
57Pomorski zbornik 58 (2020), 57-75

ISSN 0554-6397
UDK: 004.032.26
Original scientific paper
Received: 20th April 2020

Mario Kučić
Infobip, Office: Rijeka, Martinkovac 109, 51000 Rijeka, Croatia 
E-mail: mario.kucic@infobip.com 
Marko Valčić
University of Rijeka, Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia
E-mail: mvalcic@riteh.hr

Stereo Visual Odometry for Indoor Localization of Ship 
Model

Abstract

Typically, ships are designed for open sea navigation and thus research of autonomous ships is 
mostly done for that particular area. This paper explores the possibility of using low-cost sensors 
for localization inside the small navigation area. The localization system is based on the technology 
used for developing autonomous cars. The main part of the system is visual odometry using stereo 
cameras fused with Inertial Measurement Unit (IMU) data coupled with Kalman and particle filters 
to get decimetre level accuracy inside a basin for different surface conditions. The visual odometry 
uses cropped frames for stereo cameras and Good features to track algorithm for extracting features to 
get depths for each feature that is used for estimation of ship model movement. Experimental results 
showed that the proposed system could localize itself within a decimetre accuracy implying that there 
is a real possibility for ships in using visual odometry for autonomous navigation on narrow waterways, 
which can have a significant impact on future transportation.
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1. Introduction

Autonomous vehicles could have a large role in the future transportation of people 
and goods. Trucks that are capable of driving the whole day without stop can reduce 
the cost of the goods [14]. Personal autonomous cars can reduce city traffic using 
intelligent transportation systems [18]. Autonomous ships can be used to monitor traffic 
in the ports and coastal navigation [15]. There is also a potential for boats to transport 
people in urban cities like Venice and Amsterdam, where are many waterways, which 
can consequently reduce the traffic on the roads. Roboat project is already exploring 
the possibility of transporting people in Amsterdam, but there are many challenging 
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problems to be solved [21]. Many of them are related to accurate localization. Most 
of the autonomous boats today use Inertial Measurement Unit (IMU) and Global 
Positioning System (GPS) fused with unscented Kalman filter (UKF) or extended 
Kalman filter (EKF) for meter or decimetre level accuracy of the position [1][3][4][6]
[15]. Such solutions are designed for open seas or coastal navigation where GPS can 
provide accurate positioning. The same applies to other Global Navigation Satellite 
Systems (GNSS) like GLONASS, Galileo, BeiDou, etc.  

The problem with localization within a canal is low accuracy of GNSS position 
due to buildings or trees covering the sky, which can be a difficulty for road vehicles as 
well [21]. One possible solution is using LiDAR (Light Detection and Ranging) method 
fused with IMU, camera, and GNSS to get decimetre-level accuracy [23]. This is done 
in the field of self-driving car research [23], and it is also tried in the channel navigation 
in Amsterdam [21]. One problem with LiDAR approaches is the price of the system. 
Some research are indicating that same accuracy can be achieved using only cameras 
[20]. Using only one camera it is possible to make accurate localization [5][13], but 
much robust solution is to use multiple cameras, preferably one stereo camera set up 
to get a robust estimate [20].  

Most of the other approaches are using some learning method, which most often 
needs accurate labels and large amount of data. On the other hand, the proposed 
system in this paper does not need any kind of learning, i.e. it uses visual odometry for 
extracting motion from stereo camera setup and fusion with IMU using Kalman filter 
(KF) and particle filter (PF) in order to get very accurate estimations of ship model 
movements in a basin. 

2. Hardware overview

The ship model used in this research does not have a propulsion system. Instead, 
it was pulled using a rope, which reduces the complexity and price of the ship model 
but also reduces the vibrations and realism in conducted experiments. The main 
microprocessor is the Raspberry Pi 3B+, which is not capable of the real-time 
estimation, but instead, it is used for collecting the data on a USB drive. The model is 
equipped with two PlayStation eye cameras to provide visual odometry for KF and PF 
localization. An IMU MPU9250 is installed on the model’s principal axes to monitor the 
magnetic fields in three-axis with a sampling frequency of 100 Hz. Additional camera, 
Logitech C920, is placed directly above the basin. It is connected to PC and used as a 
reference system in evaluating estimations. The assembled and equipped ship model 
used in in this research is shown in Figure 1. 
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Figure 1 – The ship model

3. Computer vision algorithms for estimation of ship model motions  

This section describes stereo visual odometry combined with Kalman and particle 
filters, as well as the algorithm for finding and tracking true position and velocities of 
the ship model.

3.1 Visual odometry for ship model

The software workflow is given in Figure 2. The main focus is set on the estimating 
the accurate position and velocities. 
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Figure 2 – Software workflow 

The model’s cameras are calibrated using the Levenberg-Marquardt algorithm [17] 
implemented in OpenCV library [2]. The frames from the cameras are synchronized at 
20 Hz with a resolution of 640x480 pixels. To reduce the noise in the further estimation, 
water is removed from the frames by cropping it to include only upper two-thirds. 
Extraction of features in the frames is done using Good Features to Tack algorithm 
[19] implemented in OpenCV, which gives distribute features across the whole frame. 
Features are distinguished parts in a frame, most often edges of objects. Extraction is 
done on the left and right frames in parallel. The result is a set of key-points p, where 
each key-point has pair of coordinates (x, y) in the frame. Feature matching is done 
using brute-force search where each key-point from the left frame is compared with 
all key-points in the right frame using Hamming distance [2], and vice versa (cross-
checking). Only features that have distance smaller than some threshold value are 
matched points p. All matched points are in 2D space, depth of each p is estimated 
according to [16] as 
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(1)

where xl and xr are the pixel coordinates of a match in left and right frames respectively, 
b is the physical distance between two cameras, cxl and cyl are the pixels of the real 
centre of the left camera sensor, respectively, and fl is the focus of the left camera [2].

Given 3D positions of objects in previous frame and current frame, it is possible 
to find translation tk and rotation Rk using perspective-n-point (PnP) solver methods 
[12]. Matrix Rk is a rotation matrix from which it is possible to extract Euler angles 
φ, θ, and ψ for roll, pitch and yaw, respectively. Vector tk corresponds to velocities in 
body reference frame as shown in [16]. 

The PnP is solved using OpenCV function solvePnP. PnP solver can produce 
large errors in some cases; therefore, it is used in combination with random sample 
consensus (RANSAC) method [7] to reduce probability of larger errors. PnP solver 
returns Rk and tk in-camera reference frame. To track the position of the model it is 
necessary to convert those measurements into some global, in this case, North-East-
Down (NED) reference frame [8]. This can be done by rotating measured vectors by 
the heading angle, which is defined as an angle between the true North and direction 
in which the vessel is pointing. The heading angle is given by magnetometer and by 
tracking rotations between frames. Rotated tk provides velocities in the NED, tNED, 
which then allows estimating the position of the model. Kalman [22] and particle [10] 
filters are used to improve the estimation of heading, velocities tNED, and position in 
the NED reference frame.

3.1.1 Kalman filter

The Kalman filter (KF) is divided into 2 parts, prediction and update [22]. 
Prediction uses prior estimated state  and state transition matrix Φ in order to 
predict new state

 . (2)

Because the prediction depends on the prior state and the state transition matrix, 
it is expected to have some uncertainty in the estimation. Uncertainty of the estimation 
is tracked with the error covariance matrix P. The P is updated using process noise 
covariance matrix Q as

 . (3)

The update step of the KF is done when there are new measurements zk available 
[11]. Based on the  and measurement noise covariance R, Kalman gain Kk is 
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calculated as

 
.
 

(4)

According to [11], Kk determines how much belief is given to estimation in 
comparison to a measurement, and H is adjustment matrix. The update of the state 

 is given with term

 . (5)

The final step is to update the matrix Pk as 

 , (6)

where I is an identity matrix.

3.1.2 Particle Filter

The particle filter (PF) is initialized with N particles with different states sampled 
from a normal distribution. PF performs prediction and update similarly as KF [11]. 
The prediction is done for each particle as

 , (7)

where ω is random noise sampled from a normal distribution. According to [11], the 
first step of update is finding error between measurements zk and state  for each 
particle as

 
,
 

(8)

where α is the random noise sampled from a normal distribution, and Avg indicates 
the mean value. 

The errors ɛk are then normalized to get weight wk of each particle as

 
.
 

(9)

In the re-sampling, the weight of a particle represents the probability of choosing 
the particle to be in a new set of particles. The other use of the weights is in estimating 
the state which is taken from [11] as a weighted average of all particles
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.
 

(10)

3.2 Evaluation algorithm

The setup is very similar to [9] where the author used an optical camera to track 
markings on the ship model. The same approach is used in this work. The camera is 
mounted directly above the basin and is perpendicular to the water surface. It records at 
20 FPS with a resolution of 1280x720. Each recorded frame is processed independently, 
which yields a unique position for the red and the green marker that are on the ship 
model. Extraction of the positions begins with converting blue green red (BGR) format 
into hue saturated value (HSV), followed by blurring the whole frame using Gaussian 
blur [2]. Each pixel in the blurred image is then checked if it is in the target range of 
colours for red or green. Erosion and dilation are used to remove some noise from the 
processed frame [2]. The final step is finding positions of the largest group of valid 
pixels in the processed frame by using counter finding method described in [2]. Results 
are the 2D position of the green and red markers in the frame. Heading  of the ship 
model is given as

  
(11)

where xred and yred present the position of the red marker, while xgreen and ygreen present 
the position of the green marker. Function atan should be used as atan2 in order to 
avoid possible singularities. Position of the ship is given as

  (12)

and

 . (13)

Velocities of the ship model in NED reference frame, if the camera has y edge of 
the frame aligned with true North, are

  (14)

and

 . (15)

where k denotes the time step. 
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From [8], velocities in the body-reference frame are equal to 

  (16)

and

 , (17)

where U is the resultant velocity that can be also expressed as 

 . (18)

Drift angle, i.e. the difference between the heading and course angles, can be 
determined as  

 
, (19)

although it should be noted that given angles are derived from a mathematical and 
computational point of view, while marine navigation uses slightly different references 
for the angles of 0 rad. Thus, to correct the angles, the following function

  
(20)

was used, where ξ is the value in radians and mod is modulo operator.

4. Experiments and results

In this section, performed indoor experiments and associated results to validate 
the effectiveness of the described algorithm structure are presented. The experiments 
were conducted in the basin of the Laboratory of Ship Hydromechanics, Department 
of Naval Architecture and Ocean Engineering, Faculty of Engineering, University of 
Rijeka, Rijeka, Croatia. The basin has the capability of generating linear waves with 
constant wavelength and amplitude. The shore, which has the main purpose of breaking 
the waves without their reflection, is shown in Figure 3 (left). It is installed 3 m from 
the wave generator that is placed on the opposite side, as also shown in Figure 3 (right). 
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Figure 3 – The shore (left) and the wave generator (right)

Experiments were conducted with two distinct wave angles of attack γ and with 
multiple wave amplitudes ζa and wavelengths λ, as shown in Table 1. The wave angle 
of attack γ is defined with respect to the positive part of the x-axis of the body reference 
frame in counter-clockwise direction.    

Table 1 – Angle of attack, amplitude and wavelength for each experiment

Exp. γ [˚] ζa [mm] λ [mm]
1 - 0 -
2 40 5 210
3 40 7.5 132
4 40 11 59
5 0 5 210
6 0 7.5 132
7 0 11 59

Each experiment is evaluated using KF and PF to estimate positions N and E, 
velocities u and v in surge and sway, and heading ψ. All obtained estimates were 
compared with the reference data. Performance indexes used for this comparison were 
root mean square error (RMSE) and standard deviation (std). The estimates that were 
obtained using KF are given in Table 2 and the estimates that were obtained using PF 
are given in Table 3. It should be noted that the values outside parentheses are RMSE 
values, while those in parentheses present associated standard deviations.
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Table 2 – Estimation results based on Kalman filter 

Exp. N [cm] E [cm] u [cm/s] v [cm/s] ψ [˚]
1 1.097 (1.213) 1.608 (1.408) 0.078 (0.103) 0.011 (0.014) 1.387 (1.643)
2 2.232 (2.411) 2.302 (2.193) 0.155 (0.187) 0.044 (0.046) 1.370 (1.611)
3 4.087 (3.671) 4.051 (3.321) 0.269 (0.325) 0.074 (0.073) 1.485 (2.342)
4 6.043 (5.015) 5.116 (4.914) 0.284 (0.333) 0.058 (0.067) 2.170 (3.041)
5 0.761 (1.065) 3.408 (3.870) 0.147 (0.148) 0.021 (0.025) 1.042 (1.318)
6 0.296 (0.293) 3.934 (4.055) 0.110 (0.139) 0.036 (0.042) 1.551 (1.822)
7 0.320 (0.324) 4.340 (4.843) 0.088 (0.091) 0.044 (0.045) 1.531 (1.833)

Table 3 – Estimation results based on particle filter 

Exp. N [cm] E [cm] u [cm/s] v [cm/s] ψ [˚]
1 1.054 (1.125) 1.630 (1.441) 0.072 (0.087) 0.013 (0.017) 1.400 (1.784)
2 2.873 (3.022) 2.881 (2.993) 0.154 (0.185) 0.043 (0.046) 1.399 (1.635)
3 4.189 (3.774) 4.155 (3.391) 0.273 (0.333) 0.076 (0.074) 1.447 (2.039)
4 6.265 (5.180) 5.126 (4.918) 0.255 (0.281) 0.066 (0.074) 2.277 (3.248)
5 0.801 (1.121) 3.393 (3.847) 0.139 (0.142) 0.022 (0.025) 1.013 (1.207)
6 0.304 (0.302) 3.757 (3.834) 0.117 (0.133) 0.038 (0.045) 1.580 (1.801)
7 0.298 (0.329) 4.409 (4.945) 0.093 (0.100) 0.045 (0.046) 1.582 (1.921)

From the obtained results, it can be seen that larger amplitudes and shorter 
wavelengths cause larger RMSE. In the first experiment, i.e. without waves, accuracy 
of the ship position is within few centimetres using both KF and PF. In other cases, for 
example in the fourth experiment, RMSE gets up to 6.265 cm with standard deviation 
of 5.180 cm. Velocities and heading angle follow the same trend. It is also visible that 
KF has smaller RMSE values in comparison with PF for almost all experiments. The 
reason for this could be in the fact that PF was implemented with 1000 particles, and 
it is possible that with more particles PF would perform better, but with the cost of the 
processing speed and computational time. 

The errors within the positions are directly related with errors in velocities and 
heading. Therefore, to reduce positioning errors, velocities and heading errors must be 
reduced. One possible solution related to velocities is using more than one consecutive 
frame for estimation. This would most likely reduce the high-frequency noise that is 
observable in visual representation of the results, which can be found in Appendix A. 

From these visual results, it is visible that motion of the ship model does not 
behave linearly. This issue is related to the state transition matrices in KF and PF 
that do not include nonlinear behaviour. Other issue can be visible in distribution of 
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residuals. It is obvious that majority of distributions cannot be classified as Gaussian, 
i.e. majority of residuals cannot be considered normally distributed. Thus, KF and 
implemented PF have wrong assumptions about the noise in the system. Moreover, 
KF generally assumes normal distribution of the noise, while PF usually can handle 
other non-Gaussian distributions, but in this implementation, normal distribution is 
also assumed.

5. Conclusions

This paper presents an algorithmic structure for localization of a ship model in 
a basin using only stereo cameras and IMU. The proposed system works well within 
a controlled and moderate environment, but it has some limitations in general which 
could be improved. Ship model does not have a propulsion system, which means less 
vibration of the hull and thus less noise in the system. Therefore, the next iteration 
of the ship model should include a propulsion system. With included propulsion, the 
algorithm should also be run in real-time. From the visual odometry perspective, 
the main limitation is not using more than one consecutive frame for the estimation. 
From the mathematical model perspective, the state transition matrix should include 
hydrodynamic properties of the ship model into the motion equations, as well as 
including the mathematical model of waves. Following those changes, KF is not 
sufficient for estimation in nonlinear environment, therefore it should be replaced 
with improved PF or some other variation of KF such as extended Kalman filter. 
Improvements on the PF side should be on modelling noise distributions so it can 
handle other distributions as well.

Acknowledgment

This work has been partially supported by the Croatian Science Foundation under 
the project IP-2018-01-3739 and by the University of Rijeka under the project numbers 
uniri-tehnic-18-18 and uniri-tehnic-18-266.

References

1. Azzeri, M., Adnan, F. & Zain, M. (2015) Review of course keeping control system for unmanned 
surface vehicle. Jurnal Teknologi. 74 (5), 11-20.

2. Bradski, G. & Kaehler, A. (2016) Learning OpenCV 3, Computer Vision in C++ with the OpenCV 
Library. Sebastopol, CA, USA, O’Reilly Media.

3. Corke, P., Detweiler, C., Dunbabin, M., Hamilton, M., Rus, D. & Vasilescu, I. (2007) Experiments 
with underwater robot localization and tracking. In: Proceedings of the 2007 IEEE International 
Conference on Robotics and Automation, 10-14 April 2007, Roma, Italy. IEEE. pp. 4556-4561.

4. Curcio, J., Leonard, J. & Patrikalakis, A. (2005) Scout-a low cost autonomous surface platform 
for research in cooperative autonomy. In: Proceedings of OCEANS 2005 MTS/IEEE, 17-23 
September 2005, Washington, DC, USA. IEEE. pp. 725-729.



68 Pomorski zbornik 58 (2020), 57-75

Stereo Visual Odometry...Mario Kučić, Marko Valčić

5. Davison, A. J., Reid, I. D., Molton, N. D. & Stasse, O. (2007) MonoSLAM: Real-time single 
camera SLAM. IEEE Transactions on pattern analysis and machine intelligence. 29 (6), 1052-
1067.

6. Dhariwal A. & Sukhatme, G. S. (2007) Experiments in robotic boat localization. In: Proceedings 
of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 29 October - 2 
November 2007, San Diego, CA, USA. IEEE. pp. 1702-1708.

7. Fischler, M. A. & Bolles, R. C. (1981) Random sample consensus: A paradigm for model fitting 
with applications to image analysis and automated cartography. Communications of the ACM. 
24 (6), 381-395.

8. Fossen, T. I. (2011) Handbook of Marine Craft Hydrodynamics and Motion Control. Chichester, 
England, John Wiley & Sons Ltd.

9. Koljesnikov, I. (2017) Position and orientation estimation of radio-controlled vessel. M.Sc. thesis. 
University of Rijeka, Faculty of Maritime Studies, Rijeka, Croatia. (in Croatian)

10. Kwok, N. M., Fang, G. & Zhou, W. (2005) Evolutionary particle filter: Resampling from the 
genetic algorithm perspective. In: Proceedings of the 2005 IEEE/RSJ International Conference 
on Intelligent Robots and Systems, 2-6 August 2005, Edmonton, Canada. IEEE. 2935-2940.

11. Labbe, R. R. (2018) Kalman and Bayesian Filters in Python. [Online]. Available at: https://github.
com/rlabbe/Kalman-and-Bayesian-Filters-in-Python [Accessed 8th October 2019].

12. Li, S., Xu, C. & Xie, M. (2012) A Robust O(n) Solution to the Perspective-n-Point Problem. IEEE 
Transactions on pattern analysis and machine intelligence. 34 (7), 1444-1450.

13. Li, Y., Xie, C., Lu, H., Chen, X., Xiao, J. & Zhang, H. (2018) Scale-aware monocular SLAM 
based on convolutional neural network. In: Proceedings of the 2018 IEEE International Conference 
on Information and Automation (ICIA), 11-13 August 2018, Wuyishan, China. IEEE. pp. 51-56. 

14. Lima, P. F., Trincavelli, M., Nilsson, M., Mårtensson, J. & Wahlberg, B. (2016) Experimental 
evaluation of economic model predictive control for an autonomous truck. In: Proceedings of the 
2016 IEEE Intelligent Vehicles Symposium (IV), 19-22 June 2016, Gothenburg, Sweden. IEEE. 
pp. 710-715.

15. Liu, Z., Zhang, Y., Yu, X. & Yuan, C. (2016) Unmanned surface vehicles: An overview of 
developments and challenges. Annual Reviews in Control. 41, 71-93.

16. Meira, G. T. (2016) Stereo Vision-based Autonomous Vehicle Navigation. M.Sc. thesis. Worcester 
Polytechnic Institute (WPI), Worcester, MA, USA.

17. Moré, J. J. (1978) The Levenberg-Marquardt algorithm: Implementation and theory. In: Watson, 
G. A. (eds) Numerical Analysis. Lecture Notes in Mathematics, vol. 630. Berlin, Heidelberg, 
Germany, Springer, pp. 105-116. 

18. Nkoro A. & Vershinin Y. A. (2014) Current and future trends in applications of intelligent transport 
systems on cars and infrastructure. In: Proceedings of the 17th International IEEE Conference 
on Intelligent Transportation Systems (ITSC), 8-11 October 2014, Qingdao, China. IEEE. pp. 
514-519.

19. Shi, J. & Tomasi, C. (1994) Good features to track. In: 1994 Proceedings of IEEE conference on 
computer vision and pattern recognition, 21-23 June 1994, Seattle, WA, USA. IEEE. pp. 593-600.

20. Wang, R., Schworer, M. & Cremers, D. (2017) Stereo DSO: Large-scale direct sparse visual 
odometry with stereo cameras. In: Proceedings of the IEEE International Conference on Computer 
Vision, 22-29 October 2017, Venice, Italy. IEEE. pp. 3903-3911.

21. Wang, W., Gheneti, B., Mateos, L., Duarte, F., Ratti, C. & Rus, D. (2019) Roboat: An autonomous 
surface vehicle for urban waterways. In: Proceedings of the 2019 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), 3-8 November 2019, Macau, China. 
IEEE. pp. 6340-6347.

22. Welch, G. & Bishop, G. (2006) An Introduction to the Kalman Filter. [Online]. Available at: https://
www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf [Accessed 6th October 2019].

23. Wolcott R. W. & Eustice R. M. (2014) Visual localization within Lidar maps for automated urban 
driving. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots 
and Systems, 14-18 September 2014, Chicago, IL, USA. IEEE. pp. 176-183.



69Pomorski zbornik 58 (2020), 57-75

Stereo Visual Odometry...Mario Kučić, Marko Valčić

APPENDIX A

A.1 Results for the experiment #1 with still water conditions (ζa = 0 mm)
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A.2 Results for the experiment #2 with γ = 40˚, ζa = 5 mm and λ = 210 mm
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A.3 Results for the experiment #3 with γ = 40˚, ζa = 7.5 mm and λ = 132 mm
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A.4 Results for the experiment #4 with γ = 40˚, ζa = 11 mm and λ = 59 mm
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A.5 Results for the experiment #5 with γ = 0˚, ζa = 5 mm and λ = 210 mm
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A.6 Results for the experiment #6 with γ = 0˚, ζa = 7.5 mm and λ = 132 mm
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A.7 Results for the experiment #7 with γ = 0˚, ζa = 11 mm and λ = 59 mm




