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ABSTRACT
This paper presents a Laguerre homotopy method for quadratic optimal control problems in
semi-infinite intervals (LaHOC), with particular interests given to nonlinear interconnected large-
scale dynamic systems. In LaHOC, the spectral homotopy analysis method is used to derive an
iterative solver for the nonlinear two-point boundary value problem derived from Pontryagin’s
maximum principle. A proof of local convergence of the LaHOC is provided. Numerical com-
parisons are made between the LaHOC, Matlab BVP5C generated results and results from the
literature for two nonlinear optimal control problems. The results show that LaHOC is superior in
both accuracy and efficiency.
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1. Introduction

Large-scale systems are found in many practical appli-
cations, such as power systems and physical plants.
During the past several years, the problem of analy-
sis and synthesis for dynamic large-scale systems has
received considerable attention. Based on the charac-
teristics of large-scale systems, many results have been
proposed, such as modelling, stability, robust control,
decentralized, and so on [1–6].

The optimal control of nonlinear large-scale sys-
tems has been widely investigated in recent decades.
For instance, a new successive approximation approach
(SAA) was proposed in [7]. In this approach, instead
of directly solving the nonlinear large-scale two-point
boundary value problem (TPBVP), derived from the
maximum principle, a sequence of non-homogeneous
linear time-varying TPBVPs is solved iteratively. Also,
in [8] a new technique, called the modal series method,
has been extended to solve a class of infinite horizon
OCPs of nonlinear interconnected large-scale dynamic
systems, where the cost function is assumed to be
quadratic and decoupled. This method provides the
solution of autonomous nonlinear systems in terms
of fundamental and interacting modes. Conventional
methods of optimal control are generally impractical
for many nonlinear large-scale systems because of the
dimensionality problem and high complexity in cal-
culations. One example is the state-dependent Riccati
equation (SDRE) method [9]. Although this scheme
has been widely used in many applications, its major

limitation is that it needs to solve a sequence of matrix
Riccati algebraic equations at each sample state along
the trajectory. This property may take a long comput-
ing time and large memory space. Therefore, devel-
oping new methods is necessary for solving nonlinear
large-scale optimal control problems (OCPs) [10].

The use of spectral methods for optimal control
problems usually leads to a more efficient method than
finite element or finite difference approaches. Cheby-
shev’s and Legendre’s methods are commonly used
for problems in finite intervals [11,12]. For infinite or
semi-infinite intervals, there are several choices for the
approximation bases: Hermite polynomials/functions
[13], Laguerre polynomials/functions [14], mapped
Jacobi bases [15–17]. Furthermore, one class of very
important applications of OCP in unbounded inter-
vals is the so-called Minimum Action Method (MAM)
[18] used in finding the most probable transition path
in phase transition phenomena. Using MAM to study
spatial extended transitions, such as fluid instability
transition, is usually equivalent to solve a large-scale
nonlinear optimal control problem [18].

The homotopy analysis method is an analytical tech-
nique for solving nonlinear differential equations. The
HAM [19,20] was first proposed by Liao in 1992 to
solve lots of nonlinear problems. This method has been
successfully applied to many nonlinear problems, such
as physical models with an infinite number of singu-
larities [21], nonlinear eigenvalue problems [22], frac-
tional Sturm–Liouville problems [23], optimal control
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problems [24,25], Cahn–Hilliard initial value problem
[26], semi-linear elliptic boundary value problems [27]
and so on [28]. The HAM contains a certain auxiliary
parameter � which provides us with a simple way to
adjust and control the convergence region and rate of
convergence of the series solution. Moreover, by means
of the so-called �-curve, it is easy to determine the
valid regions of � to gain a convergent series solution.
The HAM, however, suffers from a number of restric-
tivemeasures, such as the requirement that the solution
sought ought to conform to the so-called rule of solu-
tion expression and the rule of coefficient ergodicity.
These HAM requirements are meant to ensure that the
implementation of the method results in a series of
differential equations can be solved analytically.

Recently, Motsa et al. [29–32] proposed a spec-
tral modification of the homotopy analysis method,
the spectral-homotopy analysis method (SHAM). The
SHAMapproach imports some of the ideas of theHAM
such as the use of the convergence controlling auxil-
iary parameter. In the implementation of the SHAM,
the sequence of the so-called deformation differen-
tial equations is converted into a matrix system by
applying the Chebyshev or Legendre pseudospectral
method [31]. But so far, to our knowledge, there is no
work concerning the combination of Laguerre poly-
nomials [33] with the HAM. This paper presents a
spectral homotopy analysis method based on modi-
fied Laguerre–Radau interpolation to solve nonlinear
large-scale optimal control problems (OCPs). This pro-
cess has several advantages. First, it possesses spec-
tral accuracy [34,35]. Next, it is easier to be imple-
mented, especially for nonlinear systems. Furthermore,
it is applicable to long-time calculations.

The paper is organized as follows. The nonlin-
ear interconnected OCP and optimality conditions are
described in Section 2. In Section 3, we propose the new
algorithm by using themodified Laguerre polynomials.
The convergence of the proposed method is proved in
Section 4.We present the numerical results in Section 5,
which demonstrate the spectral accuracy of the pro-
posed methods. The final section is for concluding
remarks.

2. The nonlinear interconnected OCP

Consider a nonlinear interconnected large-scale
dynamic system which can be decomposed into N
interconnected subsystems. The ith subsystem for i =
1, 2, . . . ,N is described by

ẋi(t) = Aixi(t)+ Biui(t)+ fi(x(t)), t > t0,

xi(t0) = xi0 ,
(1)

with xi ∈ Rni denoting the state vector, ui ∈ Rmi the
control vector of the ith subsystem, respectively, x =

(xT1 , x
T
2 , . . . x

T
N)

T ,
∑N

i=1 ni = n, Fi : Rn → Rni is a non-
linear analytic vector function where Fi(0) = 0, and
xi0 ∈ Rni is the initial state vector. Also, Ai and Bi are
constant matrices of appropriate dimensions such that
the pair (Ai,Bi) is completely controllable [8]. Further-
more, the infinite horizon quadratic cost function to be
minimized is given by

J = 1
2

N∑
i=1

{∫ ∞

t0
(xTi (t)Qxi(t)+ uTi (t)Riui(t))dt

}
,

(2)

where Qi ∈ Rni×ni and Ri ∈ Rmi×mi are positive
semidefinite and positive definitematrices, respectively.
Note that quadratic cost function (2) is assumed to be
decoupled as a superposition of the cost functions of the
subsystems.

According to Pontryagin’s maximum principle, the
optimality conditions are obtained as the following
nonlinear TPBVP:

ẋi(t) = Aixi(t)− BiR−1
i BTi λi(t)+ fi(x(t)), t > t0,

λ̇i(t) = −Qixi(t)− AT
i λi(t)

−�i(x(t), λ(t)), t > t0,

xi(t0) = xi0 , λi(∞) = 0,

i = 1, 2, . . . ,N, (3)

where λi(t) ∈ Rni is the co-state vector, λ = (λT1 ,
λT2 , . . . λ

T
N)

T , and �i(x(t), λ(t)) = ∑N
j=1(∂fj(x(t))/

∂xi(t))λj(t). Also the optimal control law of the ith
subsystem is given by

u∗
i (t) = −R−1

i BTi λi(t), t > t0, i = 1, 2, . . .N.
(4)

Unfortunately, problem (3) is a nonlinear large-scale
TPBVP which is decomposed into N interconnected
subproblems. In general, it is extremely difficult to solve
this problem analytically or even numerically, except in
a few simple cases. In order to overcome this difficulty,
we will present the LaHOCmethod in the next section.

3. Laguerre polynomials and spectral
homotopy analysis method

In this section, we give a brief description of the basic
idea of the Laguerre homotopy method for solving
nonlinear boundary value problems. At first, we take
into account the following properties of the modified
Laguerre polynomials.

3.1. Properties of themodified Laguerre
polynomials

Letωβ(t) = e−βt ,β > 0, and define the weighted space
L2ωβ (0,∞) as usual, with the following inner product
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and norm [14]:

(u, v)ωβ =
∫ ∞

0
u(t)v(t)ωβ(t) dt, ||v||ωβ = (v, v)ωβ .

(5)

The modified Laguerre polynomial of degree l is
defined by

Lβl (t) = 1
l!
eβt

dl

dtl
(tle−βt), l ≥ 0. (6)

They satisfy the recurrence relation

d
dt
Lβl (t) = d

dt
Lβl−1(t)− βLβl−1(t), l ≥ 1. (7)

The set of Laguerre polynomials is a complete L2ωβ (0,∞)-orthogonal system, namely,

(Lβl ,Lβm)ωβ = 1
β
δl,m, (8)

where δl,m is the Kronecker symbol. Thus, for any v ∈
L2ωβ (0,∞),

v(t) =
∞∑
j=0

v̂lLβl (t), (9)

where the coefficients v̂l are given by

v̂l = β(v,Lβl )ωβ . (10)

Now, let N be any positive integer, and PN(0,∞) the
set of all algebraic polynomials of degree at most N.
We denote by tNβ ,j, 0 ≤ j ≤ N, the nodes of modified
Laguerre–Radau interpolation. Indeed, tNβ ,0 = 0 and
tNβ ,j, 1 ≤ j ≤ N, are the distinct zeros of (d/dt)LβN+1(t).
By using (7), the correspondingChristoffel numbers are
as follows:

ωN
β ,0 = 1

β(N + 1)
,

ωN
β ,j = 1

β(N + 1)LβN(tNβ ,j) LβN+1(t
N
β ,j)

.
(11)

For any� ∈ P2N(0,∞),

N∑
j=0

�(tNβ ,j)ω
N
β ,j =

∫ ∞

0
�(t)ωβ(t) dt. (12)

Next, we define the following discrete inner product
and norm,

(u, v)ωβ ,N =
N∑
j=0

u(tNβ ,j)v(t
N
β ,j)ω

N
β ,j,

||v||ωβ ,N = (v, v)12ωβ ,N . (13)

For any�,ψ ∈ PN(0,∞),

(�,ψ)ωβ = (�,ψ)ωβ ,N , ||v||ωβ = ||v||ωβ ,N . (14)

3.2. Spectral homotopy analysis method

In this section, we give a description of the SHAMwith
the Laguerre polynomials basis. This will be followed by
a description of the new version of the SHAMalgorithm
[29]. To this end, consider a general n-dimensional
initial value problem described as

ż(t) = f(t, z(t)), z(t0) = z0, (15)

z : R → R
n, f : R × R

n → R
n. (16)

We make the usual assumption that f is sufficiently
smooth for linearization techniques to be valid. If z =
(z1, z2, . . . , zn), we can apply the SHAM by rewriting
Equation (15) as

żr +
n∑

k=1

σr,kzk + gr(z1, z2, . . . , zn) = 0, (17)

subject to the initial conditions

zr(0) = z0r , (18)

where z0r are the given initial conditions, σr,k are known
constant parameters and gr is the nonlinear component
of the rth equation.

The SHAMapproach imports the conventional ideas
of the standard homotopy analysis method by defining
the following zeroth-order deformation equations:

(1 − q)Lr
[
z̃r(t; q)− zr,0(t)

] = q�rNr[z̃(t; q)], (19)

where q ∈ [0, 1] is an embedding parameter, z̃r(t; q) are
unknown functions, and�r is a convergence controlling
parameter. The operators Lr andNr are defined as

Lr[z̃r(t; q)] = ∂ z̃r
∂t

+
n∑

k=1

σr,kz̃k, (20)

Nr[z̃(t; q)] = Lr[z̃r(t; q)]

+ gr[z̃1(t; q), z̃2(t; q), . . . , z̃n(t; q)].
(21)

Using the ideas of the standardHAMapproach [20], we
differentiate zeroth-order Equations (19) m times with
respect to q and then set q = 0 and finally divide the
resulting equations bym! to obtain the following equa-
tions, which are referred to as themth order (or higher
order) deformation equations:

Lr[zr,m(t)− χmzr,m−1(t)] = �rRr,m−1, m ≥ 1,
(22)

subject to

zr,m(0) = 0, (23)

where

Rr,m−1 = 1
(m − 1)!

∂m−1Nr[z̃(t; q)]
∂qm−1

∣∣∣∣
q=0

(24)
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and

χm =
{
0, m � 1,
1, m > 1.

(25)

After obtaining solutions for Equation (22), the approx-
imate solution for each zr(t) is determined as the series
solution

zr(t) = zr,0(t)+ zr,1(t)+ zr,2(t)+ . . . (26)

A HAM solution is said to be of order M if the above
series is truncated atm = M, that is, if

zr(t) =
M∑

m=0
zr,m(t). (27)

A suitable initial guess to start off the SHAM algorithm
is obtained by solving the linear part of (17) subject to
the given initial conditions, that is, we solve

Lr[zr,0(t)] = φr(t), zr,0(0) = z0r . (28)

If Equation (28) cannot be solved exactly, the spec-
tral collocation method is used as a means of solu-
tion. The solution zr,0(t) of Equation (28) is then fed
to (22) which is iteratively solved for zr,m(t) (for m =
1, 2, 3, . . . ,M ).

In this paper, we use the Laguerre pseudo-spectral
method to solve Equations (22)–(24). The pseudo-
spectral derivative DN(z) of a continuous function z is
defined by

DN(z) = D[IN(z)], (29)

that is,DN(z) is the derivative of the interpolating poly-
nomial of z. Moreover,DN can be expressed in terms of
a matrix, the pseudo-spectral derivation matrix Dβ :

Dβ = [(dβ)ij]i,j=0,1,...,N .

Indeed, given the nodes {x(β)j }Nj=0, an approximation

z ∈ P (β)
N of an unknown function and {(hβ)j}, the

Lagrange interpolation polynomials associatedwith the
points xj, differentiatingm times the expression

zβ(x) =
N∑
j=0

zβ(xj)(hβ)j(x)

yields:

z(m)β (xk) =
N∑
j=0
(hβ)

(m)
j (xk)zβ(xj), 0 ≤ k ≤ N.

If we define

z(m)β =
(
z(m)β (x0), z

(m)
β (x1), . . . , z

(m)
β (xN)

)T
,

zβ = z(0)β ,

D(m)β =
[
(dβ)

(m)
ij = (hβ)

(m)
j (xi)

]
0≤i,j≤N

,

(dβ)
(m)
ij = (hβ)

(m)
j (xi),

then

Dβ = D(1)β , (dβ)ij = (dβ)
(1)
ij .

We now state two important results. The first ensures
that it is sufficient to compute the first-order differentia-
tionmatrix, and the second gives the general expression
of its entries.

Lemma 3.1 ([33]):

D(m)β = Dβ .Dβ · · ·Dβ = Dm
β , m ≥ 1. (30)

Let {x(β)j }Nj=0 be the Gauss–Laguerre (GL) or

Gauss–Laguerre–Radau (GLR) nodes and z ∈ P (β)
N .

Let {(hβ)j(x)}Nj=0 be the Lagrange interpolation polyno-

mials relative to {x(β)j }Nj=0. From Lemma 3.1, we have

z(m)β = Dm
β zβ , m ≥ 1.

Next we have:

Lemma 3.2 ([33]): The entries of the differentiation
matrix Dβ associated with the GL and GLR points
{x(β)j }Nj=0 have the following form:

• GL points: {x(β)j }Nj=0 are the zeros of L
(β)
N+1(x),

dij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L (β)
N

(
x(β)i

)
(
x(β)i − x(β)j

)
L (β)

N

(
x(β)j

) if i �= j,

βx(β)i − N − 2

2x(β)i

if i = j,

(31)
• GLR points: x0 = 0, {x(β)j }Nj=1 are the zeros of

∂
∂xL

(β)
N+1(x),

dij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L (β)
N+1

(
x(β)i

)
(
x(β)i − x(β)j

)
L (β)

N+1

(
x(β)j

) if i �= j,

β

2
if i = j �= 0,

−βN
2

if i = j = 0.
(32)
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Applying the Laguerre spectral collocation method
in Equations (22)–(24) gives

A [Wm − χmWm−1] = �rRm−1, Wm(τ0) = 0,

Wm(τN) = 0, (33)

where Rm−1 is an (N + 1)n × 1 vector corresponding
to Rr,m−1 when evaluated at the collocation points and
Wm = [z̃1,m; z̃2,m; . . . ; z̃n,m].

ThematrixA is an (N + 1)n × (N + 1)nmatrix that
is derived from transforming the linear operator Lr
using the derivative matrixDβ (we omit subscript β for
simplicity) and is defined as

A =

⎡
⎢⎢⎢⎣
A11 A12 · · · A1n
A21 A22 · · · A2n
...

. . .
...

An1 An2 · · · Ann

⎤
⎥⎥⎥⎦ , with

Apq =
{
D + σpqI, p = q,
σpqI, p �= q,

(34)

where I is an identity matrix of order N + 1.
Thus, starting from the initial approximation,

recurrence formula (33) can be used to obtain the solu-
tion zr(t).

4. Convergence analysis of LaHOC

To analyse the convergence of LaHOC, we first recall
themth order (or higher order) deformation equation

L[zm(t)− χmzm−1(t)] = �H(t)Rm−1, (35)

subject to the initial condition

zm,1:n(t0) = 0, (36)

where H(t) �= 0 is an auxiliary function,

Rm−1 = L[zm−1] + Nm−1[z0, z1, . . . , zm−1]

− (1 − χm)φ(t), (37)

where zr,m,Lr andNr in (22) are the rth components of
zm−1 and operatorsL andN , respectively. Let us define
the nonlinear operatorN and the sequence {Zm}∞m=0 as

N [z(t)] =
∞∑
k=0

Nk(z0, z1, . . . , zk), (38)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z0 = z0,
Z1 = z0 + z1,
...
Zm = z0 + z1 + z2 + · · · + zm.

(39)

Therefore, we have

L[zm(t)] = �H(t)

{m−1∑
k=0

L[zk] +
m−1∑
k=0

Nk − φ(t)

}
,

(40)

from (39) we have

L[Zm(t)− Zm−1(t)] = �H(t){L[Zm−1]

+ N [Zm−1] − φ(t)}, (41)

subject to the initial condition

Zm,1:n(t0) = 0. (42)

Consequently, the collocation method is based on a
solution ZN(t) ∈ PN+1(0,∞), for (41) such that

L[ZN
m(t

N
β ,k)− ZN

m−1(t
N
β ,k)]

= �HN(tNβ ,k){L[ZN
m−1(t

N
β ,k)] + N [ZN

m−1(t
N
β ,k)]

− φN(tNβ ,k)}, (43)

subject to the initial condition

ZN
m,1:n(t0) = 0. (44)

From (43), we have

L[ZN
m(t

N
β ,k)] = (1 + �HN(tNβ ,k))L[ZN

m−1(t
N
β ,k)]

+ �HN(tNβ ,k){N [ZN
m−1(t

N
β ,k)]

− φN(tNβ ,k)}, ≤ k ≤ N, m ≥ 1,

ZN
m,1:n(t0) = 0, m ≥ 0.

(45)
Now, we choose L[Z(t)]= (d/dt)Z+α(t)Z, N[Z(t)]=
− α(t)Z − f (t,Z) and φ(t) ≡ 0, where α(t) is an arbi-
trary analytic function.

Let Z̃N
m(t) = ZN

m(t)− ZN
m−1(t), then we have

from (45) that

L[Z̃N
m(t

N
β ,k)] = (1 + �H(tNβ ,k))L[ZN

m−1(t
N
β ,k)

− ZN
m−2(t

N
β ,k)] + �H(tNT,k)

× {N [ZN
m−1(t

N
β ,k)] − N [ZN

m−2(t
N
β ,k)]},

0 ≤ k ≤ N, m ≥ 1, (46)

or according to the definitions of L[Z(t)] and N[Z(t)],

d
dt
[Z̃N

m(t
N
β ,k)] + α(tNβ ,k)Z̃

N
m

= (1 + �H(tNβ ,k))
d
dt
[Z̃N

m−1(t
N
β ,k)] + α(tNβ ,k)Z̃

N
m−1

× �H(tNβ ,k){f (tNβ ,k,ZN
m−1(t

N
β ,k))

− f (tNβ ,k,Z
N
m−2(t

N
β ,k))}, 0 ≤ k ≤ N, m ≥ 1,

(47)

Theorem 4.1: Assume that for any k = 0, 1, . . . ,N,
Zk = {ZN

m(t
N
β ,k)}∞0 is the LaHOC sequence produced by

(45). Furthermore, assume α0 = min t∈[0,∞) α(t), α1 =
max t∈[0,∞) |α(t)| and H = max t∈[0,∞) |H(t)| and
‖f (·,ZN

m)− f (·,ZN
m−1)‖ωβ ,N ≤ Lf ‖ZN

m − ZN
m−1‖ωβ ,N ,

(48)

for some constant Lf > 0. Then for any initial n-vector
ZN
0 (t

N
β ,k),Zk converges to some Ẑ(tN

β ,k)which is the exact
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solution of (17), at any GLR point, tN
β ,k, if

γ = N|1 + �H| + α1 + |�|HLf
β/2 + α0

< 1. (49)

Proof: 1. Using (5) and integrating by parts yield that(
Z̃N
m,

d
dt
Z̃N
m

)
ωβ ,N

=
(
Z̃N
m,

d
dt
Z̃N
m

)
ωβ

= 1
2

[
e−βt(Z̃N

m)
2 |∞0 +

∫ ∞

0
βe−βt(Z̃N

m)
2 dt

]
,

(50)

then we have

2
(
Z̃N
m,

d
dt
Z̃N
m

)
ωβ ,N

= β‖Z̃N
m‖2ωβ ,

‖Z̃N
m‖ωβ ,N = ‖Z̃N

m‖ωβ ;
(51)

by (51) and from the Cauchy inequality, we obtain that

β‖Z̃N
m‖2ωβ ≤ 2‖Z̃N

m‖ωβ ,N‖ d
dt
(Z̃N

m)‖ωβ ,N , (52)

from where

‖Z̃N
m‖ωβ ≤ 2

β
‖ d
dt
(Z̃N

m)‖ωβ , (53)

2. Taking the discrete weighted inner product of (47)
with Z̃N

m(t
N
β ,k), we have(

d
dt
Z̃N
m + α(t)Z̃N

m, Z̃
N
m

)
ωβ ,N

=
(
(1 + �H)

d
dt
Z̃N
m−1 + α(t)Z̃N

m−1, Z̃
N
m

)
ωβ ,N

�

(
H(t)[f (tNβ ,k,Z

N
m−1 − f (tNβ ,k,Z

N
m−2)], Z̃

N
m

)
ωβ ,N

0 ≤ k ≤ N, m ≥ 1, (54)

Therefore, a combination with Cauchy inequality
and (51) leads to(

β

2
+ α0

)
‖Z̃N

m‖ωβ

≤ |1 + �H|‖ d
dt
Z̃N
m−1‖ωβ + α1||Z̃N

m−1||ωβ
+ |�|H‖f (tNβ ,k,ZN

m−1 − f (tNβ ,k,Z
N
m−2)‖ωβ ,N .

(55)

Then by using inverse inequality of Laguerre polyno-
mial and (48), we get(

β

2
+ α0

)
‖Z̃N

m‖ωβ
≤ (N|1 + �H| + α1 + |�|HLf )‖Z̃N

m−1‖ωβ , (56)

which is

∥∥∥Z̃N
m

∥∥∥
ωβ

≤ N|1 + �H| + α1 + |�|HLf
β/2 + α0

∥∥∥Z̃N
m−1

∥∥∥
ωβ

= γ

∥∥∥Z̃N
m−1

∥∥∥
ωβ

. (57)

Hence, we have

∥∥∥Z̃N
m

∥∥∥
ωβ

≤ γ

∥∥∥Z̃N
m−1

∥∥∥
ωβ

≤ · · · ≤ γm
∥∥∥Z̃N

0

∥∥∥
ωβ

. (58)

Then for anym′ ≥ m ≥ 1,

∥∥ZN
m′ − ZN

m
∥∥
ωβ

≤
m′∑

i=m+1

∥∥∥Z̃N
i

∥∥∥
ωβ

≤
m′∑

i=m+1
γ i

∥∥∥Z̃N
0

∥∥∥
ωβ

≤ γm+1

1 − γ

∥∥∥Z̃N
0

∥∥∥
ωβ

. (59)

Since γ ∈ [0, 1), ‖ZN
m′ − ZN

m‖ωβ → 0 as m,m′ → ∞.
ThusZk is a Cauchy sequence, and sinceRn is a Banach
space, Zk has a limit Ẑ(tN

β ,k). Taking limit m → ∞
in (43) yields

L[Ẑ(tNβ ,k)− Ẑ(tNβ ,k)] = 0 = �H(tNβ ,k){L[Ẑ(tNβ ,k)]
+ N [Ẑ(tNβ ,k)] − φN(tNβ ,k)},

Ẑ(0) = z0.

Thus, Ẑ(tN
β ,k) is the exact solution of (17) at any GLR

point tN
β ,k. Also, by noticing the definition of ẐN(t), it is

easy to verify ẐN(tN
β ,k) = Ẑ(tN

β ,k), and hence, the proof
is completed. �

5. Numerical experiments

To demonstrate the applicability of the LaHOC
algorithm as an appropriate tool for solving infi-
nite horizon optimal control for nonlinear large-scale
dynamical systems, we apply the proposed algorithm to
several test problems.

Test problem 3.1.Consider the two-order nonlinear
composite system described by [7]:

ẋ1(t) = x1(t)+ u1(t)− x31(t)+ x22(t), (60)
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ẋ2(t) = −x2(t)+ u2(t)+ x1(t)x2(t)+ x32(t), (61)

x1(0) = 0, x2(0) = 0.8. (62)

The quadratic cost functional to be minimized is given
by

J = 1
2

2∑
i=1

∫ ∞

0
(x2i (t)+ u2i (t)) dt, (63)

In this example, we have A1 = B1 = B2 = 1, A2 =
−1, Q1 = Q2 = R1 = R2 = 1, f1(x) = −x31(t)+ x22(t),
f2(x) = x1(t)x2(t)+ x32(t).

Then, according to optimal control theory (3), the
optimality conditions can be written as

ẋ1(t) = x1(t)− λ1(t)− x31(t)+ x22(t), (64)

ẋ2(t) = −x2(t)− λ2(t)+ x1(t)x2(t)+ x32(t), (65)

λ̇1(t) = −x1(t)− λ1(t)+ 3x21(t)λ1(t)− x2(t)λ2(t),
(66)

λ̇2(t) = −x2(t)+ λ2(t)− 2x2(t)λ1(t)− x1(t)λ2(t)

− 3x22(t)λ2(t), (67)

x1(0) = 0, x2(0) = 0.8,

λ1(∞) = 0, λ2(∞) = 0. (68)

Also the optimal control laws are u1(t) = −λ1, u2(t) =
−λ2.

In this example, the parameters used in the LaHOC
algorithms are

Lr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d
dt − 1 0 1 0

0
d
dt

+ 1 0 1

1 0
d
dt

+ 1 0

0 0 0
d
dt

− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

A =

⎡
⎢⎢⎣
D − I O I O
O D + I O I
I O D + I O
O O O D − I

⎤
⎥⎥⎦ , (69)

Fr =

⎡
⎢⎢⎣

x31 − x22
−x1x2 − x32

−3x21λ1 + x2λ2
2x2λ1 + x1λ2 + 3x22λ2

⎤
⎥⎥⎦ , φ =

⎡
⎢⎢⎢⎢⎣
0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ , (70)

Rr,m−1 = Lr[xr,m−1] + Qr,m−1, (71)

Qr,m−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
m−1∑
j=0

Z1,m−1−j(t)
j∑

k=0

Z1,j(t)Z1,j−k(t)

+
m−1∑
j=0

Z2,jZ2,m−1−j

m−1∑
j=0

Z1,j(t)Z2,m−1−j(t)

+
m−1∑
j=0

Z2,m−1−j(t)

×
j∑

k=0

Z2,j(t)Z2,j−k(t)

3
m−1∑
j=0

Z3,m−1−j(t)
j∑

k=0

Z1,j(t)Z1,j−k(t)

−
m−1∑
j=0

Z2,j(t)Z4,m−1−j(t)

−2
m−1∑
j=0

Z2,j(t)Z3,m−1−j(t)

−
m−1∑
j=0

Z1,j(t)Z4,m−1−j(t)

−3
m−1∑
j=0

Z4,m−1−j(t)

×
j∑

k=0

Z2,j(t)Z2,j−k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(72)

With these definitions, the LaHOC algorithm gives

Xr,m = (χm + �r)Xr,m−1 + �rA−1Qr,m−1. (73)

Because the right-hand side of Equation (73) is known,
the solution can easily be obtained by using methods
for solving a linear system of equations.

Table 1 gives a comparison between the present
LaHOC results for N = 100 and � = −0.6 and the
numerically generated BVP5C, at selected values of
time t. It can be seen from the table that there is
good agreement between the two results.Moreover, our
calculations show the better accuracy of LaHOC. In
comparison with the BVP5C, it is noteworthy that the
LaHOC controls the error bounds while preserving the
CPU time. The CPU time of LaHOC is 0.606532 s, and
BVP5C is 1.109817 s.

Figure 1 and 2 show the suboptimal states and
control for m = 20 iterations of LaHOC, compared
to MATLAB built-in function BVP5C. The conver-
gence of LaHOC iteration is depicted in Figure 3. Also,
Figure 4 presents that the minimum objective func-
tional |Jj − Jjj|, j = 1, 2, . . . , 11 converges to Jjj, where
j = 20 : 10 : 120 and jj = 11.
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Table 1. Comparison between the LaHOC solution when N = 100 and � = −0.6 and BVP4C solution.

x1(t) x2(t) λ1(t) λ2(t)

t LaHOC BVP5C LaHOC BVP5C LaHOC BVP5C LaHOC BVP5C

1 0.000000 0.000000 0.800000 0.800000 0.494159 0.494159 0.766200 0.766189
5 0.002333 0.002333 0.782908 0.782907 0.476481 0.476475 0.729837 0.729804
10 0.010097 0.010098 0.721904 0.721907 0.417587 0.417580 0.612984 0.612940
15 0.020197 0.020198 0.626213 0.626220 0.336861 0.336855 0.464075 0.464028
20 0.028433 0.028436 0.509542 0.509555 0.253927 0.253934 0.325626 0.325617

Figure 1. The amplitudes of optimal state variables (Test problem 3.1).

The results obtained with the present method are
in good agreement with the results of the successive
approximation method used by Tang and Sun [7].

Test problem 3.2. Consider the Euler dynamics and
kinematics of a rigid body related to control laws to
regulate the attitude of spacecraft and aircraft [7]:

ρ̇(t) = 1
2
(I − S(ρ(t))+ ρ(t)ρT(t))ω(t),

ω̇(t) = J−1S(ω(t)) J ω(t)+ J−1u(t),
(74)

where J = diag(10, 6.3, 8.5), ρ = (ρ1, ρ2, ρ3)T ∈ R3 is
the vector of Rodrigues parameters, ω = (ω1,ω2,
ω3)

T ∈ R3 is the angular velocity, and u = (u1, u2,
u3)T ∈ R3 is the control torque. The symbol S(·) is a

skew symmetric matrix of the form

S(ω) =
⎡
⎣ 0 ω3 −ω2

−ω3 0 ω1
ω2 −ω1 0

⎤
⎦ . (75)

In addition, the initial conditions are ρ(0) = (0.3735,
0.4115, 0.2521)T and ω(0) = (0, 0, 0)T .

Then, according to optimal control theory (3), the
optimality conditions can be written as

ρ̇1(t) = 1
2
ω1(t)+ 1

2
ω1(t)ρ21(t)+ 1

2
ω2(t)ρ1(t)ρ2(t)

+ 1
2
ω3(t)ρ1(t)ρ3(t), (76)

Figure 2. The amplitudes of optimal control variables (Test problem 3.1).
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Figure 3. The minimum cost convergence (Test problem 3.1).

Figure 4. Convergence of LaHOC iteration (Test problem 3.1).

ρ̇2(t) = 1
2
ω2(t)+ 1

2
ω2(t)ρ22(t)+ 1

2
ω1(t)ρ1(t)ρ2(t)

+ 1
2
ω3(t)ρ2(t)ρ3(t), (77)

ρ̇3(t) = 1
2
ω3(t)+ 1

2
ω3(t)ρ23(t)+ 1

2
ω1(t)ρ1(t)ρ3(t)

+ 1
2
ω2(t)ρ2(t)ρ3(t), (78)

ω̇1(t) = −11
50
ω2(t)ω3(t)− 1

100
λ4(t), (79)

ω̇2(t) = − 5
21
ω1(t)ω3(t)− 100

3969
λ5(t), (80)

ω̇3(t) = 37
85
ω1(t)ω2(t)− 4

289
λ6(t), (81)

λ̇1(t) = −λ1(t)ω1(t)ρ1(t)− ρ1(t)

− 1
2
λ1(t)ω2(t)ρ2(t)

− 1
2
λ1(t)ω3(t)ρ3(t)

− 1
2
λ2(t)ω1(t)ρ2(t)− 1

2
λ3(t)ω1(t)ρ3(t),

(82)

λ̇2(t) = −λ2(t)ω2(t)ρ2(t)− ρ2(t)

− 1
2
λ1(t)ω2(t)ρ1(t)− 1

2
λ2(t)ω1(t)ρ1(t)

− 1
2
λ2(t)ω3(t)ρ3(t)− 1

2
λ3(t)ω2(t)ρ3(t),

(83)

λ̇3(t) = −λ3(t)ω3(t)ρ3(t)− ρ3(t)

− 1
2
λ1(t)ω3(t)ρ1(t)− 1

2
λ2(t)ω3(t)ρ2(t)

− 1
2
λ3(t)ω1(t)ρ1(t)− 1

2
λ3(t)ω2(t)ρ2(t),

(84)

λ̇4(t) = −37
85
λ6(t)ω2(t)+ 5

21
λ5(t)ω3(t)

− 1
2
λ1(t)ρ21(t)− 1

2
λ2(t)ρ1(t)ρ2(t)

− 1
2
λ3(t)ρ1(t)ρ3(t)− 1

2
λ1(t)− ω1(t), (85)

λ̇5(t) = 11
50
λ4(t)ω3(t)− 37

85
λ6(t)ω1(t)

− 1
2
λ2(t)ρ22(t)− 1

2
λ1(t)ρ1(t)ρ2(t)

− 1
2
λ3(t)ρ2(t)ρ3(t)− 1

2
λ2(t)− ω2(t), (86)

λ̇6(t) = −11
50
λ4(t)ω2(t)+ 5

21
λ5(t)ω1(t)

− 1
2
λ3(t)ρ23(t)− 1

2
λ1(t)ρ1(t)ρ3(t)

− 1
2
λ2(t)ρ2(t)ρ3(t)− 1

2
λ3(t)− ω3(t),

ρ1(0) = 0.3735, ρ2(0) = 0.4115, ρ3(0) = 0.2521,

ω1(0) = 0, ω2(0) = 0, ω3(0) = 0, (87)

and the optimal control laws are u1(t) = − 1
10λ4,

u2(t) = − 10
63λ5, u3(t) = − 2

17λ6.
In this example, the parameters used in the LaHOC

algorithms are

Lr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt

0 0 −1
2

0 0

0
d
dt

0 0 −1
2

0

0 0
d
dt

0 0 −1
2

0 0 0
d
dt

0 0

0 0 0 0
d
dt

0

0 0 0 0 0
d
dt

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
1
100

0 0

0 0 0 0
100
3969

0

0 0 0 0 0
4
289d

dt
0 0 0 0 0

0
d
dt

0 0 0 0

0 0
d
dt

0 0 0
1
2

0 0
d
dt

0 0

0
1
2

0 0
d
dt

0

0 0
1
2

0 0
d
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (88)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D O O −1
2
I O O

O D O O −1
2
I I

O O D O O −1
2
I

O O O D O O
O O O O D O
O O O O O D
I O O O O O
O I O O O O
O O I O O O
O O O I O O
O O O O I O
O O O O O I

Table 2. Comparison between the LaHOC solution when
N = 50 and � = −1 and BVP5C solution.

ρ1(t) ρ2(t) ρ3(t)

t LaHOC BVP5C LaHOC BVP5C LaHOC BVP5C

5 0.374226 0.373454 0.411437 0.411426 0.252506 0.252063
0 0.373694 0.372482 0.409975 0.409878 0.252500 0.251281
15 0.369266 0.368039 0.403332 0.402876 0.251334 0.247714
20 0.358675 0.356639 0.386493 0.385214 0.248508 0.238604
30 0.306469 0.302593 0.309026 0.305203 0.230653 0.196337
40 0.214856 0.209796 0.185840 0.180701 0.186347 0.128007

Table 3. Comparison between the LaHOC solutionwhenN = 50 and� = −1 andBVP5C solution.

ω1(t) ω2(t) ω3(t)

t LaHOC BVP5C LaHOC BVP5C LaHOC BVP5C

5 −0.001896 −0.002073 −0.003796 −0.003842 0.000033 −0.001804
10 −0.009180 −0.009462 −0.016999 −0.017336 −0.000362 −0.008219
15 −0.020690 −0.020940 −0.036784 −0.037542 −0.001670 −0.018086
20 −0.034206 −0.034554 −0.058808 −0.059891 −0.004466 −0.029443
30 −0.058410 −0.059101 −0.090380 −0.091566 −0.017421 −0.047287
40 −0.066152 −0.066937 −0.085761 −0.086330 −0.035783 −0.047790

O O O O O O
O O O O O O
O O O O O O

O O O
1
100

I O O

O O O O
100
3969

I O

O O O O O
4
289

I
D O O O O O
O D O O O O
O O D O O O
1
2
I O O D O O

O
1
2
I O O D O

O O
1
2
I O O D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (89)

Rr,m−1 = Lr[xr,m−1] + Qr,m−1, (90)

Qr,m−1(r=1,2,3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

m−1∑
j=0

Z4,m−1−j

j∑
k=0

Z1,jZ1,j−k

+
m−1∑
j=0

Z5,m−1−j

j∑
k=0

Z1,jZ2,j−k

+
m−1∑
j=0

Z6,m−1−j

j∑
k=0

Z1,jZ3,j−k,

1
2

m−1∑
j=0

Z5,m−1−j

j∑
k=0

Z2,jZ2,j−k

+
m−1∑
j=0

Z4,m−1−j

j∑
k=0

Z1,jZ2,j−k

+
m−1∑
j=0

Z6,m−1−j

j∑
k=0

Z2,jZ3,j−k,

1
2

m−1∑
j=0

Z6,m−1−j

j∑
k=0

Z3,jZ3,j−k

+
m−1∑
j=0

Z4,m−1−j

j∑
k=0

Z1,jZ3,j−k

+
m−1∑
j=0

Z5,m−1−j

j∑
k=0

Z2,jZ3,j−k,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(91)
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Qr,m−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 11
50

m−1∑
j=0

Z5,jZ6,m−1−j,
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With these definitions, the LaHOC algorithm gives

Xr,m = (χm + �r)Xr,m−1 + �rA−1Qr,m−1. (92)

Because the right-hand side of Equation (92) is known,
the solution can easily be obtained by using methods
for solving linear systems of equations.

Tables 2 and 3 give a comparison between the present
SHAM results for N = 50 and � = −1 and the numer-
ically generated BVP5C at selected values of time t. It
can be seen from the tables that there is good agreement
between the two results. Moreover, our calculations
show the better accuracy of LaHOC. In comparison

with the BVP5C, it is noteworthy that the LaHOC con-
trols the error bounds while preserving the CPU time.
The CPU time of LaHOC is 1.009860 s, and BVP5C is
4.514071 s.

Figures 5–9 show the suboptimal states and con-
trol for m = 20 iterations of LaHOC compared to
MATLAB the built-in function BVP5C. The con-
vergence of the LaHOC iteration is depicted in
Figure 10.

The obtained optimal trajectories and optimal
controls are identical to those obtained by Jajarmi
et al. [8].
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Figure 5. The amplitudes of optimal state variables of ρ1, ρ2 (Test problem 3.2).

Figure 6. The amplitudes of optimal state variables of ρ3,ω1 (Test problem 3.2).

Figure 7. The amplitudes of optimal state variables ofω2,ω3 (Test problem 3.2).
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Figure 8. The amplitudes of optimal control variables u1, u2 (Test problem 3.2).

Figure 9. The amplitudes of optimal control variable u3 (Test
problem 3.2).

Figure 10. The minimum cost convergence (Test problem 3.2).

6. Conclusion

In this paper, an effective method based upon the spec-
tral homotopy method with Laguerre basis (LaHOC)
is proposed for finding the numerical solutions of the
infinite horizon optimal control problem of nonlinear

interconnected large-scale dynamic systems. A modi-
fied Laguerre method is used to discretize the equation
of optimal condition, while a homotopymethod is used
to construct an iterative scheme. Two illustrative exam-
ples demonstrated that LaHOC has spectral accuracy
and very good efficiency, which is comparable to well-
established numerical methods such as the MATLAB
BVP5C solver. The second example shows when the
multi-components have different time and amplitude
scales, one need to use adaptive rescaling technique in
the Laguerre bases to improve accuracy, which deserves
a further study.
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