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ABSTRACT 

The goal of this work is to apply Multiple Criteria Decision Analysis tools, both 

theoretical and practical, to analyse, support and possibly enhance composite indexes, in 

particular those related to sustainability assessment. In this context, the Sustainable 

Development of Energy, Water and Environment Systems Index represents a 

paradigmatic example and an emerging reference point, thus it is specifically addressed 

throughout the work. On the theoretical side, the focus is on the property of 

“independence”, i.e., of evaluating an alternative independently of the others. It is argued 

that this property can be appealing for an index that is conceived to address, over time, an 

increasing number of inherently evolving systems. A viable and theoretically grounded 

approach for devising a version of the index fulfilling independence is proposed. On the 

practical side, the contribution concerns visual support tools. A well-known projective 

method is adapted to work with the index, and a new tool with comparable expressive 

capabilities is proposed. The new representation is more focused on the index, 

technically simpler, and less sensitive to changes in the input data. The features of the 

visual tools are illustrated exploiting currently available (partially aggregated) index 

data. In particular, the new tool is used to illustrate two issues addressed in the scientific 

literature on the index, namely, the use of scenario analysis as a predictive tool, and the 

decoupling of energy usage and carbon dioxide emissions. 

KEYWORDS 

SDEWES Index, Multiple criteria decision analysis, Multiple attribute utility theory, 

Rank reversal, Visual decision support tools, Graphical analysis for interactive aid,  

Principal component analysis. 

INTRODUCTION 

In the last decades, there has been an increasing demand for quantitative methods for 

sustainability assessment. This led, in particular, to the proliferation of composite 

indexes, that can provide a numerical synthesis of multiple assessments from different 

perspectives. The United Nations Environment Programme (UNEP) developed the 

Sustainability Assessment of Technologies Methodology (SAT) [1] to provide a general 

framework for structuring and supporting the assessment process in the context of 

sustainable development. The SAT methodology can be applied to a variety of situations, 

and with complexity ranging from policy making at the government (strategic) level to 

comparing technology options at the local community (operational) level. The European
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Commission created the Competence Centre on Composite Indicators and Scoreboards 

(COIN) [2] whose mission is to provide and continuosly improve reliable tools for 

building robust composite indexes. A relevant area of application for sustainability 

assessment is offered by cities: often, in this context, a composite index is designed to 

focus on a specific aspect. For example, the Sustainable Cities Index (SCI) by Arcadis [3] 

explores city sustainability from the perspective of the citizens, trying to assess how a 

city meets their needs. This also leads to a classification of the cities into four clusters, 

based on their similarity to eight “archetypes”. SCI is currently applied to 100 cities from 

all over the world, and is based on three pillars (“People”, “Planet” and “Profit”) 

evaluated on 13, 11 and 7 indicators, respectively. Another example is provided by the 

Clean Air Scoreboard (CAS) by Clean Air Asia Initiative [4], that focuses on the city’s 

management of air pollutants. CAS has been applied in 19 Asian cities from nine 

countries, and integrates three aspects, related to actual air pollution levels, potential to 

face the problem, and existing policies/actions. A sample of some most relevant city 

sustainability indexes are described and compared in Kılkış [5]. It is worth noting that the 

assessment of cities is not limited to sustainability issues. For example, the European 

Digital City Index (EDCi) [6] shows how cities support digital entrepreneurship. A 

detailed discussion of EDCi, and a comparison to other indexes with similar aims, can be 

found in Bannerjee et al. [7]. 

In recent years, a growing interest has been attracted by a specific city-centred 

composite index, namely the Sustainable Development of Energy, Water and 

Environment Systems (SDEWES) Index. At the time of writing, this index is applied to 

an integrated sample of 120 cities, results, partially aggregated data and related 

explicatory material are maintained in [8]. This index was designed to address the 

integrated development of Energy, Water and Environment (EWE) systems including 

societal and technological aspects, and with a particular focus on the goal of decoupling 

energy and resource usage from carbon dioxide (CO2) emissions. It is based on the 

following seven main dimensions: 

• Energy usage and climate; 

• Penetration of energy and CO2 saving measures; 

• Renewable energy potential and utilization; 

• Water usage and environmental quality; 

• CO2 emissions and industrial profile; 

• Urban planning and social welfare; 

• R&D, innovation and sustainability policy. 

Each dimension is evaluated based on five indicators some of which, in turn, are 

obtained by aggregating sub-indicators. Technical details on the computation of the 

SDEWES Index are provided later in this work. It is worth noting that some dimensions 

(1, 4-6) essentially provide a picture of the current status of a city EWE system, while 

others (2, 3, 7) evaluate the existing actions and the city potential to improve 

sustainability. Moreover, dimensions 1 and 5 are more directly related to the main focus 

of the SDEWES Index, since they measure the quality of the urban systems in terms of 

efficiency and CO2 emissions, respectively: accordingly, these two dimensions are 

assigned a greater relevance (i.e., a larger weight) in the computation of the index.  

The SDEWES Index was originally applied to a sample of 12 South East Europe (SEE) 

cities [9]. A sample of 22 Mediterranean port cities were considered in Kılkış [10], where 

an “Energy Scenario Tool” was proposed to evaluate (in terms of the index values and 

ranking) the impact of possible actions improving the EWE system of a city. A further set 

of 25 world cities were considered in Kılkış [11], where a “Benchmarking Tool” is 

devised to compare the performance of cities. Moreover, the “city pairing” process is 

introduced as a tool for supporting policy learning and best practices exchange.  
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This process consists in finding pairs of cities with similar behaviour (either under or 

below average) on all dimensions. Results of city pairing are reported also in Kılkış [12], 

where a further sample of 18 SEE cities is considered. In Kılkış [13], a further sample of 

26 world cities is evaluated, and a “normative scenario” (see discussion below) for Rio de 

Janeiro is analysed. The data for another sample of 18 world cities are compiled in  

Kılkış [14]. An in-depth discussion of the results (including, but not limited to, sensitivity 

and scenario analysis, and city pairing) for the overall integrated sample of 120 cities 

addressed so far can be found in Kılkış [5], an overview is given in Kılkış [15].  

In particular, the areas of best practice characterizing the top ten cities in the SDEWES 

Index ranking are pointed out in Kılkış [5]. The analysis reveals that all these cities show 

best practices in the areas of urban energy systems and/or of CO2 emissions. This seems 

to suggest that energy/emission decoupling is a key factor for attaining a high level of 

sustainability. Some remarks along this line of thought are provided later in this work. 
An in-depth analysis of the SDEWES Index goes beyond the scope of this work. 

Nevertheless, it is important to point out a few relevant aspects here. First, the 

computation of the SDEWES Index involves a substantial amount of work for data 

collection. To begin with, a city to be evaluated via the SDEWES Index must have a 

Sustainable Energy Action Plan (SEAP) and maintain reliable statistics on its local 

energy system. Furthermore, collected data usually require pre-processing, e.g. for 

computing main indicators based on sub-indicators. These issues are skipped in this 

work, where the analysis starts after data collection and pre-processing. Second, the 

SDEWES Index is descriptive in nature but it also has a relevant prescriptive value. 

Indeed, it may help city planners to find successful policies for enhancing the 

sustainability of local energy systems. This can be obtained in several ways, the most 

obvious ones being spreading awareness and identifying best practices. In this direction, 

a methodologically more involved approach is provided by the city pairing process cited 

above. Beyond policy learning, the goal should be to adopt the SDEWES Index as the 

objective function to optimize when selecting or designing policies, in order to take 

integrated actions addressing several aspects of sustainability [5, 15]. Last but not least, 

the SDEWES Index can be used to track the evolution of local EWE systems, and this 

means, in particular, that it allows to evaluate the impact of sustainability policies.  

This aspect is clearly pointed out in Kılkış [13], in relation with some medium-long term 

commitments (with target spanning between 2035 and 2060) undertaken by the City of 

Rio de Janeiro. The impact of these commitments on the SDEWES Index is evaluated, 

which allows to forecast the evolution of the index value for Rio in the next decades.  

It can be argued that, during this period, a comparison of actual and envisioned results 

may provide useful feedback on the policy implementation status. That is, the SDEWES 

Index has the capability not only to evaluate the envisioned impact of sustainability 

policies, but also to assess, and keep track of, their actual implementation. However, in 

order to fully exploit this “evaluate and assess” capability, the index should be computed 

consistently throughout a possibly wide time horizon. This is one of the issues addressed 

by the present work. 

By definition, a composite index is a numerical aggregation of measures arising from 

different indicators. These measures are expressed in many different scales, ranging from 

purely qualitative or ordinal (that essentially sort elements into categories) to strongly 

cardinal ones, that have a sound physical meaning and specific units (such as “dollars” or 

“tons of CO2”). The aggregation of multiple evaluations on different scales is the subject 

of Multiple Criteria Decision Analysis (MCDA) [16]. In fact, any composite index can be 

seen as the numerical solution of an underlying MCDA problem, in particular, for the 

“ranking problematic” (see Chapter 2 in Greco et al. [16]), i.e. establish a complete order 

among a set of alternatives. A description (including a detailed visual representation) of 

the MCDA problem underlying the SDEWES Index can be found in Carli et al. [17], 
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where the ranking obtained by the SDEWES Index is compared to the one of a hybrid 

method, merging Analytic Hierarchy Process (see Chapter 10 in Greco et al. [16]) with 

SDEWES Index computation at the indicator level for a sample of four cities. Since long 

time, and far beyond the link to composite indexes, MCDA methods have been applied in 

the field of sustainable development. The survey in Thies et al. [18] mentions 142 articles 

that apply MCDA and related methods to support or replace standard sustainability 

assessment methods. Another recent survey [19] lists 94 articles (dating 1995-2017) 

where MCDA assessment methods include social aspects in the evaluation of 

infrastructure sustainability. In a bibliography of more than 2,000 articles on 

PROMETHEE-GAIA applications [20] over 40% of the entries deal with energy, 

environment or water management. A survey devoted to ELECTRE methods [21] shows 

that 153 papers (out of the 544 application papers addressed there) deal with natural 

resources and environmental management. The role of MCDA for sustainability 

assessment has been investigated also from a theoretical point of view. The features of 

several MCDA methods, and their suitability for sustainability assessment, are discussed 

in Cinelli et al. [22], while Chapter 27 in Greco et al. [16] provides a critical analysis, in 

light of MCDA theory, of common practices and implicit assumptions in composite 

indicators for sustainability. 

Aims of the present research work 

In short, this work deals with composite indexes from an MCDA point of view.  

More precisely, some concepts and tools developed in the context of MCDA are applied 

to the ranking problem underlying a composite index. Two main topics are addressed: the 

“rank reversal” effect, and the application of visual support tools. It must be remarked 

that these topics may be of concern in a broad context, virtually for any index or 

benchmarking technique, not limited to sustainability issues. However, no efforts 

towards generality are made in this work, on the contrary, the above topics are addressed 

only in the context of the SDEWES Index. This implies that some observations and 

results are motivated by, and related to, the features and aims of the SDEWES Index, 

however, it must be kept in mind that here the SDEWES Index is adopted essentially as a 

paradigmatic example. The motivations for this choice should be clear in light of the 

above discussion, and include the availability of data, the wide scientific literature on the 

subject and, last but not least, the promising potential of the SDEWES Index as a decision 

supporting tool. In particular, the analyses conducted in the present work were made 

possible by the availability of the underlying data both at the dimension level [8] and 

(almost completely) at the indicator level [9-14]. For other indexes, data are not always 

made available, e.g., the Sustainable Cities Index [3] only provides the final scores and a 

graphical representation of normalized data. 

In MCDA terminology, a rank reversal occurs if the order of preference between two 

alternatives changes when an alternative is added to or removed from the decision 

problem. This means that the relative ranking of a pair of alternatives depends on the 

whole set of alternatives, and not only on the pair itself, in fact, an MCDA method 

exposed to rank reversal lacks of the so called “independence” property. Rank reversal, 

or equivalently “non-independence”, is known to affect many MCDA methods, and has 

been the subject of a long-lasting debate, see for example [23, 24] and the references 

therein. In the context of MCDA methods for sustainability assessment rank reversal is 

specifically addressed in Cinelli et al. [22]. In practice, the occurrence of rank reversals is 

likely to be rather limited, and can be considered a minor problem in light of the aim and 

scope of the SDEWES Index. On the other hand, since the index is designed to address an 

inherently evolving reality, non-independence implies that the results may not be 

computed consistently throughout a wide time interval. This can be limiting if the goal is 

to adopt the index as a tool for evaluating and assessing policies, to this aim, it would be 
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useful to devise a “stable” (i.e., “independent”, or “rank-reversal free”) version of the 

SDEWES Index. Here it will be shown that the MCDA theory offers a viable approach to 

obtain such version. It turns out that devising a stable index, although demanding in terms 

of technological expertise, is relatively easy from a mathematical point of view. 

A plethora of data visualization techniques are available today, and they are widely 

used in support of sustainability assessment analyses. As for the SDEWES Index, just to 

mention a couple of examples: radar (or spider-web) charts are used in the SDEWES 

Index Benchmarking Tool [11], while geographical maps and stacked charts are 

combined in the “SDEWES City Index Atlas” [8, 15]. In addition, special techniques 

have been developed, e.g. the three-dimensional visualization proposed for the City 

Sustainability Index [25]. Visualization tools have been widely studied also in the context 

of MCDA, to address the “description problematic” ([16], Chapter 2), see Miettinen [26] 

for an overview. A well-known example is the Graphical Analysis for Interactive Aid 

(GAIA) methodology, that has been developed as a visual companion to PROMETHEE 

methods [16]. GAIA includes several graphic and interactive tools, in particular the 

“GAIA plane”, based on the projective approach originally proposed in Mareschal and 

Brans [27]. The GAIA plane allows to reveal interesting relations between criteria and/or 

alternatives of an MCDA problem. Other tools similar to the GAIA plane have been 

proposed, e.g., the “Co-plot” method: see Raveh [28] for a description and a comparison 

to the GAIA plane. It is worth noting that Co-plot exploits more sophisticated statistical 

data analysis techniques compared to GAIA, on the other hand, Co-plot is not linked to a 

specific MCDA method, as GAIA is. In the present work, the GAIA plane is adapted to 

work with dimensions and indicators of the SDEWES Index. The benefits of this 

approach are shown, and some drawbacks are pointed out. Consequently, a new and 

simple visual tool is proposed. This tool shows explicitly and exactly some information 

that is somehow hidden or approximated in the GAIA plane. Some particular features of 

the new tool are exploited, first to provide a graphical representation of the scenario 

analyses discussed in Kılkış [5] and Kılkış [13], and then to point out some aspects 

related to the decoupling of energy use from CO2 emissions. 

The layout of this paper is as follows. In Section 2 rank reversal is discussed, together 

with a possible approach for obtaining a stable index. Section 3 provides the definitions of 

the visual tools and points out their main features, while Section 4 shows the application of 

the tools to the SDEWES Index, in particular to data aggregated at the dimension level.  

The last section contains a few conclusions and suggestions for further work. 

THE SDEWES INDEX AS A MULTIPLE CRITERIA DECISION METHOD 

In MCDA terms, dimensions and indicators of the SDEWES Index define a two-level 

criteria hierarchy. The top level consists of seven macro-criteria, corresponding to 

dimensions D1, D2, …, D7. At the bottom level appear the actual criteria, i.e., the main 

indicators. There are exactly five indicators (criteria) for each dimension 

(macro-criterion) and this gives an MCDA problem with m = 35 criteria. The alternatives 

correspond to cities, and their number n varies depending on the sample. The current 

version of the index [8] considers a sample of n = 120 cities, that integrates the samples 

reported on in detail in the literature [9-14]. For each x∈[1, 7] and y∈[1, 5] denote by  

Ex,y(Cj) the evaluation of city Cj according to the yth criterion of dimension Dx.  

The computation of the SDEWES Index involves four steps: 

• Statistical treatment of outliers by means of winsorization; 

• Normalization of evaluations within each indicator; 

• Computation of a sub-index for each dimension; 

• Aggregation of sub-indexes. 

As described in [5, 13] outliers are identified and treated by means of higher order 

moments, namely skewness and kurtosis. A single step of winsorization consists in 
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replacing all the occurrences of the highest evaluation value by the second-highest one, 

this step is iterated until skewness and kurtosis fall below 2 and 3.5, respectively, or until 

a maximum of 5% of the values have been modified. A complete list of the indicators that 

required winsorization for the current 120-city sample is provided in Kılkış [14]. In the 

normalization step the evaluations are mapped onto the interval [0, 10], for maximization 

criteria, the normalized value is defined as:  
 

��,����� = 10 ��,����� − ��,�
��,� − ��,�

 (1)

 

while for minimization criteria the equation is: 
 

��,����� = 10 ��,����� − ��,�
��,� − ��,�

 (2)

 

where mx,y and Mx,y denote the minimum and the maximum values Ex,y(Cj) across all cities, 

after winsorization. Note that for each indicator the best (respectively, worst) value is 

mapped into the normalized value 10 (respectively, 0). For each dimension an aggregated 

sub-index falling in the interval [0, 50] is defined as: 
 

������ = � ��,����� 
�

���
 (3)

 

Finally, the SDEWES Index is obtained as: 
 

������ = �  ��
�

���
������ = � � ����,�����

�

���
 

�

���
 (4)

 

where αx = 0.225 for x = 1 and x = 5, and αx = 0.11 for the other dimensions. Note that the 

weights α sum to one, thus the index is normalized in [0, 50]. It is worth noting that in the 

earlier works [9-11] the factor 10 was not included in eq. (1) and eq. (2), thus the index 

and each sub-index where normalized in [0, 5]. Furthermore, the treatment of outliers by 

winsorization was omitted. 

The SDEWES Index can be seen as the result of the well-known “weighted sum” MCDA 

method, see e.g. Chapter 4 in Pomerol and Barba-Romero [29] for a discussion. Weighted 

sum assigns to each alternative a score defined as a weighted sum of its normalized 

evaluations, this can be seen in eq. (4), where each normalized indicator of dimension Dx is 

given the weight ax. The weighted sum is a totally compensatory method, where the 

weaknesses of an alternative can be compensated by its strengths. This means that the 

SDEWES Index of a city can be good even if some of the indicators have a quite poor 

evaluation. Technically, a score SI(Cj) does not depend on the dispersion of the values Ix,y(Cj) 

and/or Ax(Cj), i.e., on these values being rather similar across the whole set of indicators 

and/or dimensions, or spread in a large interval. On the contrary, other MCDA methods are 

sensitive to dispersion: this is the case e.g. of TOPSIS, as pointed out in Yoon [30]. Note that 

the visual tool proposed later has the ability to capture, at least partially, the information 

related to dispersion. 

Weighted sum and rank reversal: towards a stable index? 

The weighted sum method is known to be exposed to rank reversal, due to its 

normalization phase. An expository example is shown in Wang and Luo [23], note the 
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normalization technique in that example is the same as in eq. (1) and eq. (2), except that 

the factor 10 is missing. It follows that also the SDEWES Index is potentially exposed to 

rank reversal, indeed, it is easy to see that the normalization process violates the 

independence property, since the results of eq. (1) and eq. (2) depend on mx,y and Mx,y, and 

thus on the whole city sample. Clearly, the bounds for an indicator can change with time, 

as long as new cities are added to the sample, or due to changes in the city evaluations. It 

is interesting to point out what happens to the normalized values Ix,y(Cj) when either mx,y 

or Mx,y changes. It can be shown (technical details are rather straightforward and omitted 

here) that improving the best evaluation (respectively, worsening the worst evaluation) 

makes the Ix,y(Cj) decrease (respectively, increase). This can be considered as a 

reasonable and fair reaction to the setting of a higher or a lower standard, due to the 

arrival of a new very good or very poor city. Note that the use of winsorization may 

prevent these changes to take place, or at least filter off the ones with the most consistent 

impact. On the other hand, a straightforward application of the winsorization process to 

wider and wider samples may lead to unexpected effects, as shown by the following 

example. 
 

Example 1.  Consider indicator 4 of dimension 3, “Renewable energy in electricity 

production”, measured as a percentage. For the set of 58 cities obtained from the samples 

in [9-11] kurtosis is above the maximum threshold 3.5, as a consequence, the best value 

100 (city of Tirana) is replaced by the second-best value 80 (city of Bogotá), thus  

M3,4 = 80 and the normalized value is ten for both cities. Consider now the whole current 

sample of 120 cities: in this case, kurtosis is below the threshold and no winsorization is 

needed, thus M3,4 = 100 and (since m3,4 = 1) Bogotá receives a value approximately 8, 

while Tirana retains the value 10. Note that 5 of the cities from [12-14] have an 

evaluation greater than 80, and this may (at least partially) justify the fall of the score for 

Bogotá. However, the same result (i.e., no winsorization needed) is obtained if the 

evaluations of these 5 cities are replaced by values smaller than 80. The conclusion is that 

the score of a city in an indicator can drop due to the insertion of cities whose evaluation 

is worse than the one of that city. 

It must be remarked that the behaviour pointed out in Example 1 did not affect the 

computation of the indicator, since winsorization was not applied in [9-11], moreover, 

data seem to suggest that no outliers are likely to be detected if the current 120-city 

sample is further extended. Nevertheless, Example 1 suggests that despite of (and may be 

due to) winsorization the bounds mx,y and Mx,y may change rather unpredictably in the 

long run. This means the score of a city may be artificially increased or decreased, 

regardless of the actual evolution of its local EWE system. In short, the index is not stable. 

Note that from an MCDA point of view the lack of stability cannot be considered as a 

methodological flaw, since it is a consequence of the lack of independence, which is 

almost ubiquitous in MCDA methods. The question is whether this stability issue is 

relevant in practice. Two objections can be raised: 

• Objection 1. EWE systems are inherently dynamic entities: technological 

development, as well as social pressure, lead to setting higher and higher 

standards, to which a city should continuously struggle for complying, see e.g. 

Section 3.5 in [5]. Accordingly, a local system should be evaluated in relation to 

other evolving systems, rather than based solely on its own features; 

• Objection 2. The SDEWES Index is a yet evolving tool. Comparing the 

definitions in [5, 13-15] to the ones in [9-12] it turns out that some indicators have 

been evaluated on different scales, replaced, or merged together, while new ones 

have been added. It can also be argued that the SDEWES Index should retain its 

dynamic nature, in order to comply with the evolution of technology and the 

improvement of EWE systems. 
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In light of these objections, one should accept the idea that the SDEWES Index 

returns a sequence of snapshots, each one relative to the current city sample and 

corresponding performances, and to the current set of indicators. After all, this does not 

seem to seriously affect its descriptive power, and has a quite limited impact on its 

prescriptive value. On the other hand, the lack of stability may be drawback when the 

SDEWES Index is considered as a tool for evaluating and assessing the impact of 

sustainable development policies. Indeed, this task requires to compute the index in a 

consistent way both in the evaluation phase and throughout the (possibly long) time 

horizon set by the policy target. Note that in this case instability is not only due to larger 

city samples, but also (and may be above all) to the evolution of local EWE systems. 

Therefore, in order to fully exploit the evaluating and assessing capabilities of the 

SDEWES Index, it seems necessary to tackle the stability issue explicitly. Ideally, the 

goal should be to obtain a version of the index that can at the same time: 

• On one side, evaluate and track the evolution of EWE systems consistently and 

independently of each other; 

• On the other side, allow the comparison and benchmarking of an expanding set  

of cities. 

In the rest of the section this goal is pursued exploiting some principles and tools from 

MCDA theory. Clearly, a stable version of the SDEWES Index implies a stable set of 

indicators and sub-indicators, including their scale of measure, in what follows, this is 

assumed to be the case. A further premise is necessary, and is based on the following 

observation. The sample in Kılkış [11] changed the bounds of mx,y and/or Mx,y for 20 out 

of the 35 indicators, w.r.t. previous samples [9, 10], on the contrary, also due to 

winsorization, the sample in Kılkış [12] turned out to fall within previous bounds. 

However, this does not necessarily mean that the index is evolving towards stability due 

to the addition of new samples. As suggested by Example 1 (and actually confirmed by 

Objection 1) a significant shift of the bounds may be expected in the future for some of 

the indicators. On the other hand, for other indicators the bounds for the 120-city sample 

are already sufficiently stable, or at least provide a reliable picture of the situation, 

including possible future trends.  

From weighted sum to an additive utility model 

Observe that the combination of winsorization and normalization implicitly define for 

each criterion a (normalized and piecewise linear) utility function Fx,y(v) mapping each 

evaluation Ex,y(Cj) onto the interval [0, 10]. For a maximization criterion, this function 

assigns full utility to evaluations above the threshold Mx,y, and null utility to evaluations 

below the threshold mx,y, evaluations in [mx,y, Mx,y] are linearly mapped onto [0, 10]. For a 

minimization criterion, the role of the thresholds is symmetric, as shown in Figure 1. 

Note that utility functions are defined on the whole domain of possible criterion 

evaluations, that (at least in principle) may be unbounded, even if in most cases (e.g., for 

a percentage) upper and lower bounds are readily available. Therefore, the flat zones on 

the left and on the right appear whenever the interval [mx,y, Mx,y] does not cover the 

domain; clearly, if winsorization detects outliers, they end up falling below these flat 

zones. It can be observed that the utility function (for maximization) resembles the 

“Linear” preference function of PROMETHEE [16, 31]. In particular, mx,y and Mx,y play 

the role of the “indifference” and “preference” thresholds Q and P, respectively. 

Although in different contexts, these function share the common approach of mapping 

high and low values onto the extremes of the normalization interval. 

Based on the above utility functions, the SDEWES Index may be interpreted in terms 

of Multiple Attribute Utility Theory (MAUT: see e.g. Chapter 7 in Greco et al. [16] and 

Chapter 6 in Pomerol and Barba-Romero [29]) as an additive utility model: 



Pretolani, D. 

Multiple Criteria Decision Analysis Theory ... 

Year 2020 

Volume 8, Issue 4, pp 654-677 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 662 

������ = � � ��,���,����,������
�

���

�

���
 (5)

 

 
 

Figure 1. Utility function for maximization and minimization criteria 

  

where each utility function Fx,y is given the weight fx,y = αx. Such additive model, once 

defined, can be later applied to any sample of cities, and applied again to the same city 

whenever some of its evaluations have changed. Remark that the score computed by  

eq. (5) does no longer depend on the city sample, since each city is evaluated 

independently, thus the additive model satisfies the independence property, i.e. is not 

exposed to rank reversal. As observed explicitly in Cinelli et al. [22], MAUT  

(not necessarily restricted to additive models) is the only MCDA approach that provides 

completely rank reversal free solutions. Clearly, in order to define the additive model in 

eq. (5) the utility functions Fx,y(v) must be defined once and for all. This amounts to say 

that a stable version of the SDEWES Index is obtained if the current bounds mx,y and Mx,y 

are fixed as definitive, possibly after some suitable adjustments. Unfortunately, as 

discussed earlier, this operation is in general not safe: for some indicators, current bounds 

may not be representative of future trends. In these cases, reasonable bounds should be 

found, and this may be a challenging task for those indicators (in particular, 

maximization ones) for which evaluations are expected to improve substantially in the 

future. Note that the task can be simplified in light of a few preliminary observations, 

including (but not limited to) the following: 

• Some indicators (e.g. those for dimension D2, but also I5,5, I6,2, I7,1, I7,2) are 

measured on essentially qualitative scales, that are specifically defined to 

aggregate the results of sub-indicators, and for which it should be easy to derive 

reasonable bounds; 

• For some indicators measured in percentage (e.g. I3,4, I3,5, I4,2, I7,5), mx,y and/or Mx,y 

are equal or very close to 0 and 100, respectively; 

• For some indicators (e.g. I1,1, I1,2, I1,4, I4,5, I5,1, I5,2, I7,4), Mx,y is two or three orders 

of magnitude larger than mx,y: in these cases, it should be safe to shift mx,y to zero; 

• For most maximization (minimization) indicators it seems suitable to set the 

current mx,y (Mx,y) as a minimum performance thresholds under (over) which a null 

utility must be assigned. 

Moreover, an additive model is not restricted to use the utility functions Fx,y(v) 

described above. These functions are not monotonically increasing or decreasing, since 

they show flat zones where evaluations are not distinguished from each other. Thus it 

may be appealing to consider smoothed version of these functions. A smooth utility 

function does not require to set the bounds mx,y and Mx,y, and may provide a more 

sophisticated model including e.g. saturation effects. A suggestion for a smooth function 

is again offered by PROMETHEE, in particular by the “Gaussian” preference function, a 

version rescaled within [0, 10] will be considered here: 
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��� = 10 − 10!"#$ %&$⁄  (6)

 

In addition, a “cubic” version of G(v) will be used: 
 

(�� = 10 − 10!"#) %&)⁄  (7)

 

Both functions G(v) and H(v) are monotonically increasing, with shape changing 

from convex to concave, and such that G(d) = H(d), as shown in Figure 2. The following 

example gives a hint of how these smooth functions may be used for one  

particular indicator. 
 

 
 

Figure 2. Piecewise linear and smooth utility functions 

 

Example 2.  Consider indicator 3 of dimension D3: “Geothermal energy potential” 

(mW/m2) for which the current bounds (after winsorization) are m3,3 = 30 and M3,3 = 150 

with a single outlier, namely Reykjavík, with an evaluation of 310 as shown in Figure 2 

[11, 14]. Assume that possible evaluations outside the bounds are taken into 

consideration, and handled according to the following principles:  

• Positive values below m3,3 should be assigned a non-zero utility; 

• For values over M3,3 the utility function should be increasing, but with a rather fast 

saturation effect. 

This can be obtained exploiting the functions G(v) or H(v). In order to obtain three 

curves F3.3(v), G3.3(v) and H3.3(v) close to each other the parameter d is set so that  

F3.3(d) = G3.3(d) = H3.3(d). 

Note that G3.3(mx,y) ≅  0.727 and G3.3(Mx,y) ≅  8.485: the current bounds are not 

mapped onto extreme utility values, since some utility values must be reserved for 

evaluations over M3,3 and below m3,3. Using G(v) instead of F(v) the score for Reykjavík 

remains almost unchanged [G3.3(310) ≅ 9.997 instead of F3.3(310) = 10] while the scores 

for the other cities are shrunk within an interval of length G3.3(Mx,y) − G3.3(mx,y) ≅ 7.758. 

That is, the outlier is distinguished from the other cities (according to the above 

principles) but the discriminating power among these cities is reduced. If the shrinking 

deriving from G3.3(v) is considered excessive, then a function with a sharper behaviour 

may be used instead, for example, H3.3(v) gives an interval of wider length  

H3.3(Mx,y) − H3.3(mx,y) ≅ 9.455. 

It must be remarked that the principles inspiring the utility function in Example 2 are 

purely explicative, and do not necessarily match with the actual aim of the indicator. 

Moreover, the functions G(v) and H(v) have been chosen solely for the sake of simplicity, 

while the method for choosing the parameter d is rather straightforward, if not naïve. 

Clearly, much more involved mathematical tools can be exploited to find suitable utility 

functions. If necessary, further degrees of flexibility may be obtained, e.g. considering 

different normalization intervals and/or different weights for some indicators.  

This allows to concentrate efforts on technical issues, such as derive a clear picture of the 

current level of development, foresee a reasonable trend of evolution on a medium-long 
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term, and (last but not least) evaluate the utility that should be associated with future 

improvements in relation with the aims and scope of the index. The conclusion that can 

be drawn from the above discussion is that choosing suitable utility functions may be 

challenging but is definitely possible. In other words, the SDEWES Index is a promising 

candidate for the process of moving from weighted sum to an additive utility model, 

which in light of MCDA theory is the unique approach leading to stability, i.e. to satisfy 

the independence property. 

VISUAL TOOLS FOR THE SDEWES INDEX 

As mentioned above, several kinds of visual tools have been devised in the context of 

MCDA. Here, the interest is concentrated on tools representing the overall structure of 

the decision problem, in particular on the GAIA plane. Similar tools have been proposed 

in the literature, such as the aforementioned CoPlot method, but GAIA is apparently the 

simplest and the most widely known. Here, the GAIA plane is adapted for the SDEWES 

Index, addressing both the top level and the bottom level of the criteria hierarchy. 

Furthermore, a new tool will be presented, namely the “Index/Dispersion plane”. From a 

visual point of view, the new tool is very close to the GAIA plane, and conveys 

comparable information. Similarities and differences between the two methods will be 

discussed, and illustrated by means of some examples. On the computational side, the 

Index/Dispersion plane bears some resemblance with the CoPlot method since, in both 

cases, the alternative representation is found first, and the criteria representation is derived 

from it. There are, however, strong differences between the two approaches. In the tool 

proposed here, both city and criteria representations are found in a very simple way, and 

have a clear interpretation in terms of the underlying MCDA problem. On the contrary, 

CoPlot finds the mapping of the alternatives exploiting rather sophisticated statistical 

methods for multi-dimensional scaling, and finds the representation of each criterion 

solving (heuristically) a rather difficult non-linear optimization problem. Furthermore, 

CoPlot representations have no interpretation in terms of the underlying problem, while the 

Index/Dispersion plane conveys explicit information related to the SDEWES Index. 

Adapting the Graphical Analysis for Interactive Aid plane 

In the GAIA plane, alternatives, criteria and weights are jointly represented by points 

on a plane. More precisely, each criterion is graphically represented by a “vector”, i.e. a 

segment from the origin to the corresponding point; the vector representing the weights is 

usually referred to as the “stick”. The primary plane is identified by the axes U 

(horizontal) and V (vertical), a third axis W allows to define the secondary planes (U, W) 

and (V, W). This representation is obviously approximated, since it only shows the 

projections on a plane of points in a space of dimension p, i.e. the number of criteria.  

The method also provides a measure of the quality of the representation, which can be 

seen as the percentage of information retained after projection. The GAIA plane allows to 

visualize several aspects of an MCDA problem, such as conflicting criteria or sensitivity 

to changes in the weights, see Mareschal and Brans [27] and Greco et al. [16] for a 

detailed discussion. The interesting features for the present work can be summarized  

as follows: 

• Alternatives with similar characteristics appear close to each other in the plane; 

• Criteria expressing similar (respectively: opposite, uncorrelated) preferences are 

represented by vectors oriented in approximatively similar (respectively: opposite, 

orthogonal) directions; 

• Points corresponding to better alternatives for a criterion are likely to be found 

moving in the direction of the corresponding criterion vector, similarly, the stick 

shows the direction where globally better alternatives can be found; 
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• The length of a vector denotes the reliability of the visual information it conveys: 

a short length suggests a high loss of information due to projection. 

In order to find the axes U, V and W, GAIA applies Principal Component Analysis 

(PCA) to the matrix of profiles computed by the PROMETHEE method. The profile of an 

alternative is a (row) vector of scores, one for each criterion. Profiles are particularly 

suitable for PCA since they are normalized in [−1, 1] and centered, i.e. the sum of scores 

over all alternatives is zero for each criterion. Obviously, in the context of the SDEWES 

Index profiles do not exist, but PCA can be applied to available data that are normalized, 

even if not centered. There are two possibilities here, namely, apply PCA at the top level 

or at the bottom level of the criteria hierarchy. In the former case, a city Cj is represented 

by the sub-indexes Ax(Cj), for x = 1, 2, …, 7, recall that the sub-indexes are normalized in 

[0, 50]. In the latter case, PCA is applied separately for each dimension Dx, and a city Cj  

is represented by its scores Ix,y(Cj), y = 1, 2, …, 5, normalized in [0, 10]. From now on, the 

generic term “criterion” is used to denote either a dimension (at top level) or an indicator 

(at bottom level). In both cases, let M denote the n × p “score matrix”, where n is the 

number of cities and p is either 7 or 5, each city Cj is represented by row j of M. The PCA 

method for finding the axes U, V, W and the qualities of the projection planes can be 

summarized as follows: 

 

Algorithm PCA 

Input: a score matrix M 

Output: axes U, V, W; quality of planes (U, V), (U, W), (V, W) 

Compute the matrix of centered normalized evaluations N: +�, = ��, − �-,, where �-, 

is the average of the values in column k of M 

 

Compute the p × p correlation matrix A = N TN 

 

Compute the three largest eigenvalues .� ≥ .% ≥ .0 of A, and the corresponding 

eigenvectors x1, x2 and x3; let U = x1, V = x2, and W = x3 

 

For the planes (U, V), (U, W) and (V, W), the quality is given by 100�.� + .% tr�� ⁄ , 

100�.� + .0 tr�� ⁄  and 100�.% + .0 tr�� ⁄ , respectively 

 

Given the axes, the coordinates of relevant points on the plane (U, V) can be computed 

as shown below, the computation for the secondary planes (U, W) and (V, W) is similar: 

• City Cj has coordinates (Nj.U, Nj.V), where Nj. is row j of N; 

• Criterion k has coordinates (Uk, Vk); 

• The stick has coordinates (wTU, wTV). 

Note that the weights are represented by a unit-length vector w, where w = α/||α||2 at 

top level, while at bottom level w = u/||u||2, where u = [1, 1, 1, 1]T. Recall that the weight 

vector is not considered in the PCA algorithm. Consequently, the aggregated score  

(the SDEWES Index at top level, a sub-index at bottom level) is not represented exactly 

on the GAIA plane. The stick shows a direction of expected growth, but this information 

may be quite approximated, in particular if the stick length is short. This is one of the 

motivations that lead to the proposal of a different visual representation. 

A new visual tool: the Index/Dispersion plane 

As discussed earlier, the weighted sum method is totally compensatory, i.e. it is not 

sensitive to dispersion of criteria values. Accordingly, the SDEWES Index does not take 

dispersion into consideration. On the other hand, distribution patterns of sub-indexes are 

relevant for city pairing [5, 12, 15], thus a measure of dispersion may be helpful in that 
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context. The GAIA plane reveals some information about dispersion, since the direction 

orthogonal to the stick is somehow related to dispersion, however, this information is not 

explicit, and in some cases can be quite approximated. The tool proposed here aims at 

visualizing an aggregated score (horizontal coordinate) and the corresponding dispersion 

(vertical coordinate) explicitly and exactly. Also in this case, the method can be applied 

at two levels: at top level, the aggregated score is the SDEWES Index, while at bottom 

level it is the sub-index Ax(Cj) for a given dimension x, in both cases, the input data are 

contained in the n × p score matrix M, as defined for the GAIA plane. 

Clearly, many different measures of dispersion can be adopted: a straightforward 

geometrical approach is followed here. Consider first the top level, where each city Cj is 

represented by the sub-indexes Ax(Cj), contained in row j of the score matrix M. Thus city 

Cj is a point ��.5 in the space of dimension p = 7, and weights are represented by the unit 

length vector w = α/||α||2. For each city Cj let ��.5 = 6�7 + 8�, where πj = Mj.w. Note that 

πj is the length of the projection of ��.5 onto the axis defined by w, while the vector dj is 

orthogonal to this axis, thus ||dj||2 is the Euclidean distance of ��.5 from the axis. It can be 

easily checked that:  

 

������ = ‖�‖%6� (8)

 

Therefore, to obtain homogeneous scales, the normalized distance: 

 

:� = ‖�‖%;8�;% (9)

 

is chosen as a measure of the dispersion of the sub-indexes representing city Cj.  

The extension to the bottom level is immediate: in this case, for dimension x, city Cj is 

represented by indicators ��,�����, ��.5 is a point in the space of dimension p = 5, and the 

vector u = [1, 1, 1, 1, 1]T replaces the vector �, i.e. w = u/||u||2. The value πj and the vector 

dj are defined as for the top level, and it turns out that:  

 

������ = ‖<‖%6� (10)

 

Therefore, similar to eq. (9), dispersion is measured by :� = ‖<‖%;8�;%. 

Based on the representation of cities, a two-dimensional visualization of the criteria can 

be defined. The idea is that criterion k is represented by the point of coordinates �=,
�� , =,

�%  , 

where =,
�� 

 and =,
�% 

 are a measure of the correlation of the criterion with the aggregated 

score and the dispersion, respectively. In particular, the Pearson correlation coefficient will 

be used, recall that this coefficient is normalized in [−1, 1]. Both at top and bottom level, 

criterion k corresponds to column k of the score matrix M, while aggregated score and 

dispersion can be represented by the n-dimensional vectors π and δ defined above. Thus the 

horizontal coordinate of criterion k is defined as: 

 

=,
�� = ∑ ���, − �-, �6� − 6? @���

A∑ ���, − �-, %@��� A∑ �6� − 6? %@���
 

(11)

 

where �-, is the average of column k of M, while 6? is the average value of vector π.  

The vertical coordinate =,
�% 

 is defined as in eq. (11), replacing π by δ. Graphically, 

criterion k is represented by a vector from the origin to the point �=,
�� , =,

�%  . Remark that 
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(differently from GAIA) each of the two coordinates conveys sound information on the 

underlying MCDA problem. The horizontal coordinate shows whether, and up to what 

extent, the aggregated preferences agree with the ones expressed by the criterion.  

The vertical coordinate shows whether a good performance on the criterion comes at the 

expenses of a larger dispersion among criteria. An interesting feature of the 

Index/Dispersion approach is that criteria coordinates can be computed considering only 

a subset of the n cities. This allows, in particular, to partition the overall sample into 

sub-samples (e.g., quartiles) and obtain distinct representations of criteria separately for 

each sub-sample. These representations can be compared to each other, in order to spot 

those cases where the relations between criteria differ depending on the sub-sample.  

Note that a similar process is not possible with the GAIA plane, where the representation 

of criteria is determined univocally by the axis U and V, and cannot be related to 

sub-samples. It is worth mentioning that data analysis separated by quartiles has been 

exploited in [5, 12, 13, 15], see e.g. figure 4 in Kılkış [5], where graphical representations 

are given both at the index and at the sub-index level. 

 

Reliability of visual information.  Similar to the GAIA plane, a joint representation of 

cities and criteria is also possible. To this aim, the criteria representation should be 

translated so that its origin moves to the coordinates given by the average aggregated 

score and the average dispersion. Equivalently, the city coordinates should be replaced by 

their centered counterparts, i.e. by differences w.r.t. averages. Moreover, a rescaling is 

necessary, since =,
�� 

 and =,
�% 

 are normalized within [−1, 1], while city coordinates are 

numbers in [0, 50]. The joint representation allows to visualize the relations between 

criteria and cities, i.e. better cities for criterion k are likely to be found in the direction 

defined by the corresponding vector �=,
�� , =,

�% 
. In other words, a criterion communicates 

a “visual ranking” of the cities, which is expected to be similar to the actual ranking 

defined by the criterion. Technically, the visual ranking is defined by the “visual scores” 

of the cities: for criterion k, and for city Cj, the visual score is the length of the projection 

of (the point representing) Cj on the axis representing k, or equivalently, by the scalar 

product between �=,
�� , =,

�%   and the coordinates of Cj. At top level, according to eq. (8) 

and eq. (9), the visual score of Cj for dimension Dk is given by:  

 

B,���� = ������ × =,
�� + :� × =,

�% 
 (12)

 

At bottom level, according to eq. (10), the visual score of Cj for indicator k of 

dimension Dx is given by:  

 

B,���� = ������ × =,
�� + :� × =,

�% 
 (13)

 

Exploiting eq. (12) and eq. (13) it is possible to give a measure of the reliability of the 

visual ranking offered by criterion k. This can be done by computing the Pearson 

correlation coefficient between the actual scores, defined by column k of the input score 

matrix M, and the visual scores defined by Pk. Note that a similar measure of reliability 

can be given for the GAIA plane as well. In the plane (U, V), and similar for secondary 

planes, the visual score of Cj for criterion k is given by:  
 

B,���� = +�∙ E × E, + +�∙ F × F, (14)

 

As shown later, this allows to compare the reliability of the visual rankings provided 

by GAIA and by Index/Dispersion. 
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Visual stability of the Index/Dispersion plane.  In the Index/Dispersion representation 

cities are processed independently of each other. Therefore, a change in the city sample 

or in the data representing a city cannot affect the representation of another city. This may 

be referred to as a sort of independence property of the proposed approach. Note that 

independence does not extend to criteria, since their representation is based on global 

information, i.e., on scores and dispersion of all the cities in the sample. Suppose now 

that the method is applied, in conjunction with a stable version of the SDEWES Index, for 

a sufficiently long period of time, during which the EWE systems of many cities are 

likely to evolve significantly. Accordingly, the Index/Dispersion representation of a city 

will change over time depending on the city’s system evolution, but independently of 

other cities. In other words, each city will define a “trajectory” on the Index/Dispersion 

plane, and trajectories will be independent of each other. Looking at things the other way 

round, a city trajectory may be defined in advance by the envisioned results of a 

particular policy: in this case, that trajectory defines a stable representation of the 

expected results throughout the whole time horizon of the policy. This may be useful to 

support the process of evaluating and assessing the impact of sustainability policies. The 

conclusion is that the proposed approach is quite appealing as a visual companion of a 

stabilized SDEWES Index. Remark that the GAIA plane does not show a similar level of 

reliability. The PCA method is inherently unstable, since the projection axes depend on 

the underlying score matrix M. When new cities are added, or when some evaluations 

change, the projection planes are modified, and this affects the whole picture returned by 

the GAIA plane. 

APPLICATION OF VISUAL TOOLS 

This section reports some examples of the plots that can be obtained with the adapted 

GAIA plane and with the Index/Dispersion method. The goal is to point out similarities 

and differences between the two approaches, trying to shed light on their strengths and 

weaknesses. To this aim, the figures will come in pairs (except for the last one) which 

allows to compare the visual representations provided by the two methods for the same 

set of information. It must be remarked that the examples shown here are not intended to 

provide an extensive analysis of the (substantial amount of) information conveyed by the 

SDEWES Index, thus they are not expected to reveal, unless incidentally, any peculiar or 

unexpected feature. The ultimate goal is to demonstrate the soundness and suitability of 

the visual tools. For reasons of space, and for uniformity of presentation, only top level is 

addressed, bottom level provides a larger set of data representations, but does not reveal 

any new feature of the proposed tools. Unless stated otherwise, all the figures refer to the 

current 120-city sample available from [8]. Figures obtained from GAIA are limited to 

the (U, V) plane, and are somehow simplified w.r.t. the usual appearance, omitting axes 

and bounding boxes, similar, rulers are often omitted in the Index/Dispersion plots. 

Nevertheless, all the relevant information is given within each figure. In some cases, 

specific subsets of cities will be individuated by means of different markers and/or by 

tracing the convex hull of the corresponding set of points in the plane. 

City representation: ranking and trajectories 

The first pair of figures illustrates the main difference between the two approaches, 

namely, the capability of representing exactly the value of the SDEWES Index. To this 

aim, the four quartiles individuated by the index values are represented. Figure 3 shows 

the GAIA plane with the stick showing the approximate direction of increase for the 

SDEWES Index. Observe that the length of the stick is 0.912, that is sufficiently close to 

one, this means that the unit length vector w = α/||α||2 is quite close to its projection on the 

(U, V) plane. However, some information is lost in the projection process, as can be 

expected from the quality value. Indeed, quartiles appear in the right order along the stick 
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direction, but with overlapping convex hulls. Obviously, no overlapping appears in the 

Index/Dispersion representation of Figure 4, that allows to point out two  

interesting details: 

• For cities in the bottom quartile (91-120) both the SDEWES Index and the 

dispersion are spread in a much wider interval compared to the middle quartiles, 

up to a minor extent, the same holds true for the top quartile too; 

• Within the top quartile, the best index values are found in the top-right corner,  

i.e. show a relatively high dispersion, in other words, and excellent overall 

performance can be obtained even with relatively wide differences between single 

dimension performances. 
 

 
 

Figure 3. GAIA: city quartiles and stick 

 

 
 

Figure 4. Index/Dispersion: city quartiles and simulation trajectories 

 

Figure 4 also shows two trajectories individuated by simulating the evolution of a city 

along time. The simulation for Rio de Janeiro is based on the results for the normative 

scenario addressed in Kılkış [13]. The simulation for the “Average City” is taken from a 

scenario addressed in [5, 15], where a fictitious city evolves, in each dimension, from the 

average to the maximum of the corresponding sub-index values in the current 120-city 

sample. In both cases, the simulation assumes a transition from the current situation (year 

2019) to the situation foreseen for the target year 2050. Here, for simplicity, the transition 



Pretolani, D. 

Multiple Criteria Decision Analysis Theory ... 

Year 2020 

Volume 8, Issue 4, pp 654-677 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 670 

is assumed to be linear in time, markers show the expected situation for each year in the 

time horizon. Even if the transition is linear, the trajectory is not necessarily linear, since 

the measure of dispersion is not linear. It can be observed that the proposed scenarios lead 

to a substantial increase not only for the SDEWES Index (as expected) but also  

for dispersion. 

Criteria representation: reliability of visual information 

The goal of the next figures is to show that the two tools have the same capability of 

representing the relations among criteria and the relations between criteria and cities. 

Moreover, the information they convey have similar reliability. To this aim, conjoint plots 

of criteria and cities are provided, and further visual information is added as follows. In 

each plot, a specific dimension Dx is selected, and the best ten and the worst ten cities for Dx 

are highlighted. This gives a visual intuition of the quality of the visual ranking of the cities. 

Moreover, the measure of reliability defined above, here denoted by “Correlation”, is 

provided for each plot. In Figure 5 and Figure 6, the selected dimension is D5. For both 

tools, the correlation value is very close to one, and indeed, the visual ranking of the cities 

seems quite close to the actual one, with best and worst cities appearing on opposite sides 

of the city cloud. Note that for both tools the length of the vector representing D5 is high. 
 

 
 

Figure 5. GAIA: conjoint plot, best/worst cities for D5 

 

 
 

Figure 6. Index/Dispersion: conjoint plot, best/worst cities for D5 
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In Figure 7 and Figure 8, the selected dimension is D3. In this case, the correlation value 

is rather low, and indeed the visual ranking appears much less reliable, with some of the 

best and worst cities mixing together around the origin. Note that both the length of the 

vector representing D3 and the correlation value are higher for Index/Dispersion than for 

GAIA. The relatively poor visual performance of dimension D3 can be related to its low 

correlation to the index, and this behaviour seems to suggest that some cities do not yet 

fully exploit their renewable energy potential in their energy supply systems; in this area, a 

remarkable example of best practice is given by the city of Reykjavík (the diamond close to 

the point defining D3 in Figure 8) that decarbonized its power sector [5, 14]. 

 

 
 

Figure 7. GAIA: conjoint plot, best/worst cities for D3 

 

 
 

Figure 8. Index/Dispersion: conjoint plot, best/worst cities for D3 

 

Besides the above observations on the visual ranking of cities, Figures 5-8 show that 

the two tools provide remarkably similar representations of the criteria. The only evident 

difference is the length of the vectors representing dimensions D3 and D4. Keeping in 

mind the meaning of the stick for GAIA, it is possible to draw some conclusions 

supported by both tools: 
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• Up to different extents, the first six dimensions bring some similarity to the 

overall index, with D5 showing the strongest correlation =�
�� = 0.8056; 

• On the contrary, dimension D7 is almost uncorrelated to the index, this seems to 

suggest that an innovative city is not necessarily a sustainable city; 

• There is a partial conflict (or better a lack of correlation) between two sets of 

dimensions, namely, D1 and D5 opposed to D2, D6 and D7, in particular, this is 

revealed by dispersion, or equivalently by the direction orthogonal to the stick on 

the GAIA plane.  

As for the last observation, it is not easy to find a simple interpretation. A possible 

explanation may be as follows. On one side, dimensions D2, D6 and D7 are somehow 

related to the degree of social-cultural development of a city (in terms of sustainability 

awareness, welfare, education, innovation, etc.) and thus can be expected to be related to 

each other. On the other side, D1 and D5 measure the level of evolution of energy systems 

(in particular in terms of energy/emission decoupling) and thus are likely to be correlated, 

more details on this aspect are given at the end of this section. Yet, these two general 

aspects (social-cultural development and evolution of energy systems) appear essentially 

independent of each other, despite their potential for mutual enhancement. 

Comparison of city samples 

Figure 9 and Figure 10 show conjoint plots for the (overall 58) cities addressed in 

[9-11]: the three samples are distinguished, and referred to as MED, SEE and WC1, 

respectively. Note that the city of Istanbul, addressed both in Kılkış [9] and in Kılkış [10], 

is showed separately: this choice allows to point out more clearly the differences between 

the MED and SEE samples. To begin with, note that the representation of dimensions for 

both tools is very similar to the one obtained for the 120-city sample, as for the GAIA 

plane, also in this case the length of the stick is high (0.928) while the quality (65.88%) is 

lower than the one for the 120-city sample. As for the comparison of city samples, the 

following observations can be drawn: 

• MED and SEE samples (both located in specific geographical areas) are 

concentrated within relatively small areas of the plane, while the world cities in 

WC1 are spread in a larger area; 

• Overall, SEE cities have a slightly better index w.r.t. MED cities, while WC1 

cities have a larger dispersion; 

• WC1 cities show a better performance in terms of social-cultural development 

(dimensions D2, D6 and D7) while MED (and up to some extent, SEE) cities are 

better in terms of energy systems and emissions (D1 and D5). 

 

 
 

Figure 9. 58 cities, GAIA: conjoint plot, distinguished samples 
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Figure 10. 58 cities, Index/Dispersion: conjoint plot, distinguished samples 

Comparison of criteria by quartiles 

Figure 11 shows the criteria representations computed by the Index/Dispersion 

method separately for each quartile. The four plots show rather evident differences, 

following an apparent trend: roughly speaking, the pattern of criteria vectors seems to 

rotate clockwise from top to bottom quartiles. In particular, it is interesting to point out 

the behaviour of dimensions D1 and D5, that are closely related to a main focus of the 

SDEWES Index, namely the energy/emission decoupling. For the top quartile D1 and D5 

have the strongest correlations to the index, meaning that they have the most relevant 

impact on the city ranking. This is consistent with the results in Kılkış [5] (mentioned 

earlier in the present work) showing that the top ten cities propose best practices in 

energy saving and/or reducing emission. Moving towards lower quartiles, the role of D1 

and D5 becomes less and less relevant, in favour of other dimensions, in particular D6 and 

D7. In the bottom quartile, D1 and D5 have the weakest correlation to the index, and are 

rather weakly correlated to each other. Overall, this behaviour seems to suggest that the 

leading cities are those that adopted integrated measures to reduce energy consumption 

and emissions at the same time, while for the less sustainable cities these two aspects 

seem to be rather disregarded, or at least, far from being addressed in a systematic way. 
 

 
 

Figure 11. Index/Dispersion: criteria representation by quartile 
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CONCLUSIONS AND FURTHER WORK 

The SDEWES Index is a tool for evaluating EWE systems, that are inherently 

evolving objects. Faced with this fact, two attitudes are possible. One is to privilege 

adaptivity: conceive the index as a tool that is driven by the evolution (besides being 

itself, possibly, evolving) and thus continuously adapts its standards, renormalizing 

values to keep in line with the ongoing improvements. The other possible attitude 

privileges stability: conceive a tool that computes ranks uniformly along time, and thus 

can be used to track and measure the evolution. These two attitudes are both reasonable, 

but incompatible, and the goal of this work was not to take a stand, in the end, one may 

consider maintaining two (or more) different versions of the index. The goal of this work 

was to show that the adaptivity/stability dichotomy falls within the long-lasting debate 

about the relevance and legitimacy of rank reversal in the field of MCDA. Moreover, 

MCDA offers a viable (actually, the unique viable) approach towards stability. The 

SDEWES Index seems to be a rather good candidate in this sense. Clearly, devising an 

actual stable version of the index remains to be done. Similarly, it remains to understand 

whether, and up to what extent, the observations made on the SDEWES Index can be 

extended to other composite indexes, not necessarily limited to sustainability assessment. 

As to the other contribution of this work, it has been shown that visual tools 

developed in the context of MCDA can be adapted to work in support of the SDEWES 

Index. These tools may be useful for analysis, to reveal information somehow hidden in 

the collected data, but also for dissemination, to enhance the comprehension of the 

scoring process and of its results. Here, in particular, the GAIA plane was adapted, and 

the Index/Dispersion plane was proposed. It has been shown that the two tools have 

similar expressive power, however, the latter is technically simpler and tailored to 

convey information relevant for the SDEWES Index. Clearly, further work on the 

Index/Dispersion representation is needed. To begin with, different measures of 

dispersion could be considered. Moreover, similar to the secondary planes in GAIA, 

further complementary views should be offered. To this aim, the proposed representation 

could be hybridized with projective (GAIA-like) techniques. Moreover, the 

Index/Dispersion method could be developed and generalized to work in a most general 

MCDA framework. Incidentally, this raises the question of how to consider data 

dispersion explicitly within an MCDA method, which may represent an interesting 

direction for research in the MCDA area. 

ACKNOWLEDGMENT 

This work has been partially supported by Research Project PRIN 2015 “Nonlinear 

and Combinatorial Aspects of Complex Networks”. The author is gratefully indebted to 

the anonymous Referees for the many constructive suggestions, that led to substantial 

improvements on the original manuscript. 

NOMENCLATURE 

A aggregated sub-index for a dimension 

C specific city in a sample 

D dimensions of the SDEWES Index (D1, D2, …, D7) 

E evaluation of a city w.r.t. an indicator 

F generic piecewise linear utility function 

G smooth increasing utility function (Gaussian) 

H smooth increasing utility function (modified Gaussian) 

I normalized evaluations 

Mx,y maximum evaluation for indicator y of dimension x 

mx,y minimum evaluation for indicator y of dimension x 
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M score matrix, input for GAIA and Index/Dispersion methods 

P vector of visual scores 

SI SDEWES Index of a city 

U principal axis in the GAIA method 

u vector of indicator weights in the definition of a sub-index 

V second axis in the GAIA method 

W third axis in the GAIA method 

w weight axis in the Index/Dispersion method 

Subscripts 

j number of a city in the sample 

k generic criterion in the GAIA and Index/Dispersion planes 

x dimension number 

y indicator number within the dimension 

Greek letters 

� vector of dimension weights in the SDEWES Index 

: measures of dispersion in the Index/Dispersion plane 

. eigenvalues in the PCA algorithm 

6 projection of cities onto a criterion axis in the Index/Dispersion plane 

= coordinates of a dimension or indicator in the Index/Dispersion plane 

Abbreviations 

CAS Clean Air Scoreboard 

COIN Competence Centre on Composite Indicators and Scoreboards 

EDCi European Digital City Index 

EWE Energy Water and Environment 

GAIA Graphical Analysis for Interactive Aid 

MAUT Multiple Attribute Utility Theory 

MCDA Multiple Criteria Decision Analysis 

MED sample of Mediterranean Port Cities 

PCA Principal Component Analysis 

SAT Sustainable Assessment of Technologies 

SCI Sustainable Cities Index 

SDEWES Sustainable Development of Energy, Water and Environment Systems 

SEAP Sustainable Energy Action Plan 

SEE South East Europe 

UNEP United Nations Environment Programme 

WC1 first sample of World Cities 
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