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1. Introduction

Throughout the paper, Rn and Rm are the n–dimensional and the m–dimensional Euclidean
spaces respectively, X ⊆ Rn is a nonempty open set and f := (f1, ..., fm) : X → Rm is a vector-
valued function. Assume C ⊆ Rm is a closed pointed convex cone with a nonempty interior.
Partial ordering is defined on Rm using C as follows: x ≥C y (resp. x >C y) if x− y ∈ C (resp.
x− y ∈ intC) for all x, y ∈ Rm.

Let us consider the following vector optimization problem (VOP)

min
x∈X

f(x).

Recall that ξ ∈ X is an efficient solution of (VOP), if no other feasible vector x ∈ X satisfies
f(x) ≤C f(ξ). Suppose we are given a mapping η : X×X → Rn and a vector e ∈ Rm such that
e >C 0. In this paper, we are interested in optimality conditions for a weaker type of solutions
to vector optimization problem, i.e. local (η, e)–quasi efficient solutions.

Definition 1. We say that a feasible point ξ ∈ X is a local (η, e)-quasi (weak) efficient solution
of (VOP) if there is r > 0 such that there is no x ∈ B(ξ; r) satisfying f(x) + e‖η(x, ξ)‖ ≤C
(<C) f(ξ).
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Vector optimization problems have a number of important applications in applied science,
engineering and economics; see for example [9] and references therein. A powerful tool to study
their optimality conditions is through vector variational inequalities [2], initiated by Giannessi
[12] to be vector extensions of Stampacchia variational inequalities [22]. For differentiable and
convex multiobjective functions, Giannessi [13] used vector variational inequalities of Minty
type [17] to derive necessary and sufficient conditions for efficient solutions. Generalizations of
these optimality conditions were given for different types of generalized convexity [1, 10, 11, 21,
23] and generalized invexity [3, 16, 18, 24]. In [19], relationships between quasi efficient points,
solutions to Stampacchia vector variational inequalities and vector critical points were identified
under approximate convexity assumptions. On the other hand, a new concept of approximate
invexity was defined in [4] as an extension of approximate convexity [20]. Furthermore, four
new classes of generalized convexity were introduced in [7] as a generalization of the classical
notions of pseudoconvexity and quasiconvexity.

It is worth mentioning that in case of nonsmooth vector optimization, the appropriate tool
to study optimality conditions is Clarke’s generalized Jacobian [8] when the multiobjective
function is supposed to be locally Lipschitz. Recall that f is locally Lipschitz if for any x0 ∈ X
there are two positive reals k and r > 0 with

‖f(x)− f(y)‖ ≤ k‖x− y‖, ∀x, y ∈ B(x0, r).

In this case, Clarke’s generalized Jacobian [8] of f at x ∈ X is the set of m×n matrices defined
by

∂f(x) = co{ lim
i→+∞

Jf(x(i)) : x(i) → x, x(i) ∈ S}, (1)

where co indicates the convex hull, Jf(x(i)) is the Jacobian of f at x(i), and S is the differen-
tiability set of f .

In many previous works [14, 15, 18, 19] Clarke’s generalized Jacobian of f at x was defined
to be the Cartesian product of its real-valued components Clarke’s subdifferentials ∂f1(x)× ...×
∂fm(x). Using (1) in vector optimizations problems seems to be a more natural extension of the
real-valued case since ∂f as defined above is not equal to this Cartesian product. Nevertheless,
the inclusion

∂f(x) ⊆ ∂f1(x)× ...× ∂fm(x)

reveals that using ∂f in the generalized convexity/invexity definitions and in the vector varia-
tional inequalities appear to be less restrictive than the Cartesian product.

Our aim in this paper is to introduce new types of generalized approximate invexity and
investigate their use in deriving optimality conditions for local (η, e)-quasi (weak) efficient
solutions of (VOP). In particular, we use both strong and weak forms of Stampacchia [22]
and Minty [17] vector variational inequalities given in terms of Clarke’s generalized Jacobian
(1). Finally, we show also the relationship between local (η, e)–quasi weak efficient solutions
and vector critical points.

2. Generalized approximate invexity

From now onward, we suppose that f is locally Lipschitz. Let us present our extensions of the
generalized approximate convexity concepts provided in [5, 7, 20].

Definition 2. f is said to be approximate (η, e)–invex at x0 ∈ X if there is r > 0 such that for
any x, y ∈ B(x0, r),

f(x)− f(y) ≥C Ayη(x, y)− e‖η(x, y)‖, ∀Ay ∈ ∂f(y). (2)

f is said to be approximate (η, e)-invex on X, if f is approximate (η, e)-invex at each x0 ∈ X.
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By taking η(x, y) = x − y, we deduce that approximate e-convexity [20], that is where (2)
is replaced by

f(x)− f(y) ≥C Ay(x− y)− e‖x− y‖, ∀Ay ∈ ∂f(y),

is a special case of approximate (η, e)–invexity. However, the following example shows that the
class of approximate (η, e)-invex functions is strictly large than that of approximate e-convex
ones.

Example 1. Let X = R, C = R2
+ and for x, y ∈ R

f(x) = (x, ϕ(x))T where ϕ(x) =

{
4x− x2, x ≥ 0

2x, x < 0;

and
η(x, y) = −|x− y|.

Clarke’s generalized Jacobian of f at x is given by

∂f(x) =


{(1, 4− 2x)T }, x > 0;

{(1, k)T : k ∈ [2, 4]}, x = 0;

{(1, 2)T }, x < 0.

Let x0 = 0, e = (ε, ε) for an arbitrary real ε > 0, and take r = min(1, ε2 ) > 0. For all
x, y ∈ B(x0, r) and all Ay ∈ ∂f(y), we have

f(x)− f(y) = (x− y, ϕ(x)− ϕ(y))T ,

where

ϕ(x)− ϕ(y) =



(x− y)(4− x− y), if y > 0, x > 0;

2x− 4y + y2, if y > 0, x ≤ 0;

4x− x2 − 2y, if y < 0, x ≥ 0;

2(x− y), if y < 0, x < 0;

4x− x2, if y = 0, x > 0;

2x, if y = 0, x < 0;

and
Ayη(x, y)− e‖η(x, y)‖ = ((−1− ε)|x− y|, α(x, y))T ,

where

α(x, y) =


|x− y|(2y − 4− ε), if y > 0;

|x− y|(−2− ε), if y < 0;

|x|(−k − ε), if y = 0.

We can easily verify that f(x)− f(y) ≥C Ayη(x, y)− e‖η(x, y)‖. Hence f is approximate (η, e)-
invex at x0 = 0.
However, f is not approximate convex. Indeed, if we take y < 0 and x = 0, then for 0 < ε < 1
the inequality of approximate convexity is not satisfied.

Definition 3. Let x0 ∈ X. The function f is said to be

• approximate pseudo (η, e)–invex of type I at x0 if there exists r > 0 so that for any
x, y ∈ B(x0, r),

f(x)− f(y) <C −e‖η(x, y)‖ ⇒ Ayη(x, y) <C 0, ∀Ay ∈ ∂f(y);
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• approximate pseudo (η, e)–invex of type II at x0 if there exists r > 0 so that for any
x, y ∈ B(x0, r),

f(x)− f(y) <C 0 ⇒ Ayη(x, y) + e‖η(x, y)‖ <C 0, ∀Ay ∈ ∂f(y).

• approximate quasi (η, e)–invex of type I at x0 if there exists r > 0 so that for any x, y ∈
B(x0, r),

∃Ay ∈ ∂f(y) : Ayη(x, y)− e‖η(x, y)‖ >C 0 ⇒ f(x)− f(y) >C 0.

• approximate quasi (η, e)–invex of type II at x0 if there exists r > 0 so that for any
x, y ∈ B(x0, r),

∃Ay ∈ ∂f(y) : Ayη(x, y) >C 0 ⇒ f(x) >C f(y) + e‖η(x, y)‖.

Remark 1.

• If f is approximate pseudo (resp. quasi) (η, e)-invex of type II at x0 ∈ X, then f is
approximate pseudo (resp. quasi) (η, e)-invex of type I at x0.

• It is easy to see that any approximate (η, e)-invex function at x0 is approximate pseudo
(η, e)-invex function of type I and approximate quasi (η, e)-invex function of type I at x0.

• There is no relation between approximate pseudo (η, e)-invex functions of type II and
approximate quasi (η, e)-invex functions of type II and approximate invex functions (see
[14]).

3. Sufficient conditions for local quasi efficient solutions

We first consider Stampacchia and Minty types of vector variational inequalities involving
Clarke’s generalized Jacobians:

(SVVI) Find ξ ∈ X for which there exists no x ∈ X satisfying

Aξη(x, ξ) ≤C 0, ∀Aξ ∈ ∂f(ξ).

(MVVI) Find ξ ∈ X for which there exists no x ∈ X satisfying

Axη(x, ξ) ≤C 0, ∀Ax ∈ ∂f(x).

We present sufficient conditions for local (η, e)-quasi efficient solutions of (VOP) under
approximate invexity assumptions.

Theorem 1. Suppose f is approximate (η, e)-invex at ξ ∈ X. If ξ is a solution of (SVVI),
then ξ is also a local (η, e)-quasi efficient solution of (VOP).

Proof. Assume ξ fails to be a local (η, e)-quasi efficient solution of (VOP). Hence for each
r > 0 there is x0 ∈ B(ξ, r) satisfying

f(x0)− f(ξ) ≤C −e‖η(x0, ξ)‖. (3)

Since f is approximate (η, e)-invex at ξ, it follows that

f(x0)− f(ξ) ≥C Aξη(x0, ξ)− e‖η(x0, ξ)‖, ∀Aξ ∈ ∂f(ξ).

Using (3), we get
Aξη(x0, ξ) ≤C 0, ∀Aξ ∈ ∂f(ξ).

This means ξ does not solve (SVVI).
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Remark 2. As the approximate invexity assumption is more general than approximate convex-
ity, Theorem (1) extends Theorem 3.1 in [19].

The following theorem gives the conditions for a point to be a local (η, e)-quasi efficient
solution of (VOP) in terms of (MVVI).

Theorem 2. Suppose −f is approximate (η, e)-invex at ξ ∈ X such that η(x, ξ) + η(ξ, x) = 0
for all x ∈ X. If ξ is a solution of (MVVI), then ξ is also a local (η, e)-quasi efficient solution
of (VOP).

Proof. Assume the vector ξ fails to be a local (η, e)-quasi efficient solution of (VOP). Thus for
each r > 0 there is x0 ∈ B(ξ, r) satisfying (3). Again the approximate (η, e)-invexity of −f at
ξ yields

(−f)(ξ)− (−f)(x0) ≥C Ax0η(ξ, x0)− e‖η(ξ, x0)‖, ∀Ax0 ∈ ∂(−f)(x0).

Therefore

f(x0)− f(ξ) ≥C Ax0
η(ξ, x0)− e‖η(ξ, x0)‖, ∀Ax0

∈ ∂(−f)(x0).

Using (3) and taking into account the fact that ∂(−f)(x0) = −∂f(x0) and η(x0, ξ) = −η(ξ, x0),
we obtain

Ax0η(x0, ξ) = (−Ax0)η(ξ, x0) ≤C f(x0)− f(ξ) + e‖η(ξ, x0)‖
= f(x0)− f(ξ) + e‖η(x0, ξ)‖
≤C 0,

for any Ax0
∈ ∂f(x0). Hence ξ does not solve (MVVI).

Furthermore, we prove that every solution of (SVVI) is still a local (η, e)-quasi efficient
solution of (VOP) in the case of approximate pseudo invexity of type II.

Theorem 3. Assume that f is approximate pseudo (η, e)-invex of type II at ξ ∈ X. If ξ is a
solution of (SVVI), then ξ is also a local (η, e)-quasi efficient solution of (VOP).

Proof. By contrapositive, assume that for each r > 0, there is x0 ∈ B(ξ, r) satisfying

f(x0)− f(ξ) ≤C −e‖η(x0, ξ)‖ <C 0. (4)

Since f is approximate pseudo (η, e)-invex of type II at ξ, it follows that

Aξη(x0, ξ) <C −e‖η(x0, ξ)‖, ∀Aξ ∈ ∂f(ξ).

Applying equation (4), we get

Aξη(x0, ξ) ≤C 0, ∀Aξ ∈ ∂f(ξ).

Therefore ξ is not a solution of (SVVI).

Using similar arguments as in the proof of Theorem (2), we can also demonstrate that under
approximate pseudo (η, e)-invexity of type II of the function −f , solutions to (MVVI) are also
local (η, e)-quasi efficient solutions of (VOP) provided that η holds the same condition.
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4. Sufficient and necessary conditions for local quasi weak efficient so-
lutions

In this section, we consider the weak formulations of Stampacchia [22] and Minty [17] vector
variational inequalities as follows:

(WSVVI) Find ξ ∈ X for which there exists no x ∈ X satisfying

Aξη(x, ξ) <C 0, ∀Aξ ∈ ∂f(ξ).

(WMVVI) Find ξ ∈ X for which there exists no x ∈ X satisfying

Axη(x, ξ) <C 0, ∀Ax ∈ ∂f(x).

First, let us note that applying similar arguments as in the previous section, we can show
that if f is approximate pseudo (η, e)-invex of type I at a solution ξ ∈ X of (WSVVI), then ξ is
also a local (η, e)-quasi weak efficient solution of (VOP). The converse implication is provided
by the following theorem.

Theorem 4. Suppose that η is affine in the first argument with η(x, x) = 0 for all x ∈ X.
Assume also that −f is approximate quasi (η, e)-invex of type II at ξ ∈ X. If ξ is a local
(η, e)-quasi weak efficient solution of (VOP), then ξ is a solution of (WSVVI).

Proof. Assume that ξ is not a solution of (WSVVI). This means there is x ∈ X such that for
all Aξ ∈ ∂f(ξ), we have Aξη(x, ξ) <C 0. Hence

−Aξη(x, ξ) >C 0. (5)

From ∂(−f)(x) = −∂f(x) we get −Aξ ∈ ∂(−f)(ξ). Since −f is approximate quasi (η, e)-invex
of type II at ξ, there is r̃ > 0 such that for any x0 ∈ B(ξ, r̃)

−Aξη(x0, ξ) >C 0⇒ −f(x0)− (−f(ξ)) >C e‖η(x0, ξ)‖
⇒ f(x0)− f(ξ) <C −e‖η(x0, ξ)‖. (6)

Let r > 0 be arbitrary. We take r ≤ min{r, r̃} and λ ∈ (0, 1) so that x0 = λx + (1 − λ)ξ ∈
B(ξ, r) ⊆ X. We have

Aξη(x0, ξ) = Aξη(λx+ (1− λ)ξ, ξ) = λAξη(x, ξ)

thanks to the assumptions on η. Thus, by using (5), we obtain −Aξη(x0, ξ) >C 0. Since
x0 ∈ B(ξ, r̃), then applying (6), the last inequality yields

f(x0)− f(ξ) <C −e‖η(x0, ξ)‖

where x0 ∈ B(ξ, r). Hence, ξ cannot be an (η, e)-quasi weak efficient solution of (VOP).

The following theorem illustrates when a solution of (WMVVI) is also a local (η, e)-quasi
weak efficient solution of (VOP).

Theorem 5. Suppose that −f is approximate pseudo (η, e)-invex of type I at ξ with η(x, ξ) +
η(ξ, x) = 0 for all x ∈ X. If ξ is a solution of (WMVVI), then ξ is a local (η, e)-quasi weak
efficient solution of (VOP).



On local quasi efficient solutions for nonsmooth vector optimization problems 7

Proof. Assume that for each r > 0 there is x0 ∈ B(ξ, r) satisfying

f(x0)− f(ξ) <C −e‖η(x0, ξ)‖.

Since η(x0, ξ) = −η(ξ, x0), we obtain

−f(ξ)− (−f)(x0) <C −e‖η(ξ, x0)‖.

As the function −f is approximate pseudo (η, e)-invex of type I at ξ, it follows that

Ax0
η(ξ, x0) <C −e‖η(ξ, x0)‖, ∀Ax0

∈ ∂(−f)(x0).

Using ∂(−f)(x0) = −∂f(x0) and η(x0, ξ) = −η(ξ, x0), we obtain

Ax0η(x0, ξ) = (−Ax0)η(ξ, x0) <C −e‖η(ξ, x0)‖ <C 0,

for any Ax0 ∈ ∂f(x0).

The next result specifies that vector critical points represent sufficient optimality conditions.
Let us first recall their definition.

Definition 4. A vector critical point of f is a feasible point ξ ∈ X so that the system µTAξ = 0
admits a solution µ >C 0 for some Aξ ∈ ∂f(ξ) [15].

The gist of the above definition is that a vector critical point ξ means 0 ∈ µT∂f(ξ) has at
least a positive solution µ. Note that in case of a scalar-valued objective function f , a critical
point ξ is a solution to the inclusion problem 0 ∈ ∂f(ξ).

Theorem 6. Assume f is approximate pseudo (η, e)-invex of type I at ξ ∈ X. If ξ is a vector
critical point of f , then ξ is a local (η, e)-quasi weak efficient solution of (VOP).

To prove this result, we need to use the following theorem of the alternative.

Lemma 1. (Gordan’s Theorem) [6] If A is a n×m matrix, then we have either

1. Ax <C 0 for some x ∈ Rm; or

2. AT y = 0, y ≥C 0 for some nonzero solution y ∈ Rn;

but not both.

Proof of Theorem 6. Assume that for each r > 0, there is x0 ∈ B(ξ, r) satisfying

f(x0)− f(ξ) < −e‖η(x0, ξ)‖.

Since f is approximate pseudo (η, e)-invex of type I at ξ, we obtain

Aξη(x0, ξ) <C 0, ∀Aξ ∈ ∂f(ξ).

By applying Gordan’s Theorem we deduce that there is no µ >C 0 such that µTAξ = 0 for all
Aξ ∈ ∂f(ξ). We conclude ξ is not a vector critical point of f .

Remark 3. Theorem 6 improves Lemma 3.1 in [19] since the approximate pseudo convexity of
type I has been weakened by the approximate pseudo (η, e)-invexity of type I.
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5. Example

In this section, we illustrate the obtained results by an example.

Consider the following vector optimization problem:

min f(x) := (f1(x), f2(x)), s.t. x ∈ X,

where,

f1(x) =

{
−x3 − x2 + 5x x ≥ 0

x3 + 6x x < 0;

and

f2(x) =

{
x2 − 2x x ≥ 0

−x2 − 3x x < 0,

X = R, C = R2
+ and η(x, y) = x− y for all x, y ∈ X.

The Clarke subdifferential of f at x ∈ X is given by

∂f(x) =


{(−3x2 − 2x+ 5, 2x− 2)T } x > 0

co{(5;−2)T , (6;−3)T } = {(5k1 + 6k2;−2k1 − 3k2)T } x = 0

{(3x2 + 6,−2x− 3)T } x < 0

,

where k1 ≥ 0, k2 ≥ 0 such that k1 + k2 = 1.

For any e = (e1, e2) s.t 0 < ei < 1 with i ∈ {1, 2}, we prove that there exists r = 1
2 > 0 such

that, for all x, y ∈ B(x0, r), x0 = 0, one has

f(x)− f(y) <C 0 ⇒ Ayη(x, y) + e‖η(x, y)‖ <C 0, ∀Ay ∈ ∂f(y),

Hence, f is approximate pseudo (η, e)-invex of type II at x0.

On the other hand, let ξ = 0.

Since for any x ∈ X \ {ξ} and for all k1 ≥ 0, k2 ≥ 0 such that k1 + k2 = 1 one has

Aξη(x, ξ) = x(5k1 + 6k2;−2k1 − 3k2)T �C 0 ,

Therefore, ξ = 0 solves (SVVI).

Now, since f is approximate pseudo (η, e)-invex of type II at ξ, then, by Theorem 3, ξ = 0
should be a local (η, e)-quasi efficient solution of (VOP). Indeed, for 0 < e < 1, we have for all
x ∈ B(ξ, r) \ {ξ} with r > 0

f(x)− f(ξ) + e‖η(x, ξ)‖ = f(x) + e|x| =

{
(−x3 − x2 + 5x+ ex, x2 − 2x+ ex)T x > 0

(x3 + 6x− ex,−x2 − 3x− ex)T x < 0
,

which means that

f(x)− f(ξ) + e‖η(x, ξ)‖ �C 0,

Therefore, ξ is a local (η, e)-quasi efficient solution of (VOP).
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6. Conclusion

We have considered two generalized types of quasi efficient solutions to nonsmooth vector
optimization problems. Using new generalized invexity assumptions we have provided necessary
and sufficient conditions of optimality for these solutions. More precisely, we have shown that
Stampacchia vector variational inequalities present sufficient optimality conditions when the
multiobjective function f satisfies weak forms of approximate invexity. On the other hand, we
have obtained necessary optimality conditions in terms of Minty vector variational inequalities
given similar approximate invexity assumptions on the function –f . Finally, we have proven that
vector critical points represent sufficient optimality conditions as well for approximate pseudo
invex functions. It is worth mentioning that we have used the original definition of Clarke’s
generalized Jacobian instead of the Cartesian product of Clarke’s subdifferentials of the scalar-
valued function components as done in [14, 15, 18, 19]. Since our generalized invexity contains
as special cases previous generalized convexity conditions that were provided in [7, 5, 20], the
presented theorems in this paper extend many corresponding results in the literature like [19]
for example.
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