values of ∆t and ∆x (smaller than that required for

stability) are required to obtain accurate solutions.

From the shear-wave decay problem we can make the following inferences:

1. Reynolds number of the flow should be calculated on the basis of the relaxation time, τ

and not the modified relaxation time.

2. As with all explicit advection schemes, numerical diffusion (errors) tends to zero with

both ∆t, ∆x → 0 as indicated in figures and tables. Per Eq. (5.11), it is also obvious

that as ∆t → 0, the overall viscosity, νe = c2
sλ tends to the physical viscosity ν = c2

sτ.

This also highlights the unavoidable consequence of OLB schemes, namely the numerical

diffusion errors, which do not exist the stream-collide type schemes. Moreover, in any

explicit OLB scheme, accurate solutions are obtained at very small CFL values (< 0.1),

compared to the stream-collide type scheme, where CFL = 1, which results in longer

computational run-time for the same sized mesh.
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Figure 20: Values of effective viscosity, νe (blue dots), and percentage error between the

effective and physical viscosities (red) as a function of time-step. The physical viscosity is

ν = 0.01 (constant).

Table 3: Percentage difference between effective and physical kinematic viscosity for various

∆x. Results are based on the D2Q37 velocity-set, τ = 0.01 and ∆t = 0.01τ .

∆t 65× 65 129× 129 257× 257

Eν 14.5 4.6 0.04
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5.4 VALIDATION OF THE THERMAL MODEL

5.4.1 Thermal Couette Flow

We now proceed towards validation of the thermal model developed in Chaps. 2 and 3. The

first validation test we present is that of the thermal Couette flow. The (planar) thermal

Couette flow represents the two dimensional flow of a fluid between two parallel flat plates

kept at different temperatures. Fig. 21 provides a schematic of the flow. The thermal Couette

flow not only provides a good benchmark test to validate the thermal model, but also the

boundary scheme described in Sec. 4.4. If we assume no body forces (gravity), steady state

conditions, constant material properties, no internal heat sources, and negligible pressure

gradient along the channel, then the governing equation for the incompressible thermal

Couette flow of an ideal gas can be written as:µ
∂u2x
∂y2

= 0

k
µ
∂2T
∂y2

+ ∂
∂y

(
u∂ux
∂y

)
= 0

(5.12)

As shown in Fig. 21, if we apply the following boundary conditions:

u(x, t)|y=0 = 0

ux(x, t)|y=H = Ut, ux(x, t)|y=H = 0

θ(x, t)|y=0 = θb

θ(x, t)|y=H = θt = θb + ∆θ

(5.13)

the temperature profile along the height satisfies the following analytical solution of Eq.

(5.12):
θ − θb
θt − θb

=
y

H
+
PrEc

2

y

H

(
1− y

H

)
, (5.14)

where θt and θb are the top and the bottom wall temperature, respectively, y is the distance

from the bottom wall, H is the height of the channel, Pr = ν/α is the Prandtl number, and

Ec = U2
t /cv(θt − θb) is the Eckert number. The combined effects of the Prandtl and Eckert

number can be parameterized through the Brinkman number: Br = PrEc.
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Figure 21: Schematic and simulation setup for thermal Couette flow

The accuracy of the thermal model is evaluated by carrying out simulations for the

thermal Couette flow at different Brinkman numbers. The D2Q37 lattice, along with the

fourth-order form of the equilibrium distribution function (Eq. (3.11)), is used for all of

the cases. Since the BGK collision model is used, Pr = 1. For all the simulations, we use

the following simulation parameters: θb = 1.0, θt = 1.0001, H = 1, and τ = 5 × 10−3. The

mesh size is 257 × 257 and the time step is kept small, (∆t = 0.05τ), in order to obtain

accurate results. Keeping the temperature gradient and the above parameters fixed, the

top boundary speed, Ut, is varied to obtain different Br simulations. Periodic boundary

condition is enforced in the x-direction and the extrapolation boundary scheme is used to

prescribe the temperature and no-slip velocity on the walls.

Fig. 22 shows the solution obtained using the D2Q39 lattice for various Brinkman

number. Physically, increasing the Brinkman number increases the viscous dissipation in

the fluid. We observe that the simulated temperature solution agrees with the predicted

analytical one for the range of Brinkman numbers tested here. Even near the boundaries the

profiles match closely, validating the boundary treatment used. It is clear that the D2Q39-

based thermal model is capable of simulating viscous dissipation over this wide range.
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Figure 22: Temperature profiles in thermal Couette flow for various Brinkman numbers. The

solid lines indicate an analytical solution and markers (�) indicate the simulated solutions.

Solutions are obtained on a 257× 257 grid.
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5.4.2 Rayleigh-Benard Convection

The next validation test we perform is the modeling of Rayleigh-Benard convection. This is

a classical benchmark test for validating thermal models. A viscous fluid is enclosed between

two parallel stationary walls, such that the fluid is heated from the bottom, and the fluid

experiences the gravity force, as shown in Fig. 23. Since the fluid near the bottom wall

is hotter, it has a smaller density, while the fluid near the top wall is colder and hence

has a larger density. Gravity drives the colder and heavier fluid to the bottom, but this

is opposed by the viscosity of the fluid. A balance between these two forces keeps the

system in equilibrium and the heat transfer is entirely due to diffusion (conduction). As

the temperature difference is raised above a certain threshold, the buoyancy force increases,

the static conductive state becomes unstable, and convection occurs abruptly. The non-

dimensional number that characterizes the flow is the Rayleigh number, Ra,

Ra =
gβ∆θH3

νκ
= Pr × gβ∆θH3

ν2
(5.15)

where g is the gravity acceleration, ∆θ is the wall temperature difference, H is the vertical

distance between the walls, and ν is the kinematic viscosity of the fluid. The ratio on the

right hand side is called the local (non-dimensional) Grashof number, Gr. The Grashof

number can be viewed as the ratio of the buoyancy and viscous forces acting on a unit

mass of the fluid; while the Rayleigh number characterizes the combined effects of the flow

parameters and the fluid material properties. When the Rayleigh number is below a critical

value for that fluid, heat transfer is primarily in the form of conduction; when it exceeds a

critical value, heat transfer is primarily in the form of convection.

5.4.2.1 Boussinesq Approximation In order to simulate the Rayleigh-Benard con-

vection for the widest possible parameter range (Ra) and without any approximations, a

thermal model should ensure total energy conservation, even for compressible flows. How-

ever, for a wide variety of engineering flows, the modeling can be simplified by making the

incompressibility assumption (density is independent of pressure), even for flows driven by

external body forces (gravity for example). Under this assumption, the body force (ρG)
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entering the momentum equation can be modeled using the so-called Boussinesq approxi-

mation [111, 124]. Per the Boussinesq approximation, the density field can be treated as

a constant in both the continuity and the momentum equations, except in the body force

(gravity) term. That is, ρ(x, t) is considered to be independent of the pressure (i.e., in-

compressibility is assumed), and to depend linearly on the temperature θ(x, t), such that

ρG = ρrefβg(θ(x, t) − θm)j. With this approximation, the Navier-Stokes equation, can be

written as [66]:

∇ · u = 0 (5.16)

Du

Dt
= − 1

ρref
∇p+ ν∇2u+ βg(θ − θref )j (5.17)

Dθ

Dt
= α∇2θ (5.18)

where ρref is the reference (mean) density corresponding to the mean temperature field θref .

Boussinesq approximations are commonly employed in many flow models, for example, in

the analysis of wave propagation in a density-stratified medium, oceanic and atmospheric

flows, natural convection based ventilation systems, etc. This approximation is valid only if

the Mach number of the flow is small, propagation of sound or shock waves is not considered,

the vertical scale of the flow is not too large, and the temperature differences in the fluid are

small. Material properties of the fluid, such as µ, k, and cp are also assumed constant. In

terms of the energy equation, heating due to viscous dissipation of energy and pressure work

are negligible under the above approximations. Temperature behaves like a passive scalar

being advected by the flow.

In the LB context, the Boussinesq approximation is incorporated through the forc-

ing term. The force driving the flow is implemented using the Shan-Chen type ’shifted-

equilibrium’ scheme [102, 96]. It should be noted that, here, both velocity and temperature

are shifted to account for the presence of a body force. That is:

u(eq) = u+ g
∆t

2
(5.19)

θ(eq) = θ +
(∆t)2g2

4D
(5.20)
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Figure 23: Schematic for Rayleigh-

Benard convection
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Figure 24: Simulation setup for Rayleigh-

Benard convection

Here, ueq and θeq are the ’shifted’ velocity and temperature, respectively, which are used to

compute the equilibrium distribution functions. u and θ are the usual (lattice) velocity and

temperature, computed through moment summations (Eq. (3.15)).

5.4.2.2 Problem Formulation and Simulation Setup For simulating the Rayleigh-

Bernard convection, we consider two plates separated by a vertical height H, as shown in

Fig. 24. Between the plates is a (ideal) fluid with Pr = 1. The Prandtl number is constant

due to the BGK model used in the simulations. As boundary conditions for the top and

bottom walls, constant temperature and no-slip velocity condition are prescribed:


u(x, t)|y=0 = u(x, t)|y=H = 0

θ(x, t)|y=0 = θb

θ(x, t)|y=H = θt

(5.21)

Periodicity is maintained in the x− direction for both temperature and velocity. As an initial

condition, the fluid is assumed to be at rest and temperature is linearly stratified along the

height: u(x, y, )|t=0 = 0

θ(x, y)|t=0 = θref + ∆θ y
H

(5.22)
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For the fluid under consideration (ideal gas), the coefficient of thermal expansion, β, is

defined as:

β = −1

ρ

(
∂ρ

∂θ

)
p

=
1

θ
. (5.23)

For computing the Rayleigh number, we use the expansion coefficient evaluated at a tem-

perature θref = θb. Therefore, β = 1/θb. We fix the bottom and top wall temperatures to

be 1.0 and 1.001, respectively, and H = 1. That is θref = θb = 1.0 and θt = 1.001. Once

the height H and the temperature difference (θt − θb) across the walls are fixed, the entire

simulation is determined by just two parameters, τ and g. With the above simulation values,

the Rayleigh number reduces to:

Ra =
g∆θ

ν2
. (5.24)

In addition, the characteristic velocity is a free parameter, which is kept small, so as to ensure

the small Mach number (incompressibility) condition. Different Rayleigh number simulation

results are obtained by varying τ and g. The enhancement of heat transfer due to the onset

of Rayleigh-Benard convection can be described by the Nusselt number:

Nu = 1 +
〈uyT 〉H
k∆θ

, (5.25)

where uy is the velocity in the y direction, k is the thermal conductivity of the fluid, and

〈·〉 represents the average over the whole flow domain. As before, the D2Q37 velocity set

along with the fourth-order equilibrium distribution function O(u4, θ) is employed in the

simulations. For the top and bottom walls, the boundary scheme as detailed in Sec. 4.4 is

used and periodic boundaries are applied in the x direction. The grid size is 257 × 129 for

all the solutions presented here.

5.4.2.3 Results At a Rayleigh number below the critical value, Rac, the perturbation

given to the system through ∆θ is dissipated by the viscosity and the maximum velocity in

the domain gradually reduces to zero. The heat transfer in this state is purely conductive.

Above the critical Rayleigh number, convection ensues and the maximum velocity eventually

reaches a finite value. For the given flow domain, the critical Rayleigh number is given by the

linear stability theory and confirmed by laboratory experiments. Per the method outlined in
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[100], the critical Rayleigh number is calculated by interpolating the growth rate of maximum

velocity at a Rayleigh number slightly higher than Rac, and the decay rate at a slightly lower

rates. On the grid size of 50 × 26 and 100 × 51, we observed Rac of 1718.45 and 1713. 71,

respectively. This is close to the predicted theoretical value of 1707.76.

The steady-state temperature distribution, in the form of filled contours, at different

Rayleigh numbers is shown in Fig. 25. As observed in the figure, heating from below,

causes the fluid to flow upwards, while the colder fluid from the top gets pushed downwards,

resulting in an increase in temperature in the central region due to mixing of the two streams.

As the Rayleigh number increases, this mixing is enhanced, thereby increasing the heat

transfer.

Pseudo color maps for the velocity are presented in Fig. 26. From the velocity maps,

we observe that when the Rayleigh number is 2000 ≤ Ra ≤ 5000, the flow converges to

convection rolls which are steady (not shown here); when 5000 ≤ Ra ≤ 10000, these rolls

oscillate in a sinusoidal fashion instead of converging to a steady pattern. For Ra = 20000,

the behavior of the flow becomes totally random at first but eventually takes a more struc-

tured form. Finally for Ra > 20000, the velocities have less structured patterns, as shown

in Fig. 26.

To test the quantitative accuracy of the D2Q39 model, we plot the relationship between

the Nusselt number, calculated as per Eq. (5.25), and the corresponding Rayleigh number in

Fig. 27. The simulation results from Clever and Busse [33] are also included for comparison.

The current model is in agreement with [33], and it also agrees with the passive-scalar, DDF,

and the entropic LB based thermal models [54, 89, 100].

5.4.3 Discussion

We conclude the presentation on thermal LB by discussing the various existing models and

their broad methods of formulation, as presented in the review above. While the Hermite-

based LB construction, in theory, offers an elegant, consistent way to obtain a thermal model

applicable for the wide range of flows (weakly compressible and compressible), it is not com-

putationally attractive for purely incompressible flows (with the Boussinesq approximation).
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Figure 25: Filled contours for the normalized temperature (θ − θb)/(θt − θb) for Rayleigh-

Benard convection, where (a) Ra = 104, (b) Ra = 5 × 104, and (c) Ra = 105. Twenty one

equally distributed contours have been plotted.
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Figure 26: Psuedo color map for velocity u =
√
u2
x + u2

y for Rayleigh-Benard convection,

where (a) Ra = 104, (b) Ra = 5× 104, and (c) Ra = 105. Red indicates maximum and blue

indicates minimum.
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Figure 27: The dependence of Nusselt number on Rayleigh number. Also included are the

simulation results by Clever and Busse [33], as well as the empirical power-law: Nu =
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0.296.
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We note that, the above results for the incompressible Rayleigh-Benard convection can be

obtained accurately and more efficiently using the passive scalar, DDF method or the en-

tropic LB-based guided equilibrium method, instead of the more expensive, D2Q39 model, as

presented here. But it should remembered that the main strength of the higher-order models

(D2Q39) lays in solving weakly and fully compressible thermal flows, not just incompressible

ones. The actual strength of the higher-order models lies in its ability to simulate very high

Ra number flows, without any Boussinesq-type assumptions. Investigations in this regard

are left for future work. Additionally, the D2Q39-based models also have an inherent ability

to incorporate heat sources (not validated here), which is absent in the passive scalar model.

It is also attractive for modeling aeroacosutic flows (with suitable turbulence model), and,

in general, high-speed compressible flows [72].
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6.0 SERIAL AND PARALLEL IMPLEMENTATION OF A OFF-LATTICE

HIGHER-ORDER LB CODE

The discussion thus far dealt has with the technical aspects of Hermite-polynomial based

LB formulation and its validation on isothermal and thermal benchmark cases. In this

chapter, we focus on their computer implementation related aspects. We start by introducing

some salient features of the modern, large-scale, CPU-based computing systems and their

architecture in Sec. 6.1. The hardware features of these systems are then leveraged to tune,

and parallelize a off-lattice higher-order code. First, the algorithm and functions involved

in a typical OLB scheme (in this case the BKG scheme code) are described in Sec. 6.2.

Thereafter, in Sec. 6.3, we discuss optimization of a OLB code using the cache-optimization

techniques. In Sec. 6.4, the optimized serial code is then extended to multicore shared-

memory systems using OpenMP.

6.1 MODERN CPU AND HPC ARCHITECTURE

Before discussing the cache-optimization and parallelization techniques employed for the

OLB code, it is important to discuss, in brief, some salient features of modern computer

hardware architecture. Knowledge of the underlying hardware architecture is crucial in the

design, implementation, and performance of any scientific application, and hence an overview

is useful. The discussion focuses on multicore CPUs and systems built on them.
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6.1.1 CPU Architecture

6.1.1.1 Multicore processors Scientific computing has become a ubiquitous tool in

the scientific method alongside theory and experimentation. It is increasingly used across

diverse fields such astrophysics, fluid dynamics, drug discovery, and linguistics, to just name

a few. This progress over the past four decades has been largely attributed to the rapid ad-

vances in computer hardware. As famously predicted by Gordon Moore, for several decades,

starting around 1970s, the number of transistors on a chip (computational power) doubled

roughly every two years [78]. The increase in computational power was attained mainly

by, increasing the number of transistors and their clock-rates in the CPU, along with with

several advanced, low-level (parallel) hardware techniques, such as pipelining, super-scalar

architecture, instruction-level parallelism, SIMD instructions, etc. [38, 52] Despite these ad-

vances, in the mid-2000s, engineers concluded that the performance could not be increased

any further, due to an inability to dissipate the immense heat generated by the larger, more

complex CPUs.

Multicore CPUs were developed to address the heat dissipation problem associated with

singlecore CPUs (uniprocessor) with large clock-rates (> 3GHz). In multicore CPUs, instead

of having only one core (processor) with a high clock-rate, there are several cores with lower

clock-rates. In other words, the cores are not getting faster anymore, but they are being

multiplied. Here, a CPU is understood to be a physical unit that occupies a single socket on

a board, that contains several cores inside it1. Moreover, multicore processors have not only

increased the computing power, but also made the processors more energy efficient. Today,

it is common to have 4 to 8 cores per processor for home/small business use and, up to 16

cores per processor for enterprise/server use [6].

In addition to consumer and enterprise sectors, multicore processors also have had a sig-

nificant impact in the field of scientific computing. Before their arrival, large-scale scientific

computing was dominated by supercomputers build upon specially designed processors, such

1In the past, a CPU was the singular execution component for a computer. Then, multiple CPUs were
incorporated into a node of a computing cluster. In the multicore times, individual CPUs were subdivided
into multiple cores, each being a unique execution unit. CPUs with multiple cores are sometimes also called
’sockets’. Therefore, a desktop has one CPU with multiple core, whereas a node in a cluster has multiple
CPUs, each containing multiple cores. Nodes are building blocks for clusters, regardless of node type.
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as vector processors by Cray, NEC, etc., and scalar processors, such as PowerPC by IBM.

Although such computing systems still exist, most of the modern high-performance com-

puting (HPC) clusters and supercomputers are based on commodity, off-the-shelf, multicore

processors, that are not primarily designed for scientific computing [52]. Today, a modern

HPC cluster which is used for large-scale scientific applications, has hundreds to thousands

of CPUs (with multiple cores) connected to each other via a high-speed interconnect.

6.1.1.2 Cache Hierarchy in Multicore Processors While the overall CPU speed

kept on increasing rapidly through multicore CPUs and other low-level hardware features,

advances in memory-speed and its bandwidth (i.e. speed and amount of data from memory

to the CPU) has lagged behind CPU progress. Very often, memory-access time are much

higher than the time required to perform floating-point operations (arithmetic operations), a

phenomenon known as the DRAM gap [56]. Consequently, for memory-inefficient programs,

it is common for a CPU to spend most of its time waiting for data to arrive from memory.

In modern multicore processors, the DRAM gap is ingeniously hidden by using hierarchi-

cal levels of memory called as cache memory, or just caches. Cache memory are low-capacity,

high speed memories that are integrated on a chip along with the CPU. Caches contain copies

of main memory to speed up access to frequently needed data. In general, the closer the

cache to the CPU, the faster the bandwidth, but the smaller its size. A typical memory

hierarchy that can found in a multicore CPU is shown in Fig. 28.

6.1.1.3 Memory Architecture Shared Memory

In a shared-memory based architecture, all cores in a CPU share a common, global,

memory or address space. The cores and the processes running on the cores, can operate

simultaneously and independently, but share the same memory resources. Figs. 29 and

30 show a schematic of the two variants of shared-memory architecture. If the layout of

the cores around the memory is such that the memory-access times for each core is equal,

such shared memory machines are called as Uniform Memory Access (UMA). UMA is also

referred to as Symmetrical Multiprocessor machines (SMP). UMA architecture is generally

not amenable to large-scale scaling due to memory bandwidth limitations [52].
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 Capacity Bandwidth Latency 

L1D 32 kB 45 GB/s 4 CPU cycles 

L2 256 kB ~30 GB/s 10+ CPU cycles 

L3 6 MB ~ 20 GB/s 35+ CPU cycles 

RAM 8 GB < 8.5 GB/s >100 CPU cycles 

Figure 28: Typical cache memory hierarchy found in desktop range multicore CPUs.

Computer architecture where a core can access its own memory faster than other core’s

memory is called a Non-Uniform Memory Access (NUMA) machine (see Fig. 30). NUMA

machines are built by scaling (linking) two or more SMP’s by means of a bus interconnect.

Here, unlike UMA, memory (address space) might be physically distributed, but logically

shared. Moreover, if cache coherency is maintained across all cores, then such machines

are also be called Cache Coherent NUMA (cc-NUMA). A workstation with multiple sockets

(with 8-16 cores) can be considered NUMA. On a larger scale, the UV series of SGI, Inc.

and the XE6 line of Cray, Inc. are examples of large scale NUMA. Locally, ’Blacklight’ of

the Pittsburgh Supercomputing Center has a SGI UV1000 system with 4096 cores.

From a programming point of view, UMA and ccNUMA work transparently and the pro-

grammer does not need to be concerned about inter-core communication, cache coherency,

etc. Therefore, shared-memory systems provides a user-friendly programming model, through

which an application can be relatively easily parallelized to fully exploit the multicore hard-

ware.

Distributed Memory

In a distributed-memory architecture, the individual CPUs have their own local memory,

but the memory addresses in one CPU does not directly (without explicit communication)

map to another CPU. Therefore, the memory is not only physically, but also logically dis-
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Figure 29: Uniform memory access

(UMA) architecture.

Figure 30: Non-uniform memory access

(NUMA) architecture. Here, each core

has its own hierarchy of L1 and L2 caches.

L3 caches are shared among cores within

a socket.

tributed. The CPUs are connected to each other through an interconnect (network), where

the speed of interconnect can be as fast as a Infiniband, or as slow as an ethernet network.

Fig. 31 shows a schematic of the distributed memory architecture.

A Beowulf cluster is a typical example of distributed memory architecture. This con-

figuration, built on commodity processors, was popular in the 1990 and 2000s since they

provided an inexpensive way to attain higher computational power using commodity single-

core CPUs. The main advantage of the distributed-memory architecture is that it scales

very efficiently with increasing the number of processors and size of memory. It is also cost

effective since it is built of off-the-shelf CPUs and networks.

When a processor needs access to data in another processor, the programmer has to

explicitly define how and when data is communicated. Synchronization between tasks is

likewise the programmer’s responsibility. Also, it is often difficult to map existing data

structures, based on global memory, to a distributed-memory layout. All of these complex-

ities make distributed memory programming much more complicated than shared-memory

programming.
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Figure 31: A typical distributed memory architecture with a single CPU per node. Figure

adapted from [12].

Hierarchical (hybrid) Memory

Modern large-scale parallel computers are seldom based on purely shared-memory or

purely distributed memory architecture; in fact, they are built as a combination of both. That

is, several hundreds of shared-memory blocks are connected via a fast high-speed interconnect

to form a hybrid-memory system. The CPUs within a shared-memory block, which constitute

a node, share a global memory; while CPUs across across the nodes which are connected

through the network, do not share a global memory. Fig. 32 shows a schematic for a hybrid

memory architecture. Over the past decade, most supercomputers have been built on a

hybrid-memory architecture, and this trend is expected to continue in the foreseeable future.

In particular, the two-socket per node layout with multicore CPUs in each socket is the most

commonly used hybrid configuration due to its optimal price-to-performance ratio.

Coprocessors

Recently, in addition to multicore CPUs, additional hardware called coprocessors are also

incorporated within a node. Coprocessors, also sometimes called accelerators, are proces-

sors used to supplement the primary processors (CPU), and which are used for performing

specialized operations, such as floating point arithmetic, graphics processing, signal process-

ing, etc. Graphics processing units (GPUs), the Field-programmable gate array (FPGA),
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Figure 32: A typical hybrid memory architecture. Figure adapted from [12]

and the recently announced Intel’s Many Integrated Chip (MIC Xeon Phi) are examples of

coprocessors.

In conclusion, we can see that, various levels of parallelism exists in modern computing

systems. Parallelism can be low-level such as instruction pipelining, superscalarity, etc., or

relatively higher-level - at the level of multiple cores and multiple CPUs. Clearly, each com-

ponent of the computer architecture - CPU, memory and the data path- present performance

bottlenecks, and opportunities to improve program performance through optimization and

parallelization. The programming models needed to exploit these hardware features are

addressed in the following sections.
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6.1.2 Parallel Programming Models

Parallel computing is a multidisciplinary field that involves developing programs/applica-

tions to fully utilize the underlying hardware features, in order to enhance the overall perfor-

mance. Parallel computing combines elements of computer science and engineering, software

engineering, numerical analysis, visualization, in addition to domain-specific knowledge.

Despite the tremendous advancement in computer hardware, commercial and scientific

software and applications that utilize the hardware features have typically lagged behind2.

However, in the past few years, the field of scientific parallel computing is rapidly advancing.

Before the advent of multicore CPUs, many low-level hardware parallelism features were

handled sufficiently by optimized compilers. Therefore, performance enhancement was often

implicit; attained without much developer intervention. However, with the emergence of

multicore accelerators, and large HPC clusters, explicit developer-intervention was required

in order to utilize the hardware parallelism and the increased computational power. This

issue is even more relevant for numerically-intensive codes. Therefore, a developer has to

develop applications that are written specifically for the available hardware and its features

- making the software hardware-dependent.

Clearly, prior knowledge of the available hardware and its architecture is critical. In

particular, the memory layout of the underlying hardware system strongly influences the

programming model to be adopted. For shared-memory machines (UMA and NUMA),

usually, a thread-based model such as PThreads or OpenMP is adopted on top of a base,

compiled, programming language, such as C/C++ or FORTRAN [12, 23]. On the other

hand, for distributed-memory architecture, the Message Passing Interface (MPI) model is

the most widely used option. For hierarchical-memory architectures based only on CPUs,

a hybrid model consisting of OpenMP and MPI is used. If coprocessors such as GPUs or

MICs are available as part of the hybrid architecture, then directives based programming

APIs such OpenACC or even OpenMP can be can be used [82].

2Notable exceptions include ScaLAPACK, ATLAS, and other parallel linear algebra libraries.
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6.1.3 Related Work

The lattice Boltzmann method is often commended for its simple algorithm and its ease

of parallelization. Over the past decade, several works have focused on developing opti-

mal data-structures and algorithms for the standard (stream-collide) LB algorithm. For the

two-step, standard (stream-collide type) LB algorithm, several sophisticated implementa-

tions, such as combined collision and propagation [88], swap-algorithm [74], shift-algorithm,

AA pattern [9], etc. have been developed, that enhance speed and/or optimize storage re-

quirements. An excellent review and comparison of these implementation is given in [127].

Application-specific optimizations, such as for porous media flows and hemodynamics, have

been developed to optimize memory by using sparse-memory usage [98]. Along with al-

gorithm optimizations, researchers have also developed parallel implementations of the LB

method for large-scale CPU and GPU-based heterogeneous platforms [15, 17, 34, 57, 91], and

even for the cell architecture (Sony Playstation) [85]. LB based implementations have also

been adopted for vector processor-based supercomputers [87, 125, 106] with much success.

Interestingly, in terms of the GFlops/s metric, vector computers were found to be best suited

for LB simulations, compared to cache-based CPUs. Open source software is also available

such as OpenLB and Palabos.

It should be pointed out that most of the previous works have dealt with the standard

LB method along with the D2Q9 lattice or, its 3D equivalent D3Q17 or D3Q19. Implemen-

tations and optimizations on higher-order (extended) lattices have just started to appear in

literature based on the standard algorithm [17, 91, 73].
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6.1.4 Relevance of Pursued Work

The standard LB method, based on the Lagrangian streaming-collision scheme, has several

computational, numerical, and physical modeling advantages for complex flows, as described

in Chapter 3.4. Computationally, the LB method is explicit, involves relatively few floating-

point operations per node, and the algorithm is straightforward to implement. Also, because

of the spatial locality of the computations, and Cartesian domains, it is easy to optimize and

parallelize a LB code for a specific hardware3.

For industrial-scale laminar/turbulent flows through complex geometries, however, it can

be argued that the non-body fitting LB method is still less flexible as compared to general,

unstructured, FV based methods. As discussed in Chap. 4, the geometric flexibility the

standard LB method is constrained by the requirement of a uniform Cartesian mesh. LB

computations for practical flows are also computationally demanding due to the small spatial

and temporal resolution requirement. In the case of steady state problems, the convergence

is also very slow due to the low Ma number requirement [119, 48]. While some attempts

have been made to introduce a block-structured mesh, adaptive mesh, etc., they still appear

to be computationally lacking compared to state-of-the art unstructured FV methods.

The off-lattice Boltzmann method, which combines the LB method and the FV/FD dis-

cretization of space, may provide the necessary link to deal with complex geometries, yet

keep the mesoscale character of the LB method intact. The OLB method is also an at-

tractive scheme for modeling thermal flows on complex geometries, and also flows high Kn

number (microscale) flows, especially with higher-order non-space-filling lattices. For the

same quadrature accuracy, the number of discrete velocities in a non-space-filling lattice are

fewer in number compared to a space-filling lattice, and hence a considerable computational

advantage can be achieved. In short, OLB provides a generic extensible framework to model

a variety of complex flows using several higher-order lattices at the same time can be ex-

tended to non-Cartesian domains. Therefore, as the finite-volume lattice Boltzmann and

finite-difference lattice Boltzmann methods - both types of OLB methods - become more

popular, it is important to address the computer implementation issues and optimization

3The parallelization of LBM on complex geometries, however, is not trivial due to load balancing issues.
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techniques on modern hardware platforms. In this work, we focus on the finite-difference

type OLB method. Since we combine the finite-difference type spatial discretization and an

off-lattice type temporal discretization, we call the resulting scheme as finite-difference lattice

Boltzmann (FDLB) scheme.

The FDLB algorithm, is fundamentally different that the standard LB algorithm. As

discussed later in Sec. 6.2, the FDLB method consists of additional functions or routines

that are not applicable in standard LBM. This key difference in the algorithms renders many

of the optimized streaming-collision implementations inapplicable for FDLB.

6.1.5 Scope of Work

Traditionally much effort was directed towards developing computationally optimal algo-

rithms, that minimize floating-point operations. However, due to much slower memory

bandwidths and data access latencies, memory optimization has also become equally impor-

tant. Often, to utilize the available parallel hardware, efforts are put in towards parallelizing

a program, without first optimizing it for serial (single-core) hardware. In fact, the difference

between an unoptimized and optimized program can be very large even on a single core level.

Parallel versions of a program are also more likely to scale better if they are built upon an

optimized single-core program rather than on an unoptimized one [42, 52].

Therefore, having briefly discussed the state-of-the-art hardware architectures, we seek

to exploit them, to optimize and parallelize a FDLB program. A bottom-up approach is

implemented in this work. In particular, the work is divided into two smaller tasks:

1. To develop an OLB code with optimal data-structures and algorithms, such that cache-

hierarchy is utilized efficiently (this is described in detail in Sec. 6.3) ; and

2. The cache-optimised FDLB code is then used as a basis to develop a parallel FDLB

program using OpenMP, suitable for systems with shared-memory architecture (this is

presented in Sec. 6.4).

The novelty of this work lies in the fact that, to best of author’s knowledge, this work

represents the first effort to combine optimization and parallelization of a FDLB scheme

with a higher-order lattice (D2Q37).
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6.2 FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD

Before discussing the techniques employed for single-core optimization and parallelism, it is

useful to discuss some algorithmic features of a typical FDLB code. This helps us to identify

the bottlenecks and constraints, and therefore devise better strategies to optimize.

6.2.1 OLB Algorithm

Similar to the standard LB algorithm, the FDLB method is also an inherently unsteady

scheme. But, in terms of the algorithm, the FDLB method evolves in a completely different

fashion. The characteristic feature of the standard LBM - the streaming process - is no

longer applicable in the FDLB method. Instead, a typical FDLB scheme, is similar to time-

marching (explicit) schemes, such as Euler methods, Runge-Kutta methods, etc., that are

used to solve ordinary differential equations (ODEs). In FDLB, we solve a system of ODEs

at each node, where the number of equations to be solved equals the number of discrete

directions in the LB model (e.g., nine equations per node in case of D2Q9, 37 equations per

node for D2Q37). Also, depending upon the spatial discretization method used, we have

the additional task of computing the gradients (in the FDLB method) or fluxes (in the FV

method). A FDLB code has the following four main routines/functions:

1. EDF() and macrovariables(): The EDF() subroutine computes the equilibrium

distribution function, while the macrovariables() computes the macroscale flow

variables - density, velocity and temperature (if applicable). These routines are identical

to the standard LBM. EDF(), which comprises of computing a complex algebraic expres-

sion, is strictly local in terms of its spatial data dependency; i.e., f eqi (x) at a particular

node x does not depend upon the values at its spatial neighbors x+ ∆x, x+ 2∆x, etc.

The actual discrete form of the equilibrium distribution, of course, depends upon the

velocity lattice used.

2. gradient(): This step is performed instead of the streaming process in the standard

LBM. gradient() computes the spatial gradients (first-order derivatives) and second-

order derivatives of the distributions on the fluid nodes. The actual form gradient()
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depends upon the spatial stencil (scheme) used for computing the derivatives. For ex-

ample, in the case of the central-differencing scheme, which is used in this work, the

stencil consists of one immediate neighbor each in the x and y directions. This stencil,

however, remains same even in case of higher-order lattices. In contrast to the streaming

step where no floating-point operations are needed, gradient() clearly involves addi-

tional floating-point operations. Similar gradient computation also exist in multiphase,

multicomponent simulations.

3. update(): This step involves updating (evolving) the distributions per the evolution

equation, for example Eq. 4.18 in Sec. 4.3. The update(), which consists of com-

puting algebraic expressions, is applied only to fluid nodes, and depends upon the tem-

poral discretization scheme selected. So, depending upon the scheme selected, different

update() schemes , such as the scheme listed in Tab. 2, can be adopted. This approach

makes the overall code modular. As with collision(), this routine is also strictly

local.

4. boundaryCondition(): In this subroutine, instead of the widely used bounce-back

scheme, alternate boundary schemes such as the extrapolation boundary-condition, as

described in Sec. 4.4 is performed. This step can also be viewed as an update procedure

for distributions at the wall.

It should be noted that additional physics for complex flows, such as multiphase flows,

can be added incrementally on top of the three basic functions outlined above. Similarly,

structured, non-Cartesian geometry can also be added in a modular fashion, through a co-

ordinate transformation procedure. The ease of adding additional functionality makes the

overall code modular, mainly due to the nature of the LB method. Although the code can

be extended to various cases, the focus in this work is on the analysis and optimization of

the core FDLB algorithm - gradient(), EDF(), update().

Memory Requirement of the LB method

A typical LB research code is implemented on a dense-matrix basis, making the LB

method highly memory intensive. In a naive, full-matrix implementation, the distributions

for all of the nodes in the domain have to be allocated/stored in memory [15]; for example,

for the D2Q9 lattice, at each node, nine distributions have to be stored in addition to
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density and x and y-component velocities. Therefore, the per-node memory requirement is

quite large. To illustrate this further, consider a two-dimensional, single-phase flow problem

to be simulated with the D2Q9 lattice on a regular Cartesian 2562 (∼ 65000 nodes) grid.

In this case, the total memory requirement, including for distributions and flow variables,

and assuming double-precision, is around 10 MB. On the other hand, a full-scale three-

dimensional production run on a 2563 grid with the D3Q19 would require around 6 GB!

The memory requirement also increases if more complex flows problems, such as thermal,

multiphase or multicomponent flows are to be simulated. Additionally, in case of a higher-

order lattice, D2Q39 for example, the memory needs per node increases by a factor four

compared to to D2Q9, whereas in three dimensions with D3Q19, it can reach a factor of six.

LBM memory requirement is in sharp contrast to that of conventional FV/FD-based

CFD, especially in three-dimensions. For the same grid size, the LBM memory requirement

is at least an order-of-magnitude higher than FD or FV based methods, where typically stores

only the three velocity components and one pressure. A sparse storage implementation in

FD/FV based methods would require even less storage. The memory intensive nature of the

LB method is an important aspect to consider in designing optimal implementations, so as

to avoid memory-bandwidth constraints. The FDLB is even more memory intensive than

standard LBM, since, in the standard LBM, through combined streaming and collision the

equilibrium distributions need not be stored in a separate variable (multidimensional array).
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6.3 SINGLE-CORE OPTIMIZATION

6.3.1 Design Basis

As discussed previously, several options exist for temporal and spatial discretization schemes

in the FDLB method. Similarly, several discrete-velocity sets, both space-filling and non-

space-filling, can be chosen according to the flow to be simulated. As the base or reference

case, BKG scheme is used as the temporal evolution scheme, and the BGK operator is

used as the collision model. Correspondingly, the update() function is computed per

the BKG scheme. Spatial gradients in gradient() are computed using the second-order

central-difference scheme [60]. The discrete velocities and the corresponding equilibrium

distributions developed in Chap. 3 are used.

In terms of the discrete-velocities, the D2Q9 lattice is developed first as the base case.

The space-filling D2Q17 and D2Q37 lattices, along with the non-space filling D2Q12 lattice

are also developed. An important feature of the program is its modularity with respect to

the lattice structure. The program is designed such that, the lattice and the corresponding

equilibrium distributions can be chosen in a modular fashion by just a changing a few lines

of code. Also, while an optimized D2Q9 based standard LBM cannot be extended to non-

D2Q9 lattices without a good deal of reworking; the FDLB developed here is flexible with

respect to the lattice employed. Similarly, different temporal schemes for update(), such

as the AE/CI and GZ schemes, have been coded, and can be incorporated in a modular

fashion. Although not implemented here, other schemes for computing the derivatives in

the gradient(), such as upwind-differencing can be easily coded, and incorporated in the

overall program.

The overarching design philosophy behind singlecore optimization is the idea of efficient

usage of caches. Some of its basic principle are described below to aid the results described

subsequently.
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6.3.2 Cache Optimization Principles

As briefly described in Sec. 6.1.1.2, the modern memory is not fast enough for modern CPUs,

therefore, obtaining data from memory (RAM) usually takes about a dozen CPU cycles

[38, 56]. Cache acts as a buffer or reservoir containing copies of recently used data or code.

In the absence of an on-chip cache, a CPU may be rendered idle for short durations, while

waiting for data to arrive from the memory. This problem is especially relevant for memory-

intensive algorithm such as the FDLB. Therefore, one of the most effective techniques to

improve the performance of a serial program is to fully utilize the higher bandwidth and

lower latency of cache, i.e., to make the program cache-optimized.

Typically, when new data is required, the older data is removed from the cache and

newer data is brought in from the main memory [64]. If the problem size is small enough

to be entirely accommodated in the cache, we may observe near peak performance of the

program. But, as the problem size increases, all of the data cannot be accommodated in the

limited cache, and hence data needs to be frequently accessed from main memory. In fact,

it is common nowadays to have scientific codes that require hundreds of MB to several GB

of data. Clearly no cache is big enough to accommodate such large data. The key principle,

therefore, of developing cache-efficient programs is to minimize the amount of data transfer

between the CPU and memory such that the data stays as close to the processor (in the

cache) as possible. This is called the principle of locality of reference.

The locality has two types: temporal locality and spatial locality. Temporal locality refers

to the statistical probability that recently accessed items are likely to be accessed again in

the near future.This is achieved in practice by fusing iterative loops with same loop traversal,

using local variables, etc. Similarly, spatial locality is achieved if data located physically close

to each other in the cache are accessed together in time. For example, operations on arrays

or tables.

In the FDLB context, choice of data-structure, and looping for optimal data-access, are

simple and practical ways of achieving cache-optimization. The implementation details as

described below are broadly based on principles laid out in [42, 123] and [64].
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Figure 33: Memory layout of Array of Structure.

6.3.3 Choice of Data Structure

As with the standard LBM, the fundamental data structure/variable in the FDLB method

are the distributions, fi(x), at each node. In most research codes, distributions are com-

monly stored as multidimensional arrays, where the order of the indices of the arrays define

their physical layout in memory. The choice of data structure and its layout in memory

is key to achieving peak cache-utilization. Applying a dense-matrix approach, for a two-

dimensional structured domain, there are two options available for storing distributions

namely: f(NX,NY,k) or f(k,NX,NY). Here, k is the number of discrete velocities (direc-

tions) at each spatial node, and NX and NY are the number of nodes in the x and y dimensions,

respectively. Following the row-major convention of C/C++, in the f(NX,NY,k) layout,

k is the fastest moving index; meaning that for each spatial node, the distributions for each

of the k directions are stored contiguously in memory. A multidimensional array having such

memory-layout is the most intuitive layout and, is termed as the array of structures (AoS),

or in LB parlance - the collision-optimized layout. Fig. 33 shows a schematic of the memory

layout of the AoS.

On the other hand, in case of f(k,NX,NY) layout, NY is the fastest moving index,

meaning that for each direction k, distributions for the spatial nodes are contiguous in

121



Figure 34: Memory layout of Structure of Array.

memory. This layout is termed as a structure-of-array (SoA), or in LB parlance, as the

propagation-optimized layout. Fig. 34 shows a schematic of the memory layout of the SoA.

SoA and AoS layouts were studied in detail in [123], which concluded that SoA layout

is more efficient for cache-based systems. Therefore, we have used the SoA layout in this

work. For the actual implementation of the SoA layout, however, instead of the built-in C++

arrays, the cube template class from the open-source Armadillo C++ linear algebra package

is chosen for fi(x) and f eqi (x) [95]. cube is a templated class used for storing 3D arrays.

So, for example, the distributions for the entire mesh are defined as f(NX,NY,NV), where

NX is the number of nodes in the x direction, NY is the number of nodes in the y direction,

and NV is the number of discrete velocities. In the cube data type, the elements of the

three-dimensional array are stored in a slice by slice fashion. Within each slice (matrix),

the elements are stored in a column-major fashion. In the LB context, this means that each

slice of the cube corresponds to a particular discrete velocity. Therefore, in effect, the cube

class used here is equivalent to a propagation-optimized layout. Armadillo has many other

advantages, such as MATLAB like syntax and functionality, which aids quick prototyping,

while maintaining the speed and portability of a compiled language (C++).

It is noted that, since the swapping technique of standard LBM is inconvenient, both

fi(x) and f eqi (x) are stored in a separate cube. This makes our FDLB implementation

require at least twice as much memory storage as the standard LBM.
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6.3.4 Data Access Optimization

The presence of a cache is not always a guarantee for better performance. Given a particular

memory layout, it largely depends upon the memory access pattern in the loops, and how

well it is written to exploit the caches. Data-access optimization of the three core functions

of the FDLB algorithm are described below.

collision()

collision() is a straightforward candidate for cache optimization through efficient

data access. collision() is computationally intensive, but is strictly local in configuration

space, which means that it has no data dependencies on neighbors and results in perfectly

nested rectangular loops. Taking advantage of the local nature, we can re-structure the

loop-order in collision() to suit the SoA layout. As shown in the listing below, the

velocity-loop, k, is made the outer-most loop, since it is the slowest moving index. Within

each velocity loop k, the innermost (fastest) loop is that for x, since within a slice, elements

are stored column-wise. This looping-order results in a stride-1 access, and hence good

temporal locality is achieved4. Floating-points operations at a node are also minimized

through pre-evaluation of common sub-expressions such as ξi · u, u · u, ξi · ξi, etc. The

psuedocode below shows how this is achieved:

1 for (int k=0; k<NV; k++) {
for (int y=0; y<NY; y++) {

3 for (int x=0; x<NX; x++) {
if (isFluid(x,y))==1 {

5 edotu = ex(k)*ux(x,y) + ey(k)*uy(x,y);
edotuSq = edotu * edotu;

7 uSq = ux(x,y)*ux(x,y) + uy(x,y)*ux(x,y);
eSq = ex(k)*ex(k) + ey(k)*ey(k);

9 geq(x,y,k) = W(k)*density(x,y)*(1.0 + edotu + 0.5*(edotuSq-uSq+(T(
x,y)-1) ...

}
11 }

}
13 }

4Stride is the number of bytes one has to move to get from one element of an array to the next (or
previous) one. So, a stride-1 access (read and write) is more efficient, since the elements of arrays are
accessed consecutively, and the array is also most likely to be in registers or cache.
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gradient() and update()

For gradient(), the optimization is slightly more involved due to its neighbor depen-

dency. The dependency comes from the fact that, for each discrete velocity (direction), we

need to compute the spatial derivative of the distributions, which depends on the distribu-

tions at neighboring nodes. Therefore, to minimize non-contiguous data-access, the distri-

butions for neighbors of f(x,y,k) such as f(x+1,y,k), f(x-1,y,k), f(x,y+1,k),

and f(x,y-1,k), should be in close proximity, preferably in the same cache-level.

As in collision(), locality of reference in gradient() can be maintained by struc-

turing the loops to suit the memory layout of cube. Since the SoA data-structure stores

distributions for each direction contiguously, distributions for a particular direction, k, can

be fully loaded into cache, and the gradients for the entire domain for that particular direc-

tion can be computed with minimum cache-misses.

Also, notice that a particular f(x,y,k) is accessed in both gradient() and update().

Hence, loop fusion (combining gradient() and update() in one loop) allows fi - a large-

sized array - to be used fully once loaded in cache, thereby achieving good temporal locality

and lower the memory bandwidth. Similar fusion of collisions and streaming was done in

[123] - resulting in smaller data transfer between CPU and memory. Moreover by fusing both

the functions in a single loop, we need not store the recently computed gradient values sep-

arately in a multidimensional array. The gradients computed for direction k at a particular

node can be used immediately to evaluate the update() for that node within the same

loop. This procedure of fusion of loops involves breaking some well-defined abstractions and

modularity, but nonetheless the computational advantage that can is obtained is substantial.

This details of the combined subroutine (termed gradient update()) are shown in the

listing below:

1 /* For direction #0 */
for (int y=0; y<NY; y++) {

3 for (int x=0; x<NX; x++) {
if (isFluid)== 1 {

5 /* Compute first-order spatial-derivatives of f(x,y,0)*/
/* Compute second-order spatial-derivatives of f(x,y,0)*/

7 /* update f(x,y,0)*/
}

9 }
}
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11 /* For direction #1 */
for (int y=0; y<NY; y++) {

13 for (int x=0; x<NX; x++) {
if (isFluid)== 1 {

15 /* Compute first-order spatial-derivatives of f(x,y,1)*/
/* Compute second-order spatial-derivatives of f(x,y,1)*/

17 /* update f(x,y,1)*/
}

19 }
}

21 /* For direction #2 */
...

We have also observed that having nine smaller gradient update()loops correspond-

ing to the nine directions is more efficient than having a single large loop. This technique

is commonly referred as loop unrolling. The above listing shows how this is done. This

technique however, can be tedious in the case for higher-order lattices, especially in three-

dimensions, where there can be up to 108 velocities depending upon the chosen lattice. The

payoff, however, is substantial.

In short, the techniques of loop unrolling and loop fusion for gradient() and update()have

considerably reduced the run times. For a given mesh size, these two techniques have resulted

in a reduction of about 20-28% in case of D2Q9, and about 34% in case of D2Q37.

6.3.5 Results and Observations

6.3.5.1 Test Basis To test the efficacy of the various serial-optimization techniques

described previously, we utilize three PCs with different commercial off-the-shelf multicore

CPUs for testing. Their hardware specifications are described in Tab. 4.

The Taylor-vortex flow (TVF) as described in Sec. 4.5.1 is chosen as the test problem.

TVF is a flow on a periodic domain and hence the complexities of specific boundary treatment

can be avoided and only the core algorithm can be addressed. The finite-difference scheme

is used for spatial discretization and the BKG scheme for temporal discretization. The gcc

compiler with the -O2 optimization level is used for compiling the source codes on Linux

(Ubuntu)- based machines. clock() from the <time.h> library is used to measure

the program execution time. The program is run for a fixed 20, 000 iterations in each grid’s
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Table 4: Specifications for the hardware used in performance evaluation

CPU Specifications

CPU Name i5-2320 i5-760 i7-960

Microarchitecture Sandybridge Lynnfield Bloomfield

No. of cores 4 4 4

No. of Threads 4 4 8

Clock Speed (GHz) 3 2.8 3.2

Max Frequency (GHz) 3.3 3.33 3.5

Memory Specifications

RAM (GB) 8 8 8

Memory Types DDR3-1066/1333 DDR3-1066/1333 DDR3-800/1066

# of Memory Channels 2 2 3

Max Memory Bandwidth (GB/s) 21 21 25.6

L1 Cache 4 X 32 KB 4 X 32 KB 4 x 32 KB

L2 Cache 4 x 256 KB 4 x 256 KB 4 x 256 KB

L3 Cache (Smart) 6 MB shared 8 MB shared 8 MB shared

Cache alignment 64 64
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case. The optimization techniques were implemented incrementally to check whether they

did indeed provide a performance enhancement. The decrease in runtime (speed-up), as

discussed below, represents the combined effects of all of the implemented optimization

techniques. The speed-up is compared against the base case which consists of a straight-

forward implementation of the FDLB algorithm without any of the optimization techniques

outlined in the previous section.

6.3.5.2 Results Figs. 35, 36 and, 37 show the speed-up obtained for different grid-sizes,

on different CPUs, as a result of the cache-optimization techniques. From the above figures,

we can observe that, at least a 2X performance improvement on different CPUs was achieved

through the cache-optimization techniques. Although all CPUs have four cores each, the i7-

960-based hardware gives the highest speed-up for a given mesh size. This can be primarily

attributed to fact that, among the three CPUs, the i7-960 CPU has the highest clock speed

and, also the highest maximum memory bandwidth, which reduces the time take to transfer

data from memory to the CPU.

From the figures we can also see that the performance enhancement is better for larger-

sized grids. This is mainly due to the higher computation to communication ratio (CCR)

associated with larger grids. CCR can be broadly defined as the ratio of time spent cal-

culating to the time spent communicating. Since memory bandwidths are typically smaller

than CPU clock-rates, a higher CCR, therefore, leads to more computations (floating point

operations) for a given amount of data that is already loaded in cache. Thus, in a large-sized

grid, the proportionately larger distributions are processed much more efficiently once they

are loaded in to the cache through a loop. In other words, the loop-overheads are much

smaller than the computational effort. On the other hand, with smaller sized grids, the loop

overheads can be much higher, and sometimes, even comparable to the computational effort,

thereby reducing the scale-up.

In the figures, we have also indicated the effects of the so-called cache-trashing phe-

nomenon5. In engineering simulations it is common practice to use power-of two-grids, such

5Cache thrashing is a phenomenon where the memory is accessed in a pattern that leads to multiple
memory locations competing for the same cache lines, resulting in excessive cache misses and therefore,
higher runtime.
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Figure 35: Speed-up observed as a result of cache-optimization techniques on i5-760 based

hardware.
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Figure 36: Speed-up observed as a result of cache-optimization techniques on i5-2320 based

hardware.
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Figure 37: Speed-up observed as a result of cache-optimization techniques on i7-960 based

hardware.
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as 322, 642, 1282, etc., since they allow easy analysis for grid-independence studies. However,

it is well-known that a SoA layout is prone to cache-trashing phenomenon [99]. In simpler

terms, it means that, everything else remaining same, a power-of two grid, such as a 2562

grid will take substantially longer computational time compared to non power-of-two grid

such as a 2572 grid. Cache trashing can be easily eliminated by padding the arrays ; i.e.,

using 332, 652, 1292, instead of 322, 642, 1282, respectively.

The above positive results indicate that through optimal data-structure and simple loop

restructuring techniques (unrolling and fusion), substantial performance gains can be ob-

tained even on desktop-level hardware.

MLUPS

The speedup metric, as described above, is useful only for comparing different imple-

mentations on the same hardware. Often, it is useful to compare the performance of the

FDLB code relative to other LBM implementations developed by other researchers on dif-

ferent architectures. The obvious metric - Flop/s - is not the best metric since this can vary

widely based on factors, such as the implementation of the model, compilers, hardware, etc.

A more meaningful metric in the LB context, is the computational work done per unit time,

which can be quantified as the MLUPs metric - million lattice point updates per second

[15, 123]. MLUPs is a widely used metric to compare various LB implementation and it

relates directly to the wall clock time for solving the problem. It measures the runtime of

a program depending only on domain size and number of time steps used in the simulation

[91]. Eq. (6.1) shows how the peak number of potential MLUPs is calculated for a specific

simulation. Here T (S) is the run-time corresponding to S iterations (steps) and N is the

total number of nodes in the domain:

P =
N × S
T × 106

(6.1)

MLUPs for the FDLB code was evaluated for different computational work loads (grid sizes)

per Eq. (6.1), and are plotted in Fig. 38

The MLUPs numbers for the FDLB code developed here are comparable (slightly lower)

than comparable singlecore standard LB implementations. The maximum MLUPs for the

FDLB code 2.7 MLUPs, obtained on a 5122 grid on a i7-960 based machine.
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Figure 38: MFLUPs observed on different COTS CPUs based on the grid size. Grid sizes

above are square grids, e.g. 332, 652, etc.
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Table 5: Computational time (in seconds) for various grids sizes with higher-order lattices.

Numbers in parenthesis indicate the increase in compute-time relative to D2Q9.

Grid size D2Q9 D2Q12 D2Q17 D2Q37

652 34.6 (1X) 47.4 (1.4X) 66.9 (2.12X) 159.2 (4.63X)

2572 236.1 (1X) 321 (1.34X) 453 (1.95X) 1050.7 (4.45X)

Additional computational effort of higher-order lattices

Next, we investigate the increase in computational effort that is associated with using

higher-order lattices. It is obvious that using higher-order lattices increases the computa-

tional effort, however, the qualitative and quantitative nature of this increase is unclear

(linear, quadratic, etc.) To do this, we compare the computational time of a sample flow

problem (isothermal Taylor-vortex flow) which is simulated with lattices of different order

of quadratures. Fifth, seventh, and ninth order quadratures in two-dimensions are tested.

Both space and non-space filling versions of the quadratures are compared. Importantly,

the discrete form of the equilibrium distribution is chosen accurately, corresponding upon

the quadrature of the lattice. That is, terms up to O(u2, θ) are retained for the fifth-order

lattice (D2Q9), O(u3, θ) is retained in the equilibrium distribution for the seventh-order

lattice (D2Q12 and D2Q17) and terms up to O(u4, θ) are retained for ninth-order lattices

(D2Q37). As before, the BKG temporal scheme is used along with FD spatial discretization.

Simulations are performed for various grid sizes, and the number of time-iterations is fixed

at 25, 000 in each case. Tab. 5 summarizes the results of these tests.

From Tab. 5, we can observe that, with higher-order lattices, the computational time

(effort) increases non-linearly with an increase in the number of velocities included in the

lattice. The increase stems mainly from the computational effort involved in evaluating the

equilibrium distributions, whose complexity increases with an increase order of the model.

The non-linearity is only expected to increase in three-dimensions and with more complex

physics (multiphase, multicomponent, etc.).
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Compute-bound vs. memory-bound

Studies on sophisticated standard LB implementations based on D2Q9 lattice have re-

vealed that the overall LB algorithm is strongly memory-bound, primarily due to the stream-

ing step [81, 125]. For a problem of a given size, a subroutine or algorithm is termed memory-

bound, if the total compute-time is limited more by the memory bandwidth rather than the

CPU clock-speed. Similar observations in the higher-order lattices context were made in [91],

who concluded that the standard LB algorithm with D3Q39 is ’highly bandwidth limited’.

An important consequence of an algorithm being memory-bound is that, it limits its ability

to scale on large-scale computing platforms, due to their low parallel (hardware) efficiency.

Determining whether a code or algorithm is CPU or memory-bound requires detailed code

profiling, including keeping track of counts of memory accesses, cache misses, and floating-

point operations, etc. This process, which is hardware-dependent, can get very complex and

requires sophisticated profiling tools, such as valgrind, Intel Performance Counter monitor,

etc. Hence, we discuss and compare only the qualitative aspects of the nature of the FDLB

code.

The high-memory-bandwidth of streaming in standard LBM comes the fact that, for

updating each node in the grid, we need to read/load from eight neighboring distributions,

in the case of the D2Q9 lattice. Similarly, thirty-six neighboring distributions are required for

updating a node with the D2Q37 lattice. Larger neighborhood of the higher-order lattices

becomes even more severe when the single node LB program is extrapolated to multiple

nodes, where data transfer on the interconnect is slower compared to the SMP/NUMA bus.

A FDLB algorithm, on the other hand, has a smaller spatial neighborhood compared to

standard LB for the same lattice. For example, for D2Q9, the gradient() at each node

has a four node (two each in x and y coordinates) neighborhood dependency compared to

the eight node neighborhood in standard LBM’s streaming(). More importantly, due to

the nature of the FDLB algorithm, the four neighborhood dependency remains the same

even with higher-order lattices, such as D2Q17 or D2Q37; while in the standard LBM the

dependency increases to sixteen and thirty-six, respectively. It should be noted, however,

that in the FDLB case, the amount of data to be transferred for each update of the node

remains the same as standard LB, but the data is sourced more closely compared to std.
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LBM. The number of memory accesses are the same in terms of bytes of memory but they

are accessed closer in FDLB compared to standard LBM. In other words, the flop count for

the advection part increases, but, the memory bandwidth decreases. The same reasoning is

applicable to three-dimensional problems.

We probe this aspect qualitatively. Tab. 6 shows the number of floating-point operations

required in the FDLB algorithm and standard LB with different lattices, for a particular

code implementation. Clearly, there is an increase in Flops in FDLB due to the addition

of the gradient() and update(), which are not present in standard LBM. However,

the increase in Flops is sourced more closely in FDLB compared to the standard LBM.

It should be noted that the estimates provided in Tab.6 are highly implementation and

compiler dependent; but an inference on the qualitative trend can be extended to the general

case. Therefore, we can conclude that the combination of the FDLB algorithm and higher-

order lattices appears to be much less memory-bound compared to standard LBM. This

can be an important factor to consider for the scalability of LB simulations on large-scale

parallel hardware. However, much more rigorous testing is required before we can draw this

conclusion with certainty. The investigation in this regard is left for future work.

Table 6: Estimated number of FLOPs. O(u2, θ) equilibrium is considered for D2Q9, O(u3, θ)

for D2Q12 and D2Q17, and O(u3, θ) for D2Q37. The discrete forms of equilibrium are as

listed in Chap. 3.

D2Q9 D2Q12 D2Q17 D2Q37

collision() 180 360 510 2970

gradient() and update() 770 1020 1445 3150
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6.4 SHARED-MEMORY PARALLELIZATION

The previous section detailed the steps taken to optimize a FDLB code on single-core cache-

based CPU. In the following section, the same optimized implementation is extended for

shared-memory machines, in order to take advantage of the hardware parallelism available

through multicore CPUs.

6.4.1 Introduction

The ubiquitous presence of multicore CPUs have put a tremendous amount of computing

power even at an desktop level. As described in Sec. 6.1.1.1, even on a larger scale, many

HPC nodes are also based on COTS multicore CPUs [52, 126]. From a programming per-

spective, multicore CPUs on a workstation, and CPUs within a HPC node, constitute a

shared-memory parallel (SMP) machine. The programming paradigm used to exploit the

parallelism of SMPs is called shared-memory programming. Among the many SMP pro-

gramming APIs, such as PThreads, CILK, TBB, etc., OpenMP is the most popular in

the scientific computing community. It is noted that compiler based shared-memory paral-

lelization exists, but their performance is much inferior to hand-tuned parallelization using

OpenMP and others.

6.4.1.1 OpenMP From an ease of programming and time-to-results perspective, OpenMP

offers many advantages [83]. One of the most important advantages is that OpenMP allows

a developer easy access to all data from all cores without having to perform explicit commu-

nication. Due to the transparent data availability, an application can be easily parallelized

to take advantage of the several cores available. This is unlike distributed-memory or GPU

based programming, where the task of communicating and transferring data between CPUs

across the nodes is explicit, and hence, extensive code modifications and restructuring are

required.

Another useful feature of OpenMP is the fact that it allows incremental parallelism. That

is, a developer can identify or profile the most time-consuming section in the program, and
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attempt to parallelize just that through OpenMP’s parallel directives. The regions without

parallel directives run sequentially, as usual. The program can then be tested to validate

correctness and measure performance. If a sufficient speedup has been achieved, additional

loops can be parallelized further. In fact, often, significant parallelism can be achieved

through just three or four parallel directives.

Due to the advantages mentioned above, shared-memory parallelism through OpenMP

presents an attractive, and often, optimal choice for small and medium sized scientific prob-

lems. OpenMP serves as good first-attempt to evaluate the suitability of an algorithm to

scale on a few cores/CPUs, before efforts are put to scale it to much larger number of CPUs.

Shared-memory parallelism is also often the only performance enhancement option, if only

cheaper computing resources (desktops and workstations) are available.

6.4.1.2 OpenMP Details OpenMP consists of compiler directives, runtime library rou-

tines, and environment variables, on top of compiled languages of Fortran and C/C++ - all

designed to take the burden of low-level details away from the application developed. Several

OpenMP compilers are available and several x-86 based architectures support it. The de-

tailed OpenMP API details can be found in [83] and Chapman et al. [23] provides in-depth

implementation details and techniques.

OpenMP is based on the concept of threads. A thread, is the smallest independent unit

of processing that can be scheduled by an operating system. All threads share a common

memory address space and mutually accessible data, but they can also have their own user-

defined private variables. Simply put, threads represents workers who share work by working

independently and in parallel. The exact number of threads in the team determined by

several ways. A common method is the ’one thread per core’ principle.

For parallelizing a program, a developer identifies regions in the code where work can be

divided and run concurrently. This is done by inserting compiler (parallel) directives (e.g.,

pragma in C/C++) in the code in the appropriate sections. During run-time, sections

without parallel directives run in serial, the serial part being executed by a master threads.

Regions where parallel directive are encountered, a team of threads perform the work in

parallel. This technique is also called as the ’fork-join’ method.
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While OpenMP is relatively simpler to implement, there are some important issues that

need to be adressed. Important among them are the concepts of race condition and load

balancing. Race condition occurs when two threads access the same variable at the exact

time and at least one of them does a write operation. Load balancing is the concept that the

total work is shared equally among all the threads such that no thread(s) is over-burdened,

thereby affecting the program run-time adversely.

6.4.2 Implementation Details

The OpenMP extension for the higher order FDLB program is primarily built on the previous

described cache-optimized FDLB code. As described before, most of the computationally

intensive regions of the FDLB code are multiple for loops. Therefore, only one OpenMP

directive, namely omp parallel for and its various clauses, are used extensively in

this work. A few other directives are used for synchronization and some other functions.

Domain decomposition model is used to partition (divide) the computational work. That

is, the physical domain is implicitly sub-divided into number of sub-domains, and the data

associated with each sub-domain is handled independently by each thread (core).

Creation, maintenance, and destruction of threads has computational overheads. There-

fore, the most optimal approach to parallelizing a higher-order FDLB algorithm with OpenMP

is to create threads at the start of the main (temporal) loop using the #pragma parallel

construct. An overall structure of the approach is given in the code snippet below:

#pragma omp parallel
2 {

while (convergence_criteria < epsilon or iter< maxIter)
4 {

collision(); /* Work sharing loop 1 */
6 gradient_update(); /* Work sharing loop 2 */

macro_variables(); /* Work sharing loop 3 */
8 #pragma omp barrier

check_convergence();
10 iter++

}
12 }

#pragma master
14 file_io() /* I/O operation
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This way, the various threads are spawned and destroyed only once during the entire

program. For each time-iteration, each thread executes the collision(), gradient()

and update() for a certain fixed number of nodes that are assigned to it. At the end of

the each time-iteration, the threads synchronize with each other through a #pragma omp

barrier. At the end of the time loop (or after convergence), all of the threads join into

the master thread through #pragma master, which performs file input/output and other

tasks before exiting the program.

Unfortunately, this approach cannot be implemented due to restrictions of the OpenMP’s

parallel construct which allows only one if clause within its scope [23]. if clauses are

needed in each function to deal with generic fluid and boundary scenarios. It is used to check,

through a Boolean variable (is a fluid), if the node is a fluid node or solid/wall/obstacle

node.

Therefore, the alternative pursued in this work is to create threads at the start of each

subroutine. The essence of this approach is shown in the code fragment below:

while (convergence_criteria < epsilon or iter< maxIter)
2 {

#pragma omp for
4 collision(); /* Work sharing loop 1 */

#pragma omp for
6 gradient_update(); /* Work sharing loop 2 */

#pragma omp for
8 macro_variables(); /* Work sharing loop 3 */

#pragma omp barrier
10 convergence_criterion();

iter++
12 }

#pragma master
14 file_io() /* I/O operation

In this approach, we can see that, for each time iteration, threads are created and de-

stroyed several times. It is noted that, for simpler flow conditions/geometries, the if clause

and is a fluid can be done away with to gain further efficiency. However, in this work,

the if clauses are maintained.

For synchronization of all the threads before the next time iteration, the omp barrier

directive is used at the end of each time iteration. In our case, since the domain considered
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is Cartesian and structured, load balancing on individual threads is equal and automatic.

That is, load balancing is achieved implicitly by sharing the iteration space equally among

various threads. The amount of work done by each thread at each node is equal and hence

load is balanced. At the end of time iterations, omp master is used to perform file I/O

operation. A brief description of the OpenMP implementation of the two major subroutines

in the FDLB algorithm is provided below.

collision()

This is perhaps the simplest subroutine to parallelize using OpenMP. The pseudocode

below shows the OpenMP implementation of collision().

#pragma omp parallel for collapse(4) schedule (static) private (edotu,edotuSq,
uSq,eSq)

2 for (int k=0; k<NV; k++) {
for (int y=0; y<NY; y++) {

4 for (int x=0; x<NX; x++) {
if (isFluid(x,y))==1 {

6 edotu = ex(k)*ux(x,y) + ey(k)*uy(x,y);
edotuSq = edotu*edotu;

8 uSq = ux(x,y)*ux(x,y) + uy(x,y)*ux(x,y);
eSq = ex(k)*ex(k) + ey(k)*ey(k);

10 feq(x,y,k) = W(k)*density(x,y)* (1.0 + edotu + 0.5*(edotuSq-uSq +
...

}
12 }

}
14 }

As mentioned before, EDF() is fully local, which means that to compute feq(i,j), we

need read and write various variables at the same local (i,j) and not its neighbors. This

property precludes the need for communication (data transfer/synchronization) with other

threads, even at the boundaries. Locality of computation also implies that no two threads

will read or write an element in the array at the same time, thereby the race condition is

avoided. As previously mentioned, since the load is balanced, the static clause is used

to distribute the work among threads. Also, since EDF() has perfectly nested rectangular

loops with no dependencies, the collapse clause is used which leads to better efficiency.

The task of computing hydrodynamic variables is also a fully local function, and hence

techniques used for EDF() are also applied to macro variables().
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gradient update()

A simplified code snippet of the OpenMP implementation of the combined gradient()

and update() is shown below. Most of the features of the gradient update() as

described in Sec.6.3.4 are retained. The only difference here is that individual loops for

each velocity (direction) are not implemented here. Individual loops cause repeated creation

and destruction of threads, thereby increasing the overheads; instead one large nested loop

covering all directions and space is implemented.

#pragma omp for collapse(4) schedule (static) private (h)
2 for (int k=0;k<NV;k++) {

for (int y=0; y<NY; y++) {
4 for (int x=0; x<NX; x++) {

if (isFluid)==1 {
6 h = f(x,y,k) - feq(x,y,k);

/* Compute first-order spatial-derivatives of f*/
8 /* Compute second-order spatial-derivatives of f*/

/* update f(x,y,k)*/
10 }

}
12 }

}

6.4.3 Results

Test Setup

The OpenMP-based FDLB program is benchmarked for its performance and scalability

on the Center for Simulation and Modeling (SAM)’s ’Frank’ cluster at the University of

Pittsburgh. Frank’s hardware consists of over 7800 cores spread over 384 nodes of both

shared-memory and distributed-memory configuration, all connected via a Infiniband net-

work. A variety of CPU speeds and socket specifications are available, all running Red Hat

Enterprise Linux 6. See [20] for a complete details of the cluster. In this work, however,

a shared-memory cluster named shared is used. Each shared node has four sockets; with

each socket containing a 12-core AMD Magny Cours (6172) 2.1 GHz CPU. Since we cannot

utilize cores across the node in a shared–memory configuration, only a maximum of 48 cores

are available for testing. On the software side, the gcc compiler is used with -fopenp
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flag along with the O2 optimization level. The number of threads (and therefore cores) in

the program is specified through the OMP NUM THREADS environment variable.

The OpenMP - FDLBM code is first verified for its accuracy. Velocity profiles identical

to Figs. 7 and 8 were obtained from the cluster run; which proves that parallel simulations

results are the as accurate as the serial one. The testing procedure adopts a strong-scaling

approach, where the amount of computational work is fixed, and deceasing run-times are

sought by OpenMP based parallelism. Both D2Q9 and D2Q17 lattices are tested. The

temporal and spatial discretization and other simulation details are the same as described

in Sec. 6.3.5.1.

Performance Metrics

In parallel computing, performance improvement is a subjective term. To quantify ob-

jectively the performance of the OpenMP-based FDLBM program, two related performance

metrics are used here - parallel scale-up (S), and parallel efficiency (ε). The scale-up is

relevant in the strong-scaling context to quantify the reduction in computational time re-

sulting from running the a program on N cores instead of one core, for a fixed amount of

computational work. It is defined as follows:

S =
wall − time on one core
wall − time onN cores

. (6.2)

Scale-up is useful to answer the question: everything remaining the same, how fast does a

program run on N cores versus on one core. Parallel efficiency, on the other hand, quantifies

how efficiently the resources (N cores) are utilized by the parallelized program. It is defined

as:

ε =
wall − time onN cores

N × wall − time on one core =
speedup onN cores

N
(6.3)

It is clear that an ideal (perfect) parallel program should have ε → 1. It is noted that

the wall-times used in the analysis consists purely of the time taken to run the core FDLB

algorithm (collision(), gradient update(), macro variable()), and therefore

does not include ancillary tasks, such as file I/O, initialization, etc. The wall-times are

measured using OMP GET WTIME().
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6.4.3.1 Observations Fig. 39 shows the speedup curve of the OpenMP-FDLB code.

The horizontal axis shows the number of cores (threads) utilized and the vertical axis shows

the corresponding speedup, as obtained from Eq. (6.2).

Because of strong scaling, the execution time decreases with an increasing number of

cores, and hence the speedup increases with the number of cores. The speedup for the

D2Q17 lattice is also (slightly) better than the D2Q9. This is because, in case of D2Q17,

the number of computations per node is much higher than that for D2Q9. This leads to a

higher computation to communication ratio (CCR) in D2Q17 and hence the better speedup.

Tests with the D2Q37 lattice are the subject of future investigations.

However, as the number of cores is increased, the speedup starts to deviate from the ideal

(linear) curve. This results in a lower parallel efficiency as indicated in Fig. 40. The less than

ideal speedup is possibly due to the overheads associated with the creation and destruction of

an increasing number of threads at every time-step. OpenMP has higher overheads compared

to other threads based tools such as PThreads. The cc-NUMA architecture of the cluster also

adds to the overheads. This is because, to maintain cache-coherency, additional protocols

are required to be maintained, adding to the overall overheads [23, 52]. It is expected that

the impact of all the overheads on total computational time is expected to become smaller,

if the computational grid in the domain is high, and if the number of threads is not too high.
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Figure 39: Scale-up obtained through OpenMP based parallelism of a OLB code. The

computational domain is 5132 and 20, 000 time-iterations are performed.
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Figure 40: Parallel efficiency for the OpenMP-FDLB code .

145



6.5 DISCUSSION

The work presented here is exploratory in nature, developed primarily as a tool to investi-

gate the several OLB schemes and higher-order lattices for thermal problems. Still, many

important conclusions can be drawn from the results presented here. They are:

1. The SoA data structure is an efficient choice for storing the fundamental variable (distri-

butions). Through this data structure and optimal looping, good performance enhance-

ment for research codes can be obtained even on singlecore desktops.

2. The computational effort of higher-order lattices appears to increases non-linearly with

the increase in number of velocities in the lattice. The increase is mainly from the non-

linear increase in the computational complexity involved in evaluating the equilibrium

distributions.

3. The FDLB method might be less memory-bound for higher-order lattices, compared to

stream-collide type schemes. This feature might aid better scaling of LB applications on

a larger number of cores.

4. Shared-memory parallelization of FDLB simulations shows good scalability (with a par-

allel efficiency of 0.8) on systems with up to 50 cores. For better scalability and higher

sustained performance in GFlop/s, other platforms might present better results.

5. More memory-efficient data structures should be developed to facilitate a wider use of

higher-order lattices for complex physics.

6. Benefits of optimization and parallelization are relatively larger for bigger grids compared

to smaller grids due to a larger computation to communication ratio.
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7.0 CONCLUSIONS AND OUTLOOK

The primary focus of this dissertation was to investigate the theoretical and numerical aspects

of the higher-order lattice Boltzmann models for thermal flows and their implementations in

an off-lattice framework. In this regard, we have made several contributions, a summary of

which is given below.

7.1 PRIMARY CONTRIBUTIONS

7.1.1 Kinetically consistent thermal LB model

Based on the framework first presented by Grad and later extended by Shan, Chen, and col-

leagues [45, 105], we presented a detailed mathematical derivation of a kinetically consistent,

energy conserving, thermal lattice Boltzmann model. This formulation, obtained directly

from the Boltzmann equation, was shown to be capable of approximating the weakly com-

pressible, and compressible thermal behavior of ideal-gas hydrodynamics, thus obviating the

previous low-Mach number assumption. Physically, it means that this formulation allows a

kinetically-accurate description of flows involving high heat transfer and/or flows at finite

Mach number. In an off-lattice framework, the thermal model, consisting of the D2Q39

lattice and fourth-order Maxwellian, was validated for the Rayleigh-Benard convection and

the thermal Couette flow. Our tests showed that the D2Q39-based thermal model is capable

of modeling incompressible and weakly compressible thermal flows accurately. In the vali-

dation process, through a finite-difference-type boundary treatment, we also extended the

applicability of higher-order lattices to domains with solid boundaries, previously restricted.
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7.1.2 Off-lattice Boltzmann schemes

Various time-marching schemes for solving the discrete-velocity Boltzmann equation were

presented and analyzed in detail. These schemes are potentially useful for extending the

geometric flexibility of the LB method for body-fitted grids, and also for use with higher-order

discrete velocity sets-both space-filling or non space-filling. Towards that end, the various

time-evolution schemes were analyzed and their numerical stability a function of maximum

allowable ∆t was studied in detail. We showed that the characteristic-based scheme of

Bardow et al [11]. offers the best numerical stability among comparable time-marching

schemes. Due to the enhanced numerical stability of the characteristics-based scheme, we

found that the ∆t < τ restriction no longer applies, enabling larger time-steps, and thereby

reducing the computational run-time. The off-lattice schemes were also successfully extended

to higher-order LB models.

7.1.3 Serial and Parallel Implementation of higher-order models

We presented the algorithm and single-core optimization techniques for a off-lattice, higher-

order LB code. Using simple cache optimization techniques and a proper choice of the

data-structures, we obtain a 5-7X improvement in performance compared to a naive, unop-

timized code. Thereafter, the optimized code was parallelized using OpenMP. Scalability

tests indicated that the code has a parallel efficiency of 80% on shared-memory systems with

up to 50 cores. A preliminary analysis of the higher-order models also showed that they

are less memory-bound if the off-lattice temporal schemes are used instead of the regular

stream-collide scheme.

7.2 FUTURE WORK

As with most research, answers to certain question raise newer ones. This work is no excep-

tion. Therefore, a few of the areas specifically related to the work presented here, that need

future in-depth investigation and analysis are identified and described below.
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7.2.1 Quantitative assessment of thermal model

The validation performed for the thermal models in Chap. 5 was done on a limited parameter

range and in the incompressible limit. Future tests should rigorously test the D2Q39-based

model by performing parametric tests to gauge the effects of higher temperature gradi-

ents, addition of heat sources, smaller relaxation times, non-Cartesian geometry, etc., on

the numerical stability and accuracy of the model, and in both two and three dimensions.

Similarly, rigorous benchmark tests should be performed to quantify the accuracy of using

the finite-difference type boundary treatment with higher-order lattices. Finally, to employ

the real power of the Hermite-based LB formulations, the D2Q39-based model should be

tested for high Mach number and high Rayleigh number flows. For fully compressible flows

of real gases, where Pr 6= 1, the multiple-relaxation time collision model, developed in the

Hermite-polynomial framework, can be used. Moreover, the thermal model developed here

still has fixed specific heat ratio. Therefore, for the model to be able to simulate fluids with

a variable specific heat ratio, which play an important role in compressible flows, it has to

include the effects of the gases’ internal degrees of freedom.

7.2.2 Boundary Treatment

One of the most important advantages of LB methods, the exact space discretization of

particle’s advection (no dispersion or diffusion) and algorithmic simplicity, both are lost by

using off-lattice time marching schemes. Clearly, the stream-collide scheme is more desir-

able both for accuracy and efficiency reasons. One of the major impediments to a wider

adaptation of the higher-order lattices is the lack of the simple and local bounceback type

wall boundary treatment that is employed in conjunction with the stream-collide scheme.

In the absence of such a boundary scheme, the off-lattice temporal schemes, despite all

their disadvantages, offer an attractive option for employing the higher-order lattices with

non-periodic boundaries. Hence, schemes analogous to bounceback should be developed for

the higher-order LB models. Similarly, treatment of curved boundaries in the higher-order

lattice context also needs to be addressed. In general, the volumetric LB formulation might

be better suited for higher-order LB models with non-periodic boundaries than point-wise
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(stream-collide) formulation. Advanced, numerical techniques, such as local or adaptive grid

refinement, also become more difficult to implement for higher-order models due to their

extended neighborhood.

7.2.3 Interpolation versus off-lattice Boltzmann schemes

The interpolation-supplemented LB and off-lattice Boltzmann are both schemes that were

developed to address the issue of breaking the space-time coupling. While, the former

introduces errors due to interpolation, the latter (as shown in this work) introduces errors

due to numerical diffusion. Therefore, their comparative study would be useful for future

investigation of non-space-filling lattices.

7.2.4 Third-generation LB method

Over the past decade, alternate LB formulations with different collision models, such as

the multiple-relaxation time (MRT) and entropic models have been developed to address

the deficiencies of the BGK model. Of the two, the entropic LB formulation is formulated

to describe the thermo-hydrodynamics in a kinetically-consistent fashion, like the Hermite

based LB formulation. Therefore, a extremely pertinent study for future work would be to

conduct a comprehensive comparison of the two formulations with respect to their stability,

accuracy, computational efficiency, parameter range, etc.

7.2.5 Computational Advancement

The field of high performance computing is a rapidly evolving field, where every three to

five years there are substantial changes in HPC architecture. Since software generally out-

lasts hardware, any new scientific software development should ideally be done with future

hardware trends in mind. However, historically, software development has lagged behind the

hardware advances, and this issue persists even today. Many traditional engineering soft-

ware applications are not parallelized and many of those that are parallelized do not scale

well beyond 50-100 cores. Optimization, tuning and parallelization of an application needs
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a careful map of the algorithm to the platform to utilize every bit of the performance and

parallelism, which required expertise and man-hours. More specifically, in the off-lattice,

higher-order models context, some of the avenues for future research include:

1. Data structures : Customized (as opposed to arrays) data-structures and their associated

algorithms should be designed for higher-order LB simulations. A particular concern

that needs to be addressed is the larger neighborhood of the higher-order models.

2. Detailed profiling : A detailed serial and parallel profiling of the off-lattice, higher-order

LB code should give us additional insights and opportunities to optimize the algorithm

for different platforms. Advanced debugging and profiling tools such as GProf, PAPI,

TotalView, etc., can be useful for this purpose.

3. Memory vs. CPU-bound analysis: Quantitative investigation of memory bound/CPU-

bound nature of the FDLB method. Such an investigation is important for future scaling

studies of the higher-order method.

4. Distributed-memory platform: The shared-memory parallelization, due to hardware lim-

itations, cannot be scaled beyond 50-100 cores. Truly large-scale higher-order LB codes

would need to be parallelized using MPI. In the higher-order LB context, domain decom-

position and mapping of complex domains onto equally-loaded processors is a challenge.

5. Coprocessors : Coprocessors, such as GPUs, and MICs (Intel’s Xeon Phi), are becoming

more common in the high-end computing sphere. Several GPU based LB implementa-

tions have been implemented with success, while MIC-based implementations have just

begun to appear. An interesting debate has begun in the HPC field comparing the effi-

cacy of GPUs versus MICs for parallelization, along with different metrics, such as price

to performance, time to deployment, sustained vs. peak performance, etc. A comparison

of this sort in the LBM context would be useful.
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7.3 OUTLOOK

7.3.1 Industrial Lattice Boltzmann

It can argued that, barring the exception of Exa Corporation, the LB method has been

mostly confined to academic circles. This is in spite of its many advantages- computational

and modeling- over traditional CFD. The fact that a single, self-contained methodology, that

can deal with large variety of complex multi-physics flows, from high-speed aerodynamics

to bio/medical physics, in itself is significant! In the author’s opinion, this versatility, in a

way, is also an impediment. Due to a first-mover advantage for the traditional PDE-based

CFD, and a background in physics (kinetic theory) rather than engineering, the LB method,

is often looked upon with skepticism in CFD community with respect to its capabilities.

The perception is that the LB method can perform complex physics on simple geometries,

but lacks the ability/experience to perform complex physics on complex (non-Cartesian)

engineering-scale geometries. Hence, there is a clear need for the LB method to tackle

large, three-dimensional, multi-physics type industrial applications, especially those where

traditional PDE-based solvers are inadequate and where the LB method has its strengths. An

example of such an application can be a high-fidelity, boiling simulation in nuclear reactors,

multiphase, multicomponent flow in microfluidic devices, simulation of multiphase (particle-

laden) flow in fluidized beds, etc. Such high-profile, yet rigorous, studies would highlight the

strengths of the LB method, while offering paths for further model development. To further

highlight its capabilities, it is also useful for LB researchers (at least in the U.S.) to present

their findings in traditional CFD arenas, such as the AIAA, ASME and APS conferences.

On a less technical point, the author believes that a conceptual barrier exists for the

wide-spread adoption of the LB method not only in the industry, but even in engineering

(mechanical/aerospace) departments. While PDE-based CFD methods have their basis in

conceptually simpler conservation laws, the steep learning curve of (kinetic theory) basis of

the LB theory makes it more appealing for physicists rather than practicing engineers.
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7.3.2 Multidisciplinary LB software development

Ease of programming of the algorithm, simple data-structures, and the redundancy of grid

generation, have played an important role in the growing popularity of the LB method, as

evidenced in the increasing publications in the field. Indeed, a full-fledged LB code can be

written in less than 2-3 pages of code, even for a fairly complex flow. A majority of these

studies (including those of the author) are geared towards method/physics development, as

opposed to real-world applications. However, the true impact of the method on engineering,

design, and ultimately, everyday human life depends upon a collaborative effort between

software developers (including HPC and visualization experts), LB model developers, and

practicing (design) engineers.

Most of the LB methods development, including what has been done by this author,

happens in a ’one code per student’ basis. This is also referred as the ’not invented here

syndrome’. While this approach is useful for a complete and thorough understand of the ele-

ments inside a LB algorithm/code, this practice is not scalable to address large, engineering-

scale flow problems as pointed out earlier. To do this, we need to leverage some rigorously

validated open-source codes not just for large projects, but even for (smaller) new model de-

velopment. Although the learning curve is higher, significantly more complex problems can

be solved accurately, by using open-source codes. These codes often include highly optimized

data-structures algorithms and software engineering practices, through which a particular

new physics model can be developed and tested quickly, and on large computational domains.

Finally, a word about the extent to which a LB code can be optimized, tuned, and par-

allelized for a particular platform is in order. Different hardware platforms have their own

advantages/disadvantages, depending upon the metric under consideration. For example, a

shared-memory platform enables relatively quick software development, but is not scalable

to a large number of cores, and has a low sustained-to-peak performance ratio. On the other

hand, for the LB method, vector processors are much better than cache-based systems, in

terms of sustained performance in GFlop/s. Given the decline of vector computers, the

only way to bridge the sustained-peak performance gap, and attain scalable petascale or

even exascale level LB simulations, is to perform further low-level, hardware-specific opti-
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mizations, such as SIMDization, software pre-fetching, etc. Given this fact, the question

arises: How much optimization is enough? Designing such highly efficient software requires

hardware, software and numerics expertise, along with time and access to HPC resources.

Highly hardware-specific tuning hinders generic, portable software, that can run on desktops

or large HPC clusters. Clearly, future LB software development would be a process that will

involve numerous trade-offs.
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APPENDIX A

A PRIMER ON HERMITE POLYNOMIALS

In this appendix we will discuss different properties of the Hermite polynomials that are

relevant for the LB method. The results presented here are a summary of the work by

Harold Grad [44].

A.1 INTRODUCTION

Hermite polynomials are a type of classical orthogonal polynomial sequence, like the Cheby-

shev or Legendre polynomials. The Hermite polynomials are orthogonal on the interval

(=∞,∞) with respect to the weight function ω(x). They can be defined by means of their

Rodrigues formula. Explicitly, in 1D we have:

Hn(x) =
(−1)n

ω(x)

dnω(x)

dxn
, n = 0, 1, 2, · · · ,−∞ < x <∞ (A.1)

where the weight function is

ω(x) = exp

[
−x

2

2

]
(A.2)

Hermite polynomials form a complete orthogonal set on the interval −∞ < x < ∞ with

respect to ω(x) : ˆ ∞
−∞

ω(x)Hn(x)Hm(x)dx = n!δnm (A.3)
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and generalized Fourier expansion:

f(x) = ω(x)
∞∑
n=0

1

n!
anHn(x) where a(n) =

ˆ ∞
−∞

f(x)Hn(x)dx (A.4)

a(n) is the spectral expansion coefficient. A complete list of properties of Hermite-polynomials

can be found in [3] and [1].

A.2 HERMITE POLYNOMIALS IN VELOCITY SPACE

Per the Rodrigues’ formula, in a D-dimensional Cartesian space (ξ), the Hermite polynomial

of degree n is defined by the nth derivative of the weight function ω(ξ), which is given as:

ω(ξ) =
1

(
√

2π)D
exp

[
−ξ

2

2

]
, (A.5)

where ξ2 = ξ · ξ. Therefore, we obtain the Hermite polynomial of degree n as a nth rank

symmetric tensor whose components are:

H(n)
α1···αn(ξ) =

(−1)n

ω(ξ)

∂

∂ξα
=

(−1)n

ω(ξ)

∂

∂ξα1

· · · ∂ω(ξ)

∂ξαn
(A.6)

where α = (a1, α2, ..., αn) and αi = 1, 2, ..., D. In the tensor notation, we have:

H(n)(ξ) =
(−1)n

ω(ξ)
∇nω(ξ) (A.7)

In this work, the first five Hermite polynomials are useful. They are given explicitly as:

H(0)(ξ) = (−1)0

ω(ξ)
ω(ξ) = 1,

H(1)
α (ξ) = (−1)1

ω(ξ)
∂ω(ξ)
∂ξα

= ξα,

H(2)
α1α2(ξ) =

(−1)2

ω(ξ)

∂2ω(ξ)

∂ξα1ξα2

= ξα1ξα1 − δα1α2, (A.8)

H(3)
α1α2α3(ξ) =

(−1)3

ω(ξ)

∂3ω(ξ)

∂ξα1ξα2ξα3

= ξα1ξα2ξα3 −
(
δα1α2ξα3 + δα1α3ξα2 + δα2α2ξα1

)
,
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H(4)
α1α2α3α4(ξ) =

(−1)4

ω(ξ)

∂4ω(ξ)

∂ξα1ξα2ξα3ξα4

= ξα1ξα2ξα3ξα4 −
(
δα1α2ξα3ξα4 + δα1α3ξα2ξα4 + δα1α4ξα2ξα3

+ δα2α3ξα1ξα4 + δα2α4ξα1ξα3 + δα3α4ξα2ξα3

+ δα1α2δα3α4 + δα1α3δα2α4 + δα1α4δα2α3

)
.

Here, δα1α2 is the Kronecker delta function with value 1 if α1 = α2, and 0 otherwise. In a

compact tensor notation, we have:

H(0)(ξ) = 1

H(1)(ξ) = ξ

H(2)(ξ) = ξξ − δ (A.9)

H(3)(ξ) = ξξξ − 3ξδ

H(4)(ξ) = ξξξξ − 6ξξδ + 3δ

A useful recurrence relation is given by:

ξH(n) = H(n+1) +∇ξ(H(n)) (A.10)

Or explicitly:

ξ0H(n)
α1,α2,···αn = H(n)

α0,α1,···αn + ∂ξα0H(n)
α1,α2,···αn

= H(n)
α0,α1,···αn +

n∑
i=1

δα0αiH(n−1)
α1···αi−1αi+1···αn (A.11)

Another useful relation is for the derivative of Hermite polynomials with respect to velocity.

In a compact form we have:

∇ξ(H(n)) = nH(n−1)δ (A.12)
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APPENDIX B

GAUSS-HERMITE QUADRATURE

The following tables compile the Gauss-Hermite quadrature set (weights and abscissae) in

2D and 3D for various degrees of quadrature, based on works of Shan et al. [105, 101] and

Nie et al. [80]. Besides these, other two-dimensional quadrature set include the D2Q16 and

D2Q25, which are based on the entropic LB formulation, and the D2V25 (W1) and D2V25

(W6) based on ’quadrature with prescribed abscissas.’ It is noted that D2Q17 and D2Q37

presented here are the same as the D2V17 and D2V37 presented in [107, 115]. Also listed

here the D2Q5 and D3Q7 lattices that do not have enough isotropy to sufficiently represent

fluids, but are adequate for the advection–diffusion schemes. The subscript FS represents

a fully symmetric set of velocities. Per the convention proposed by Shan et al. [105], the

quadrature rule Ed
D,n is defined in D space dimensions, is exact for a polynomial degree n or

degree of precision of the quadrature, and has d points or quadrature nodes. cl denotes the

lattice constant.

2D 5th-order Quadrature

Quadrature Lattice ξi p wi lattice constant Remarks

E7
2,5 D2Q7

(0, 0) 1 1
2

Off-lattice
2 cos nπ

3
, sin nπ

3
6 1

12

E9
2,5 D2Q9

(0, 0) 1 4/9

cl =
√

3 On-lattice(cl, 0)FS 4 1/9

(±cl,±cl) 4 1/36
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2D 7th-order Quadrature

Quadrature Lattice ξi p wi lattice constant Remark

E12
2,7

(r, 0)FS 4 1
36

r2 = 6

Off-lattice(±s,±s) 4
(5+2
√

5)

45
s2 = (9−3

√
5)

4

(±t,±t) 4
(5−2
√

5)

45
t2 = (9+3

√
5)

4

E16
2,7

(r, 0)FS 4
(5−2
√

6)

48
r2 = 3 +

√
6

Off-lattice(s, 0)FS 4
(5+2
√

6)

48
s2 = 3−

√
6

(r, s)FS 8 1
48

E17
2,7 D2Q17

(0, 0) 1 (575+193
√

193)
8100

c2
l = (125+5

√
193)

72
On-lattice

(cl, 0)FS 4 (3355−91
√

193)
18 000

(±cl,±cl) 4 (655+17
√

193)
27 000

(±2cl,±2cl) 4 (685−49
√

193)
54 000

(±3cl, 0)FS 4 (1445−101
√

193)
162 000

E21
2,7 D2Q21

(0, 0) 1 91
324

c2
l = 3

2
On-lattice

(cl, 0)FS 4 1
12

(±cl,±cl) 4 2
27

(±2cl, 0)FS 4 7
360

(±2cl,±2cl) 4 1
432

(±3cl, 0)FS 4 1
1620
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2D 9th-order Quadrature

Quadrature Lattice ξi p wi Remark

E37
2,9 D2Q37

(0, 0) 1 0.23315066913235250228650

On-lattice

(cl, 0)FS 4 0.10730609154221900241246

(±cl,±cl) 4 0.05766785988879488203006

(2cl, 0)FS 4 0.01420821615845075026469

(±2cl,±2cl) 4 0.0010119375926735754754

(3cl, 0)FS 4 0.00024530102775771734547

(cl, 2cl)FS 8 0.00535304900051377523273

(cl, 3cl)FS 8 0.00028341425299419821740

cl = 1.19697977039307435897239
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3D 5th-order Quadrature

Quadrature Lattice ξi p wi lattice constant Remark

E13
3,5

(0, 0, 0) 1 2
5

r2 = (5+
√

5)
2

Off-lattice
(±r,±s, 0) 4 1

20

(0,±r,±s) 4 1
20

s2 = (5−
√

5)
2

(±s, 0,±r) 4 1
20

E15
3,5 D3Q15

(0, 0, 0) 1 2
9

cl =
√

3 On-lattice(cl, 0, 0)FS 6 1
9

(±cl,±cl,±cl) 8 1
72

E19
3,5 D3Q19

(0, 0, 0) 1 1
3

cl =
√

3 On-lattice(cl, 0, 0)FS 6 1
18

(cl, cl, 0) 12 1
36

E27
3,5 D3Q27

(0, 0, 0) 1 8
27

cl =
√

3 On-lattice
(cl, 0, 0)FS 6 2

27

(cl, cl, 0) 12 1
54

(±cl,±cl,±cl) 8 1
216

3D 7th-order Quadrature

Quadrature Lattice ξi p wi lattice constant Remark

E27
3,7

(0, 0, 0) 1 721±8
√

15
2205

Off-lattice
(r, 0, 0)FS 6 270∓46

√
15

15435
r2 = 15±

√
15

2

(s, s, 0) 12 162±41
√

15
6174

s2 = 6∓
√

15

(±t± t,±t) 8 783∓202
√

15
24696

t2 = 9±
√

15

E39
3,7 D3Q39

(0, 0, 0) 1 1
12

c2
l = 3

2
On-lattice

(cl,0, 0)FS 6 1
12

(±cl,±cl,±cl) 8 1
27

(2cl, 0, 0)FS 6 2
125

(2cl, 2cl, 0)FS 12 1
432

(3cl, 0, 0)FS 6 1
1620
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3D 9th-order Quadrature

Quadrature Lattice ξi p wi Remark

E121
3,9 D3Q121

(0, 0, 0) 1 0.03059162202948600642469

On-lattice

(cl,0, 0)FS 6 0.09851595103726339186467

(±cl,±cl,±cl) 8 0.02752500532563812386479

(cl,2cl, 0)FS 24 0.00611102336683342432241

(2cl, 2cl, 0)FS 12 0.00042818359368108406618

(3cl, 0, 0)FS 6 0.00032474752708807381296

(2cl, 3cl, 0)FS 24 0.00001431862411548029405

(±2cl,±2cl,±2cl) 8 0.00018102175157637423759

(cl, 3cl, 0)FS 24 0.00010683400245939109491

(±3cl,±3cl,±3cl) 8 0.00000069287508963860285

lattice constant: cl =1.19697977039307435897239
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APPENDIX C

LIST OF ACRONYMS AND SYMBOLS

C.1 ACRONYMS

� BC: Boundary conditions

� BGK: Bhatnagar-Gross-Krook

� BBGK: Boltzmann-BGK

� BBGKY: Bogoliubov–Born–Green–Kirkwood–Yvon

� CFD: Computational fluid dynamics

� CE: Chapman-Enskog expansion procedure

� DVBE: Discrete velocity Boltzmann equation

� EOS: Equation of state

� EDF: Equilibrium distribution function

� IC: Initial conditions

� FDM:Finite difference method

� FEM: Finite element method

� LBGK: Lattice Boltzmann-BGK

� LGCA: Lattice gas cellular automata

� Ma: Mach number

� MFLOPS: Million floating point operations

� MRT: Multiple relaxation time

� OLB: Off-lattice Boltzmann
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C.2 SYMBOLS

C.2.1 Greek

� α: spatial-coordinate index

� ρ : Density

� ε : Internal energy of the particle per unit mass

� ξ : velocity in continuum (Dimensional and non-dimensional)

� ξi : Discretized, non-dimensional velocity

� τ : (single) relaxation time (Dimensional and non-dimensional)

� λ : Modified relaxation time

� λ : Bulk viscosity or second viscosity

� δ : Kronecker delta function

� σ : Stress tensor

� Π : Total stress tensor

� ν : Kinematic viscosity of the fluid

� Ω : Collision kernel

� ω : Weight function

� ∆t : time-step

� ∆ x : spatial step

C.2.2 Roman

� a(n) : nth−order expansion coefficient tensor of the full distribution, f , n = 0, 1, . . .

� a(n)
0 : nth−order expansion coefficient tensor of f (0), n = 0, 1, . . .

� a(n)
k : nth−order expansion coefficient tensor of f (k), n = 0, 1, . . . , k = 0, 1.

� cs : Non-dimensional speed of sound

� D: Number of spatial dimensions

� ei : integer valued discrete velocities, i = {· · · − 2,−1, 0, 1, 2 · · · }
� g: acceleration
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� f (k) : kth level distribution function on according to the Chapman-Enskog expansion

procedure; k = 0, 1, ...

� fi : discrete distribution corresponding to the ith discrete velocity

� f ci :collided (post-collision) distribution

� f (0) : Maxwell-Boltzmann distribution

� f (eq)
i : (discretized) equilibrium distribution

� F : external force

� j ≡ ρu : Fluid momentum

� Kn : Knudsen number

� kB : Boltzmann constant

� H : Hamiltonian of N−body system

� O : Of the order of

� Q : Third-order moment

� Q : Order of precision of Gauss-Hermite quadrature

� q : heat or internal energy flux

� P : Second-order moment

� Ed
D,m: quadrature with d points in D dimension with m degree of accuracy of the quadra-

ture

� x: particle position vector

� wi : Discrete weights
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