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Abstract. An indefinite quadratic programming problem is a mathematical programming problem
which is a product of two linear factors. In this paper, the piece–wise indefinite quadratic programming
problem (PIQPP ) is considered. Here, the objective function is a product of two continuous piece–
wise linear functions defined on a non-empty and compact feasible region. In the present paper, the
optimality criterion is derived and explained in order to solve PIQPP. While solving PIQPP, we will
come across certain variables which will not satisfy the optimality condition. For these variables,
cases have been elaborated so as to move from one basic feasible solution to another till we reach the
optimality. An algorithmic approach is proposed and discussed for the PIQPP problem. A numerical
example is presented to decipher the tendered method.
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1. Introduction

Quadratic programming is an important class of non-linear programming in which the objective
function is quadratic and the constraints are linear. Aneja et al. [1] in their paper considered a
class of quadratic programs. They considered the maximization and minimization cases of this
program assuming the two linear factors to be non-negative. Cabot[3] in his paper considered
the problem of maximizing the sum of certain quasi-concave functions over a convex set. Kough
[10] developed an algorithm to obtain the global optimum of indefinite quadratic programming
problem by employing Benders cut. Pardalos et al. [14] in their paper proposed branch and
bound algorithm for finding the global optimum of large scale indefinite quadratic problems
over a polytope. Chen and Huang [5] in 2001, proposed a derivative algorithm for solving the
inexact quadratic programming which has been a useful tool for environmental system analysis.
Shi et al. [15] in 2005 proposed a multiple criteria quadratic programming to classify credit
card accounts for business intelligence and decision making.
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1.1. Indefinite quadratic programming problem

Indefinite quadratic programming problem has diverse applications in material world. It can
be seen in production planning, health care, financial planning , corporate planning etc.
Mathematically, the indefinite quadratic programming problem is defined as:

(IQPP ) : MaxZ (X) = Z1 (X) .Z2 (X) =
(
CTX + α

) (
DTX + β

)
subject to

AX ≤ b

X ≥ 0

where SI = {X : AX ≤ b;X ≥ 0} is non-empty and compact. SI represents the feasible region
of the problem (PIQPP ). Here, X ∈ Rn is a vector of variables; C,D ∈ Rn;α , β ∈ R
and A ∈ Rm×n. Both Z1 (X) and Z2 (X) are assumed to be positive for all X ∈ SI . Thus,
the function Z(X) is both quasi-concave and quasi-convex on SI . Hence, Z(X) is explicitly
monotone on SI . Therefore, the optimal solution to the problem (IQPP ) occurs at an extreme
point of SI .

1.2. piece–wise programming problem

The transmutation of piece–wise linear programming problem to an identical linear program-
ming problem has been proposed by various authors. The proposed methodologies however
increase the size of the problem. Fourer [6] in 1985, in his paper developed a simplex algorithm
for solving piece–wise linear programming problem. He proved the algorithm on presumption
that each piece–wise linear term has finite number of pieces, that a basic feasible starting bases
can be found and all bases are non-degenerate. In 1991, Benchekroun and Falk [2] developed
an algorithm for non-convex piece–wise linear programs. Fourer [7] in 1992, in his paper pro-
vides applications, supporting the practical value of piece–wise linear programming algorithm.
In 1994, Murthy and Helgason [12] discussed a specialised direct approach which handles the
piece–wise linear structure of the cost function by allowing each arc to have varying costs on
different sequences. Chang [4] in 2002, in his paper proposed a modified goal programming
technique to solve piece–wise linear functions with n terms. Keha et al. [9] in 2004, formulated
linear programs with piece–wise linear objective functions with and without additional binary
variables. Problems with piece–wise linear costs give rise to various applications. Ge et al. [8]
in 2013, considered the problem of determining the optimal schedules for a given sequence of
jobs on a single processor. They extended the result to piece–wise linear cost functions.
In 2007, Pandey and Punen [13] in their paper proposed a simplex algorithm to solve piece–
wise linear fractional programming problem which is combination of simplex method for linear
programs, piece–wise linear programs and the linear fractional programs.

2. piece–wise indefinite quadratic programming problem

The piece–wise indefinite quadratic programming problem is defined as follows.

(PIQPP): Max Z(X) =
∑p
i=1 Zi(xi)

subject to X ∈ S

}
(1)

where S = {X|AX = b : 0 ≤ xi ≤ ti; i = 1, 2, ...p} is the feasible region of the problem
(PIQPP ). It is assumed to be non-empty and bounded. Here, Zi(xi) = Zi1(xi).Zi2(xi);
i = 1, 2, ..., p.
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Zi1(xi) = cixi + αi ;Zi2(xi) = dixi + βi ; i = 1, 2, ..., p (2)

X = (x1, x2, ..., xp) ∈ Rp; ci, di ∈ Rp, i = 1, 2, .., p

αi, βi ∈ R, A ∈ Rn×p, b ∈ Rn.

Here, each objective function Zi(xi) ; (i = 1, 2, 3, ....p) is the product of two positive valued
affine functions, hence, it is quasi-concave. The polyhedron S defined by the constraint region
of the problem (PIQPP ) is assumed to be non-empty and compact. Also, Zi1(xi) and Zi2(xi)
are continuous piece–wise linear functions defined on the feasible region S.

The following proposition proves that Z(X) which is the sum of quasi-concave functions is
a quasi-concave function on S.

Proposition 1. The condition under which the sum of quasi-concave functions is quasi-concave.

Proof. Consider two quasi-concave functions, as
Z1(X) = (c1X + α1)(d1X + β1) and Z2(X) = (c2X + α2)(d2X + β2)
The sum is defined as Z(X) = Z1(X) + Z2(X).
Z(X) is a quasi-concave function if
Z(λ X1 + (1− λ)X2) ≥ Min(Z(X1), Z(X2)), 0 ≤ λ ≤ 1
Suppose that Min(Z(X1), Z(X2)) = Z(X1).
Here, Z1(X) and Z2(X)are two quasi-concave functions.
Therefore,Z1(λ X1 + (1− λ)X2) ≥ Min(Z1(X1), Z1(X2))
and Z2(λ X1 + (1− λ)X2) ≥ Min(Z2(X1), Z2(X2)), 0 ≤ λ ≤ 1
Case(i): Suppose that Min(Z1(X1), Z1(X2)) = Z1(X1) and
Min(Z2(X1), Z2(X2)) = Z2(X1).
Consider,

Z(λ X1 + (1− λ)X2) = Z1(λ X1 + (1− λ)X2) + Z2(λ X1 + (1− λ)X2)

≥ Z1(X1) + Z2(X1)

= Z(X1)

Thus, Z(λ X1 + (1− λ)X2) ≥ Min(Z(X1), Z(X2)), 0 ≤ λ ≤ 1.
Hence, Z(X) is a quasi-concave function.
Case(ii): Suppose that Min(Z1(X1), Z1(X2)) = Z1(X1)
and Min(Z2(X1), Z2(X2)) = Z2(X2). Suppose that

Z(X1) < Z(X2) ,therefore, Min(Z(X1), Z(X2)) = Z(X1) (3)

Consider,

Z(λ X1 + (1− λ)X2) = (c1(λ X1 + (1− λ)X2) + α1)(d1(λ X1 + (1− λ)X2) + β1)

+ (c2(λ X1 + (1− λ)X2) + α2)(d2(λ X1 + (1− λ)X2) + β2) (4)

Take,

α1 = [λ+ (1− λ)]α1 ;β1 = [λ+ (1− λ)]β1
α2 = [λ+ (1− λ)]α2 ;β2 = [λ+ (1− λ)]β2

}
(5)
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Put (5) in (4) and on solving, we get

Z(λ X1 + (1− λ)X2) = λ2Z(X1) + (1− λ)2Z(X2) + λ(1− λ)[(c1X1 + α1)(d1X2 + β1)

+(c1X2 + α1)(d1X1 + β1) + (c2X1 + α1)(d2X2 + β2) + (c2X2 + α2)(d2X2 + β2)]

Since, Z(X2) > Z(X1), therefore,

Z(λ X1 + (1− λ)X2) = Z(X1) + λ(1− λ)[(c1X1 + α1)(d1X2 + β1) + (c1X2 + α1)(d1X1 + β1)

+ (c2X1 + α1)(d2X2 + β2) + (c2X2 + α2)(d2X2 + β2)− 2Z(X1)] (6)

Again, Z(X2) > Z(X1), therefore,

(c1X2 + α1)(d1X2 + β1) + (c2X2 + α2)(d2X2 + β2)] > (c1X1 + α1)(d1X1 + β1)

+ (c2X1 + α2)(d2X1 + β2)

Therefore, from (6) we get

Z(λ X1 + (1− λ)X2) > Z(X1) +

(
c1X1 + α1

d1X2 + β1

)
(d1X2 − d1X1)2 +

(
c2X1 + α2

d2X2 + β2

)
(d2X2 − d2X1)2

+ (X1 −X2)(d1β2 − d2β1)(Z2(X1)− Z2(X2)) (7)

From (3), Z2(X1) > Z2(X2),therefore, Z2(X1)− Z2(X2) > 0
Z(λX1 + (1− λ)X2) > Z(X1) if (X1 −X2) > 0,(d1β2 − d2β1) > 0
or (X1 −X2) < 0 , (d1β2 − d2β1) < 0
that is, if X1 > X2 then d1

d2
> β1

β2
and if X1 < X2 then d1

d2
< β1

β2

In any case,Z(λ(X1 + (1− λ)X2) > Z(X1).
Hence, Z(X) will be a quasi-concave function.
Similarly, we can derive an expression for the sum of three quasi-concave functions.

3. Notations

The breakpoints of Zi1(xi) be given by
0 = Z0

i1 < Z1
i1 < Z2

i1 < .... < Zuii1 < Zui+1
i1 = ti; i = 1, 2, ..., p

The breakpoints of Zi2(xi) be given by
0 = Z0

i2 < Z1
i2 < Z2

i2 < .... < Zvii2 < Zvi+1
i2 = ti; i = 1, 2, ..., p.

Let 0 = ε0i < ε1i < ... < ελii < ελi+1
i = ti; (i = 1, 2, ..., p) be the arrangement of distinct elements

in an ascending order.
Both the functions Z`i1(i = 1, 2, ..., p ; ` = 0, 1, ...ui + 1) and Zqi2(i = 1, 2, ....., p ;
q = 0, 1, ..., vi + 1) are linear within each interval [εmi , ε

m+1
i ],m = 0, 1, ...λi.

Equation (1) can be rewritten as:
Zi1(xi) = cmi xi + αmi , ε

m
i ≤ xi ≤ εm+1

i ; m = 0, 1, , .....λi ; i = 1, 2, , ....p
Zi2(xi) = dmi xi + βmi , ε

m
i ≤ xi ≤ εm+1

i ; m = 0, 1, ..., λi; i = 1, 2, ...., p
cmi , d

m
i , α

m
i , β

m
i ∈ R;m = 0, 1, .., λi; i = 1, 2, .., p.

Since Zi1(xi) and Zi2(xi) are piece–wise continuous linear functions, therefore, we have
c0i ≤ c1i ≤ c2i ≤ ... ≤ cλii ; i = 1, 2, ..., p; d0i ≤ d1i ≤ ... ≤ dλii ; i = 1, 2, ..., p
Moreover, the functions are continuous, therefore, we have
cmi ε

m
i + αmi = cm+1

i εm+1
i + αm+1

i ;m = 0, 1, ..., λi; i = 1, 2, ..., p
and dmi ε

m
i + βmi = dm+1

i εm+1
i + βm+1

i ;m = 0, 1, ..., λi; i = 1, 2, ..., p
Using the transformation for piece–wise linear functions [11],let the partition of the variables
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x
′

is be defined as: xi =
∑λi
m=0 y

i
m

subject to the constraints

0 ≤ yim ≤ εm+1
i − εmi ,m = 0, 1, ..., λi (8)

Using (8) in (2), we get

Zi1(xi) =

p∑
i=1

(cixi + αi)

=

p∑
i=1

(
ci

(
λi∑
m=0

yim

)
+ αi

)

=

p∑
i=1

λi∑
m=0

(ciy
i
m) +

p∑
i=1

αi

∴ Zi1(xi) =

p∑
i=1

λi∑
m=0

(ciy
i
m) + α′, α′ =

p∑
i=1

αi (9)

Similarly,Zi2(xi) =
∑p
i=1

∑λi
m=0 (diy

i
m) + β′, β′ =

∑p
i=1 βi.

Also,AX = b⇒
∑p
i=1

∑λi
m=0 ahiy

i
m = bh, h = 1, ...,m

0 ≤ yim ≤ εm+1
i − εmi ;m = 0, 1, ..., λi; i = 1, 2, .., p.

Using the transformation from equation (8) in equation (2), the result is equation (9). Thus,
using equation (9), problem (1) is transformed to the following problem,
MaxZ(X) =

∑p
i=1 Zi(xi) =

∑p
i=1 Zi1(xi).Zi2(xi)

subject to∑p
i=1

∑λi
m=0 ahiy

i
m = bh, h = 1, ...,m

0 ≤ yim ≤ εm+1
i − εmi ; m = 0, 1, ..., λi; i = 1, 2, .., p.

The optimal solution for this problem exists as this is an indefinite quadratic programming
problem. Solving this problem by its conventional method increases the size of the problem.
Thus, arises the need of developing an algorithm to obtain the solution of (PIQPP ).

4. Methodology to solve (PIQPP )

The piece–wise indefinite quadratic programming problem (PIQPP ) is defined as:
MaxZ(X) =

∑p
i=1 Zi(xi)

subject to
AX = b
X ∈ S
0 ≤ xi ≤ ti, i = 1, 2, 3, ....p.
Here, we have AX = B
This can be written as B∗XB∗ +N∗XN∗ = b
⇒ XB∗ = B−1(b−N∗XN∗)
⇒ XB∗ = B−1b−

∑
z∈N∗ B

−1Aixi
Here, B∗ is the n× n basis matrix and XB∗ is the basic feasible solution corresponding to the
basis B∗. N∗ is the non-basis matrix defined as
N∗ = {i : ai /∈ B∗ ; xi ∈ (ε0i , ε

1
i , ..., ε

λi+1

i )}.
The non-basic matrix N∗ is further decomposed into N

∗
where,

N
∗

= {i : i ∈ N∗, xi = εδii for some δi ∈ (0, 1, ..., λi+1)}.
The basis structure for the problem (PIQPP ) is (B∗, N∗, N

∗
).
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Let X∗ = (XB∗ , XN∗) be a basic feasible solution corresponding to this basis structure. Each
non-basic variable xi will take value at one of the break points of Zi1(xi) or Zi2(xi).

Let µB∗j be the index such that ε
µB∗

j

B∗j
≤ xB∗j ≤ ε

µB∗
j
+1

B∗j
, j = 1, 2, ..., n.

Definition 1. Z1j-slope vector: The n− vector cB∗ whose j
th coordinate is c

µB∗
j

B∗j
corresponding

to the basis structure (B∗, N∗, N
∗
) is called Z1j - slope vector.

Definition 2. Z2j-slope vector : The n− vector dB∗ whose j
th coordinate is d

µB∗
j

B∗j
corresponding

to the basis structure (B∗, N∗, N
∗
) is called Z2j - slope vector.

Result 1: Correspondence between basic feasible solution to (IQPP ) and an optimal
solution to (PIQPP ) exists.

Proof. Let X ′ = (x′1, x
′
2, ..., x

′
p) ∈ Rp be an optimal solution to (PIQPP ). Choose an index

ik for each i = 1, 2, ....p such that εiki ≤ x′i ≤ ε
ik+1
i . Then we have,

MaxZ(X ′) =

p∑
i=1

Zi(X
′)

subject toAX ′ = b

where Zi1(X ′) =
∑p
i=1 cix

′
i + α;Zi2(X ′) =

∑p
i=1 dix

′
i + β; α =

∑p
i=1 αi;β =

∑p
i=1 βi

εiki ≤ x′i ≤ ε
ik+1
i , i = 1, 2, ...., p. (10)

Thus, if the set of feasible solutions of (IQPP ) is non-empty and the objective function is
positive for all the feasible solutions and the values of the variables lies within the specified
bounds (as in (10)), then an optimal solution to (PIQPP ) is a basic feasible solution to (IQPP ).

4.1. Optimality condition

A non-basic variable xi changes its value from its current breakpoint value either in the left side
direction or in the right side direction. The left hand side reduced cost is denoted by ξ−i and
the right hand side reduced cost is denoted by ξ+i . The left hand side reduced cost is defined
as:

ξ−i = Z1(dB∗B
∗−1Ai − dδi−1i ) + Z2(cB∗B

∗−1Ai − cδi−1i )

− θi(dB∗B
∗−1Ai − dδi−1i )(cB∗B

∗−1Ai − cδi−1i ) (11)

The right hand side reduced cost is defined as:

ξ+i = Z1(dB∗B
∗−1Ai − dδii ) + Z2(cB∗B

∗−1Ai − cδii )

− θi(dB∗B
∗−1Ai − dδii )(cB∗B

∗−1Ai − cδii ) (12)

Here, Z1 (=
∑p
i=1 Zi1) and Z2 (=

∑p
i=1 Zi2) are the values of the objective functions at the

current basic feasible solution X∗ = (XB∗ , XN∗). cB∗ ; dB∗ are the corresponding Z1j and Z2j

slope vector respectively.
If δi = λi+1 then ξ+i = 0. If δi = 0 then ξ−i = 0.
For all the basic variables, xi, ξ

−
i = ξ+i = 0
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Theorem 1. A non-degenerate basic feasible solution is optimal for (PIQPP ) if and only if
ξ−i ≤ 0, ξ+i ≥ 0, i = 1, 2, ..., p.

Proof. Let B∗ be the n × n basis matrix and let N∗ be the non-basic matrix. The objective
function values corresponding to the basis B∗ are given by
Zi1 = (CB∗)iB

∗−1b−
∑
j∈N∗ (zi1j − cj)x∗j + αi, i = 1, 2, ..., p

Zi2 = (DB∗)iB
∗−1b−

∑
j∈N∗ (zi2j − dj)x∗j + βi, i = 1, 2, ..., p

Suppose that X0
B∗ be a non-degenerate optimal solution for (PIQPP ) corresponding to the

basis B∗ , where x0j = ε
λj
j , j ∈ N∗. Therefore, improved objective function values are given by

Zi1(X0
B∗) = (CB∗)iB

∗−1b−
∑
j∈N∗ (zi1j − cj)ε

λj
j + αi, i = 1, ..., p

Zi2(X0
B∗) = (DB∗)iB

∗−1b−
∑
j∈N∗ (zi2j − dj)ε

λj
j + βi, i = 1, ..., p

and Zi(X
0
B∗) = Zi1(X0

B∗).Zi2(X0
B∗); i = 1, 2, ..., p.

Suppose that ξ+r < 0 corresponding to some non-basic variable x∗r . In order to find a new feasi-
ble solution, let the non-basic variable x∗r undergoes a change φ∗r . Let the new feasible solution
be given by X̂∗ = (x̂i)

∗ where,

(x̂i)
∗ =

{
ελrr + φ∗r , j = r

ελjj , j ∈ N \ {r}

The objective function value corresponding to a new feasible solution X̂∗ given by

Zi1(X̂∗) = CB̂i(B̂
−1b)−

∑
j∈N\{r} (zi1j − cj)ε

λj
j − (zi1r − cr)(ελrr + φ∗r) + αi, i = 1, ..., p

= CB̂i(B̂
−1b)−

[∑
j∈N\{r} (zi1j − cj)ε

λj
j + (zi1r − cr)ελrr

]
− (zi1r − cr)φ∗r + αi, i = 1, ..., p

=
[
CB̂i(B̂

−1b)−
∑
j∈N (zi1j − cj)ε

λj
j + αi

]
− φ∗r(zi1r − cr); i = 1, ..., p

= Zi1(X0)∗ − ϕ∗r(zi1r − ci); i = 1, ..., p.
Therefore,

Zi1(X̂)∗ = Zi1(X0)∗ − φ∗r(zi1r − cr); i=1, 2, ....p. (13)

Similarly, Zi2(X∗) = Zi2(X0)∗ − φ∗r(zi2r − dr).
Therefore, Zi(X̂)∗ = Zi1(X̂)∗.Zi2(X̂)∗

Now, Zi(X̂)∗ − Zi(X0)∗ = [Zi1(X0)∗ − φ∗r(zi1r − cr)][Zi2(X0)∗ − φ∗r(zi2r − dr)]− Zi(X0)∗

= Zi1(X0)∗Zi2(X0)∗ − Zi1(X0)∗φ∗r(z
i2
r − dr) − Zi2(X0)∗(zi1r − cr) + φ∗2r (zi1r − cr)(zi2r − dr) −

Zi1(X0)∗Zi2(X0)∗

= −ϕ∗r [Zi1(X0)∗(zi2r − dr) + Zi2(X0)∗(zi1r − cr)− ϕ∗r(zi2r − dr)(zi1r − cr)]
Thus,

Zi(X̂)∗ − Zi(X0)∗ = −φ∗rξ+r (14)

Now, ξ+r < 0;ϕ∗r > 0, we get Zi(X̂)∗ − Zi(X0)∗ > 0 or Zi(X̂)∗ > Zi(X
0)∗

This implies (X0)∗ is not an optimal solution for (PIQPP ) which is a contradiction to our
assumption. Thus, ξ+r > 0 is an optimality condition for (PIQPP ). Similarly, case can be
discussed where ξ−r ≤ 0.
Conversely, suppose that X∗ = (XB∗ , XN∗) be a non-degenerate basic feasible solution to
(PIQPP ) for which ξ−r ≤ 0 and ξ+r ≥ 0. From equation (14), we have
Zi(X̂)∗ − Zi(X0)∗ = −φ∗rξ+r
Since,φ∗r > 0 and ξ+r ≥ 0, therefore, Zi(X̂)∗ − Zi(X0)∗ ≤ 0 or Zi(X̂)∗ ≤ Zi(X

0)∗

Thus, (X0)∗ is an optimal solution to (PIQPP ).
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4.2. How to move from one basic feasible solution to another improved
basic feasible solution

Let X0
B∗ be the current basic feasible solution corresponding to the basis B∗. If corresponding

to this basis ξ−i ≤ 0 and ξ+i ≥ 0,∀ i = 1, ..., p then X0
B∗ is an optimal solution to (PIQPP ).

Suppose there exists at least one non-basic variable xr, corresponding to which optimality con-
dition is not satisfied, that is, either ξ−r > 0 or ξ+r < 0. Hence, the variable xr will be the
entering variable. If ξ−r > 0, then in order to improve the solution, the value of the variable
xr can be reduced from ξλrr to ξλrr − ϕ∗r , keeping the values of all other non-basic variables at
their current breakpoint. Similarly, if ξ+r < 0, then xr can be increased from ελrr to ελrr + ϕ∗r ,
to obtain an improved solution. This is discussed in following cases-
Case 1: Let ε+r < 0 and xr be the corresponding entering variable. In this case, the non-basic
variable xr undergoes a change ϕ∗r .Let the new solution so obtained be (X̂r)

∗ = (x̂r), where

(x̂j)r = (x∗j )r − y∗jrϕ∗r ,∀j ∈ I∗
(x̂r) = x0r + φ∗r
(x̂j)r = (x0j ), j ∈ N∗ \ {r}

 (15)

Here, I∗ = {j : aj ∈ B∗}.
The value of ϕ∗r should be restricted so that ε

µ(B∗)
B∗ ≤ xB∗ ≤ εµ(B

∗)+1
B∗ and x̂r ≤ ελr+1

r .

The new solution (X̂r)
∗ is a feasible extreme point, provided φ∗r = min{η1, η2, η3} where

η1 = min

 xB∗
j
−ε

µ(B∗j )+1

B∗
j

y∗jr

∣∣∣∣∣∣ y∗jr < 0


η2 = min

 xB∗
j
−ε

µ(B∗j )

B∗
j

y∗jr

∣∣∣∣∣∣ y∗jr > 0


η3 = min{ελr+1

r − ελrr }


(16)

Since the basic feasible solution is non-degenerate, η1, η2, η3 are all distinct.

Case (i): Let φ∗r = η1 that is, φ∗r =

(
xB∗s−ε

µ(B∗s+1)

B∗s
y∗sr

)
for some sr ∈ I∗. This implies that xB∗r

becomes basic and xB∗s departs from the basis and attains the value at the break point ε
µ(B∗s+1)

B∗s
.

The change in the values of the objective functions Zi1(X̂)∗, Zi2(X̂)∗ and the basic variables
are given by the equations (13) and (15), respectively. The rth component of CB∗ and DB∗

vector will change to C
µ(B∗r+1)

B∗r
and D

µ(B∗r+1)

B∗r
. Again, new value of ξ+r is calculated.

If ξ+r ≥ 0, then ϕ∗r is the maximum possible change in the value of the objective functions,
given by equation (14). If ξ+r < 0, then there is a possibility of further increasing the value of
ϕ∗r by redefining µB∗s as µB∗s+1 in η1. This generates new value of ϕ∗r . The process is repeated
until optimality condition is attained.

Case (ii): Let ϕ∗r = η2 , that is φ∗r =

(
xB∗s−ε

µ(B∗s )

B∗s
y∗sr

)
for some sr ∈ I∗.

This implies that xB∗r becomes basic and xB∗s departs from the basis. The change in the values of
the objective functions and the basic variables are given by equations (13) and (15), respectively.

The rthcomponent of CB∗ and DB∗ will change to C
µ(B∗r )−1
B∗r

and D
µ(B∗r )−1
B∗r

respectively.

If ξ+r ≥ 0, then the optimal solution is attained. If ξ+r < 0, then change the value of ϕ∗r by
redefining µB∗s as µB∗s−1 in η2. A new value of ϕ∗r is generated and the process is repeated.
Case (iii): Let φ∗r = η3, that is, φ∗r = (ελr+1

r − ελrr ). This means that xB∗r remains non-basic
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and the rth component of the set N
∗

will change to δr+1. Also, cδii and dδii will change to cδi+1
i

and dδi+1
i respectively. The change in the values of the objective functions and basic variables

are given by equations (13) and (15), respectively.
If ξ+r ≥ 0, then ϕ∗r is the maximum possible change in the value (14) and (15).

If ξ+r < 0, then ϕ∗r can be calculated by redefining δr as δr+1. Thus, the process is repeated
until optimality condition is obtained.
Case II: Let ξ−r > 0 and xr be the corresponding entering variable. If the variable xB∗r = ελrr
undergoes a change, then the new solution is given by (X̂r)

∗ = (x̂r), where,

(x̂j)r = (x∗j )r + y∗jrφ
∗
r ,∀j ∈ I∗

(x̂r) = x0r + φ∗r
(x̂j)r = x0j , j ∈ N∗ \ {r}

 (17)

The objective function value corresponding to new feasible solution (X̂r)
∗ is given by

Zi(X̂)∗ = [Zi1(X0)∗ + φ∗r(z
i1
r −cr)][Zi2(X0)∗ + φ∗r(z

i2
r − dr)] (18)

The value of ϕ∗r should be restricted so that ε
µ(B∗)
B∗ ≤ xB∗ ≤ εµ(B

∗)+1
B∗ and x̂r ≥ ελr−1r .

The new solution is a feasible extreme point, provided φ∗r = min{η1, η2, η3}, where

η1 = min

{
xB∗

j
−ε

µ(Bj
∗)+1

B∗
j

y∗jr

∣∣∣∣∣ y∗jr < 0

}

η2 = min

{
xB∗

j
−εµ(B

∗)
B∗
j

y∗jr

∣∣∣∣∣ y∗jr > 0

}
η3 = min{ελrr − ελr−1r }


(19)

Since the basic feasible solution is non-degenerate, therefore, η1, η2, η3 are all distinct.

If φ∗r = η1, then the basic variable say xB∗s reaches the breakpoint ε
µ(Bs)+1
Bs

.

If φ∗r = η2, then the basic variable say xB∗s reaches the breakpoint value ε
µ(Bs)
Bs

.
If φ∗r = η3, then the non-basic variable say xr moves to the new break point value.
The change in the values of the basic variables and the objective functions due to change in ϕ∗r
are given by equations (17) and (18), respectively. Thus, from above, the criterion of entering
and leaving variables is obtained.

5. Algorithm for solving piece–wise indefinite quadratic programming
problem

Step 1: Consider a piece–wise indefinite quadratic programming problem (PIQPP ).
Step 2: Find an initial basic feasible solution X0

B∗ of (PIQPP ).
Step 3: Check the optimality conditions for X0

B∗ . If ξ−i ≤ 0 and ξ+i ≥ 0; ∀i = 1, 2, ...p, then
X0
B∗ is an optimal solution. Otherwise, go to step 4 or step 5 according as ξ+i < 0 or ξ−i > 0

for some i.
Step 4: Let ξ+r < 0. Choose a non-basic variable xr as the entering variable. Evaluate
φ∗r = min{η1, η2, η3} as given in equation (16). Accordingly, calculate a new basic feasible
solution (X̂)∗ as

(x̂j)r = (x∗j )r − y∗jφ∗r ,∀j ∈ I∗
(x̂r) = x0r + ϕ∗r
(x̂j)r = (x0j ), j ∈ N∗ \ {r}
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Go to step 6.
Step 5: Let ξ−r > 0. Then, a non-basic variable xr is chosen as the entering variable.
Compute φ∗r = min{η1, η2, η3} as in equation (19). Enumerate a new basic feasible criteria
(X̂)∗ as

(x̂j)r = (xj
∗)r + y∗jrφ

∗
r ,∀j ∈ I∗

(x̂r) = x0r + ϕ∗r
(x̂j)r = x0j , j ∈ N∗ \ {r}


Go to step 6.
Step 6: Update the new basis and examine the optimality condition for this new basic feasible
condition. If the obtained new solution is optimal, then it is an optimal solution for (PIQPP ).
Otherwise go to step 4 or step 5 accordingly.

6. An illustrative example

In this section, algorithm is explained by a numerical example. Suppose an investor wants
to invest a particular amount of money in the market.He surveyed three companies A, B and
C which offer interest and loyalty additions to its lenders. Let x1, x2, and x3 be the time
(in months) which an investor can consider to be with company A, B and C respectively.
Company A offers interest to its lenders represented by the function Z11(x1). Also, it provides
loyalty additions represented by the function Z12(x1). Similarly, company B offers interest
represented by the function Z21(x2) and loyalty additions represented by the function Z22(x2).
Likewise, company C has Z31(x3) and Z32(x3) as its interest and loyalty addition functions
respectively.The maximum period for which one can invest money in company A, B and C is
6, 4 and 6 months respectively. The following are the time constraints for the investor:

2x1 + 3x2 + x3 = 15

x1 + x2 + x3 = 10

The objective is to find how long an investor should invest his money in three companies to
maximize his profit. (All amounts in million rupees)

Z11(x1) =

{
3x1 + 0, 0 ≤ x1 ≤ 2
5x1 − 4, 2 ≤ x1 ≤ 6

Z12(x1) =

{
−x1 + 5, 0 ≤ x1 ≤ 2
3x1 − 3, 2 ≤ x1 ≤ 6

Z21(x2) =

{
2x2 + 5, 0 ≤ x2 ≤ 2
6x2 − 3, 2 ≤ x2 ≤ 4

Z22(x2) =

{
−x2 + 3, 0 ≤ x2 ≤ 2
x2 − 1, 2 ≤ x2 ≤ 4

Z31(x3) =

x3 + 4, 0 ≤ x3 ≤ 2
2x3 + 2, 2 ≤ x3 ≤ 3
3x3 − 1, 3 ≤ x3 ≤ 6

Z32(x3) =

−2x3 + 5, 0 ≤ x3 ≤ 2
−x3 + 3, 2 ≤ x3 ≤ 3
x3 − 3, 3 ≤ x3 ≤ 6
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Solution. The piece–wise indefinite quadratic programming is defined as

Max

3∑
i=1

Zi(xi)

subject to

2x1 + 3x2 + x3 = 15 (20)

x1 + x2 + x3 = 10

0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 6

where Zi(xi) = Zi1(xi).Zi2(xi); i = 1, 2, 3.

Introducing artificial variables x4 and x5, problem (20) can be written as

Max

5∑
i=1

Zi(xi)

subject to

2x1 + 3x2 + x3 + x4 = 15 (21)

x1 + x2 + x3 + x5 = 10

0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 6, x4 ≥ 0, x5 ≥ 0
where Z4(x4) = (−M.x4 + 0)(0.x4 + 0)
Z5(x5) = (−M.x5 + 0)(0.x5 + 0);M > 0
The initial table for the problem is shown in Table 1.

CB DB VB XB x1 x2 x3 x4 x5

−M 0 x4 15 2 3 1 1 0
−M 0 x5 10 1 1 1 0 1

Z1 = 9− 25M ξ+i −15

2
− 83

2
M -7-57M 25-36M 0 0

Z2 = 13 ξ−i 0 0 0 0 0

Table 1: Initial solution

Select x1 as an entering variable. For departing variable, calculate φ∗r = Min(η1, η2, η3),
that is, φ∗r = Min

(
15
2 ,

10
1 , 2

)
. Now, φ∗r = 2, corresponding to η3, therefore, x1 will increase

from 0 to 2, but it will continue as a non-basic variable. Accordingly,x4 = 11,x5 = 8. The next
basic table is shown in Table 2.

CB DB VB XB x1 x2 x3 x4 x5

−M 0 x4 11 2 3 1 1 0
−M 0 x5 8 1 1 1 0 1

Z1 = 15− 19M ξ+i −365− 51

2
M

1

3
− 145

3
M 35-48M 0 0

Z2 = 11 ξ−i 0 0 0 0 0

Table 2: Revised solution
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CB DB VB XB x1 x2 x3 x4 x5

3 1 x3 5 0 1 -1 1 -2
5 3 x1 5 1 1 1 0 1

Z1 = 40 ξ+i 0 152 0 76 + 12M 28 + 12M
Z2 = 11 ξ−i 0 0 0 0 0

Table 3: Optimal solution

From Table 2, select x1 as an entering variable. Calculate φ∗r = Min
(
11
2 ,

8
1 , 4
)
. x1 will

increase its value to 6 and the basis will remain same. The new solution is given by (6, 0, 0, 0, 0).
Proceeding according to the algorithm, the optimal table is given by table 3. From Table 3
ξ−i ≤ 0 and ξ+i ≥ 0; i = 1, 2, 3, 4, 5. Therefore, optimality condition is satisfied. Hence, the
optimal solution for piece–wise indefinite quadratic programming problem is (5, 0, 5, 0, 0) with
MaxZ = 680. Here, x1 = 5, x2 = 0, x3 = 5. This means that a person should invest his money
with company A and C for 5 months and with company B, he should not invest at all. His
profit from investing money in three companies is Rs.680 million. The above example is also
solved using computing software LINGO 17.0. The optimal solution obtained is (5, 0, 5, 0, 0)
which is same as the solution obtained from the algorithmic approach.

7. Conclusion

In this paper, a novel idea is proposed to evaluate piece–wise indefinite quadratic programming
problem. This approach considers those objective functions which are quasi-concave. A propo-
sition has been proved exhibiting the conditions where sum of quasi-concave functions will be
quasi-concave. An algorithm is developed moving from one basic feasible solution to another
basic feasible solution, thus,ultimately reaching to the optimal solution. A numerical example
from real world is formulated demonstrating the algorithm and is solved using LINGO 17.0
software. The results so derived computationally have also verified the algorithmic approach.

This paper scrutinizes piece–wise indefinite quadratic programming problems due to its
relevance. piece–wise indefinite quadratic programming can be applied on the function of
return on investment where we want to maximize the profit on number of shares of a company
bought and dividends earned thereon. The number of shares bought depends upon a particular
company and the amount which one wants to invest.
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