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during no-load direct start-up
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ABSTRACT
In this paper, an invertible dependence of the speed and time of the induction machine dur-
ing no-load direct start-up is presented. Namely, based on the parameters of the induction
machine equivalent circuit as well as on the basic, well-known, equation for machine torque,
the analytical expression for the inductionmachine time-speed dependence during direct start-
up is derived. On the other hand, in order to obtain inverse i.e. speed-time dependence, the
derived time-speed expression is rearranged in one nonlinear equation. As the derived nonlinear
equation does not have an analytical solution, a novel iterative procedure, based on the usage
of Lambert W function, is proposed for its solving. The results obtained by using the developed
expressions for speed-time or time-speed curves are compared with the corresponding results
obtained by using expressions known in the literature as well as with the results obtained by
using a numerical time-domain computation method. Moreover, the results obtained by using
the developed expressions have been compared with the corresponding experimental results
to demonstrate the accuracy of the derived expressions. The Matlab code developed for solving
the presented iterative procedure, as well as the Matlab code for induction machine speed-time
curve determination, is also provided.
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Introduction

The Induction Machine (IM) or the asynchronous
machine is a widely used electric machine in industrial
and household applications. This machine has numer-
ous advantages compared to other types of electrical
machines – robustness, easy maintenance, easy con-
trol, a wide range of power/voltage, low cost, etc. [1,2].
For that reason, it has numerous applications, espe-
cially, in the industry sector and numerous directions
of scientific investigation.

The IM starting process is the basic scientific and
practical problem of this machine with a long tradi-
tion of observation [3–15]. The most common starting
method of this machine is the direct-on-line method
[3,4,8,11], which can be realized with or without the
reduced voltage technique. Very popular conventional
methods are also the variable rotor resistance method
[9], the star-delta method [10] and the method based
on the usage of auto-transformer [11–12]. The compar-
ison between different conventional startingmethods is
presented in [9–11]. On the other hand, in the available
literature [6,13–15] many other IM staring methods
can be found. Other IM starting methods are based
on the usage of soft starters [13,14] or on the shunt-
ing of the stator and rotor windings [6], whereas others
require the usage of power electronic devices [15]. The

comparison of conventionalmotor starters andmodern
power electronic devices for IM starting is presented in
[15]. This paper deals with IM direct start-up.

The importance of an IM starting process analysis
can be observed:

− from a scientific point of view and
− from an engineering point of view.

From a scientific point of view, the main direction
of the IM starting process analysis is to determine the
IM parameters [16–21]. There are many papers which
deal with the usage of direct start-up [17,18] and with
the usage of acceleration [19] and acceleration and
deceleration [20,21] tests for IM parameter estimation.
The general conclusion of all these methods is that the
IM starting process can be very useful for parameter
determination.

From an engineering point of view, the IM start-
up is very important as it defines machine protection
(for example, the activation of the phase current pro-
tection relay) [5,22,23] and very troublesome as it has
an impact on voltage sags in local areas [11,24–27].
Namely, during the IM direct start-up, the machine
current can be 6–7 times higher than the rated phase
current, which can cause the activation of machine
relays [12,22,23]. For that reason, the IM starting
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process duration is very important for proper machine
protection-relay settings (for example, setting of the
over-current protective devices) [3–5,22,23]. In addi-
tion, the high IM phase current can cause voltage sags
(for example, in distribution power systems, in small
power system areas, etc.), which can have very nega-
tive implications on other loads (especially on sensitive
loads such as lighting) [25–27]. Furthermore, the high
value of the phase current and machine starting pro-
cess duration can cause machine overheating. For that
reason, many electric machine and load manufacturers
provide equations for torque and power determination
and their relation with starting time [28,29]. The tech-
nical description of low-voltage IMs is given in [28] and
the equations, which describe three-phase IMs and pro-
posals for the coordination of protective devices, are
presented in [29]. In this paper, a mathematical mod-
elling of an invertible dependence of the speed and
time of the IM during the no-load direct start-up is
presented.

The research into the IM starting time calculation
is presented in several papers [3,4,28–32]. Namely, a
simple mathematical equation for starting time calcu-
lation, based onmachine speed, torque andmechanical
parameters, is presented in [30]. However, the methods
presented in technical documentation of the machine
manufacturer [28,29], as well as the methods presented
in [30], cannot be applied for all machines (for example,
for old machines, machines without nameplate data,
etc.) as they are based on manufacturer machine data.

On the other hand, the IM starting time and
speed–time curves, can also be determined by using
Numerical Time-Domain Computation (NTDC)
methods [3,4,30]. NTDC methods assume describing
the machine with a set of differential equations (dif-
ferential equations for describing machine electrical
circuits as well as differential equations for describing
mechanical motion) and their realization or implemen-
tation in certain programme packages (for example
PSpice, Matlab, Mathematica, etc.). However, all pro-
gramme packages solve differential equations by using
numerical techniques (for example – Backward Euler
method, Dormand–Prince method, Bogacki-Shampine
method, etc.) [3,4,30], and therefore require the usage
of special programme packages.

Concrete research about the determination of the
starting characteristics of IMs, which drive belt trans-
port conveyers, is shown in [32]. However, the
mentioned paper does not examine the IM start-
ing speed–time characteristics at no-load conditions.
Papers [3,4] also present the research about the IM
starting time calculation and starting characteristics
determination. More precisely, the method for starting
time calculation of large IMs under conventional start-
ing techniques (the direct start method, the star–delta
method, the autotransformer method and the resis-
tor starter method) is presented in [3]. The above

paper presents the formula for IM time–speed descrip-
tion, which is based on the general type of mechanical
load. Nevertheless, in order to prevent the infinity of
the starting time and the singularity of the accelera-
tion torque, when the formula is derived, the author
proposes a certain correction factor. In addition, [3]
does not deal with the inverse speed–time dependence.
Finally, the mathematical modelling of IM speed–time
and time–speed dependencies during no-load direct
start-up is presented also in [4]. In order to obtain the
relations mentioned, the machine torque is represented
by using the Kloss equation. For that reason, a certain
mismatching between the results obtained by using the
proposed expression and experimentally determined
results are noted in [4].

The goal of this paper is to determine speed–time
and time–speed dependencies during no-load IM start-
up, without the usage of any approximate formula
(such as the Kloss equation) or any correction fac-
tors. The goal is also to compare the speed–time curve
obtained by using the proposed expression with the
results obtained by using expressions known from the
literature (for example, as presented in [3,4]) as well
as with the corresponding experimental results. Note
that the invertible dependence is very important as,
at any point in time, we can calculate the speed value
and reversely, for any speed value we can calculate the
corresponding time value.

The paper is divided into several sections. Themath-
ematical expression for IM time–speed dependence,
during no-load direct start-up, is derived and presented
in Section II. Similarly, the inverse speed–time depen-
dence, in this operating regime, is proposed in Section
III. The simulation results of no-load IM direct start-
up, for two IMs, based on derived expressions, as well as
the results based on the expressions known in the litera-
ture and the results obtained by using a NTDCmethod
are compared in Section IV. This section also presents
certain numerical results which additionally describe
the proposed speed–time expression. The comparison
of experimentally determined speed–time curve dur-
ing IM direct start-up and the corresponding curves
determined by using the proposed expression, as well
as by using expressions known from the literature are
presented in Section V. The conclusions are given in
Section VI – the conclusion section.

Novel expression for time–speed curve of IM
during no-load direct start-up

The mechanical equation for any rotational electrical
machine is as follows:

J
dω
dt

=
∑

M (1)

where ω, J and M represent the machine speed, the
machine moment of inertia and machine torques,
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respectively [4]. The previous equation can be written
as follows: ∑

M = Mem − ML − Mloss (2)

whereMem,ML, and Mloss represent the machine elec-
tromagnetic torque, the torque of machine load, and
the torque of machine losses (ventilation and bearings
losses), respectively. By ignoring mechanical losses and
observing machine start without load, (1) becomes:

J
dω
dt

= Mem. (3)

The value of the machine electromagnetic torque
(Mem) can be calculated by using single-cage equivalent
circuit parameters as follows:

Mem = 3
(
UT/

√
3
)2

ωs

R2
s(

RT + R2
s
)2 + (XT + X2)

2
(4)

where s is themachine slip,ωs is the synchronous speed
in [rad/s], R2 is the rotor resistance referred to as the
stator side and X2 is the rotor reactance referred to as
the stator side. On the other hand,UT, RT andXT repre-
sent the Thevenin equivalent circuit voltage, resistance
and reactance, respectively, which can be calculated as
follows:

UT = Xm

X1 + Xm
U, (4a)

RT = R1X2
m

R21 + (X1 + Xm)2
, (4b)

and

XT = XmR21 + X2
1Xm + X1X2

m

R21 + (X1 + Xm)2
(4c)

where Xm is the magnetizing reactance, R1 is the stator
resistance,X1 is the stator reactance andU is the supply
line-to-line voltage. By using (3), IM starting time can
be calculated as follows:

t = J

ωf∫
ω0

dω
Mem

(5)

where ω0 is the starting speed and ωf is the final
speed [2]. Furthermore, by combining (4) and (5), and
knowing that

s = ωs − ω

ωs
(6)

we can write the following:

t = −ωsJ
s∫

1

ds
U2
T

ωs

R2/s
(RT + R2/s)2 + (XT + X2)

2

. (7)

Finally, the expression for the time–speed curve dur-
ing IM direct start-up has the following form:

t = Jω2
s

U2
TR2

·
(

(R2T + (XT + X2)
2)

2
(1 − s2)

+2RTR2(1 − s) − R22log(s)

)
(8)

Therefore, this expression is derived without any
mathematical assumptions and without using any cor-
rection factor. However, it can be seen that this equation
shows a complex relation betweenmachine slip (speed)
and time during machine direct start-up.

It should be noted that the accuracy of time–speed
curve determination highly depends on the accuracy of
the estimated IM parameter value. Therefore, an appro-
priate and accurate method for an IM parameter esti-
mation is required. Except for acceleration and decel-
eration tests for an IM parameter estimation [16–21],
the literature offers other very accurate methods: meth-
ods based on the measurements of different electrical
variables during load operation or at standstill [33,34],
a method based on observing torque–speed character-
istics [35], a method based on transient analysis of IM
[36], amethod based on the usage of themanufacturer’s
data [37], etc.

An invertible dependence for speed–time
curve of IM during no-load direct start-up

By using certain mathematical modification the previ-
ously derived expression for time–speed curve (8) can
be rewritten in the following form

α + β · e−θ = θ · eθ , (9)

where

α = 2RT · R2

R2
2

e

J · ω2
s ·
(
R2
T + (XT + X2)

2

2
+ 2RT · R2

)
− t · R2 · U2

T

J · ω2
s · R2

2

(10)

and

β = R2
T + (XT + X2)

2

2R2
2

e

2 ·
(
J · ω2

s ·
(
R2
T + (XT + X2)

2

2
+ ·2 · RT · R2

)
− t · R2 · U2

T

)

J · ω2
s · R2

2

(11)

and

θ =
J · ω2

s ·
(

R2T+(XT+X2)
2

2 + 2RT · R2
)

− t · R2 · U2
T

J · ω2
s · R22

− log(s). (12)
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As it can be seen, (9) is one highly nonlinear, i.e. tran-
scendental equation which cannot be solved analyti-
cally. However, in this paper, we presented the following
iterative procedure for solving (9).

The proposed iterative procedure requires solving
the well-known Lambert W function, which has the
following general form [38–40]

x = βe−x (13)

and whose solution is

x = W(β). (14)

It should be noted that Lambert W function solving
can be used for different methods or techniques: itera-
tion methods [39], different programme packages with
corresponding solvers [4] as well as analytical methods
(the usage of the Taylor series [4,38] or the usage of Spe-
cial Tran Function Theory – STFT [4,40–44]). The ana-
lytical methods for LambertW solving are presented in
Appendix 1.

The iteration process begins with the initial value of
(1)θ (it can be chosen as (1)θ = 0). After that, we need
to calculate the value of the equation

γ = α + β · e−(1)θ , (15)

and to solve equation

γ=(2)θ · e(2)θ (16)

in order to find a novel value of θ . Namely, in “second
step” we can write

(2)θ = W(γ ) (17)

If (2)θdoes not satisfy the following criterion

|(2)θ−(1)θ | < ε, (18)

where ε is the arbitrary small real number (for example
10−10), then a new value of (1)θ is

(1)θ=(2)θ (19)

and thewhole procedure is repeated. Therefore, forn-th
iteration, we can write

(n)θ = W(α + β · e−(n−1)θ ). (20)

Finally, by using the proposed iterative procedure we
can determine the value of machine slip and machine
speed as follows:

s = e

J · ω2
s ·
(
R2T + (XT + X2)

2

2
+ 2RT · R2

)
− t · R2 · U2

T

J · ω2
s · R22

−(n)θ

.
(21)

and

n = ns − nse

J · ω2
s ·
(
R2T+(XT+X2)

2

2
+2RT · R2

)
−t · R2 · U2

T

J · ω2
s · R22

−(n)θ

.
(22)

Therefore, in order to calculate (22) we need to use
the proposed iterative procedure, i.e. to solve θ whose
solution depends on machine parameters and time.
Matlab code of the proposed iterative procedure is pre-
sented in Appendix 2, while the Matlab code for the
determination of the speed–time curve is presented in
Appendix 3.

Simulation results

In this section, in order to present the simulation results
and to check the accuracy of the derived equations for
speed–time and time–speed representation during no-
load direct start-up, we observed two IMs (see Table 1).
In addition, in the Matlab/Simulink programme pack-
age, we developed a simulation model which consisted
of a three-phase IM, a three-phase voltage source and
a block for speed measurement (see Figure 1). There-
fore, we developed an NTDC method, as the Mat-
lab/Simulink performs numerical time–domain com-
putations. In this paper, we used a discrete simulation
with a fixed step size (10−5) for the NTDC method.

By using the data given in Table 2, for both Machine
1 and Machine 2, and by using (8) (or (22)) and (6)
we determined the speed–time curve during machine
direct start-up (see Figures 2 and 3 for Machine 1 and
Figures 4 and 5 for Machine 2). The same figures also

Table 1. Inductionmachines parameters for simulation testing.

Parameters Machine 1 Machine 2 [4]

Pn [kW] 3.73 37.3
Un [V] 575 460
f [Hz] 60 60
P 2 2
R1 [�] 2.053 0.087
R2 [�] 1.904 0.228
X1 [�] 2.545 0.302
X2 [�] 2.545 0.302
Xm [�] 98.77 13.08
Jn [kgm2]* 0.02 1.662

Note: *Rated value of moment of inertia.

Figure 1. Matlab/Simulink model of IM, with three-phase sup-
ply and with block for speed measurement [4].
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Table 2. Numerical results for the proposed iterative procedure (Machine 2).

t [s] A β k* θ s n [rpm]

0.001 49.4473 1.61·104 34 4.2186 0.9983 3.1
0.01 43.1972 1.23·104 33 4.0992 0.9827 31.1
0.1 11.1835 824.2053 26 2.9327 0.8168 329.7
0.2 2.4917 40.9131 18 1.7294 0.6062 708.8
0.3 0.5551 2.0309 10 0.7342 0.3654 1142.2
0.4 0.1237 0.1008 5 0.1749 0.1424 1543.6
0.5 0.0276 0.005 3 0.0314 0.0366 1734.1
0.6 0.0061 2.48·10−4 2 0.0063 0.0084 1784.9
0.7 0.0014 1.23·10−5 2 0.0014 0.0019 1796.6

Note: *number of iterations for error ε = 10−5.

Figure 2. Simulation results for U = Un (Machine 1).

Figure 3. Simulation results for J = Jn (Machine 1).

present speed–time dependencies obtained by using the
methods (equations) proposed in [3] and [4]. The short
descriptions of themethods presented in [3] and [4] are
given in Appendix 4. Figures 4 and 5 also present the
speed–time curves determined by using the developed
NTDC method (Matlab/Simulink model – Figure 1).

For both machines, we determined speed–time
dependencies for different values of supply voltage (Fig-
ures 3 and 5) as well as for different values of the
machine moment of inertia (Figures 2 and 4).

As can be seen, the proposed Equation (8) or (22)
enables obtaining results that are very close to the

Figure 4. Simulation results for U = Un (Machine 2).

Figure 5. Simulation results for J = Jn (Machine 2).

results obtained by using the method [3]. Furthermore,
the speed responses obtained by using the proposed
equation are found between the responses obtained by
applying the methods [3] and [4] (see Figures 2–5).
In addition, a good agreement between the results
obtained by using the proposedmethod and the NTDC
method is evident.

In order to show the effectiveness of the pro-
posed iterative procedure described in Section II, some
numerical results are presented in Table 2 and Table 3.
As can be seen, for small values of coefficients α and β ,
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Table 3. Impact of calculation error on the required number of
iterations (Machine 2).

t [s] ε = 10−5 ε = 10−7 ε = 10−10

0.001 34 45 63
0.1 26 35 48
0.3 10 14 19
0.5 3 4 5
0.7 2 2 3

the speed of convergence of the proposed iterative pro-
cedure is very high (see Table 2 – only two iterations are
needed) and insensitive to the initial value. In addition,
if the computation error needs to be very small (smaller
ε – see (18)), the higher number of iterations is required
(see Table 3).

However, all the results obtained for two different
IMs (different with respect to machine power and volt-
age levels) confirm the reliability and the applicability
of the usage of the derived expression (8) or (22) for
speed–time and time–speed curve representation dur-
ing no-load direct start-up. Furthermore, as it can be
seen, the presented iterative procedure (see (9)–(22)) is
very efficient. It can be seen that the speed responses
obtained by using the proposedmethod are very similar
to the method described in [3]. Nevertheless, the main
differences between these two methods lie in mathe-
matical modelling. Namely, in [3] in order to prevent
infinity of the starting time, during a formula deriva-
tion, the author proposes a certain correction factor,
whose value need to be obtained through model test-
ing. Also, in [3] no comments on invertible speed–time
curve representation were noted. Unlike the method
described in [3], the proposedmethod does not require
the usage of any correction factor.

Experimental results

In order to check the accuracy, applicability and sim-
plicity of the derived Equation (8) or (22), we employed
certain experimental measurement on a real set-up.
The experimental set-up (see Figure 6) is composed
of a three-phase IM (Leroy-Somer – 300W, 230V,
1500r/min, 50Hz, 1A, cosϕ =0.86), a tachogenera-
tor (maximum speed 10000 r/min, ratio 0.02V/rev,
together with a device for converting mechanical sig-
nals into electrical signals – MODMEC) and a variable
autotransformer (maximum voltage 600V, maximum
current 10A). For current and voltage measurements,
we used a power analyzer LMG as well as a MICSIG
Oscilloscope.

Firstly, on this IM, we performed standard open-
circuit and short-circuit tests for parameter estimation.
IM single-cage equivalent circuit parameters obtained
by using results from open-circuit and short-circuit
tests are presented in Table 4.

Following that, we performed a direct-start-up. The
direct start-up was performed at rated frequency, while

Figure 6. Experimental set-up.

Table 4. Induction machine parameters.

Parameters Value

R1 [�] 4.2
R2 [�] 6.44
X1 [�] 5.8
X2 [�] 5.8
Xm [�] 137.4

Figure 7. (a) Experimental and simulated results comparison,
(b) Relative difference between the measured and simulated
characteristics obtained by using the proposed method.

the supply voltage was 50V, in the first experiment, and
90V in the second experiment.

The comparison of the simulated and experimental
IM speed–time curves during no-load direct start-up,
for two values of supply voltage, is shown in Figure 7(a).
It is evident fromFigure 7(a) aswell as fromFigure 7(b),
which represents the relative difference between the
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measured and simulated speed–time curves, that the
results obtained by using (8) or (22) are very close to the
measured signals. Concretely, for both the simulated
(obtained by using (8) or (22)) and measured signals
the settling time and the rise time are almost identical.
In addition, it is evident that the proposed method ((8)
or (22)) better matches the experimental results than
the methods presented in [4] and [3]. Furthermore, the
proposed method enables obtaining results which are
closer to the measured signal (see also conclusion for
the results presented in Figures 2–5). At the same time,
a good agreement between the results obtained by using
the proposedmethod and theNTDCmethod is evident
(see the zoomed part in Figure 7(a)).

Therefore, it can be concluded that the proposed
Equation (8) or (22) is accurate; it is derived without
any mathematical assumption and it enables obtaining
results which are in very good agreement with themea-
sured results. The derived expression can be very useful
for IMprotection device settings or for testing the dura-
tion of voltage sags in power networks caused by IM
starting or similar.

Conclusion

In this paper, a precise invertible dependence of the
speed and time of IM during no-load direct start-
up is presented. The proposed dependence is based
on single-cage IM equivalent circuit parameters and
the basic equation for machine torque. However, it
is derived without any mathematical assumptions, as
opposed to certain solutions proposed in the literature.
Therefore, the presented invertible dependence for no-
load direct start-up can be applied for different IMs
(old, new, low or high power and voltage).

The speed–time characteristics during direct start-
up for different IMs (in respect to power) obtained by
using the proposed method (Equations (8) and (22))
are comparedwith the characteristics obtained by using
expressions known from the literature. Also, a com-
parison between the experimentally determined and
analytically determined speed–time curves (obtained
by using the proposed method, as well as by using the
NTDC method and literature-known methods) is also
presented. All the presented results endorse the accu-
racy of the proposed invertible mathematical expres-
sion. Therefore, the derived speed–time dependence
can be used for different engineering applications –
protective device settings in power networks with an
IM, settings of the IM phase current protection relay
actions, testings of the impact of the IM starting process
on sensitive loads, etc.

Our further research will be focused on the impact
of machine losses (for example, friction losses) and
different types of loads on the IM speed–time and
time–speed curves during direct start-up. Also, atten-
tion will be paid to deriving mathematical expressions

for speed–time and time–speed curves taking into
account the machine deep-bar equivalent circuit and
themachine parameter variations with slip and temper-
ature.
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Appendices

Appendix 1

In this Appendix, two methods for solving the Lambert W
equation (Equation (11)) are presented. The first method is
based on the usage of the Taylor series. Namely, by using
the Taylor series around 0, the solution of the Lambert W
Equation (11) can be expressed as follows:

W(β) =
∞∑
n=1

(−n)n−1

n!
βn (A1)

For practical implementation, the previous equation can
be rewritten in the following form:

W(β) =
M∑
n=1

(−n)n−1

n!
βn, (A2)

whereM represents a positive integer. On the other hand, an
asymptotic formula, which yields reasonably accurate results
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for β sufficiently large, has the following form:

W(B) = L1 − L2 +
∞∑
l=0

∞∑
m=1

(−1)l
[
l + m
l + 1

]
m!

L−l−m
1 Lm2

= L1 − L2 + L2
L1

+ L2(−2 + L2)
2L21

+ L2(6 − 9L2 + 2L22)
6L31

+ . . . (A3)

where L1 = ln(β) and L2 = ln(ln(β)),
[

l + m
l + 1

]
are non-

negative Stirling numbers of the first kind [40].
Equation (11) can be also solved by using Special Trans

Function Theory [40–44]. The solution of Equation (11) can
be expressed in the following form:

x = β

∑M
n=0

βn(M−n)n
n!∑M+1

n=0
βn(M + 1 − n)n

n!

(A4)

Appendix 2

% code for solving equation
% alfa+beta*exp(-theta)=theta*exp
(theta)
initial=0;
max_number_of_iteration=1000;
for current_iteration=1:max_number_
of_iteration

current_iteration
old_value=alfa+beta*exp
(-initial);
new_value=lambertw(old_value);
if abs(new_value-initial)<

10ˆ−10;
break
end
initial=new_value;

end
theta=new_value

Appendix 3

% define value of U, J, ws, R1, R2, X1,
X2, Xm, ERROR
% determine parameters of Thevenin
circuit
UT=Xm/(X1+Xm)*U;
RT=R1*Xmˆ2/(R1ˆ2+(X1+Xm)ˆ2);
XT=(Xm*R1ˆ2+X1ˆ2*Xm+X1*Xmˆ2)/
(R1ˆ2+(X1+Xm)ˆ2);
% CODE
% define dt and t_final
counter=0;
for t=0:dt:t_final%dt-time step,
t_final-final speed

counter=counter+1;

alfa=2*RT*R2/(R2ˆ2)*exp((J*wsˆ2*
((RTˆ2+(XT+X2)ˆ2)/2+2*RT*R2)-t*R2*
UTˆ2)/(J*wsˆ2*R2ˆ2));
beta=(RTˆ2+(XT+X2)ˆ2)/(2*R2ˆ2)*exp
(2*(J*wsˆ2*((RTˆ2+(XT+X2)ˆ2)/2+2*RT*
R2)-t*R2*UTˆ2)/(J*wsˆ2*R2ˆ2));

initial=0;
max_number_of_iteration=1000;

for current_iteration=1:max_number_
of_iteration
current_iteration;
old_value=alfa+beta*exp(-initial);
new_value=lambertw(old_value);
if abs(new_value-initial)<ERROR;

break
end
initial=new_value;
end
theta=new_value;
slip_value=exp((J*wsˆ2*((RTˆ2+(XT+X2)
ˆ2)/2+2*RT*R2)-t*R2*UTˆ2)/(J*wsˆ2*
R2ˆ2)-theta);
speed_value(counter)=(1-slip_value)

*ns;
timeaxis(counter)=t;
end

Appendix 4

In [10] an analytical formula for the precise determination of
IM starting time under conventional starter methods is pro-
posed. During machine start-up, the time can be calculated
as follows:

t = π J
30

∑
j
kjlog

(
n − nrj − ζ

nlo − nrj

)
(A5)

where nrj, and kj are coefficients which depend on load and
machine data, while ξ is the correction factor.

In [11] an analytical solution for IM speed determination
during no-load direct start-up is developed. The above paper
shows that the machine slip, at this operation conditions, has
the following expression:

s = sbr

√√√√W

(
1
s2br

e
4Mbr
Jωssbr

(
Jωs

4sbrMbr
−t
))

(A6)

while the machine speed is

n = ns

⎛
⎝1 − spr

√√√√W

(
1
s2br

e
4Mbr
Jωssbr

(
Jωs

4sbrMbr
−t
))⎞⎠ (A7)

whereMbr is the maximal machine torque and sbr is the cor-
responding machine slip. On the other side, the analytical
expression for IM time–speed dependence has the following
expression:

t = Jωs

2Mbr

(
1 − s2

2sbr
− sbrln(s)

)
(A8)
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