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Dispatching Requests for Agent-Based 
Online Vehicle Routing Problems with 
Time Windows

Vehicle routing problems are highly complex prob-
lems. The proposals to solve them traditionally concern 
the optimization of conventional criteria, such as the 
number of mobilized vehicles and the total costs. How-
ever, in online vehicle routing problems, the optimiza-
tion of the response time to the connected travelers is 
at least as important as the optimization of the classi-
cal criteria. Multi-agent systems on the one hand and 
greedy insertion heuristics on the other are among the 
most promising approaches to this end. In this paper, 
we propose a multi-agent system coupled with a re-
gret insertion heuristic. We focus on the real-time dis-
patching of the travelers' requests to the vehicles and 
its efficiency. A dispatching protocol determines which 
agents perform the computation to answer the travelers' 
requests. We evaluate three dispatching protocols: cen-
tralized, decentralized and hybrid. We compare them 
experimentally based on their response time to online 
travelers. Two computational types are implemented: a 
sequential implementation and a distributed implemen-
tation. The results show the superiority of the central-
ized dispatching protocol in the sequential implemen-
tation (32.80% improvement in average compared to 
the distributed dispatching protocol) and the superior-
ity of the hybrid dispatching protocol in the distribut-
ed implementation (59.66% improvement in average, 
compared with the centralized dispatching protocol).
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1. Introduction

Many of the most successful mass-market mod-
ern transportation applications, such as dynamic 
ridesharing or online food delivery, are instanti-
ations of a theoretical problem called the vehicle 
routing problem (VRP). In a VRP, a number of 
nodes have to be visited only once by a num-
ber of capacitated vehicles. The objectives of 
the problem are, generally, first to minimize the 
number of mobilized vehicles, then to minimize 
the total incurred costs. Solving these problems 
has high practical usefulness and they are chal-
lenging optimization problems with stimulating 
issues. The problem with time constraints is 
one of the most widely studied variants of VRP 
(vehicle routing problem with time windows, 
VRPTW henceforth [1]). In this variant, the 
nodes must be visited inside time windows.
Vehicle routing problems can be divided in two 
categories: static problems and dynamic prob-
lems. In the static problems, all the problem 
data are available before the start of the opti-
mization process. In the dynamic problems, the 
problem data are incomplete before the start of 
execution, and they are gradually discovered 
while the optimization is progressing. The in-
complete data may concern any element of the 
problem, such as the traffic data or the available 
vehicles. However, the dynamic aspect usually 
refers to the travelers to be transported, which 
are unknown before execution (like in ride-
sharing and dial-a-ride systems). Operational 
problems are never completely static and it is 



60 61M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

For the reasons that we have given in the in-
troduction, we choose a multi-agent modeling 
to solve the dynamic VRPTW. We opted for a 
solution based on insertion heuristics for their 
fast execution times and their adaptation to dy-
namic settings. As far as we are aware, none of 
the previous proposals have focused on the re-
sponse time of the system to online travelers. In 
this paper, we propose three dispatching proto-
cols and compare them based on their response 
time.

3. Dispatching Protocols 

The three protocols for dispatching travelers' 
requests that we propose in this article are de-
fined within the framework of a multi-agent 
system. Three main types of agents are defined 
in the system: traveler agents, vehicle agents, 
and interface agents. When a human user logs 
into the system, an interface agent creates a 
traveler agent representing him. Also, exclu-
sively for the centralized protocol, we defined 
an additional agent, called the planner agent, 
which is responsible for executing all routings.
In online problems, system response time is es-
sential, and only very fast approaches can com-
pete. The fastest and most popular approach is 
the greedy insertion approach, initially proposed 
by Marius M. Solomon [26] in this context. The 
principle is to gradually insert travelers, one by 
one, into the vehicle's itineraries. To do this, the 
price of inserting a traveler into vehicle's itin-
eraries is calculated, and the vehicle with the 
minimum insertion cost is chosen to insert the 
traveler. To calculate this insertion price for a 
vehicle, we compute the marginal cost between 
his current route and his new route.
When solving this problem with a multi-agent 
system, there are several alternatives regarding 
the entities processing the request. Each alter-
native is called a "dispatching protocol". In this 
section, we describe three possible dispatching 
protocols that we have designed, implemented 
and compared to model the online VRPTW: 
centralized dispatching, decentralized dispatch-
ing and hybrid dispatching. In the centralized 
protocol, the planner agent performs most of 
the computation. In the decentralized protocol, 
the vehicle agents perform most of the compu-
tation in a collaborative way. Finally, in the hy-

proach for the dynamic VRPTW (e.g. [12, 13, 
14, 15]). Insertion heuristics are, in their orig-
inal version, greedy algorithms, in the sense 
that the decision to insert a given traveler into 
a vehicle's itinerary is not reconsidered. In-
sertion heuristics are usually associated with 
metaheuristics to improve the quality of solu-
tions. The advantage of using insertion heu-
ristics is that they are both intuitive and fast. 
However, their resolution process is said to be 
short-sighted. Indeed, by definition, the system 
does not know which travelers will appear once 
it has assigned known travelers to the vehicles. 
Therefore, even if it happens to have a current 
optimal assignment of known travelers, the ap-
pearance of a new traveler could make the old 
assignment sub-optimal. 
A vast majority of agent-based approaches in 
the literature are based, at least partially, on 
insertion heuristics. In [16] for instance, the 
authors propose a multi-agent architecture to 
solve a VRP and a multi-depot VRP. In [17], 
the authors propose a multi-agent architecture 
to solve a dial-a-ride problem. The principle 
of these two proposals is the same: distribute 
an insertion heuristic, followed by a post-opti-
mization step. In [16], travelers are processed 
sequentially. They are distributed to all vehi-
cles, which in turn offer insertion offers and 
the best offer is chosen by the traveler. In the 
second step, the vehicles exchange travelers to 
improve their solutions, each vehicle knowing 
all the other agents of the system. Since the ve-
hicles operate in parallel, the authors plan to ap-
ply different heuristics for the vehicles. In-Time 
[17] is a system composed of traveler agents 
and vehicle agents. The traveler agent advertis-
es himself and all vehicle agents calculate his 
insertion price in their itineraries. The traveler 
agent chooses the cheapest offer. The authors 
propose a distributed local search method to 
improve the solutions. They allow a traveler 
to stochastically request to cancel his current 
assignment and re-enter the system, hoping to 
get a better offer from another vehicle. MARS 
[18] models cooperative planning in a shipping 
company as a multi-agent system. The solution 
to the global scheduling problem emerges from 
local decisions. The system benefits from an a 
priori structuring of agents, since each vehicle 
is associated with a particular company and can 
only serve the travelers of that company.

reasonable to assume that a static system does 
not meet current operational configurations. In-
deed, in real vehicle routing problems, and even 
when all travelers are known in advance (with 
a reservation system for example), there is al-
ways an element that makes the problem dy-
namic. These elements may include no-shows, 
delays, breakdowns, etc. 
Online vehicle routing problems could be con-
sidered as an extreme case of dynamic vehicle 
routing problems. Indeed, not only the problem 
data are not completely known before the start 
of the optimization, but the travelers connect in 
real time to the system and expect almost im-
mediate responses to their requests. The sys-
tem response time in this type of problems is 
therefore vital. If the optimization system needs 
two additional minutes to improve its current 
solution, it should immediately provide the cur-
rent solution to the traveler, since the latter will 
likely not wait that long to get an answer to his 
request.
To meet the requirement for short response 
times, we rely on the multi-agent paradigm 
to solve online vehicle routing problems. An 
agent is an intelligent entity, located in an envi-
ronment and that applies autonomous actions to 
achieve its objectives [2, 3]. Multi-agent mod-
eling of the online VRPTW is relevant for the 
following reasons. On the one hand, the choice 
of a model allowing the distribution of calcu-
lations should make it possible to shorten the 
response times to travelers' requests. On the 
other hand, nowadays, vehicles are more and 
more connected and have on-board computing 
capacities. In this context, the transportation 
system is de facto distributed and requires ap-
propriate modeling to take advantage of these 
facilities. The multi-agent system (MAS) that 
we propose in this article is composed of ve-
hicle agents, traveler agents, interface agents 
and planner agents. The MAS simulates a dis-
tributed version of the so-called "insertion heu-
ristics". Insertion heuristics are methods that 
involve inserting travelers individually in the 
vehicle routes. Each traveler is inserted in the 
route of the vehicle with the minimum marginal 
cost (the cost could refer to the incurred detour, 
for example). This is the fastest known heuris-
tic, since there is no reconsideration of previous 
insertion decisions. When coupling insertion 
heuristics and multi-agent systems, there is a 

choice to be made regarding the location of the 
calculations of the best routes. In this context, 
we propose three classic dispatching protocols 
and compare them according to their ability to 
provide better response times to travelers. The 
dispatching protocol determines which agents 
perform the calculation to insert the travelers in 
the vehicle routes. In the centralized protocol, 
the planner performs most of the calculation. In 
the decentralized protocol, the vehicle agents 
perform most of the calculation in a collabora-
tive way. Finally, in the hybrid protocol, work 
is shared between traveler agents and vehicle 
agents.
The remainder of this paper is structured as fol-
lows. In Section 2, we discuss previous propos-
als for the dynamic VRPTW. The multi-agent 
system and the three dispatching protocols of 
the MAS are presented in Section 3. The regret 
insertion heuristic is described in Section 4. We 
provide our experimental results in Section 5 
and then conclude with a few remarks in Sec-
tion 6.

2. Related Work

Operational settings of VRPTW are hard to 
be met using purely exact approaches, and it 
is hard to find optimal solutions to all of 56 
benchmarking problems proposed in [26] for 
instance. A formal definition of the VRPTW 
problem can be found in [25] and interested 
readers of optimization approaches can refer to, 
e.g. [4] for a survey. 
In fact, most of the proposed solution methods 
are heuristic or metaheuristic methods which 
provide good results in non-exponential times. 
These approaches have presented good re-
sults with benchmark problems. For instance, 
large-neighborhood local search [5], simulated 
annealing [6], evolutive strategies [7] and ant 
colonies [8, 9] present excellent performances 
with static problems. 
When dealing with dynamic VRPTW, most of 
the approaches are more or less direct adapta-
tions of static methods. For example, local re-
search in large neighbourhoods is adapted to a 
dynamic context in [10] and genetic algorithms 
are adapted to dynamic settings in [11]. Inser-
tion heuristics are the most widely adapted ap-
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sponse time, which is the main concern in the 
online VRPTW. On the other hand, a failure of 
the planner would result in a complete system 
failure. Nevertheless, the centralized dispatch-
ing protocol has the advantage of minimizing 
communications between the agents, which are 
limited to the notification of the travelers and 
vehicles of the computation outcome. The num-
ber of messages is N (1 + V ), with N being the 
number of travelers and V being the number of 
vehicles.

3.2. Decentralized Dispatching

Decentralized dispatching is illustrated in Fig-
ure 2. Following this protocol, there is no bot-
tleneck for route calculation. Following the 
principle of the greedy insertion heuristic, each 
vehicle agent tries to insert the new traveler in 
his route, and proposes an insertion price, cor-
responding to the "most economical" position 
where he can insert the traveler. The chosen ve-
hicle will be the one with the minimum inser-
tion price to transport the traveler.
In this dispatching protocol, the choice of the 
vehicle with the minimum price, the calculation 
of the price and the choice of the vehicle that 
will serve the traveler, are all carried out in a 
distributed way. Indeed, the scenario is as fol-
lows. When a new traveler appears, he sends 
his request to all the vehicles in the system. 
Upon receipt of the request, each vehicle cal-
culates an insertion price for him. When it has 
completed his calculation, each vehicle issues 
a message to all vehicles with his ID and price.
For the processing of these messages and deter-
mination of the winning agent vehicle, we pro-
pose the following process. Each vehicle agent 
broadcasts his own calculated price to other ve-
hicle agents. When he receives a new message 
containing a price calculated by another agent, 
he sorts the received offers, including his own 
offer, following their associated prices. When 
all the other vehicle agents have offered their 
prices, the vehicle agent checks to see which 
one is the winner. Then he updates his itinerary 
with the new inserted traveler and informs the 
concerned traveler agent accordingly.
This scheduling has the advantage of fully dis-
tributing the processing and being fault-toler-
ant. With a decentralized dispatching protocol, 

the entire system is not blocked following an 
agent's failure, as it would be the case with the 
centralized dispatching. In this protocol, for 
each new traveler, vehicles must cooperate to 
choose the one that is most appropriate to serve 
him. However, the number of exchanged mes-
sages could increase considerably, which is 
usually the price to pay for a processing dis-
tribution. The number of messages exchanged 
between vehicles with this dispatching pro-
tocol is equal to N × V 

2. The overall number 
of messages between all the agents is equal to 
N (1 + V (1 + V )).

3.3. Hybrid Dispatching

Hybrid dispatching is a compromise between 
the centralized and decentralized approach. In 
the hybrid approaches (see Figure 3), the travel-
er agent acts as a dispatcher. The traveler agent 
disseminates the request, collects the insertion 
prices of the vehicle agents and chooses the one 
who proposes the minimum price.

Figure 3. Hybrid dispatching protocol.

The hybrid approach applies the following pro-
tocol. A new human user provides the interface 
agent with the information about his transport 
request. The interface agent creates a traveler 
agent who represents him. Then, the new trav-
eler agent sends a message to all the vehicles 
in the system. Each vehicle agent checks if he 
can insert the traveler in his route. The vehicle 
agent then sends his insertion price to the travel-
er agent. The traveler agent collects the answers 
from the vehicles and chooses the vehicle that 

brid protocol the work is split between travelers 
and vehicles. Our objective is to verify which 
dispatching protocol is the most effective, in 
terms of response time to travelers' requests. 
The comparison of the different protocols does 
not take into account the traditional optimiza-
tion criteria (number of vehicles mobilized and 
total costs incurred). Indeed, in terms of optimi-
zation, the three dispatching protocols follow 
the same algorithm and use the same insertion 
price (described in the next section). The only 
difference concerns the response time, i.e. the 
time that takes the system to decide which vehi-
cle will visit the traveler. The three dispatching 
protocols are described in the following subsec-
tions.

3.1. Centralized Dispatching Protocol

In the centralized protocol, all processing is 
performed by a central entity which creates the 
vehicle routes. One of the main advantages of 
this protocol is that it allows online optimiza-
tion techniques to be used in a centralized fash-
ion. Online optimization (e.g. in [19]) provides 
benefits of the exact optimization techniques 
while also reducing response times. The princi-
ple is to discretize the processing time into time 
intervals. During each interval, an optimization 
is carried out with known travelers. New travel-
ers are queued up, waiting for the next interval. 
Known travelers who could not be served and 
new travelers are submitted for the new optimi-
zation round.

Our objective is to maintain the same resolu-
tion approach while comparing response times; 
the centralized approach therefore mimics the 
same insertion heuristic as the other two dis-
patching protocols. In our proposal (see Figure 
1), all travelers' requests are processed by the 
same planner agent. The planner agent has all 
the necessary information on each vehicle and 
traveler, as well as their current status. With this 
information, it places the current traveler in the 
position incurring the minimum marginal cost.
The scenario is as follows. A user appears and 
an interface agent creates a traveler agent to 
represent him. The traveler immediately sends 
a request to the planner agent, who tries to insert 
it into the route of each vehicle in the system, in 
all possible positions. To do so, it sequentially 
performs, for each vehicle, a procedure for cal-
culating the insertion price of the vehicle, and 
chooses the vehicle and the insertion position 
with the minimum price. If no vehicle can in-
sert the traveler, a new vehicle agent is created, 
with an empty route, and the traveler is inserted 
in the only possible position. Finally, the plan-
ner informs the traveler and the vehicle of the 
outcome of the procedure. Vehicle agents in the 
centralized dispatching protocol do not perform 
any calculations and only acknowledge the up-
dates in their routes, decided by the planner 
agent.
Centralized dispatching has two main disad-
vantages. On the one hand, it is not possible 
to distribute the execution over several calcu-
lation units in order to limit the system's re-

Figure 1. Centralized dispatching protocol. Figure 2. Decentralized dispatching protocol.
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er agent acts as a dispatcher. The traveler agent 
disseminates the request, collects the insertion 
prices of the vehicle agents and chooses the one 
who proposes the minimum price.

Figure 3. Hybrid dispatching protocol.

The hybrid approach applies the following pro-
tocol. A new human user provides the interface 
agent with the information about his transport 
request. The interface agent creates a traveler 
agent who represents him. Then, the new trav-
eler agent sends a message to all the vehicles 
in the system. Each vehicle agent checks if he 
can insert the traveler in his route. The vehicle 
agent then sends his insertion price to the travel-
er agent. The traveler agent collects the answers 
from the vehicles and chooses the vehicle that 

brid protocol the work is split between travelers 
and vehicles. Our objective is to verify which 
dispatching protocol is the most effective, in 
terms of response time to travelers' requests. 
The comparison of the different protocols does 
not take into account the traditional optimiza-
tion criteria (number of vehicles mobilized and 
total costs incurred). Indeed, in terms of optimi-
zation, the three dispatching protocols follow 
the same algorithm and use the same insertion 
price (described in the next section). The only 
difference concerns the response time, i.e. the 
time that takes the system to decide which vehi-
cle will visit the traveler. The three dispatching 
protocols are described in the following subsec-
tions.
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The scenario is as follows. A user appears and 
an interface agent creates a traveler agent to 
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it into the route of each vehicle in the system, in 
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chooses the vehicle and the insertion position 
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Figure 1. Centralized dispatching protocol. Figure 2. Decentralized dispatching protocol.
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to wait until e). More precisely, the current time 
t, plus the travel time between the depot and n 
has to be less than or equal to l. Starting from 
this observation, we define the action zone of 
a vehicle agent as the set of pairs <n, t > of the 
space-time network that remain valid given his 
current route (n can be visited by the vehicle at 
t). The action zone of a vehicle agent with an 
empty route is illustrated by the conic shadow 
in Figure 5.
When a vehicle agent inserts a traveler in his 
route, his action zone is recomputed, since some 
<node, time> pairs become not feasible. In Fig-
ure 6, a new traveler is inserted in the route of 
the vehicle. The action zone of the vehicle agent 
after inserting the traveler is represented by the 
interior of the contour of the bold lines which 
represent the space-time nodes that remain fea-
sible after the insertion of the traveler.

Figure 6. Action zone after the insertion of a traveler.

The insertion price sent from a vehicle agent 
v to a traveler agent c corresponds to the hy-
pothetical decrease of the action zone of v fol-
lowing the insertion of c in his route, i.e. the 
number of space-time nodes that would not be 
feasible anymore.
The idea is that the chosen vehicle for the inser-
tion of a traveler is the one that maintains the 
maximum chance to be candidate for the inser-
tion of future travelers. Thus, the criterion that 
is maximized by the society of vehicle agents is 
the sum of their action zones, i.e. the capacity 
of the MAS to react to the appearance of travel-
er agents, without mobilizing new vehicles.
To illustrate the action zones and their dynam-
ics, we present the version of the measure that 
is related to a Euclidean problem, i.e. where 
travel times are computed following the Euclid-
ean metric. The following paragraphs detail the 
measure as well as its dynamics. 

4.3. The Computation of Action Zones 

In the Euclidean case, the transportation net-
work is a plane, and the travel times between two 
points i (described by (xi, yi)) and j (described

by (xj, yj)) is equal to ( ) ( )2 2
i j i jx x y y− + − .

Therefore, if a vehicle is in i at the mo-
ment ti, it cannot be in j earlier than ti + 

( ) ( )2 2
i j i jx x y y− + − .

Figure 4. Space-time network. Figure 5. Initial space-time action zone.

offers the minimum price. Once he has chosen 
the best vehicle that can serve him (if there is at 
least one that can insert the traveler), he issues a 
new message to the vehicles to inform them of 
his decision and asks the winning vehicle agent 
to insert him in his route and subsequently serve 
him. When the vehicle agent receives the trav-
eler's message informing him that he is the win-
ner, he updates his route and inserts the traveler.
Thus, the objective of the hybrid approach is to 
relax the planner of all calculations, and to limit 
the communication between vehicles. The total 
number of messages in the hybrid dispatching 
protocol is equal to 3VN.
In the three dispatching protocols presented in 
this section, the planner agent, or vehicle agent, 
calculates a price for the insertion of a given 
traveler. The price calculation is the same for 
all three protocols. It is an original measure and 
can be qualified as a kind of regret heuristic 
that tries to overcome the disadvantages of tra-
ditional insertion price measures. The heuristic 
is described in the following section.

4. Space-Time Regret Insertion  
Heuristic 

In the heuristics and multi-agent methods re-
ferred to in the literature, the hierarchical ob-
jective of minimizing the number of mobilized 
vehicles is considered as priority w.r.t the gen-
eral costs (including the distance traveled by all 
the vehicles). A majority of the literature heu-
ristics are, as a consequence, based on a two-
phase approach: minimization of the number 
of vehicles followed by the minimization of 
the traveled distance [20]. The model that we 
propose in this section has the objective of min-
imizing the number of used vehicles in priority, 
while keeping the use of a ''pure'' insertion heu-
ristics, i.e. without any further improvements to 
meet response time requirements. To this end, 
our heuristic encourages the vehicle agents to 
cover a maximal space-time area of the trans-
portation network, avoiding the mobilization of 
a new vehicle if a new traveler appears in an 
uncovered zone. 
A space-time pair <i, t> – with i being a node 
and t being a time – is said to be ''covered'' by 
a vehicle agent v if v can be in i at t. The set of 

space-time nodes that are covered by the vehicle 
agent is called ''action zone of the vehicle''. In the 
context of the online VRPTW, the maximization 
of the vehicle agents' action zones gives them 
the maximum chance to satisfy the demand of a 
future (unknown) traveler. Through the model-
ing of vehicle agents' space-time action zones, 
we propose a new method to compute the travel-
er's insertion price in the route of a vehicle. This 
proposal is a kind of regret insertion heuristic. 
Regret insertion heuristics, instead of choosing 
the vehicle that has the minimal marginal cost, 
choose the vehicle and the traveler with the larg-
est ''regret''. The regret is a measure of the po-
tential price to be paid if a given traveler were 
not immediately inserted in the route of a given 
vehicle. There are several methods to compute 
the regret, such as the the sum of the differences 
between all the available prices and the mini-
mum price (cf. [21] for instance).

4.1. Environment Modeling

Provided the network spatial graph G, we build 
the MAS environment in the form of a space-
time network, inferred from the spatial graph. 
For each node of the graph we create pairs 
< space, time>, each representing the ''state'' of 
a node at a discrete time period. The space-time 
network is made of several spatial subgraphs. 
Each subgraph is a copy of G and corresponds to 
the state of the G at a certain period of time (cf. 
Figure 4). We index the nodes of the subgraphs 
as follows: <0, t >, ..., < N, t >, with t ∈ {1, ..., h}, 
where 0, ..., N are the nodes of the network and 
h is the number of considered discrete time pe-
riods. The total number of nodes in the space-
time network is then equal to h × N. The edges 
linking the nodes of a subgraph are those of the 
spatial graph, and the costs are the travel times.

4.2. Intuition of the Space-Time Action 
Zones

Consider a vehicle agent v that has an empty 
route. Consider also a new traveler c described 
by: n a node, [e, l] a time window, s a service 
time, and q a quantity. In order for v to be able 
to insert c in his schedule, l has to be big enough 
to allow v to be in n without violating his time 
constraints (if e is too small, v will simply have 
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to wait until e). More precisely, the current time 
t, plus the travel time between the depot and n 
has to be less than or equal to l. Starting from 
this observation, we define the action zone of 
a vehicle agent as the set of pairs <n, t > of the 
space-time network that remain valid given his 
current route (n can be visited by the vehicle at 
t). The action zone of a vehicle agent with an 
empty route is illustrated by the conic shadow 
in Figure 5.
When a vehicle agent inserts a traveler in his 
route, his action zone is recomputed, since some 
<node, time> pairs become not feasible. In Fig-
ure 6, a new traveler is inserted in the route of 
the vehicle. The action zone of the vehicle agent 
after inserting the traveler is represented by the 
interior of the contour of the bold lines which 
represent the space-time nodes that remain fea-
sible after the insertion of the traveler.
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The insertion price sent from a vehicle agent 
v to a traveler agent c corresponds to the hy-
pothetical decrease of the action zone of v fol-
lowing the insertion of c in his route, i.e. the 
number of space-time nodes that would not be 
feasible anymore.
The idea is that the chosen vehicle for the inser-
tion of a traveler is the one that maintains the 
maximum chance to be candidate for the inser-
tion of future travelers. Thus, the criterion that 
is maximized by the society of vehicle agents is 
the sum of their action zones, i.e. the capacity 
of the MAS to react to the appearance of travel-
er agents, without mobilizing new vehicles.
To illustrate the action zones and their dynam-
ics, we present the version of the measure that 
is related to a Euclidean problem, i.e. where 
travel times are computed following the Euclid-
ean metric. The following paragraphs detail the 
measure as well as its dynamics. 
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In the Euclidean case, the transportation net-
work is a plane, and the travel times between two 
points i (described by (xi, yi)) and j (described
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offers the minimum price. Once he has chosen 
the best vehicle that can serve him (if there is at 
least one that can insert the traveler), he issues a 
new message to the vehicles to inform them of 
his decision and asks the winning vehicle agent 
to insert him in his route and subsequently serve 
him. When the vehicle agent receives the trav-
eler's message informing him that he is the win-
ner, he updates his route and inserts the traveler.
Thus, the objective of the hybrid approach is to 
relax the planner of all calculations, and to limit 
the communication between vehicles. The total 
number of messages in the hybrid dispatching 
protocol is equal to 3VN.
In the three dispatching protocols presented in 
this section, the planner agent, or vehicle agent, 
calculates a price for the insertion of a given 
traveler. The price calculation is the same for 
all three protocols. It is an original measure and 
can be qualified as a kind of regret heuristic 
that tries to overcome the disadvantages of tra-
ditional insertion price measures. The heuristic 
is described in the following section.

4. Space-Time Regret Insertion  
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In the heuristics and multi-agent methods re-
ferred to in the literature, the hierarchical ob-
jective of minimizing the number of mobilized 
vehicles is considered as priority w.r.t the gen-
eral costs (including the distance traveled by all 
the vehicles). A majority of the literature heu-
ristics are, as a consequence, based on a two-
phase approach: minimization of the number 
of vehicles followed by the minimization of 
the traveled distance [20]. The model that we 
propose in this section has the objective of min-
imizing the number of used vehicles in priority, 
while keeping the use of a ''pure'' insertion heu-
ristics, i.e. without any further improvements to 
meet response time requirements. To this end, 
our heuristic encourages the vehicle agents to 
cover a maximal space-time area of the trans-
portation network, avoiding the mobilization of 
a new vehicle if a new traveler appears in an 
uncovered zone. 
A space-time pair <i, t> – with i being a node 
and t being a time – is said to be ''covered'' by 
a vehicle agent v if v can be in i at t. The set of 

space-time nodes that are covered by the vehicle 
agent is called ''action zone of the vehicle''. In the 
context of the online VRPTW, the maximization 
of the vehicle agents' action zones gives them 
the maximum chance to satisfy the demand of a 
future (unknown) traveler. Through the model-
ing of vehicle agents' space-time action zones, 
we propose a new method to compute the travel-
er's insertion price in the route of a vehicle. This 
proposal is a kind of regret insertion heuristic. 
Regret insertion heuristics, instead of choosing 
the vehicle that has the minimal marginal cost, 
choose the vehicle and the traveler with the larg-
est ''regret''. The regret is a measure of the po-
tential price to be paid if a given traveler were 
not immediately inserted in the route of a given 
vehicle. There are several methods to compute 
the regret, such as the the sum of the differences 
between all the available prices and the mini-
mum price (cf. [21] for instance).
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Provided the network spatial graph G, we build 
the MAS environment in the form of a space-
time network, inferred from the spatial graph. 
For each node of the graph we create pairs 
< space, time>, each representing the ''state'' of 
a node at a discrete time period. The space-time 
network is made of several spatial subgraphs. 
Each subgraph is a copy of G and corresponds to 
the state of the G at a certain period of time (cf. 
Figure 4). We index the nodes of the subgraphs 
as follows: <0, t >, ..., < N, t >, with t ∈ {1, ..., h}, 
where 0, ..., N are the nodes of the network and 
h is the number of considered discrete time pe-
riods. The total number of nodes in the space-
time network is then equal to h × N. The edges 
linking the nodes of a subgraph are those of the 
spatial graph, and the costs are the travel times.

4.2. Intuition of the Space-Time Action 
Zones

Consider a vehicle agent v that has an empty 
route. Consider also a new traveler c described 
by: n a node, [e, l] a time window, s a service 
time, and q a quantity. In order for v to be able 
to insert c in his schedule, l has to be big enough 
to allow v to be in n without violating his time 
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vehicle agent is the one with the minimum loss 
in his space-time action zone. Therefore, the 
new regret heuristic encourages to choose the 
vehicle with the highest marginal probability to 
be candidate for future travelers.

Figure 8. Space-time action zone after the  
insertion of c1.

4.5. Coordination of Action Zones

The objective of the space-time organization 
model is to allow better space-time coverage 
of the transportation network. This improve-
ment is materialized by a minimal mobilization 
of vehicles when confronted with the appear-
ance of new travelers. With the mechanism de-
scribed above, every vehicle agent tries to max-
imize his own action zone independently from 
the other agents. However, it would be more 
interesting that the agents cover the network in 
coordination. More precisely, for a vehicle, to 
lose space-time nodes that he is the only one to 
cover should be more costly than to lose nodes 
that are covered by other vehicle agents.
To this end, we associate with every node of the 
space-time network the list of vehicles covering 
it. Every vehicle notifies the space-time nodes 
that they are part of his action zone and every 
node continuously updates its list. Similarly, 
when the action zone of a vehicle agent loses a 
node, the node is notified and its list of vehicles 
is updated.
Now, when the insertion price of a traveler is 
computed, every vehicle agent starts by deter-

mining the space-time nodes that it would lose 
if it had to insert the new traveler. Then, it in-
terrogates each of these nodes about the ''price 
to pay'' if it were not covering it anymore. This 
price is inversely proportional to the number of 
vehicles covering this node. More precisely, the 
price to pay is equal to

, 

1

n tv< >

with v<n, t > denoting the vehicle agents covering 
the space-time node <n, t > and |v<n, t >| the num-
ber of such vehicles.
This method associates a higher penalty with 
a decision to stop covering a node that is less 
covered by the others. Therefore, the vehicle 
agents are indirectly incited to cover the whole 
network in a coordinated way.

5. Experiments

In this section, we provide the experimental re-
sults of our simulations. First, we provide op-
timization costs for the three dispatching pro-
tocols, which are the same since they use the 
same regret heuristic. Then we compare the 
three dispatching protocols in terms of the re-
sponse time. 
Marius M. Solomon [26] has created a set of 
different static problems for the VRPTW. These 
challenging and diverse problems can be used 
as the benchmark examples for comparing 
different proposed vehicle routing methods. 
In Solomon's benchmarks, six different sets 
of problems have been defined: C1, C2, R1, 
R2, RC1 and RC2. From geographical point 
of view, the travelers are uniformly distribut-
ed in the problems of type R, clustered in the 
problems of type C, and a mix of travelers, uni-
formly distributed and clustered, is used in the 
problems of type RC. The problems of type 1 
have narrow time windows (very few travelers 
can coexist in the same vehicle's route) and the 
problems of type 2 have wide time windows. 
Finally, a constant service time is associated 
with each traveler, which is equal to 10 in the 
problems of type R and RC, and to 90 in the 
problems of type C. Short service times would 
represent a problem where the loading and un-

We can compute at any time, from the current 
position of a vehicle, the set of triples (x, y, t) 
where it can be in the future. Indeed, consider-
ing a plane with an x-axis in [xmin, xmax ] and a 
y-axis in [ymin, ymax], the set of space-time posi-
tions is the set of points in the cube delimited by 
[xmin, xmax], [ ymin, ymax] and [e0, l0] (e0 and l0 are 
the scheduling horizon and are the minimal and 
maximal values for the time windows). Consid-
er a vehicle in the depot (x0, y0) at t0. The set of 
points (x, y, t) that are accessible by this vehicle 
are described by the following inequality:

( ) ( ) ( )2 2
0 0 0x x y y t t− + − ≤ − .

The (x, y, t) satisfying this inequality are 
those that are positioned inside the cone C 
of vertex (x0, y0, t0) and with the equation

( ) ( ) ( )2 2
0 0 0x x y y t t− + − ≤ −  (cf. Figure 7).

This cone represents the action zone of a vehi-
cle agent, with an empty route, in the Euclidean 
case. It represents all possible space-time po-
sitions that this vehicle agent is able to have in 
the future.

Figure 7. Initial action zone.

We use the action zone of the vehicle agents 
when a traveler agent has to choose between 
several vehicle agents for his insertion. We 
have to be able to compare the action zones of 
different vehicle agents. To do so, we propose 
to quantify it, by computing the volume of the 
cone C representing the future possible posi-
tions of the vehicle:

( )30 0
1( ) .3Volume C l eπ= × × −

This is the quantification of the initial action 
zone of any new vehicle agent joining the MAS 
(volume0). When a new traveler agent appears, 
each vehicle agent computes his new action 
zone and its volume (volume1). The price that 
it proposes to the traveler agent is the differ-
ence between his old action zone and his new 
one (volume0 - volume1). The new action zone 
computation is detailed in the following para-
graph.

4.4. Dynamics of the Action Zones

Consider a traveler c1 (of coordinates (x1, y1) 
and with a time window [e1, l1]) that joins the 
system, and suppose that v is currently the only 
available vehicle agent which has an empty 
route. The agent v has to infer his new space-
time action zone, i.e. the space-time nodes that 
it can still reach without violating the time con-
straints of c1. The new action zone answers the 
following questions: ''if v had to be in (x1, y1) 
at l1, where would it have been before? And if 
it had to be there at e1, where would it be after 
e1 + s1?'' (the service time is the time needed to 
load or unload the travelers). The triples (x, y, t) 
where the vehicle agent can be before visiting 
c1 are described by the inequality (3), and the 
triples (x, y, t) where it can be after visiting c1 
are described by the inequality (4).

( ) ( ) ( )2 2
1 1 1x x y y l t− − − ≤ −          (3)

( ) ( ) ( )2 2
1 1 1 1x x y y t e s− − − ≤ − +        (4)

The new action zone is illustrated by Figure 8: 
the new measure consists of the volume of the 
intersection of the initial cone C with the union 
of the two new cones described by the inequal-
ities (3) and (4) (denoted respectively by C1 
and C2). The new measure of the action zone 
is equal to the volume of the intersection of C 
with the union of C1 and C2.
The insertion price of a traveler in the route 
of a vehicle is equal to the measure associated 
with the old action zone of the vehicle minus 
the measure of the new action zone, after the 
insertion of the traveler. The measured quantity 
represents the space-time positions that would 
not be feasible anymore for the vehicle, if it had 
to insert this traveler in his route. The winner 
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vehicle agent is the one with the minimum loss 
in his space-time action zone. Therefore, the 
new regret heuristic encourages to choose the 
vehicle with the highest marginal probability to 
be candidate for future travelers.

Figure 8. Space-time action zone after the  
insertion of c1.
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lose space-time nodes that he is the only one to 
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We use the action zone of the vehicle agents 
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have to be able to compare the action zones of 
different vehicle agents. To do so, we propose 
to quantify it, by computing the volume of the 
cone C representing the future possible posi-
tions of the vehicle:

( )30 0
1( ) .3Volume C l eπ= × × −

This is the quantification of the initial action 
zone of any new vehicle agent joining the MAS 
(volume0). When a new traveler agent appears, 
each vehicle agent computes his new action 
zone and its volume (volume1). The price that 
it proposes to the traveler agent is the differ-
ence between his old action zone and his new 
one (volume0 - volume1). The new action zone 
computation is detailed in the following para-
graph.

4.4. Dynamics of the Action Zones

Consider a traveler c1 (of coordinates (x1, y1) 
and with a time window [e1, l1]) that joins the 
system, and suppose that v is currently the only 
available vehicle agent which has an empty 
route. The agent v has to infer his new space-
time action zone, i.e. the space-time nodes that 
it can still reach without violating the time con-
straints of c1. The new action zone answers the 
following questions: ''if v had to be in (x1, y1) 
at l1, where would it have been before? And if 
it had to be there at e1, where would it be after 
e1 + s1?'' (the service time is the time needed to 
load or unload the travelers). The triples (x, y, t) 
where the vehicle agent can be before visiting 
c1 are described by the inequality (3), and the 
triples (x, y, t) where it can be after visiting c1 
are described by the inequality (4).

( ) ( ) ( )2 2
1 1 1x x y y l t− − − ≤ −          (3)

( ) ( ) ( )2 2
1 1 1 1x x y y t e s− − − ≤ − +        (4)

The new action zone is illustrated by Figure 8: 
the new measure consists of the volume of the 
intersection of the initial cone C with the union 
of the two new cones described by the inequal-
ities (3) and (4) (denoted respectively by C1 
and C2). The new measure of the action zone 
is equal to the volume of the intersection of C 
with the union of C1 and C2.
The insertion price of a traveler in the route 
of a vehicle is equal to the measure associated 
with the old action zone of the vehicle minus 
the measure of the new action zone, after the 
insertion of the traveler. The measured quantity 
represents the space-time positions that would 
not be feasible anymore for the vehicle, if it had 
to insert this traveler in his route. The winner 
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92 < 107, 53 < 60, 150 < 181, 108 < 121). The 
average improvement of the space-time mod-
el compared to the classic model is 13.26%. 
These results validate the intuition of the mod-
el, which implies maximizing the future inser-
tion possibilities for a vehicle agent.
Once this result has been validated, it is inter-
esting to check the results with respect to the 
total distance traveled by all the vehicles. Ta-
ble 2 summarizes the results1. With respect to 
this criterion, the space-time model is more 
efficient for two problem classes (C1 25 trav-
elers and R1 100 travelers), with 1.80% im-
provement on average. It is less efficient for 
four problem classes (R1 25 travelers, R1 50 
travelers, C1 50 travelers and C1 100 travelers), 
with 1.39% improvement for the classic model. 
The fact remains that our results provide better 
results than the traditional heuristic, provided 
that the primary objective of the problem is to 
minimize the number of vehicles mobilized by 
the system.

Table 2. Results summary  
(Criterion: Total Traveled Distance).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 6372 6561

C1 25 travelers 3167 3152

R1 50 travelers 12036 12089

C1 50 travelers 6712 7093

R1 100 travelers 17907 17348

C1 100 travelers 16011 16512

The two following subsections provide the re-
sults in terms of response time for the three dis-
patching protocols.

5.2. Sequential Implementation 
Experiments

Table 3 provides the values in terms of aver-
age response times (in milliseconds) of every 
dispatching protocols in the centralized imple-
mentation. The response time for a traveler is 
the difference between the moment when the 
traveler agent is created and the moment when 
a vehicle is chosen by the traveler. The central-

ized protocol provides the best results (32.80% 
improvement, in average, compared to the dis-
tributed protocol), followed by the hybrid proto-
col (24.13% improvement, in average) and the 
decentralized protocol. This is due to the fact 
that the centralized approach does not generate 
communication between agents and does not 
assume any concurrency management. The hy-
brid approach provides results that are close to 
the centralized dispatching protocol. However, 
it provides results of worse quality for two rea-
sons. On the one side, it generates more messag-
es (linear with the number of vehicles) between 
the traveler agent and the vehicle agents. On the 
other side, the management of concurrent pro-
cesses of the vehicles and travelers, and the fact 
that their contexts have to be restored every time 
the scheduler executes them, increases the ex-
hibited response times for the travelers. Finally, 
the decentralized approach suffers from the two 
drawbacks: it generates a quadratic number of 
messages and it uses pseudo-parallelism which 
slows down the processing.

Table 3. Sequential implementation  
(average response time (ms)).
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R1 25 travelers 35 54 36

C1 25 travelers 32 48 40

R1 50 travelers 36 59 44

C1 50 travelers 38 56 41

R1 100 travelers 43 63 49

C1 100 travelers 44 59 47

However, this round of experiments was ex-
ecuted on a single computer, therefore these 
results are not fair towards the decentralized 
dispatching strategy, and to a lesser extent, to-
wards the hybrid approach. Indeed, to use the 
full capacity of these protocols, we have to exe-
cute our simulations on a mini-cloud.

1In Solomon's benchmarks, there is no unit associated with the distances.

loading of the transported entities is fast (trans-
port of persons for instance). In every problem 
set, there are between 8 and 12 files, each con-
taining 100 travelers.
We choose to use Solomon's benchmarks, while 
following the modification proposed by [22] 
to make the problem dynamic. To this end, let 
[0, T ] be the simulation time. All the time relat-
ed data (time windows, service times and travel

times) are multiplied by 
0 0

T
l e−

, with [e0, l0] 

being the scheduling horizon of the problem. 
The authors divide the travelers set in two sub-
sets, the first subset defines the travelers that 
are known in advance, and the second one the 
travelers who appear during execution. We do 
not make this distinction, since we consider no 
travelers known in advance. For each traveler, 
an occurrence time is associated, defining the 
moment when the traveler is recognised by the 
system. Given a traveler i, the occurrence time 
that is associated is generated randomly be-
tween [ ]0, ie , with:

0 0
i i

Te e l e= ×
−

.                     (6)

It is known that the behavior of insertion heu-
ristics is strongly sensitive to the appearance 
order of the travelers to the system. For this 
reason, we do not consider only one appearance 
order. We launch the process that we have just 
described ten times with every problem file, 
this way creating ten different versions of every 
problem file.

Figure 9. Sequential implementation (left) and 
distributed implementation (right).

We have implemented all the systems using the 
multi-agent Java-based platform Repast Sim-

phony [23]. We have executed our experiments 
on a PC with an Intel Xeon E7-4820 processor, 
and 50 GB of RAM for the sequential versions, 
and a four PC network for the distributed ver-
sions, each with the same configuration (Intel 
Xeon E7-4820 processor, and 50 GB of RAM). 
Cf. Figure 9.

5.1. Optimization Cost

We have implemented two MAS with almost 
the same behavior, following the hybrid dis-
patching protocol. The only difference concerns 
the measure used by vehicle agents to compute 
the insertion price of a traveler. For the first im-
plemented MAS, it relies on the Solomon mea-
sure (noted Δ Distance). The second relies on 
the space-time model (noted Δ Space-Time). We 
choose to run our experiments with the prob-
lems of class R and C, of type 1, which are the 
instances that are very constrained in time (nar-
row time windows). Recall that the objective of 
the problem is to minimize costs, materialized 
by a minimal number of mobilized vehicles, 
and then a minimal total traveled distance.

Table 1. Results summary  
(Criterion: Fleet Size).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 64 53

C1 25 travelers 34 31

R1 50 travelers 107 92

C1 50 travelers 60 53

R1 100 travelers 181 150

C1 100 travelers 121 108

For each problem class and type, we have con-
sidered different numbers of travelers in order 
to verify the behavior of our models w.r.t. the 
problem size. To this end, we have consid-
ered successively the 25 first travelers, the 50 
first travelers, and finally all the 100 travelers 
contained in each problem file. Table 1 sum-
marizes the results. Each cell contains the best 
results obtained with each problem class (the 
sum of all problem files). The results show, 
with the two classes of problems, that the use 
of the space-time model mobilizes fewer vehi-
cles than the classic model (53 < 64, 31 < 34, 
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92 < 107, 53 < 60, 150 < 181, 108 < 121). The 
average improvement of the space-time mod-
el compared to the classic model is 13.26%. 
These results validate the intuition of the mod-
el, which implies maximizing the future inser-
tion possibilities for a vehicle agent.
Once this result has been validated, it is inter-
esting to check the results with respect to the 
total distance traveled by all the vehicles. Ta-
ble 2 summarizes the results1. With respect to 
this criterion, the space-time model is more 
efficient for two problem classes (C1 25 trav-
elers and R1 100 travelers), with 1.80% im-
provement on average. It is less efficient for 
four problem classes (R1 25 travelers, R1 50 
travelers, C1 50 travelers and C1 100 travelers), 
with 1.39% improvement for the classic model. 
The fact remains that our results provide better 
results than the traditional heuristic, provided 
that the primary objective of the problem is to 
minimize the number of vehicles mobilized by 
the system.

Table 2. Results summary  
(Criterion: Total Traveled Distance).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 6372 6561

C1 25 travelers 3167 3152

R1 50 travelers 12036 12089

C1 50 travelers 6712 7093

R1 100 travelers 17907 17348

C1 100 travelers 16011 16512

The two following subsections provide the re-
sults in terms of response time for the three dis-
patching protocols.

5.2. Sequential Implementation 
Experiments

Table 3 provides the values in terms of aver-
age response times (in milliseconds) of every 
dispatching protocols in the centralized imple-
mentation. The response time for a traveler is 
the difference between the moment when the 
traveler agent is created and the moment when 
a vehicle is chosen by the traveler. The central-

ized protocol provides the best results (32.80% 
improvement, in average, compared to the dis-
tributed protocol), followed by the hybrid proto-
col (24.13% improvement, in average) and the 
decentralized protocol. This is due to the fact 
that the centralized approach does not generate 
communication between agents and does not 
assume any concurrency management. The hy-
brid approach provides results that are close to 
the centralized dispatching protocol. However, 
it provides results of worse quality for two rea-
sons. On the one side, it generates more messag-
es (linear with the number of vehicles) between 
the traveler agent and the vehicle agents. On the 
other side, the management of concurrent pro-
cesses of the vehicles and travelers, and the fact 
that their contexts have to be restored every time 
the scheduler executes them, increases the ex-
hibited response times for the travelers. Finally, 
the decentralized approach suffers from the two 
drawbacks: it generates a quadratic number of 
messages and it uses pseudo-parallelism which 
slows down the processing.

Table 3. Sequential implementation  
(average response time (ms)).
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However, this round of experiments was ex-
ecuted on a single computer, therefore these 
results are not fair towards the decentralized 
dispatching strategy, and to a lesser extent, to-
wards the hybrid approach. Indeed, to use the 
full capacity of these protocols, we have to exe-
cute our simulations on a mini-cloud.

1In Solomon's benchmarks, there is no unit associated with the distances.

loading of the transported entities is fast (trans-
port of persons for instance). In every problem 
set, there are between 8 and 12 files, each con-
taining 100 travelers.
We choose to use Solomon's benchmarks, while 
following the modification proposed by [22] 
to make the problem dynamic. To this end, let 
[0, T ] be the simulation time. All the time relat-
ed data (time windows, service times and travel

times) are multiplied by 
0 0

T
l e−

, with [e0, l0] 

being the scheduling horizon of the problem. 
The authors divide the travelers set in two sub-
sets, the first subset defines the travelers that 
are known in advance, and the second one the 
travelers who appear during execution. We do 
not make this distinction, since we consider no 
travelers known in advance. For each traveler, 
an occurrence time is associated, defining the 
moment when the traveler is recognised by the 
system. Given a traveler i, the occurrence time 
that is associated is generated randomly be-
tween [ ]0, ie , with:

0 0
i i

Te e l e= ×
−

.                     (6)

It is known that the behavior of insertion heu-
ristics is strongly sensitive to the appearance 
order of the travelers to the system. For this 
reason, we do not consider only one appearance 
order. We launch the process that we have just 
described ten times with every problem file, 
this way creating ten different versions of every 
problem file.

Figure 9. Sequential implementation (left) and 
distributed implementation (right).

We have implemented all the systems using the 
multi-agent Java-based platform Repast Sim-

phony [23]. We have executed our experiments 
on a PC with an Intel Xeon E7-4820 processor, 
and 50 GB of RAM for the sequential versions, 
and a four PC network for the distributed ver-
sions, each with the same configuration (Intel 
Xeon E7-4820 processor, and 50 GB of RAM). 
Cf. Figure 9.

5.1. Optimization Cost

We have implemented two MAS with almost 
the same behavior, following the hybrid dis-
patching protocol. The only difference concerns 
the measure used by vehicle agents to compute 
the insertion price of a traveler. For the first im-
plemented MAS, it relies on the Solomon mea-
sure (noted Δ Distance). The second relies on 
the space-time model (noted Δ Space-Time). We 
choose to run our experiments with the prob-
lems of class R and C, of type 1, which are the 
instances that are very constrained in time (nar-
row time windows). Recall that the objective of 
the problem is to minimize costs, materialized 
by a minimal number of mobilized vehicles, 
and then a minimal total traveled distance.

Table 1. Results summary  
(Criterion: Fleet Size).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 64 53

C1 25 travelers 34 31

R1 50 travelers 107 92

C1 50 travelers 60 53

R1 100 travelers 181 150

C1 100 travelers 121 108

For each problem class and type, we have con-
sidered different numbers of travelers in order 
to verify the behavior of our models w.r.t. the 
problem size. To this end, we have consid-
ered successively the 25 first travelers, the 50 
first travelers, and finally all the 100 travelers 
contained in each problem file. Table 1 sum-
marizes the results. Each cell contains the best 
results obtained with each problem class (the 
sum of all problem files). The results show, 
with the two classes of problems, that the use 
of the space-time model mobilizes fewer vehi-
cles than the classic model (53 < 64, 31 < 34, 
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5.3. Distributed Implementation 
Experiments

It is possible with Repast Simphony to distrib-
ute a simulation over a network, using relevant 
Java APIs. We report the corresponding results 
in Table 4. These results are interesting since 
they provide a new enlightenment concerning 
the most promising dispatching protocol in 
terms of response time to online users. Indeed, 
in the absence of slow-down due to single PC 
pseudo-parallelism, the hybrid protocol takes 
profit of the processing distribution, without 
suffering from a too big number of exchanged 
messages (59.66% improvement in average, 
compared with the centralized protocol). The 
decentralized protocol comes to the second 
position in terms of performance (39.31% 
improvement in average), taking profit from 
the distribution but suffering from its too big 
bandwidth consumption. The centralized pro-
tocol comes to the last position, since its gain 
in terms of exchanged messages does not coun-
terbalance its sequentialization of processing. 
Observe that the centralized protocol yielded 
almost identical results in the distributed im-
plementation, as well as in the sequential im-
plementation. The small difference comes 
from the fact that vehicle agents are executed 
in other hosts than the planner agent, which re-
sults in a small additional cost in terms of com-
munication.

Table 4. Distributed implementation  
(average response time (ms)).
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R1 25 travelers 36 23 14

C1 25 travelers 34 24 17

R1 50 travelers 37 24 16

C1 50 travelers 40 25 17

R1 100 travelers 44 23 15

C1 100 travelers 48 24 16

6. Conclusion

In this paper, we have proposed a multi-agent 
system implementing a regret insertion heuris-
tic for the online vehicle routing problem with 
time windows. We propose three versions of the 
system, focusing on the travelers' dispatching 
protocols. The dispatching protocol decides 
which agents perform the computation to an-
swer the travelers' requests. In the centralized 
protocol the planner agent performs most of the 
computation. In the decentralized protocol, the 
vehicle agents perform most of the computation 
in a collaborative way. Finally, in the hybrid 
protocol, the work is split between travelers 
and vehicles. We have compared these three ap-
proaches based on their response time to online 
users. We have considered two implementation 
types, sequential implementation and distrib-
uted implementation. The results have shown 
superiority of the centralized protocol in the 
first implementation (32.80% improvement, in 
average, compared to the distributed dispatch-
ing protocol) and superiority of the hybrid pro-
tocol in the second implementation (59.66% 
improvement, in average, compared with the 
centralized dispatching protocol). In our future 
works, we will consider more dynamic prob-
lems in which not only travelers, but also the 
traffic conditions are unknown before execu-
tion. To this end, we will integrate our vehicle 
routing system inside the multimodal traffic 
simulator SM4T [24].
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5.3. Distributed Implementation 
Experiments

It is possible with Repast Simphony to distrib-
ute a simulation over a network, using relevant 
Java APIs. We report the corresponding results 
in Table 4. These results are interesting since 
they provide a new enlightenment concerning 
the most promising dispatching protocol in 
terms of response time to online users. Indeed, 
in the absence of slow-down due to single PC 
pseudo-parallelism, the hybrid protocol takes 
profit of the processing distribution, without 
suffering from a too big number of exchanged 
messages (59.66% improvement in average, 
compared with the centralized protocol). The 
decentralized protocol comes to the second 
position in terms of performance (39.31% 
improvement in average), taking profit from 
the distribution but suffering from its too big 
bandwidth consumption. The centralized pro-
tocol comes to the last position, since its gain 
in terms of exchanged messages does not coun-
terbalance its sequentialization of processing. 
Observe that the centralized protocol yielded 
almost identical results in the distributed im-
plementation, as well as in the sequential im-
plementation. The small difference comes 
from the fact that vehicle agents are executed 
in other hosts than the planner agent, which re-
sults in a small additional cost in terms of com-
munication.

Table 4. Distributed implementation  
(average response time (ms)).
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R1 25 travelers 36 23 14

C1 25 travelers 34 24 17

R1 50 travelers 37 24 16

C1 50 travelers 40 25 17

R1 100 travelers 44 23 15

C1 100 travelers 48 24 16

6. Conclusion

In this paper, we have proposed a multi-agent 
system implementing a regret insertion heuris-
tic for the online vehicle routing problem with 
time windows. We propose three versions of the 
system, focusing on the travelers' dispatching 
protocols. The dispatching protocol decides 
which agents perform the computation to an-
swer the travelers' requests. In the centralized 
protocol the planner agent performs most of the 
computation. In the decentralized protocol, the 
vehicle agents perform most of the computation 
in a collaborative way. Finally, in the hybrid 
protocol, the work is split between travelers 
and vehicles. We have compared these three ap-
proaches based on their response time to online 
users. We have considered two implementation 
types, sequential implementation and distrib-
uted implementation. The results have shown 
superiority of the centralized protocol in the 
first implementation (32.80% improvement, in 
average, compared to the distributed dispatch-
ing protocol) and superiority of the hybrid pro-
tocol in the second implementation (59.66% 
improvement, in average, compared with the 
centralized dispatching protocol). In our future 
works, we will consider more dynamic prob-
lems in which not only travelers, but also the 
traffic conditions are unknown before execu-
tion. To this end, we will integrate our vehicle 
routing system inside the multimodal traffic 
simulator SM4T [24].
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