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ABSTRACT 

Traditionally, the standard endpoint in most cancer clinical trials has been overall 

survival.  For many forms of cancer, including colon cancer, the time from diagnosis to the time 

when this endpoint is reached can take many years. Hence, researchers and patients must wait a 

considerable amount of time to see if a treatment is effective.  We propose an alternative 

surrogate endpoint which would occur in less time but still be as effective at determining 

treatment differences.  The discovery of such an endpoint would be of Public Health importance 

to both patients and researchers as it would allow treatments to be tested in a shorter time and 

subsequently allow patients to have quicker access to a beneficial treatment.   

Our approach is to use the methodology of QTWIST and conditional survival estimates, 

conditioning on disease free survival, to produce a potential surrogate endpoint for overall 

survival.  To do this, we examine whether a surrogate endpoint could be theoretically produced 

for colon cancer.  We analyzed NSABP trials C-03 through C-07 to determine the effect of 

conditional survival and the choice of conditioning sets in colon cancer.  In doing this analysis, 

we examine the impact of determining the probability of surviving an additional y years given 

that a patient has already been alive and disease free for x years.  QTWIST, quality-adjusted time 

without symptoms, methodology is then reviewed focusing on the underlying methodology of 
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using weights, called utility coefficients, and how they could be applied to a partitioning of 

disease free survival states.  Methodology combining conditional survival and the statistical 

methodology of QTWIST were then performed on six different sets of potential 

weighting coefficients.  Finally, the success of the methodology was evaluated by comparing 

the Kaplan-Meier treatment difference p-values to the treatment difference p-values for each 

of the six utility coefficient approaches tested in our methodology.  It is our hope that this 

methodology will produce a viable predictor for overall survival and one that is more 

predictive than using standard disease free survival estimates. 
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1.0  OUTLINE OF RESEARCH 

Our research is to use the methodology of QTWIST and the conditional survival 

estimates for overall survival conditional on disease free survival to produce a potential surrogate 

endpoint for overall survival.   In Chapter 2, an introduction to why this research is important to 

patients, treating physicians and researchers is given.  In Chapters 3 and 4, we examine the 

definition of “surrogate endpoint” presented by other researchers and perform simulations to 

examine whether these definitions can be applied to colon cancer.  Chapter 5 is concerned with 

looking at the conditional survival estimates for overall survival conditional on disease free 

survival.  The motivating work of Sargent et al. is examined in Section 5.1 and our own 

previously published work is presented in Section 5.2.  In Section 5.3, the original methodology 

of QTWIST is presented.  A description of our methodology, combining our findings of CS and 

the statistical methodology used in QTWIST, is given in Chapter 6.  In Chapter 7, the results 

from applying our methodology to data obtained from NSABP trials C-03 to C-07 are presented.  

And finally in Chapter 8, a discussion of our findings are presented. 
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2.0  INTRODUCTION 

It is generally agreed that the most valid way of determining the efficacy of a new 

treatment relative to the standard treatment for a disease is to perform a randomized trial.  In 

diseases in which the endpoint is reached quickly, this can be a fairly efficient procedure.  

However, in diseases for which the time from treatment to the time when an endpoint is reached 

is lengthy, such a trial may take a considerable amount of time.  A disease of specific interest to 

us is cancer, where for moderate risk disease (Stage II and/or Stage III); the time from diagnosis 

to death from the disease may be many years.  Traditionally, the endpoint of interest for virtually 

all the curable Stage II and III cancer studies has been survival, thus considerable time elapses 

from the initiation of a trial until there are enough data to accurately assess survival differences.  

The length of time is somewhat cancer specific.  For example, women with Stage II or III breast 

cancer remain at risk for a recurrence (and subsequent death) for many years after diagnosis, 

while men and women with stage II or III colon cancer generally die within five years from the 

cancer or are cured.  Since the National Surgical Adjuvant Breast and Bowel Project (NSABP) 

has performed many adjuvant breast and colon cancer trials in patients with Stage II and III 

diseases, we have been particularly interested in whether using an endpoint other than survival 

might both shorten the length of time until the trial can be analyzed, and still be highly likely to 

accurately predict how the survival endpoints will look when the number of deaths required to 

assess survival has been reached.  There are many reasons why reducing this time would be 
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useful to patients, treating physicians and researchers.  The importance to patients and treating 

physicians is that the sooner the results of the trial are known, the sooner the information can be 

used to help them with a treatment.  The importance to researchers is that there are numerous 

new agents to be tested and a limited number of patients (and funds).  Thus, if results from a trial 

can be known earlier, the better treatment can be carried forward into future trials sooner.  Our 

proposal is to try to identify (or refine) a method for doing this with minimal compromise in the 

strength of the results and the confidence one has in the results.    
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3.0  REVIEW OF SURROGATE ENDPOINT LITERATURE 

The use of surrogate endpoints in clinical trials was a calculated attempt at trying to 

control the considerable time and expense it takes to complete a clinical trial [3].  This potential 

benefit to the field of clinical trials led to a series of articles being published in Statistics in 

Medicine in 1989 on the use of surrogate endpoints in clinical trials.  In one of these articles, 

Prentice formally defined a surrogate endpoint in statistical terms.  He proposed “that a surrogate 

for a true endpoint yield a valid test of the null hypothesis of no association between treatment 

and the true response” [4].  He further stated that this definition required “the surrogate variable 

to capture any relationship between the treatment and the true endpoint” in essence “requiring 

the true endpoint at any follow-up time to be independent of treatment”.  Hence, if one defined T 

to be the true time to the failure endpoint, W(t) to be the information about the surrogate 

endpoint for T up to time t, and x to be the covariate identifying the treatment groups being 

studied then essentially one is requiring  

    ( ){ } ( ){ }| , |T Tt W t X t W tλ λ≡    (1) 

where the true hazard rate at time t is Tλ [4].  This expression further implies that for each 

treatment group the relationship between the surrogate and the true endpoint is identical.  

Since Prentice’s definition was first published much statistical research has been done on 

the use of surrogate endpoints.  Some publications have questioned the overall practice of using 

surrogate endpoints in both cancer and AIDS clinical trials [5, 6].  Some have suggested the use 
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of auxiliary endpoints, response variables or covariates that can strengthen true endpoint 

analyses, as a way to relax Prentice’s criteria [7].  While others have proposed alternative study 

designs and the use of nonparametric tests when analyzing surrogate endpoints [8, 9].  However, 

the area of surrogate endpoints we choose to explore first was the statistical validation of these 

endpoints.  In the remainder of this chapter, we will use the term biomarker for the potential 

surrogate endpoint and only use the term surrogate for a biomarker that has met the validation 

criterion being discussed. 

Freedman and Graubard applied Prentice’s definition to a binary outcome T (T = 0 or 1) 

rather than the time to event outcome used by Prentice when initially defining surrogate 

endpoints [10].  In their work, the biomarker, W, represented an outcome, either discrete or 

continuous, that was measured before the true endpoint, T, was observed but after the treatment, 

x, was given.  In this new setting, the criterion for assessing a biomarker for surrogacy was  

   ( ) ( )1 | , 1 |P T W X P T W= = = ,    (2) 

which was consistent with Prentice’s definition (1).    

Using this new expression, they proposed a statistical method for validating the 

biomarker.  Their approach was to use a class of models such as 

   ( )( ) ( )1 | , jg p T W X j h W τ= = = +     (3) 

where jτ  represents the jth treatment effect.  More specifically, they proposed using a logistic 

transformation for g and the parameters iµ σ+  for h(W) where the parameter µ represents the 

overall mean and the parameter iσ  represents the effect of the biomarker so that   

   
( )
( )

1 | ,
log

1 1 | ,
i

i j
i

p T W w X j
p T W w X j

µ σ τ
 = = =

= + + − = = = 
    (4) 
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Using this model and assuming no interactions, criteria (2) would be satisfied when 

0jτ = .  However, they do suggest that before applying this definition, one first test for an 

interaction between treatment and the biomarker prior to testing 0jτ = .  If there is a significant 

interaction term then one has strong evidence against (2) and thus there is no need to test the 

hypothesis 0jτ = .  On the other hand, if there is not a significant interaction term, one should 

then test the hypothesis.  If the treatment effect is significant, then again there is strong evidence 

against (2).  Therefore, one has statistically significant evidence against the use of W as a 

surrogate endpoint for T. 

Freedman and Graubard point out that failure to reject 0jτ = is not sufficient to claim the 

biomarker is a surrogate endpoint.  They propose fitting the model once with the biomarker in 

the model  

( )
( )

1 | ,
log

1 1 | ,
i

i ja
i

p T W w X j
p T W w X j

µ σ τ
 = = =

= + + − = = = 
 (5) 

where jaτ represents the jth treatment effect adjusting for the biomarker 

and once without it  

( )
( )

1 | ,
log

1 1 | ,
i

j
i

p T W w X j
p T W w X j

µ τ
 = = =

= + − = = = 
 , (6) 

then computing the estimate 

1

1

ˆ
1

ˆ
aτ

τ
− (7)  

and using this estimate to measure the proportion of the treatment effect that is explained 

by the biomarker.    Intuitively, the idea is that if adding the biomarker to the model results in the 

6 



treatment term being 0, then once the surrogate has been observed, the probability an event will 

occur is independent of treatment. 

In the ideal situation, where criterion (2) is satisfied completely, this new estimate (7) 

would be 1.  They suggested a reasonable ad hoc rule would be to use the biomarker as a 

surrogate endpoint if the lower limit of a 95% confidence interval for the estimate (7) is greater 

than 0.5 (or maybe 0.75) and described a method for obtaining the confidence interval using 

Fieller’s Theorem [10]. 

Lin, Fleming, and De Gruttola applied the Freedman and Graubard approach to the 

survival setting (the original setting of Prentice’s surrogate definition) by identifying the estimate 

corresponding to (7) and its confidence interval based on a Cox proportional hazards model 

rather than a logistic model.  They suggested fitting two proportional hazards models where W(t) 

represented a vector of possibly time-varying surrogate covariates.  The model with the surrogate 

endpoint was 

( ) ( ) ' ( )
20| Z W tt Z t eβ γλ λ += (9) 

And the one without it was 

( ) ( )10| Zt Z t eαλ λ=  (10) 

They then defined the proportion of the treatment effect explained by the surrogate 

endpoint as 

ˆ
ˆ 1

ˆ
p β

α
= − (11) 

where α , β , and γ are the unknown regression parameters and α̂ and β̂ are their 

corresponding estimates.  They noted that the result is only meaningful if  ˆˆ  and α β  have the 
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same sign.  They used the delta method to show that the random variable ( )*ˆn p p−  was 

asymptotically normal with mean zero and variance 

   
( )

( )
( )

( )
( )

2* *
2

2 4 3* * *
 2 ,

V VV α αββ β β
σ

α α α
= + −    (12) 

where
*

*
*1p β

α
= −  and  ,  ,  and V V Vα β αβ  are the variances and covariance of 

1 1
2 2 ˆˆ  and n .n α β   To obtain estimators of ,  ,  and ,V V Vα β αβ  one can use a result from Wei et al. 

[12] using marginal hazard modeling of multiple events data. A clever method for doing this by 

constructing artificial bivariate survival data was originally implemented by Lin [13] and [14] 

and is available in SAS, S-plus and R.   We used the program coxph from S-Plus to implement 

the procedure.  For the dependent variable, the survival data was constructed by stringing two 

copies of the complete survival data.  The covariates for the first string of survival data were 

treatment (to go with α ) and two dummy variables of 0 to go with  and β γ  and for the second 

string we had a treatment and marker covariate to go with  and β γ  and a dummy variable of 0 to 

go with .α   It was necessary to use the two strings as strata and patient identifiers as clusters.   

This allowed us to obtain estimates for ,  , ,  ,  and . V V Vα β αβα β  Then one can construct 

confidence intervals for p̂ using standard asymptotic normal theory, i.e. using the interval   

    
2

1 / 2
ˆ

p̂ z
nψ
σ

−± ,     (13) 

Where σ̂  is obtained by replacing the terms on the RHS of equation 12 with the 

estimators obtained from coxph. We performed simulations using the same input assumptions as 
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were used for an example in Lin, Fleming, and De Gruttola and were able to replicate their 

results (to the degree of accuracy one would expect from simulations).   

Lin, Fleming, and De Gruttola also derived the confidence interval applying Fieller’s 

Theorem in this survival setting and obtained 

( )
21/ 2 2

1 1 / 2
ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ1 1 2ˆ ˆˆ ˆ ˆ ˆ

V n z V
g g V V V g V

V V
αβ ψ αβ

β αβ α β
α α

β β β
α α α α

−
− −
    − − − ± − + − −           

 (14) 

where 2 1
1 / 2 2

ˆ

ˆ
V

g z n α
ψ α

−
== .  They pointed out that the confidence interval based on Fieller’s theorem 

was only valid when 1g < .  This implied that the confidence interval based on Fieller’s theorem 

could only be constructed when there was a significant unadjusted treatment effect at the ψ level.  

The confidence interval based on the normal approximation does not have this constraint, 

although it is obvious from equation 12 that if the ratio of 2

min( , )V Vα β

α
 is large, the variance of 

2σ̂ will be large.  In fact, if 2

Vα

α
is large, the estimate of 2σ̂  will be very unstable.   Again, when 

we used the parameters given in Lin, Fleming, and De Gruttola we were able to replicate their 

Fieller confidence intervals.  

For the simulations of Lin, Fleming, and De Gruttola that we replicated, they generated 

an equal number of failure times from model (9) for two treatment groups where W was a 

normal random variable with mean 0 and 2 respectively and unit variance.  Furthermore, they let 

( )20 1tλ = and set the restriction that the censoring times be uniformly distributed over 0 and the 

lower quartile of the simulated failure times. 
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They then varied γ , { }0.25,0.5,1γ = , and n, { }250,500,1000n = , to assess the 

performance of their statistic.  Table 1 shows the results of these simulations.  For each of the 

combinations γ and n, α̂ , β̂ , their corresponding variances and covariance, p̂ , σ̂ , and the 

lower and upper 95% confidence limits for both the normal approximation and Fieller’s method 

were calculated.  The mean and variance of these estimates were then calculated based on the 

1000 iterations that were performed for each combination of γ  and n. 

 In these simulations the confidence interval based on the normal theory was much tighter 

than the one obtained using Fieller’s Theorem and gave almost identical coverage.  More 

extensive simulations may have identified situations in which the Fieller’s Theorem confidence 

interval performed as well or better than the normal theory confidence interval, but we felt that 

their findings coupled with some of the previously mentioned negative features of the Fieller’s 

Theorem approach were sufficient to convince us to use the normal theory approach in the 

remainder of our work.. 

As before, for criteria (1) to be completely satisfied, *p  would need to be 1.  However, as 

in the binary case, one might decide whether to use the biomarker as a surrogate endpoint if the 

lower limit of a 95% confidence interval was relatively large, e.g. > .50.  If the lower limit was 

closer to 0, e.g. < 0.50 one might conclude that there is not sufficient evidence to justify using 

the biologic marker is a surrogate. 

Although the theory developed by Lin, Fleming, and De Gruttola applied to both time 

dependent and fixed covariates, in their example they only considered a fixed covariate.  Since 

we are interested in using recurrence to predict survival, we chose to simulate some examples 

that included recurrence as a time-dependent marker, in part to assure that the simulations 

matched the theory and in part to better understand the concept of surrogacy and how it applies 
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to the problem of predicting future survival based on recurrence.  These simulations are 

presented in the next chapter.  

 11 



4.0  SIMULATIONS 

Our approach was to initially perform a series of simulations with data conditions similar 

to what one would see in colon cancer.  Since the plan was to better understand the relationship 

of surrogacy to our desire to predict future results, we began with models that might suit both 

purposes and then moved to models that delineated the differences between the two goals.   For 

purposes of the following illustrations, we refer to a marker that would allow us to predict a 

future survival outcome from current marker data as a predictor.  To the extent possible, when 

we generate data, we use parameters that closely match parameter estimates obtained from 

studying more than 5000 stage II and III colon cancer patients who have received 5 fluorouracil 

and leucovorin (5FU/LV) on NSABP studies. An assumption that will be used for all of the runs 

below is that the recurrence distribution for patients receiving the standard regimen is 

exponential with ( )ln 0.7 / 3λ = − .  In reality this hazard is only appropriate for the first three 

years, but for the runs discussed below, we assume that this rate holds throughout the follow-up 

period.  Also in the runs below, we assumed all patients were followed forever without 

censoring.  For simplicity we misuse the term treat and untreated below in the sense that 

untreated patients will refer to patients receiving 5FU/LV alone (the standard for NSABP trials) 

and treated patients will refer to those receiving 5FU/LV plus an experimental regimen. 

Before presenting any simulations, we note that there is one case for which recurrence 

would both meet the Prentice criterion for surrogacy (in the work below we call recurrence a 
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perfect surrogate when this criterion is satisfied) and be an exact predictor. That situation would 

occur if no one died without recurrence and everyone who recurred would die at a fixed time 

after recurrence (say two years).   Recurrence would then be a perfect surrogate.  Furthermore, if 

time-to-recurrence followed a proportional hazards model, survival would have no hazard for the 

first two years, but results for recurrence at any time will exactly predict the conditional 

distribution of survival at t + 2 years given the recurrence data at time t.  Thus, a Cox model for 

time-to-recurrence computed at time t will be identical to the Cox model for survival at time t+2. 

In this case recurrence is both a surrogate and a perfect predictor. 

For our first simulation (Run 1 in Table 2), we generate recurrence data under the 

assumption that time-to-recurrence follows an exponential distribution for both treated and 

untreated patients with ( )ln 0.7 / 3λ = − for untreated patients and ( )ln 0.8 / 3λ = − for treated 

patients.  This corresponds to a hazard ratio (treated vs. untreated) of exp (-0.469).  We again 

assume that no one dies without recurrence and we assume that the time from recurrence to death 

follows an exponential distribution with λ = .25, 1 and 2.  Hence it is still true that time to death 

following recurrence is independent of treatment, so recurrence is still a perfect surrogate.  On 

the other hand, recurrence will not precisely predict survival at a later date, however it appears 

that the distribution for survival two years later could (theoretically) be obtained and the 

expected value of the estimated hazard rate for treatment in a survival run at time t + ∆  will be 

close to the estimated hazard for treatment in a recurrence run at time t for some ∆  that may 

depend on the hazard rate of the distribution of time from recurrence to survival.  In this case, 

recurrence is a surrogate and should be an excellent predictor. 

For run 2, although the simulating hazard rates are the same, we have now added a small 

risk of deaths from other causes (without recurrence) that has a hazard rate of ( )ln 0.95 / 5−  and 

 13 



is independent of treatment and independent of time-to-recurrence.  We assume that once a 

patient recurs, they no longer are impacted by the competing risk and their survival depends only 

on the conditional distribution of death following recurrence.    In this case, although recurrence 

is still a perfect surrogate (meets Prentice definition, as well as the p* criterion), it will not be a 

perfect predictor.  In fact, in the recurrence run, the estimated hazard we will obtain for treatment 

will be larger than that observed for treatment in the subsequent survival analysis (as will the 

values being estimated).  In this example, the survival distribution will not satisfy proportional 

hazards and the hazard ratio being estimated will be a value between 1 (the hazard for deaths 

preceding recurrence) and exp(-0.469).  

For run 3, the only change was to increase the hazard ratio associated with time to death 

to ( )ln 0.7 / 5− .  As one can see, the impact was to lower the estimate of treatment effect for 

survival.  This provides an example in which recurrence is again a perfect surrogate, but the 

treatment parameter from the recurrence run will be a poor predictor of the treatment parameter 

for the survival run. 

In run 4, we simulate data that will illustrate the reverse situation.  For this run the hazard 

ratios for recurrence are again ( )ln 0.7 / 3λ = −  (untreated) and ( )ln 0.8 / 3λ = −  (treated).  

However this time we assumed that treatment also affected deaths from other causes in the same 

way by letting the hazard rate for death be ( )ln 0.7 / 5λ = − for untreated patients 

and ( )ln 0.8 / 5λ = −  for treated patients.  In this case, recurrence will not meet the Prentice 

definition of surrogacy and p* will not be 1.  However, the hazard ratio for treatment for 

recurrence, exp(-0.469), will still be an excellent predictor of the hazard ratio for survival as the 

simulations indicate. 
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These results indicated that if our primary goal is to predict the treatment effect for 

survival at a future time-point based on current recurrence data, testing for surrogacy is not the 

correct approach.  We will need to focus on the conditional distribution of survival given the 

current recurrence, survival, and probably additional covariates. 

All of the above discussion were based on data having exponential hazard rates and 

complete follow-up.  In the colon cancer setting, we have additional constraints.  Some of these 

constraints make prediction even more useful and plausible, but they also introduce some 

distribution complexities.  Most have these have already been discussed, but a partial listing 

follows. 

1. Time to recurrence does not have a constant hazard.  In fact, very few recurrences are 

observed after three years. 

2. The time from recurrence to death is generally fairly short. 

3. Other measured time-dependent events occur which have an impact on subsequent 

survival.  For example, second primary cancers, which are collected and recorded, 

result in some increased risk for death.  Many other important events are not collected 

and/or recorded such as heart attacks, strokes, hip fractures, other events with in 

sufficient detail to be included etc. 

4. We have assumed that our unconditional and conditional time to event distributions 

are exponential. 

For this reason, in the next chapters we will explore conditional survival in colon cancer 

in more explicit terms.  This will help identify the specific problems that need to be addressed 

and also give us some insight into the way to address them.   
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5.0  PREVIOUS STATISTICAL METHODOLOGY 

5.1 WORK OF DR. DAN SARGENT 

In adjuvant colon trials, the usual approach has been to analyze studies approximately 

five years after the last patient is entered, since this time period will allow one to have nearly 

complete (colon cancer related) survival data.  Previous work done by the NSABP statistical 

staff has indicated that looking at earlier data that include recurrences and second primary 

cancers as well as deaths; may allow for an early analysis that will closely mirror that of the 

survival data that will be observed at five years (from the data of the last patient’s entry into the 

study).  The idea is if we had three year data for the endpoints available on all patients we could 

predict five year overall survival.  As we will show below, historical NSABP data has indicated 

the 3-year disease free survival (DFS) is highly correlated with five year survival results, where 

the time to event for DFS is the time from surgery (or possibly randomization) to the first of a 

recurrence, second primary cancer, or death.  We will first discuss work performed by Sargent et 

al. [13] and then present our own published work to support this fact [14].  

In 2000, the NSABP opened an adjuvant colon cancer trial, Protocol C-07, which would 

use disease-free survival obtained after 3 years of follow-up as the primary endpoint.  This was 

the first time a primary endpoint other than survival (with at least 5 years of follow-up) had been 

utilized.  The decision to do this was based on an ad hoc comparison between 3-year DFS and 5-
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year survival in previous trials, and the observation that the majority of recurrences occur within 

the first three years for colon cancer patients, and that the majority of these recurrences will 

translate into deaths within 3 additional years.   

This identification along with conversations with pharmaceuticals, statisticians, and 

physicians led Dr. Dan Sargent to perform an analysis of 20,898 patients pooled from 18 large 

randomized phase III colon cancer adjuvant clinical trials whose period of enrollment spanned 

from 1977-1999 [13].  For each individual protocol, one arm was identified as the control arm 

whether or not chemotherapy was administered on the arm.  A total of 43 different treatment 

arms were included in the analysis.   Furthermore, due to the differing practices in which follow-

up was collected; all patients were censored at 8 years from randomization.   

Of the 20,898 patients, 19% were 70 or older, 55% were male, 66% were stage III, and 

88% received treatment which contained chemotherapy.  However, a few of the 20,898 were 

actually diagnosed with high rectal tumors; these patients were included in the analysis.  Eighty-

eight percent of the patients who experienced a recurrence during the 8 year follow-up period 

experienced it within the first 3 years after enrollment.  Of these patients, 91% died within 5 

years from randomization.  The median time from recurrence to death was 12 months.  All three 

of these findings validate what had already been seen in NSABP trials alone.   

Using this data, investigators then tested the primary hypothesis that disease free survival 

(DFS), with 3 years follow-up, was an appropriate endpoint to replace overall survival (OS) with 

5 years follow-up in phase III colon adjuvant clinical trials.  To test this hypothesis, they first fit 

a weighted least squares regression line to the DFS and OS pair obtained from each of the 43 

study arms.  [Figure 1 displays the graph presented in the paper.]  The corresponding equation 

was  
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   5-year OS = -0.02 +1.03 * 3-year DFS 

with 2R and Spearman rank correlation coefficients of 0.85 and 0.88 respectively.  

However, the intercept and the slope did not significantly differ from 0 and 1 respectively 

(P>0.20).     

Next, they fit a weighted least squares regression line to the within-study hazard ratio 

comparing the experimental and control arm for DFS and OS.  [Figure 2 displays the graph 

presented in the paper.]  The corresponding equation was 

   OS HR = 0.12 + 0.89*HR DFS 

with 2R and Spearman rank correlation coefficients of 0.90 and 0.94 respectively.  

However, unlike the DFS vs. OS, here the intercept and the slope do differ significantly from 0 

and 1 respectively (P = 0.03 and P < 0.0001 respectively).   

Finally, of the 25 within trial (comparing control vs. treatment arms) log-rank tests, 23 

yielded the same statistical conclusion using DFS with 3 years of follow-up and OS with 5 years 

of follow-up.  Eighteen agreed no difference and five agreed there was a significant difference.  

Hence, these findings strengthen the argument for using three year data to predict five year 

results.   

However, there may be a few ways in which Sargent’s analyses could have been 

strengthened.  For the Sargent and colleagues’s analysis, DFS was defined as the time from 

randomization to the first event of either recurrent disease or death.  Thus their analysis did not 

account for the different effects on future survival caused by a recurrence versus a second 

primary versus a death would have on the predictions.  Nor did they account for where the 

recurrence occurred.  This type of data, though not available in all institutions, is available 

through NSABP.  We hoped to take advantage of these data to more precisely predict survival 
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from disease-free survival data in our own work.  The results of our work were published in 2010 

in the Journal of Clinical Oncology [14] and are presented in the next chapter. 

5.2 CONDITIONAL SURVIVAL 

Traditionally, survival estimates for patients with colon cancer are reported from the time 

of diagnosis, Overall Survival (OS).  However, these survival projections are not necessarily 

applicable to patients who have survived a period of time after initial diagnosis.  What patients 

and physicians alike often want to know is “now that one has survived x number of years, what 

is the chance one will survive another five years?”.  One approach to answering this question is 

to compute Conditional Survival (CS) estimates [15].  Several previously published cancer CS 

data series reveal distinct patterns of CS that vary substantially among diagnoses [16] These 

studies have explored CS in cancer of the central nervous system (CNS) [17-19], head and neck 

[20], breast [21-25], lung, gallbladder [29, 30], stomach, colorectum [32-34], prostate [35], 

ovaries [36],  and other sites [37-40]. These studies have found that, in general, CS improves 

over time most significantly in patients with advanced disease, in whom the survival curve drops 

off rapidly in the first 1 or 2 years after diagnosis and then stabilizes [15-17, 26, 27, 32, 41].   

Conditional Survival (CS) is defined as the probability of survival given that the patient 

has already survived a certain period of time since diagnosis.  CS is derived from the concept of 

conditional probability in statistics. CS can be calculated from traditional Kaplan-Meier or 

actuarial life-table survival data. The mathematical definition can be expressed as follows: Let 

S(t) be the probability a patient survives to time t. Conditional survival, CS(y|x), is the 
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probability of surviving an additional y years, given that the patient has already survived x years, 

and can be expressed as: 

( )( )( | )
( )

x y

x
h t dtS x yCS y x e

S x

+
−+ ∫= =       (15) 

 

For example, to compute the 5-year CS for a patient who has already survived 3 years, 

the absolute survival at 8 years is divided by the absolute survival at 3 years. When a survival 

curve has a changing hazard rate over time, this will be reflected as a change in CS as more time 

elapses from diagnosis. 

The traditional definition of CS takes into account how long someone has survived but it 

does not take into account the patient’s present disease status relative to recurrence or second 

primary cancer (of any site).  We propose extensions of the concept of CS where one conditions 

on the set of patients alive and free of recurrence (recurrence-free survival [RFS]) or on the set of 

patients alive and free of recurrence and second primary cancer (disease-free survival [DFS]).  

We use notation OS|DFS to generically denote the concept of OS on the set of patients alive and 

free of disease or OS(y)|DFS(x) for the probability of surviving an additional y years, given that 

the patient has already been alive and disease-free x years.  This expanded definition of CS 

cannot be directly calculated from survival estimates as CS can, but it can easily be estimated by 

applying Kaplan-Meier or life-table methods to the patients in the conditioning set.  To do this, 

patients must be followed for recurrence, secondary primary cancer, and death.  This definition 

can further be expanded to other conditioning sets including patients who are alive but have 

experienced a recurrence or second primary cancer.  We refer to these patients as with Disease 

(D) and use notation OS|D. 
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In attempt to answer the question on the impact of CS, we performed separate event 

specific conditional survival analyses on 7004 NSABP patients randomized to receive at least 

5FU/LV.  Patients in our analysis were subjects in NSABP trials C-03 through C-07, conducted 

between 1987 and 2002.  Only patients from these trials who were enrolled on the FU/LV arms 

were included in our analysis as the general finding of all of these trials was that FU/LV was 

more efficacious than comparison chemotherapy regimens.  Table 3 displays the numbers of 

patients from each of the treatments and trials included in the analysis. 

Survival, recurrence, and second primary cancer data for all eligible patients with follow-

up as well as information on potential prognostic factors such as patient age at diagnosis, gender, 

race, tumor location, Dukes stage, number of positive nodes, number of nodes resected, and 

Eastern Cooperative Oncology Group (ECOG) performance status (PS) were included in our 

analysis. 

For all cohorts, we initially calculated 5-year CS, the probability of surviving at least 5 

more years as a function of the number of years a patient had already survived since diagnosis, 

without regard to current disease status. Thus, this analysis did not require the patient to be 

disease free.  It only required the patient to be alive in order to be included in the yearly subset.  

To account for current disease status, we repeated the analysis for patients alive with disease at 1 

to 5 years after diagnosis, OS|D.  Finally for a direct comparison to these results and to illustrate 

the importance of excluding patients with recurrence and second primaries, we calculated 5-year 

OS|DFS for patients alive and disease-free for up to 5 years after diagnosis.  For this analysis, 

patients were only included in the yearly subset if they had not died, had no recurrence, and had 

no second primary in the years prior to the given yearly analysis.   
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All survival times were measured from the time of initial surgery, with the exception of 

patients in NSABP C-07, for whom date of randomization served as the anchor date. CS 

estimates were calculated using the Kaplan-Meier method in SAS (SAS Institute, Cary, NC).  

95% confidence intervals (CI) were also estimated using SAS. 

The impact of prognostic covariates was evaluated by calculating OS|DFS within strata 

defined by age (≤50, 51-60, 61-70, 71+ years), Dukes stage (B, C), gender, tumor location (left 

colon, right colon, recto-sigmoid, multiple locations), ECOG PS (0 = normal activity, 1 = 

symptomatic but ambulatory, 2 = in bed < 50% of time), and number of positive and resected 

nodes (node negative and ≥12 nodes resected, node negative and <12 nodes resected, 1-3 

positive nodes, 4 or more positive nodes). 

A total of 6,789 patients were identified in NSABP colon cancer trials C-03 through C-07 

as meeting the inclusion criteria for this study (Table 3). Figure 3 shows the results for 5-year CS 

as a function of years already survived since diagnosis.  Error bars depict 95% CI.  Without 

regard to current disease status, the probability of surviving at least 5 more years as a function of 

the number of years a patient has already survived (5-year CS) increases modestly over the first 5 

years, from 77% at diagnosis to 85% at 5 years post-diagnosis.  For patients with disease at 1 to 

5 years after diagnosis, the 5-year OS|D is very poor, ranging from 7% to 19% (data not 

graphed).  For the set of patients alive and free of disease, the 5-year OS|DFS improves from 

77% initially following surgery to 90% after 5 years.  One can see that 5-year OS|DFS is 

consistently greater than the CS estimate.  Because the prognosis for patients who have known 

recurrence or second primary is so much poorer than those who are disease-free, for the 

remainder of this analysis we restricted our attention to patients who were alive and disease-free 

for up to 5 years after diagnosis. 
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Figures 4-7 show the 5-year OS|DFS estimates categorized by the levels of the prognostic 

covariates age, Dukes stage, number of nodes positive and nodes resected, and PS.  No 

substantial differences in 5-year OS|DFS were observed between males and females or among 

the tumor location categories (data not shown).  For most subsets defined by the levels of 

prognostic covariates, 5-year OS|DFS estimates increase as time from diagnosis increases.  

OS|DFS improved with increasing time following diagnosis for all age groups (Fig 4) except for 

the oldest age group (>70 years), which initially rises from 71% to 78% at 2-3 years, and then 

falls again back to 70% at 5 years.  As expected, Dukes B patients (Fig 5) initially had better 

survival than Dukes C patients (87% versus 69%), but as time disease-free elapses from 

diagnosis, OS|DFS for Dukes C improves and approaches the OS|DFS for Dukes B patients 

(92% versus 88% for Dukes B and C at 5 years, respectively).  Patients with 4 or more positive 

nodes (Fig 6) had markedly worse 5-year survival (57%) at diagnosis compared with other 

groups (76-89%), but as more time elapses from diagnosis, prognosis improves for all groups 

and the spread between the groups narrows (86-94%).  When grouped by PS (Fig 7), prognosis 

improves over time for those with a PS of 0 or 1 but not for those with a PS of 2. 

In summary the following conclusions were drawn from this analysis: 

1. As time progresses from diagnosis, OS|DFS provides more relevant prognostic 

information for colon cancer survivors than traditional survival prognoses made at the 

time of diagnosis.  In this analysis, we found that improvements in OS|DFS over time 

were seen for patients with higher stages of disease and for those with more positive 

nodes.  On the other hand, older patients and those with poor PS did not necessarily 

show an improvement in OS|DFS over time. 
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2. Differences in survival between strata tend to converge over time.  This suggests that 

certain factors that are well known to have prognostic significance at diagnosis may 

lose some of their prognostic value as more time elapses from diagnosis.   

3. As more time elapses from diagnosis, the number of subjects in each group decreases 

as patients develop recurrence, second primary cancer, or expire, and some apparent 

trends observed may actually be due to small patient numbers. 

4. CS information is potentially of great interest to patients, their clinicians, and 

researchers.  When patients who are seen in follow-up inquire about their current 

prognosis, CS can be used to give them a more relevant risk assessment that accounts 

for time already survived since diagnosis. 

5. Changes in prognosis are a result of changing hazard rates over time and can be 

quantified and easily portrayed using the concept of CS, making the information more 

accessible to clinicians and more meaningful to patients. 

6. We observed little change in 5-year CS after 3 years of DFS in the majority of patient 

subsets, which is consistent with Sargent’s findings. 

7. Rates appeared to be exponential for at least the first few years. 

8. This analysis further strengthened our belief that if one is looking to propose a 

surrogate endpoint to survival, the use of conditional survival is a potentially valid 

possibility. 

After the publication of this work, numerous other researchers sited our work in their 

own studies of conditional survival including studies of renal-cell carcinoma [50, 62], common 

cancers in Australia [51], colorectal cancer [55, 58], resected colorectal liver metastasis [56], 

prostate cancer [59], and resected pancreatic adenocarcinoma [63].  Consistently these studies 

 24 



supported our findings that CS provided more relevant prognostic information for cancer 

survivors than traditional survival prognoses made at the time of diagnosis.  And that controlling 

for disease status at conditional time periods improves the prediction of subsequent survival. 

Additionally, a few researchers sited our work in their research of new statistical 

methods.  Wang et al. developed an interactive tool to make individualized estimates of 

conditional survival for head and neck cancer patients [53] and rectal cancer patients [54] based 

on tumor and patient characteristics.    Nicolaie et al. researched dynamic predictions in 

competing risks [57, 60].  Schoop et al. researched measures of prediction error for survival data 

with longitudinal covariates [52].   

Of special note to us was that we could not find research combining our findings of CS 

and the statistical methodology used in QTWIST.  The methodology used in QTWIST will be 

presented in the next chapter. 

5.3 QTWIST 

In 1995, Gelber and Cole et al. published a review of the QTWIST (Quality-Adjusted 

Time Without Symptoms and Toxicity) method [64].  The QTWIST method incorporates 

quality-of-life considerations into treatment comparisons.  The idea was to take overall survival 

times and partition it into times spent in progressive health states where these particular health 

states could differ in quality of life.  The methodology would then apply threshold utilities, 

highlighting trade-offs between the different health states, to emphasize treatment comparisons.  

In survival analysis, the time to event is from the date of randomization to the date of 

death.  In a QTWIST analysis, the overall survival is broken into multiple time to events 
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corresponding to changes in quality of life.  Weights, called utility coefficients, are then applied 

to all of the partitioned time to events, called states.  Utility coefficients, ranging from zero to 

one, are then applied to these partitioned time to events where an utility coefficient of zero 

represents a state as bad as death and an utility coefficient of one represents a state of perfect 

health.  The overall quality-adjusted survival is then found by summing the weighted partitioned 

time to events.   

There are two assumptions made for this method.  The first is that “the quality-adjusted 

time spent in a health state is directly proportional to the actual time spent in the health state, 

where the proportionality is given by the utility coefficient”.  The second is that “the utility 

coefficient for a health state is independent of the time the health state is entered, as well as past 

and future quality of life”. 

The application of the QTWIST method is performed in three steps.  The first step is to 

“define quality-of-life oriented survival outcomes that are relevant for the disease setting under 

study”.  The assumption is that these outcomes will differ in terms of their time and quality of 

life and that they will be used to define the progressive health states.  The states themselves are 

assumed to be progressive, however, any of the states can be skipped.  Next, utility coefficients 

are assigned to the health states.  And finally, the QTWIST outcome is the sum of the weighted 

states.  

1 2* 1 * 2 ...State StateQTWIST u State u State= + +                      (16) 

To illustrate this first step the following example of outcomes and states are given. The 

outcomes are listed as TOX (time with toxicity), DFS (disease free survival), and OS (overall 

survival).  TOX is the time when patients are exposed to the toxicities of the therapy.  DFS is the 

time until recurrence or death.  OS is the time until death for any reason.   
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The progressive health states are then TOX (time spent with treatment toxicity), TWIST 

(time without treatment toxicity and free of disease), REL (time following recurrence).  TWIST 

is calculated as the difference between DFS and TOX (TWIST=DFS-TOX).  REL is calculated 

as the difference between OS and DFS (REL=OS-DFS).  All states are subject to right censoring. 

The utility coefficients assigned to the states were assigned to reflect the difference 

between the positive impact that TWIST has on a patient’s overall quality of life versus the 

negative impact that TOX and REL have.  For this example, TWIST was given a utility 

coefficient of 1.  The utility coefficients for TOX and REL were unknown so they were 

represented by TOXu and RELu respectively.  However, to illustrate how the use of the utility 

coefficients could express the difference on the impact on the patient’s life.  The following 

example was also provided.  If the utility coefficient for TWIST was set at one and the utility 

coefficient for TOX and REL were set at 0.5 that would represent the situation where “one 

month spent TOX or REL is equivalent in value to one-half month spent on TWiST”.   

The QTWIST outcome for this example is then 

* (1)* *TOX RELQTWIST u TOX TWIST u REL= + +                   (17) 

The second step in the QTWIST method is to “consider each treatment separately and to 

partition the overall survival time into the defined clinical health states”.  Then using the Kaplan-

Meier product limit method, the areas under the respective curves, TOX, DFS, and OS, are the 

estimates of the mean health state durations.  Thus for their example, the area under the TOX 

curve is an estimate of the mean duration of TOX.  The area between DFS and TOX is an 

estimate of the mean duration of TWIST.  The area between OS and DFS is an estimate of the 

mean duration of REL.  As censoring is almost always present, one cannot estimate the entire 

survival curve.  However, restricted means can be calculated within the follow-up interval of the 
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study.  Bootstrap methods can then be applied to calculation the covariation among these 

restricted means.  Furthermore, partitioned survival plots can be produced to show the 

transitional survival curves for the multiple outcomes for each separate treatment.   

The third step in the QTWIST method is to “compare the treatment regimens in terms of 

quality-adjust survival (Q-TWiST)”.  To accomplish this, one combines the estimated restricted 

mean state durations from Step 2 with the utility coefficients from Step 1.  Thus for their 

example, an array of utility coefficients and the restricted mean estimates for TOX, TWIST, and 

REL are substituted into equation (17) for each individual treatment.  The treatment effect is then 

estimated by computing the differences in QTWIST between the two treatments.  Bootstrap 

methods can be used to calculate estimates of the standard error.  Furthermore, using the Kaplan-

Meier large sample theory for restricted means one can conduct statistical inference on the 

treatment effects.   

As this method was designed to incorporate patient’s personal preferences of treatment, 

one can perform a threshold utility analysis displaying treatment comparisons for different values 

of the utility coefficient.  A plot with a threshold line can then be produced to indicate the values 

of the utility coefficients when the two treatments will have equal QTWIST.  A QTWIST gain 

function can also be calculated by doing the analysis at consistently spaced times up until the end 

of follow-up.  Covariates can also be included in the QTWIST methodology by using 

proportional hazard models.   

After the publication of this work, the QTWIST method was applied in many clinical 

settings including ovarian carcinoma [65], esophageal carcinoma [66], melanoma [67], breast 

cancer [68, 69, 73, 83, 88, 92, 95], rectal cancer [70], multiple sclerosis [71, 76], meningitis [72], 

multiple myeloma [74, 85, 86], leukemia [75, 77],  lymphoma [78], cystic fibrosis [79], lung 
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cancer [80], colorectal cancer [81, 90], epilepsy [82], prostate cancer [84], renal cancer [87], 

bladder cancer [89], carcinoma of the head and neck [91, 94], and reflux disease [93].  

Other researchers have worked on refining the QTWIST method.  Zhao et al. derived an 

estimator for the distribution of quality-adjusted survival time [96].  A year later, Zhao et al. 

researched how to estimate mean quality adjusted lifetime with censored data [97].  In 2007, 

Wang and Zhao researched how covariates affect the mean quality of life when the data are 

subject to right censoring [98]. In 2009, Wang and Zhao did a comparison of the confidence 

intervals used for mean quality-adjusted lifetime with censored data [99].  Raboud et al. 

estimated the effect of treatment on quality of life in the presence of missing data due to drop-out 

and death [100].  Andrei et al. developed generalized linear regression models for the mean of a 

quality-of-life-adjusted restricted survival time [101].  In 2001, Fine and Gelber investigated a 

semiparametric bivariate linear regression model for survival and quality-adjusted survival [102].  

Bonetti et al. introduced a method-of-moments estimating procedure for categorical quality of 

life data with nonignorable missingness [103].  Almanassra et al. introduced a new non 

monotonic estimator for the survival function of quality adjusted lifetime [104]. 

Again, of special note to us was that we could not find research combining our findings 

of CS and the statistical methodology used in QTWIST.  In the next chapter, we present our 

research for combining these concepts. 
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6.0  PROPOSED METHODOLOGY 

We propose to use the methodology of QTWIST and the conditional survival estimates 

for overall survival given disease-free survival (OS|DFS) to produce a potential surrogate 

endpoint, or at a minimum, a predictor, for overall survival (OS).   When using the methodology 

of QTWIST, we applied the underlying methodology of weighting and not the overarching idea 

of quality-of-life (QOL).  Furthermore, when using OS|DFS we included both recurrence and 

secondary primaries.  To perform this research we followed the steps outlined in the original 

QTWIST methodology and applied this research to finding predictors in two survival settings, 

overall survival over the complete follow time (OSC) and overall survival at 5 years OS (OS5).  

For OSC, we used 5 year disease free survival (DFS5) as a predictor whereas for OS5, we used 3 

year disease free survival (DFS3) as a predictor.  The following procedure was applied to both 

settings. 

First, we defined the outcomes and states used in QTWIST.  The outcomes would be a 

breakdown of the original QTWIST DFS.  For DFS5, we defined the outcomes as being disease 

free at year 1, year 2, year 3, year 4, and year 5.  The states were then: TWIST1= DFSYear 1, 

TWIST2= DFSYear 2  – DFSYear 1, TWIST3= DFSYear 3  – DFSYear 2, TWIST4= DFSYear 4  – DFSYear 3, 

TWIST5= DFSYear 5  – DFSYear 4.  For DFS3, we defined the outcomes as being disease free at 

years 1, 2, and 3.  The states were then: TWIST1= DFSYear 1, TWIST2= DFSYear 2  – DFSYear 1, 
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TWIST3= DFSYear 3  – DFSYear 2. In both cases, states were progressive and subject to right 

censoring. 

Next, we assigned utility coefficients to the states. Our initial idea was that the utility 

coefficients would be assigned to reflect the positive impact that a later TWIST had on a 

patient’s overall survival as compared to an earlier TWIST.  Thus, our assumption was that the 

utility coefficients assigned to each subsequent TWIST state would increase in value.  Because 

we assumed the assignment of utility coefficients was one of the most challenging features to our 

research, we examined research done by others on the choice of utility coefficients.  Revicki et 

al. [105], Whately-Smith et al. [106], and Tate et al. [107] all made recommendations for 

measuring utilities but in the traditional QTWIST setting where utility coefficients were based on 

patient defined utility coefficients or utility coefficients based on health-related quality of life 

questionnaires and thus did not appear applicable to our research.  Revicki et al., however, did 

caution against “arbitrarily assigning 1.0 to the best possible health state”.  Thus, we choose to 

explore a series of utility coefficients where some had the last state’s utility coefficient being 1 

whereas others did not.  We also choose to explore the situation where utility coefficients 

increase in value for each subsequent TWIST state, as our original plan had stated, and where 

utility coefficients could increase or decrease as one moves from state to state, as was done in the 

original QTWIST methods.  Finally, we choose to look at utility coefficients based both on the 

number of events in the state as well as the conditional survival estimates for OS|DFS for the 

states.  In total, six sets of utility coefficients were used to see which would produce a viable 

predictor.  

The first approach was to define the utility coefficients based on the number of TWIST 

states where the final TWIST states’ utility coefficient would be 1.  Thus for DFS5, the utility 
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coefficients were 0.2, 0.4, 0.6, 0.8 and 1.  For DFS3, the utility coefficients were 0.33, 0.67, and 

1.  The second approach was to define the utility coefficients based on the cumulative proportion 

of disease free events in each state so that the final TWIST states’ utility coefficient would again 

be 1.  In the third approach, utility coefficients were calculated based on the proportion of 

disease free event in each state out of the total number of subjects.  Using this idea, the final 

state’s utility coefficient would not be 1.   

The final three sets of utility coefficients, approaches 4, 5, and 6, were based on the 

conditional survival estimates for overall survival conditional on disease free survival, OS|DFS, 

our original idea for this research.  For DFS5, the estimates were based on having a total follow-

up time of 5 years.  Thus the conditional OSC estimates were based on the probability of 

surviving an additional y years, given that the patient had been disease free for x years where 

x+y=5.  For DFS5, the estimates were based on the following five values: CS(5|0), CS(4|1), 

CS(3|2), CS(2|3), and CS(1|4).  Similarly, for DFS3, the estimates were based on having a total 

follow-up time of 3 years and thus, the conditional OS5 estimates were based on the probability 

of surviving an additional y years, given that the patient had been disease free for x years where 

x+y=3.  For DFS3, the estimates were based on the following three values: CS(3|0), CS(2|1), and 

CS(1|2). 

The calculation of all conditional survival estimates were performed in SAS using the 

Kaplan-Meier method.  For approach 4, utility coefficients were set to equal the conditional 

survival estimates for overall survival conditional on disease free survival, ignoring treatment.  

In approach 5, we set the utility coefficients to be the absolute value of the absolute difference in 

the conditional survival estimates for overall survival conditional on disease free survival for the 

two treatments being compared.  The final approach, approach 6, set the utility coefficients to be 
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the relative difference in the conditional survival estimates for overall survival conditional on 

disease free survival for the two treatments being compared. 

For each of these six approaches, the QTWIST outcome was then calculated.  The 

QTWIST outcome was the sum of the weighted states.  For DFS5: 

1 2 3

4 5

1 2 3

4 5

* * *

* *
TWIST TWIST TWIST

TWIST TWIST

QTWIST u TWIST u TWIST u TWIST

u TWIST u TWIST

= + +

+ +
              (18) 

For DFS3: 

1 2 31 2 3* * *TWIST TWIST TWISTQTWIST u TWIST u TWIST u TWIST= + +               (19) 

Using FORTRAN code, developed by Gelber and Cole, the Kaplan-Meier product limit 

method was then used to estimate the mean state durations [108].  (We are very thankful to Dr. 

Gelber and Dr. Cole for granting us permission to use their already developed code.)   

For DFS5, the area under the DFSYear 1 curve is an estimate of the mean of TWIST1.  The 

area between DFSYear 2  and DFSYear 1 is an estimate of the mean of TWIST2.  The area between 

DFSYear 3  and DFSYear 2 is an estimate of the mean of TWIST3.  The area between DFSYear 4  and 

DFSYear 3 is an estimate of the mean of TWIST4.  The area between DFSYear 5  and DFSYear 4 is an 

estimate of the mean of TWIST5.  For DFS3, estimates for TWIST1, TWIST2, and TWIST3 were 

similarly calculated. 

To make treatment comparisons, the estimates of the mean of the TWIST1-5 and TWIST1-3 

and the utility coefficients, uTWIST1-5 and UTWIST1-3, for each of our included treatments were 

substituted into equation (18) and (19), respectively.  Again using the FORTRAN code, the 

treatment effect was then estimated by computing the differences in QTWIST between the two 

treatments.  P-values for testing the null hypothesis of no treatment effect were calculated based 

on a Z-test.   
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As covariates were important in the CS results, we also wanted to look at how covariates 

affected our research.  To do this, we performed our methodology separately on all included 

trials, C-03 to C-07, as well as separately on all individual covariate profiles.  The covariate 

profiles analyzed were age (≤50, 51-60, 61-70, 71+ years), Dukes stage (B, C), ECOG PS (0 = 

normal activity, 1 = symptomatic but ambulatory), and number of positive and resected nodes 

(node negative and ≥12 nodes resected, node negative and <12 nodes resected, 1-3 positive 

nodes, 4 or more positive nodes). 

Finally to evaluate whether the treatment difference in QTWIST was a predictor for 

treatment difference in overall survival, we compared the Kaplan-Meier -2 log rank p-value for 

treatment difference in overall survival to the Kaplan-Meier -2 log rank p-value for treatment 

difference in disease free survival as well as to the QTWIST treatment differences p-value for 

each of the six utility coefficient approaches.  Following Sargent’s work, presented in Section 

5.1, Spearman rank correlation coefficients were calculated comparing the overall survival p-

values to each of the other treatment differences p-values to see which was most highly 

correlated.     

We also wanted to evaluate the methodology based on finding “statistically significant” 

results.  To do this all p-values were classified as being “statistically significant” if the treatment 

difference p-value was less than 0.05.  A comparison of the significance of p-values for overall 

survival versus disease free survival as well as the six utility coefficient approaches were also 

performed. In the next chapter, we present our results obtained from applying this methodology 

to data from NSABP trials C-03 through C-07. 
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7.0  RESULTS 

To determine whether our methodology would produce a viable predictor for overall 

survival, we tested our methodology on data obtained from NSABP trials C-03 through C-07.  

For each of these trials, two treatments from each individual trial were included.  Thus in 

addition to the treatments included in our conditional survival analysis, presented in Section 5.2, 

we also included the treatment regimen MOF for comparison in C-03 and the treatment regimen 

5FU+LV+Oxaliplatin for comparison in C-07.  To begin the evaluation of our methodology we 

first began by looking at how effective it was in predicting overall survival over the complete 

follow time (OSC) based on 5 year disease free survival (DFS5) data.  Spearman rank correlation 

coefficients were calculated based on all treatment p-values, treatment p-values from just the trial 

level comparisons, and treatment p-values from just the covariate level comparisons.  Results 

from these comparisons are presented in Table 4 and Figure 8. 

Examining the predictive value as a whole, none of the methods, including DFS5 appear 

to be a highly correlated with overall survival as the Spearman rank correlation coefficients 

varied from 0.49 (DFS5) to 0.62 (TWIST utility 2 - cumulative proportion of disease free events 

in each state and TWIST utility 3 - proportion of disease free event in each state out of the total 

number of subjects).  However, in all cases, the Spearman correlation coefficient was higher for 

our methodology then from the traditional DFS5.   

 35 



A similar pattern was also present when looking at the correlations at the trial level as the 

correlation for DFS5, 0.51, was smaller than those from our methodology.  Again TWIST utility 

2 and 3 produced the largest correlation, 0.88, but this time produced a result indicating high 

association. 

When examining the effect at the covariate level, no consistent pattern emerged.  For age, 

Spearman correlation coefficients ranged from 0.36 (TWIST utility 5 - absolute value of the 

absolute difference in the conditional survival estimates) to 0.63 (TWIST utility 4 - conditional 

survival estimates ignoring treatment).  Dukes stage had a pattern similar to those seen for all p-

values and trial level p-values as the correlation for DFS5 was the smallest (0.40) and TWIST 

utility 2 and 3 were the largest (0.67).  For ECOG PS, TWIST utility 5 and 6 resulted in high 

correlation coefficients (0.81 and 0.85 respectively) and DFS5 had the smallest (0.41).  Lastly for 

number of positive and resected nodes, a different pattern was present.  Here TWIST utility 4 

and 5 had the smallest values, 0.42, and TWIST utility 1 (number of TWIST states) had the 

largest value, 0.67.   

We also evaluated the methodology based on finding statistically significant results at α = 

0.05 level.  The number of p-values that had agreement and non-agreement are presented in 

Table 5.  Collectively, the number of disagreements for each potential predictor ranged from 8 

(TWIST utility 2, 3, and 6) to 9 (DFS5, TWIST utility 1 and 4).  At the trial level, there was 1 

disagreement in all cases.  For age, DFS5 had the fewest disagreements, 2, whereas all others had 

3.  Dukes stage had the only potential predictor with no disagreements, TWIST utility 5.  All 

other potential predictors had one disagreement.  For ECOG PS, most had two disagreements but 

TWIST utility 5 and TWIST utility 6 each only had one.  Lastly, DFS5 had the most 
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disagreements, 3, when looking at number of positive and resected nodes whereas all the TWIST 

utility methods had either 1 or 2.   

Next we looked to see how effective our methodology was at predicting OS5 based on 

DFS3 data.  Again, Spearman rank correlation coefficients were calculated based on all 

treatment p-values, treatment p-values from just the trial level comparisons, and treatment p-

values from just the covariate level comparisons.  Results from these comparisons are presented 

in Table 6 and Figure 9. 

Just as we did for OSC, we began by examining the predictive value as a whole for OS5.   

In this setting, the Spearman rank correlation coefficients were higher than those calculated for 

OSC.  However, again none of the methods, including DFS3, appeared to be a highly correlated 

with OS5 as the Spearman rank correlation coefficients varied from 0.56 (TWIST utility 2) to 

0.67 (3 year disease free survival and TWIST utility 4).  This pattern was opposite of what we 

saw for OSC.   

At the trial level, DFS3 as well as four of the TWIST utility methods (1, 2, 3, and 4) all 

produced large correlation values with TWIST utility 2 and 3 producing the largest (0.94).   The 

result that TWIST utility 2 produced the largest correlation was also seen for OSC.  

When examining the effect at the covariate level for OS5, again no consistent pattern 

emerged.  For age, Spearman correlation coefficients ranged from 0.49 (TWIST utility 2 and 3) 

to 0.73 (TWIST utility 6 - relative difference in the conditional survival estimates).  Dukes stage 

had correlations varying from 0.68 (TWIST utility 2, 3, and 6) to 0.80 (DFS3).  For ECOG PS, 

correlations ranged from 0.69 (TWIST utility 2 and 3) to 0.87 (TWIST utility 6).   Lastly for 

number of positive and resected nodes, another pattern was present.  Here TWIST utility 2 and 3 

had the smallest values, 0.43, and TWIST utility 5 had the largest value, 0.67.   
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In mirroring the evaluation we did for OSC, next we evaluated our methodology for OS5 

based on finding statistically significant results at α = 0.05 level.  The number of p-values that 

had agreement and non-agreement are presented in Table 7.  Collectively, the number of 

disagreements for each potential predictor ranged from 6 (TWIST utility 5 and 6) to 11 (TWIST 

utility 1).  At the trial level, TWIST utility 5 and 6 had no disagreements whereas all others had 

1. For age, 5 year DFS had the most disagreements, 3, whereas all others had 1 or 2.  Dukes

stage had 2 disagreements for all cases.  TWIST utility 4, 5, and 6 had no disagreements for 

ECOG PS while the remainder had 1 or 2.   Lastly, the covariate number of positive and resected 

nodes had between 3 and 4 disagreements for all potential predictors.  
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8.0  DISCUSSION 

Because one of the main goals of our research was to identify a methodological approach 

that would produce a viable predictor of overall survival, we were disappointed by the range of 

Spearman rank correlation coefficients comparing overall survival treatment p-values to disease 

free treatment p-values.  However, our methodology did produce correlation coefficients that 

were generally higher than seen using a standard DFS approach.  Our methodology also 

produced a greater amount of agreement in statistically significant findings then using a standard 

DFS surrogate approach.    

In particular, one utility coefficient approach appeared to produce that most viable 

predictors: TWIST utility 5 - absolute value of the absolute difference in the conditional survival 

estimates. For TWIST utility 5, the number of disagreements in statistical significance were 

seven (11.1%) for OSC to DFS5 and six (9.5%) for OS5 to DFS3.   

For TWIST utility 5, six of the seven disagreements for OSC compared to DFS5 resulted 

in OSC finding a non-statistically significant result whereas the DFS5 p-value was less than 0.05.  

A further examination of the OSC Kaplan Meier plots for five of these cases showed similar 

patterns in their survival curves.  For these five, the curves started together, split apart, and then 

came back together. The exception to this pattern was the trial level case with the smallest 

amount of follow-up time.   
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When using TWIST utility 5 to compare results for OS5 to DFS3, a total of six 

disagreements in statistically significance occurred with 3 occurring in each direction.  In two of 

the three where OS5 was not statistically significant but DFS3 was, we see a similar pattern to 

what we saw for OSC.  A different pattern is visible when looking at two of the three cases 

where OS5 was statistically significant but DFS3 was not.  In these two, the separation in the 

survival curves does not occur until after three years of follow-up. 

In addition to TWIST utility 5 producing the fewest statistically significant 

disagreements, this approach also produced relatively high Spearman correlation coefficients 

when comparing OS5 treatment p-values to 3 year disease free treatment p-values (0.64 to 0.79) 

with the one exception being the Spearman correlation coefficients for trial level comparisons 

(0.38).  However, all trial level comparisons did result in agreement in whether the treatment was 

statistically significant or not.   

In conclusion, it does appear that our methodology, combining the methodology of 

QTWIST and weighting coefficients determined by conditional survival, does produce a 

potential predictor of overall survival and one that may be more predictive than standard DFS 

methodology. 
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APPENDIX A: FIGURES AND TABLES 

Reprinted with permission.  © 2005 American Society of Clinical Oncology.  All rights reserved. 

Figure 1. Three-year disease-free survival (DFS) vs 5-year overall survival (OS) by study arm R
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Reprinted with permission.  © 2005 American Society of Clinical Oncology.  All rights reserved.

Figure 2. Disease-free survival (DFS) versus overall survival (OS) hazard ratios (HR) by trial   

Table 1. Summary statistics for Lin, Fleming and De Gruttola simulation studies (1000 simulation samples) 

0.25γ = 0.50γ =  1.00γ =
N 250 500 1000 250 500 1000 250 500 1000 

( )ˆMean α 1.56 1.52 1.50 2.15 2.01 1.97 3.47 2.91 2.78 

( )ˆSE α 0.47 0.31 0.22 1.10 0.37 0.26 2.47 1.03 0.35 

( )ˆMean β 1.07 1.03 1.01 1.18 1.05 1.02 1.69 1.16 1.04 

( )ˆSE β 0.58 0.38 0.28 1.17 0.43 0.31 2.48 1.05 0.39 

( )ˆˆ,Corr α β  0.80 0.79 0.81 0.96 0.84 0.85 0.99 0.98 0.91

( )ˆMean p 0.35 0.33 0.33 0.50 0.49 0.49 0.62 0.63 0.64 

( )ˆSE p 0.31 0.17 0.13 0.24 0.15 0.11 0.22 0.14 0.10 

( )1/ 2 ˆMean n σ−  0.28 0.18 0.13 0.22 0.15 0.11 0.19 0.13 0.09

Mean width of 95 per cent CI 
methodδ − 1.11 0.72 0.50 0.87 0.60 0.42 0.73 0.52 0.37 

Fieller method 1.69 0.84 0.52 1.30 0.66 0.44 0.90 0.57 0.38 
Coverage of 95 per cent CI 

methodδ − 0.96 0.96 0.96 0.94 0.95 0.95 0.90 0.94 0.94 
Fieller method 0.94 0.96 0.96 0.94 0.96 0.95 0.91 0.96 0.95 
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Table 2. Results for simulated cancer examples 

Without Interaction With Interaction 
RSλ α  β  

1 β
α

−
γ  α  β  γ  *β γ  

Run 1: 

( )
( )
ln 0.7 / 3

ln 0.8 / 3

S
o
S

T
R
o

R
T

λ

λ

λ

λ

=

=

= −

= −

0.25 -.440 .001 1.002 8.58 -.440 .116 8.67 -.115 

1 -.467 .002 1.004 11.87 -.467 .090 13.36 -.088 

2 -.470 -.001 0.998 21.00 -.470 .455 23.80 -.451 

Run 2: 
( )
( )
( )
( )

ln 0.95 / 5

ln 0.95 / 5

ln 0.7 / 3

ln 0.8 / 3

S
o

S
T

R
o

R
T

λ

λ

λ

λ

= −

= −

= −

= −

0.25 -.378 -.002 0.995 3.20 -.378 .004 3.20 -.006 

1 -.417 -.001 0.998 4.56 -.417 .019 4.57 -.027 

Run 3: 
( )
( )
( )
( )

ln 0.7 / 5

ln 0.7 / 5

ln 0.7 / 3

ln 0.8 / 3

S
o

S
T

R
o

R
T

λ

λ

λ

λ

= −

= −

= −

= −

0.25 -.168 .001 1.006 1.26 -.168 .000 1.25 .001 

1 -.242 .002 1.008 2.66 -.242 .004 2.67 -.004 

3 -.264 -.003 0.989 3.77 -.265 -.005 3.77 -.007 

Run 4: 
( )
( )
( )
( )

ln 0.7 / 5

ln 0.8 / 5

ln 0.7 / 3

ln 0.8 / 3

S
o

S
T

R
o

R
T

λ

λ

λ

λ

= −

= −

= −

= −

0.25 -.405 -.175 0.568 1.50 -.405 -.468 1.25 .468 

1 -.463 -.180 0.611 2.91 -.463 -.470 2.67 .468 

3 -.466 -.185 0.603 3.55 -.467 -.394 3.64 .381 
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Table 3. Description of the number of patients included in colon cancer analysis 

Study Arm # Randomized # Ineligible # No Follow-up # Included 
C-03 LV + 5FU 539 19 2 518 
C-04 LV + 5FU 719 26 2 691 
C-04 LV+5FU+LEV 717 20 2 695 
C-05 LV + 5FU 1088 18 1 1069 
C-05 LV+5FU+IFN 1088 21 8 1059 
C-06 LV + 5FU 803 27 6 772 
C-06 LV + UFT 805 24 1 783 
C-07 LV + FU 1245 23 15 1207 
Total 7004 178 37 6789 

Reprinted with permission. © 2010 American Society of Clinical Oncology.  All rights reserved. 

Figure 3. Five year CS as a function of years already survived since diagnosis 
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Reprinted with permission. © 2010 American Society of Clinical Oncology.  All rights reserved.

 Figure 4. Five year OS|DFS estimates categorized by age 

Reprinted with permission. © 2010 American Society of Clinical Oncology.  All rights reserved.

Figure 5. Five year OS|DFS estimates categorized by Dukes stage 
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Reprinted with permission. © 2010 American Society of Clinical Oncology.  All rights reserved.

Figure 6. Five year OS|DFS estimates categorized by positive and resected nodes
 
 

Reprinted with permission. © 2010 American Society of Clinical Oncology.  All rights reserved.

Figure 7. Five year OS|DFS estimates categorized by ECOG PS
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Table 4. Spearman rank correlation coefficients comparing overall survival (OSC) p-values to 5 year 
disease free survival (DFS5) 

N DFS5 TWIST 
Utility 1 

TWIST 
Utility 2 

TWIST 
Utility 3 

TWIST 
Utility 4 

TWIST 
Utility 5 

TWIST 
Utility 6 

All 63 0.49 0.61 0.62 0.62 0.50 0.49 0.50 
Trial level 5 0.51 0.84 0.88 0.88 0.64 0.63 0.57 
Age 18 0.62 0.55 0.56 0.55 0.63 0.36 0.42 
Dukes stage 10 0.40 0.63 0.67 0.67 0.55 0.43 0.53 
ECOG PS 10 0.41 0.58 0.63 0.63 0.48 0.81 0.85 
# of positive 
and resected 
nodes 

20 0.50 0.67 0.64 0.64 0.42 0.42 0.38 

Table 5. Number of p-values with agreement (+) and non-agreement (-), α=0.05 level, for overall survival 
(OSC) versus 5 year disease free survival (DFS5) 

DFS5 TWIST 
Utility 

1 

TWIST 
Utility 

2 

TWIST 
Utility 

3 

TWIST 
Utility 

4 

TWIST 
Utility 

5 

TWIST 
Utility 

6 
+ - + - + - + - + - + - + - 

All 54 9 54 9 55 8 55 8 54 9 56 7 55 8 
Trial level 4 1 4 1 4 1 4 1 4 1 4 1 4 1 
Age 16 2 15 3 15 3 15 3 15 3 14 4 15 3 
Dukes stage 9 1 9 1 9 1 9 1 9 1 10 0 9 1 
ECOG PS 8 2 8 2 8 2 8 2 8 2 9 1 9 1 
# of positive and resected 
nodes 

17 3 18 2 19 1 19 1 18 2 19 1 18 2 

Table 6. Spearman rank correlation coefficients comparing 5 year overall survival (OS5) p-values to 3 year 
disease free survival (DFS3) 

N DFS3 TWIST 
Utility 1 

TWIST 
Utility 2 

TWIST 
Utility 3 

TWIST 
Utility 4 

TWIST 
Utility 5 

TWIST 
Utility 6 

All 63 0.67 0.60 0.56 0.56 0.67 0.64 0.64 
Trial level 5 0.88 0.93 0.94 0.94 0.87 0.38 0.36 
Age 18 0.63 0.53 0.49 0.49 0.68 0.70 0.73 
Dukes stage 10 0.80 0.70 0.68 0.68 0.79 0.69 0.68 
ECOG PS 10 0.78 0.72 0.69 0.69 0.72 0.79 0.87 
# of positive 
and resected 
nodes 

20 0.59 0.50 0.43 0.43 0.62 0.67 0.64 
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Table 7. Number of p-values with agreement (+) and non-agreement (-), α=0.05 level, for 5 year overall 
survival (OS5) versus 3 year disease free survival (DFS3) 

DFS3 TWIST 
Utility 

1 

TWIST 
Utility 

2 

TWIST 
Utility 

3 

TWIST 
Utility 

4 

TWIST 
Utility 

5 

TWIST 
Utility 

6 
+ - + - + - + - + - + - + - 

All 53 10 52 11 53 10 53 10 55 8 57 6 57 6 
Trial level 4 1 4 1 4 1 4 1 4 1 5 0 5 0 
Age 15 3 16 2 17 1 17 1 16 2 17 1 17 1 
Dukes stage 8 2 8 2 8 2 8 2 8 2 8 2 8 2 
ECOG PS 9 1 8 2 8 2 8 2 10 0 10 0 10 0 
# of positive and 
resected nodes 

17 3 16 4 16 4 16 4 17 3 17 3 17 3 
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Figure 8. Comparison of treatment difference p-values for OSC to DFS5 
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Figure 9. Comparison of treatment difference p-values for OS5 to DFS3 
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APPENDIX B: STATISTICAL CODE 

B.1 LIN, FLEMING AND DE GRUTTOLA SIMULATION CODE 

niter_1000 

n0_250 
n1_250 
n_n0+n1 

id_rep(1:n,1) 
id1_c(id,id) 

u0_0 
u1_2 

beta_1 
delta_0.50 
lambda20_1 

z_rep(1.96,niter) 
nf_rep(n,niter) 

r_c(rep(0,n0),rep(1,n1)) 
r1_c(r,rep(0,n)) 
r2_c(rep(0,n),r) 

etype_c(rep(1,n),rep(2,n)) 

modelalpha_c(rep(0,niter)) 
modelvaralpha_c(rep(0,niter)) 
modelbeta_c(rep(0,niter)) 
modelvarbeta_c(rep(0,niter)) 
modelcov_c(rep(0,niter)) 

psim_c(rep(0,niter)) 
sigma2_c(rep(0,niter)) 
nsigma_c(rep(0,niter)) 
sigma2check_c(rep(0,niter)) 
sigma2new_c(rep(0,niter)) 
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nsigmanew_c(rep(0,niter)) 
 
lowernci_c(rep(0,niter)) 
uppernci_c(rep(0,niter)) 
widthnci_c(rep(0,niter)) 
coveragen_c(rep(0,niter)) 
 
g_c(rep(0,niter)) 
q_c(rep(0,niter)) 
lowerfci_c(rep(0,niter)) 
upperfci_c(rep(0,niter)) 
widthfci_c(rep(0,niter)) 
 
for (i in 1:niter) 
{ 
w_c(rnorm(n0,u0,1),rnorm(n1,u1,1)) 
w1_c(rep(0,n),w) 
 
lambda_lambda20*exp((beta*r)+(delta*w)) 
nlambda_rep(1,n) 
timevar_c(rexp(n,lambda)) 
timevar1_c(timevar,timevar) 
censor_runif(n,0,quantile(timevar,0.25)) 
censor1_c(censor,censor) 
 
status1_c(rep(0,n),rep(0,n)) 
status1[timevar<censor]_1 
 
model_coxph(Surv(timevar1,status1)~(r1 + r2 +          
w1)*strata(etype)+cluster(id1)) 
modelalpha[i]_model$coef[1] 
modelvaralpha[i]_model$var[1] 
modelbeta[i]_model$coef[2] 
modelvarbeta[i]_model$var[8] 
modelcov[i]_model$var[7] 
 
psim[i]_1-(modelbeta[i]/modelalpha[i]) 
sigma2[i]_((modelvarbeta[i]/modelalpha[i]^2)+(((modelbeta[i]^2)*modelv
aralpha[i])/modelalpha[i]^4) 
 -(2*modelbeta[i]*modelcov[i]/modelalpha[i]^3)) 
nsigma[i]_sqrt(sigma2[i]) 
  
lowernci[i]_psim[i]-z[i]*nsigma[i] 
uppernci[i]_psim[i]+z[i]*nsigma[i] 
widthnci[i]_uppernci[i]-lowernci[i] 
if (lowernci[i]<0.33 && uppernci[i]>0.33) coveragen[i]_1 
 
g[i]_z[i]^2*(modelvaralpha[i]/modelalpha[i]^2) 
q[i]_modelbeta[i]/modelalpha[i] 
upperfci[i]_1-(1/(1-g[i]))*(q[i]-
(g[i]*(modelcov[i]/modelvaralpha[i]))-(z[i]/abs(modelalpha[i])) 
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 *(modelvarbeta[i]-
(2*q[i]*modelcov[i])+((q[i]^2)*modelvaralpha[i])-
(g[i]*(modelvarbeta[i]- 
 (modelcov[i]^2/modelvaralpha[i]))))^(1/2)) 
lowerfci[i]_1-(1/(1-g[i]))*(q[i]-
g[i]*(modelcov[i]/modelvaralpha[i])+(z[i]/abs(modelalpha[i])) 
 *(modelvarbeta[i]-
(2*q[i]*modelcov[i])+((q[i]^2)*modelvaralpha[i])-
(g[i]*(modelvarbeta[i]- 
 (modelcov[i]^2/modelvaralpha[i]))))^(1/2)) 
} 
 
g9_g<1 
lowerfcina_lowerfci[g9] 
upperfcina_upperfci[g9] 
widthfci_upperfcina-lowerfcina 
not9_niter-length(widthfci) 
coveragef_rep(0,length(widthfci)) 
for (j in 1:length(widthfci)) 
{ 
if (lowerfcina[j]<0.33 && upperfcina[j]>0.33) coveragef[j]_1 
} 
 
meanalpha_mean(modelalpha) 
sealpha_sqrt(var(modelalpha)) 
 
meanbeta_mean(modelbeta) 
sebeta_sqrt(var(modelbeta)) 
 
corrab_cor(modelalpha,modelbeta) 
corrabcheck_mean(modelcov/(sqrt(modelvaralpha)*sqrt(modelvarbeta))) 
 
meanp_mean(psim) 
sep_sqrt(var(psim)) 
 
meannsigma_mean(nsigma) 
 
meanwidthnci_mean(widthnci) 
cicoveragen_sum(coveragen)/niter 
 
meanwidthfci_mean(widthfci) 
cicoveragef_sum(coveragef)/length(widthfci) 
 
meanalpha 
sealpha 
meanbeta 
sebeta 
corrab 
corrabcheck 
meanp 
sep 
meannsigma 
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meanwidthnci 
cicoveragen 
not9 
meanwidthfci 
cicoveragef 

B.2 CANCER SIMULATION CODE 

niter_1000 
alpha_c(rep(0,niter)) 
beta_c(rep(0,niter)) 
gamma_c(rep(0,niter)) 

alphaint_c(rep(0,niter)) 
betaint_c(rep(0,niter)) 
gammaint_c(rep(0,niter)) 
betagammaint_c(rep(0,niter)) 

survlambdauntrt_(-log(0.95)/5) 
survlambdatrt_(-log(0.95)/5) 

srlambdauntrt_3 
srlambdatrt_3 

recurrlambdauntrt_(-log(0.7)/3) 
recurrlambdatrt_(-log(0.8)/3) 

#simalpha_log(survlambdatrt/survlambdauntrt) 
#simbeta_log(recurrlambdatrt/recurrlambdauntrt) 
#simgamma_log(3) 

for (j in 1:niter) 
{ 
n0_500 
n1_500 
n_n0+n1 

id_rep(1:n,1) 
r_c(rep(0,n0),rep(1,n1)) 
wtk_rep(0,n) 

start_rep(0,n) 

timerecuntrt_c(rexp(n0,recurrlambdauntrt)) 
timerectrt_c(rexp(n1,recurrlambdatrt)) 
recurrtime_c(timerecuntrt,timerectrt) 

timesurvuntrt_c(rexp(n0,survlambdauntrt)) 
timesurvtrt_c(rexp(n1,survlambdatrt)) 
survtime_c(timesurvuntrt,timesurvtrt) 
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survtime1_c(rep(0,length(survtime))) 
timesr_c(rep(0,length(survtime))) 

for (k in 1:length(survtime)) 
{  if (recurrtime[k]>survtime[k]) {survtime1[k]_survtime[k]} 

else if (recurrtime[k]<survtime[k] && r[k]==0) 
{timesr[k]_rexp(1,srlambdauntrt); 

survtime1[k]_recurrtime[k]+timesr[k]} 
else if (recurrtime[k]<survtime[k] && r[k]==1) 

{timesr[k]_rexp(1,srlambdatrt); 
survtime1[k]_recurrtime[k]+timesr[k]} 
}  

#censor_runif(n,0,quantile(survtime1,0.50)) 

status_c(rep(1,n)) 
#status[survtime<censor]_1 

timedata_cbind(id,start,survtime1,recurrtime,status,r) 

wtk[survtime1>recurrtime]_1 
checkwt1_wtk==1 
idtimedep_id[checkwt1] 

id1_rep(0,n) 
id2_rep(0,length(idtimedep)) 
r1_rep(0,n) 
r2_rep(0,length(idtimedep)) 
start1_rep(0,length(start)) 
start2_rep(0,length(idtimedep)) 
stop1_rep(0,length(survtime1)) 
stop2_rep(0,length(idtimedep)) 
wt1_rep(0,length(wtk)) 
wt2_rep(0,length(idtimedep)) 
status1_rep(0,length(wtk)) 
status2_rep(0,length(idtimedep)) 

for (i in 1:length(id)) 
{ 
if (survtime[i]>recurrtime[i]) {id1[i]_id[i]; r1[i]_r[i]; start1[i]_start[i]; 

stop1[i]_recurrtime[i]; wt1[i]_0; status1[i]_0; 
id2[i]_id[i]; r2[i]_r[i]; start2[i]_recurrtime[i];  
stop2[i]_survtime1[i]; wt2[i]_1; status2[i]_status[i]} 

else {id1[i]_id[i]; r1[i]_r[i]; start1[i]_start[i]; 
stop1[i]_survtime1[i]; wt1[i]_0; status1[i]_status[i]} 

} 

idcheck_rep(0,n) 
for (i in 1:n) 
{ 
if (id2[i]!=0 && id2[i]!="NA") {idcheck[i]_1} 
} 

idfinal_c(id1,id2[idcheck==1]) 
rfinal_c(r1,r2[idcheck==1]) 

55 



startfinal_c(start1,start2[idcheck==1]) 
stopfinal_c(stop1,stop2[idcheck==1]) 
wtfinal_c(wt1,wt2[idcheck==1]) 
statusfinal_c(status1,status2[idcheck==1]) 
final_cbind(idfinal,startfinal,stopfinal,wtfinal,statusfinal) 

idcox_c(idfinal,idfinal) 
r1cox_c(rfinal,rep(0,length(rfinal))) 
r2cox_c(rep(0,length(rfinal)),rfinal) 
etypecox_c(rep(1,length(idfinal)),rep(2,length(idfinal))) 
wtcox_c(rep(0,length(idfinal)),wtfinal) 

startcox_c(startfinal,startfinal) 
stopcox_c(stopfinal,stopfinal) 
statuscox_c(statusfinal,statusfinal) 

model1_coxph(Surv(startcox,stopcox,statuscox) 
~(r1cox + r2cox + wtcox)*strata(etypecox)+cluster(idcox)) 

alpha[j]_model1$coef[1] 
beta[j]_model1$coef[2] 
gamma[j]_model1$coef[3] 
model2_coxph(Surv(startcox,stopcox,statuscox) 

~(r1cox + r2cox + wtcox + r2cox*wtcox)*strata(etypecox)+cluster(idcox)) 
alphaint[j]_model2$coef[1] 
betaint[j]_model2$coef[2] 
gammaint[j]_model2$coef[3] 
betagammaint[j]_model2$coef[4] 
} 

meanalpha_mean(alpha) 
meanbeta_mean(beta) 
meangamma_mean(gamma) 

meanalphaint_mean(alphaint) 
meanbetaint_mean(betaint) 
meangammaint_mean(gammaint) 
meanbetagammaint_mean(betagammaint) 

#simalpha 

meanalpha 
meanbeta 
meangamma 

meanalphaint 
meanbetaint 
meangammaint 
meanbetagammaint 
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B.3 QTWIST CODE 

printci 
decimals 2 
file 'c03df.dat' 
format free 
variables 12 
read 
events <3,8><4,9><5,10><6,11><7,12> 
names df1 df2 df3 df4 df5 
timepoints 60 
treatment 1 
compare 1v0 
summary 
seed 745236472 
sample 2000 
means 
utility 0.2 0.4 0.6 0.8 1 
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