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ABSTRACT
Reduced order modelling of complex autonomous microgrid system is crucial to its small signal
modelling and stability concerns. To reduce the storage requirements and computational time,
the order of such microgrids can be reduced by Model Order Reduction (MOR) techniques. This
paper presents an optimal reduction technique, which retains dominant poles of the original
system and achieves subsequent error minimization through the Particle Swarm Optimization
algorithm (PSO). The 36th order complex microgrid system is reduced to 9th order approximant,
which retains the significant dynamics of the original system. The simulation results reflect the
superiority of the proposedmethod as compared to the balanced truncationmethod in terms of
the time and frequency domain analysis of the reduced order equivalents. State perturbation in
the state spacemodel has also been considered in full as well as reduced order system dynamics
and eigenvalue analysis for system stability.
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1. Introduction

The integration of renewable energy resources to the
main grid to meet the load requirements is a viable
option with the development of microgrid system. A
microgrid is an interconnection of several Distributed
Energy Resources (DERs) such as photovoltaic, fuel
cells, wind turbines, etc., to meet the load demands
either in grid-connected mode or autonomous mode.
The dependence on exhaustible energy resources and
their environmental degradation is easily controlled by
increasing utilization of renewable-basedmicrogrids in
the main utility grid.

The small signalmodelling and performance evalua-
tion of microgrids have become increasingly important
because of various reasons. The Phase Locked Loop
(PLL) synchronization and interfacing circuitry to con-
nect the equivalent model of Distributed Generators
(DGs) sources to ac loads and different buses are cru-
cial. Even the power electronics converter which offers
improved power quality and flexibility in control poses
threats to system stability due to their low-inertia as
compared to other components, causing oscillations
manifested due to network dynamics. As a matter of
fact, the major concern in the reliable operation of a
microgrid is the small-signal stability. Thus it is quite
essential to analyze the small-signal model and select
different parameters of controller or filter, in order
to enhance the system dynamics and ensure power
quality within acceptable limits. Another limitation to

microgrid small signal analysis is the dimensional com-
plexity due to the diversity of control strategy in DGs
and components involved [1]. The system dynamics of
each DER in a microgrid system is represented by 15
states [2], offering limited analytical insights. This leads
to high computational cost when applied to investigate
the dynamics of large microgrids with many invert-
ers. Thus, MOR becomes necessary so as to simplify
the model, without compromising much with system
dynamics.

Several methods have been explored to reduce the
dimensionality of large power systems in the litera-
ture [1–8]. Aggregation, balanced realization, trunca-
tion, and certain mixed methods have been discussed
to reduce the order of these power systems in [3]. Bal-
anced Truncation (BT) technique has been applied to
large power systems in [4] using a number of matrix
calculations. But the main drawback lies in the fre-
quent occurrence of a steady-state error in BT-reduced
order model. Further, reference [5] reduces a ninth
order small signal model of the microgrid to its fifth
order approximation using singular perturbation and
kron method. Due to the presence of two-time scales
in AC microgrids, thirty-sixth order microgrid model
has been reduced to fifteenth order by singular per-
turbation method in [6]. In [7], a simplified sixth
order islanded microgrid model has been reduced to
fourth order by retaining the very fast dynamics in
the response through singular perturbation and direct
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truncation methods. A three-time scale model was
developed for an AC microgrid in [8] based on the
relative eigenvalue loci. This droop based inverter inter-
faced DGs evaluated model parameter ε for order
reduction of a linearized system based on singular per-
turbation theory which depends upon the system time
constant derived from values of circuit parameters.

On the contrary to the methods adopted in lit-
erature for order reduction, a simpler yet equally
effective MOR technique proposed in this paper for
reduced order modelling of 36th order microgrid sys-
tem in autonomous mode is Dominant pole technique.
This technique preserves the larger time constants in
reduced order models by retaining the dominant poles
of the system, as the faster dynamics die out early and
do not affect the system much [9]. The improvization
in the MOR of this system is further achieved by appli-
cation of the PSO algorithm, in lieu of formulation of
an appropriate objective function because of the high
flexibility and reduction accuracy. PSO is considered
as a strong candidate for optimization objective widely
used in various field of engineering [10,11]. It adapts its
behaviour from natural biomes by working in groups
to achieve a certain performance measure. Thus, the
novelty of the proposed technique lies in the amal-
gamation of these two techniques of dominant pole
retention and PSO algorithm, exploited for microgrid
systems, which not only simplifies the reduction pro-
cess but also utilizes the advantages of both themethods
[12]. The simplified procedure based on optimization
not only results in an adaptive reduced model due to
the iterative PSO algorithm but also enhances system
robustness which has been proved through the results
obtained on perturbed variant of the model. As a mat-
ter of fact, the present analysis work greatly reduces
the mathematical complexity of a two-inverter micro-
grid structure from 36th to 9th order model, i.e. the
reduction in state space formulation is by 75%. The
study of state perturbation caused by various param-
eter variations, in the small-signal model of micro-
grids with limited no. of states, is considered in [13]
for a low-frequency eigenvalue. The state uncertainty
is considered in this work to explore their effects on
small signal stability for full order as well as reduced
order system. The small changes in eigenvalues have
been studied to analyze the frequency and damping
changes when the order is to be reduced for accurate
analysis under uncertain conditions. Although various
MOR techniques are explored for small signal analy-
sis of microgrid configuration, the rigorous and com-
prehensive analysis for the same is not reported in
the earlier literature. Therefore, this paper develops
an optimal reduction technique deploying the domi-
nancy characteristics for the higher order microgrid
systems. The main contribution of the paper is high-
lighted below,

• Implementation of MOR in Autonomous Microgrid
by dominant pole augmented by PSO by reducing
the L1 error norm.

• Impact of state perturbation to full order as well as
reduced order microgrid structure.

• Evaluation of reduction errors subjected to step,
ramp and impulse function for full order as well as
reduced order systems.

• Calculation of eigenvalue sensitivity as well as var-
ious modes associated with the participation factor
analysis.

This paper is organized as follows: Part I gives the
small signal model of the autonomous system while
defining the transfer function model. Part II discusses
the optimal model order reduction technique pro-
posed in this work. Part III gives the discussion and
results obtained by state perturbations and the opti-
mal reduced order modelling, in comparison to BT
technique. Part IV describes the eigenvalue and sen-
sitivity analysis of the full order and reduced order
autonomous small signal model. The conclusion at the
end highlights the key developments in the paper.

2. System architecture

The autonomous microgrid architecture considered in
this work is represented in Figure 1. It consists of
two DERs connected to their individual local buses
through the LC filter and coupling inductances. The
two local buses are coupled through a line of impedance
Rline+jXLline. When the Point of Common Coupling
(PCC) is closed, the AC buses are connected to the
main utility grid, and hence, the microgrid works in
“Grid-tied mode.” Whereas, when PCC is open, then
the microgrid is cut-off from the main grid and is in
“Autonomous mode”.

Figure 1. Proposed Microgrid Scheme.



68 M. JUNEJA ET AL.

3. Small signal modelling of autonomous
microgrid system

Although small signal modelling of Microgrid already
exists in the literature [1,2,14–18]; still modelling with
the necessary mathematical formulation is done for
subsequent MOR analysis, subject to state perturba-
tion for both full order as well as reduced order system.
The small signal modelling of the system in Figure 1,
requires the state space analysis of the two inverters,
loads and line dynamics. Figure 2 shows the block dia-
gram of a DG based inverter. The DG is connected to
the load and common bus through a Voltage Source
Inverter (VSI). The control strategy is this block dia-
gram is implemented by three control loops: (a) outer
power loop, which evaluates the desired frequency and
voltage of the inverter through droop control tech-
nique; (b) Inner voltage control loop, which gives the
reference currents through inductor; (c) Inner cur-
rent control loop, which evaluates the reference volt-
ages to direct the State Vector Pulse Width Modulation
(SVPWM) block to generate signal for the inverter.

The basic idea behind power sharing in the power
controller block is to compensate any increase in the
load side, in accordance with droop characteristics,
through a decrease in the frequency and voltage ampli-
tude of the system [1]. The instantaneous active and
reactive powers are calculated from the output currents
and voltages. The average powers corresponding to the
fundamental component are then obtained by passing
these instantaneous powers through low pass filter with
cut- off frequency of ωc.

The reference frequency, ωr and the reference volt-
age signal, vroq are therefore generated using conven-
tional P-ω and Q-V droop characteristic equations,
such that,

ωr = ωn − mP (1)

vroq = Voq,n − nQ (2)

where m, n are the static droop gain, ωn is the nom-
inal frequency, Voq,n is the nominal voltage of q-axis

(voltage of d-axis set to zero) and P,Q are the filtered
output active and reactive powers.

A dq-based PLL with conventional PI strategy was
chosen to measure the frequency of the system. The
input signal to the PLL block is the d-axis compo-
nent of the voltage measured across the filter capaci-
tor. In the voltage control loop, the reference signals
obtained from the power controller are compared to
the measured angular frequency from the PLL block
and measured q axis voltage by using conventional PI
controllers. The reference inductor currents generated
by voltage controller are compared by their measured
values to obtain an error signal which thereby pro-
duces a set-point voltage for input to SVPWM block.
Reduced Total Harmonic Distortion (THD), simpli-
fied DSP implementation and fast processing makes,
Space Vector Pulse Width Modulation advantageous
over other PWM techniques. It lowers the frequency
oscillation and is thus used in these microgrid systems.

The load and line dynamics are referred to in the
global reference frame, whereas each inverter is math-
ematically modelled in its own local frame (d-q). The
individual inverter state equations are derived in terms
of their individual local reference frame [2]. The input
and output quantities of individual inverters can be
transformed from their individual frame to a com-
mon reference frame (D-Q) using the transformation
matrix, T as given in (3). The angle θ , as shown in
Figure 3, represents the angle between an individual
inverter reference frame and the common global refer-
ence frame, which translates electrical quantities from
local to a common frame and vice versa.

T =
[
cos θ − sin θ

sin θ cos θ

]
(3)

where, θ = ∫(ω − ωcommon)

Considering the system to be autonomous, i.e. dis-
connected to the main grid, the phase angle measured
by the PLL of inverter 1 can be chosen as the reference
for the overall interconnected system. The resultant ref-
erence angles calculated for both DERs can be used

Figure 2. Block Diagram of DG based Inverter.
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Figure 3. Reference frame Transformation.

as;

δ̇1 = ωPLL,1 − ωPLL,1 = 0 (4)

δ̇2 = ωPLL,1 − ωPLL,2 (5)

where, ωPLL1 and ωPLL2 are calculated from DER 1 and
DER 2, respectively.

4. Microgrid model

4.1. State-spacemodelling

The first step towards finding the complete state space
model of the microgrid system is to determine the
Operating point to linearize the non-linear model in its
vicinity [19].

Given a non-linear set of state equations, the general
form is given as;

ẋ = f (x, u); y = g(x, u) (6)

To find the linear equivalent of these non-linear equa-
tions, it is desired to evaluate an operating point about
which the model can be safely considered as linear.
These set of operating points (x0, u0) are calculated as;

0 = f (x0, u0)

y0 = g(x0, u0) (7)

Thereafter, the model is linearized by finding the devi-
ation about the operating point as;Δx = x − x0;Δu =
u − u0;Δy = y − y0

The complete small signal modelling of the two
inverter architecture as in Figure 1 is achieved by com-
bining the models of the two inverters, xinv1 and xinv2
respectively, into one state space as given in [1];

xinv1 = [δ1P1Q1ϕd1ϕq1γd1γq1ild1ilq1vod1voq1
iod1ioq1ϕPLL1vod1,f ] (8)

xinv2 = [δ2P2Q2ϕd2ϕq2γd2γq2

ild2ilq2vod2voq2iod2ioq2ϕPLL2vod2,f ] (9)

xinv = [xinv1xinv2] (10)

where, for both DER, i.e. i = 1,2; δi is the reference
angle of DER i, Pi,Qi are the filtered output powers,
ϕdi,ϕqi are the state variables from the voltage controller
representing an error signal from reference frequency
and reference voltage, γdi, γqi are the state variables
from the current controller representing error signal
from reference inductor currents in dq axis, ildi, ilqi are
the filter inductor currents in dq axis, vodi, voqi are the
output voltages in dq axis, iodi, ioqi are the output cur-
rents in dq axis, vodi,f is the d-axis output voltage filtered
through LPF with a corner frequency of ωC,PLL, ϕPLLi is
the state variable from PLL, given as ϕPLLi = −vodi,f of
DER i.

The load and line dynamics of the system are mod-
elled by considering the current through the load capac-
itances in both the inverters, i.e. iloadDQ1 and iloadDQ2
and, the current through line capacitance, i.e. ilineDQ21
as state variables, given as;

i̇loadDi = 1
Lload

(−RloadiloadDi + vbDi) + ωPLLiiloadQi

(11)

i̇loadQi = 1
Lload

(−RloadiloadQi + vbQi) − ωPLLiiloadDi

(12)

where, i = 1, 2; Rload, Lload are load resistance and
inductance respectively.

The collective load model from the two inverters is
given as, xload = [iloadD1iloadQ1iloadD2iloadQ2].

i̇lineD21 = 1
Lline

(−rlineilineD + vbD2 − vbD1)

+ ωPLLilineQ (13)

i̇lineQ21 = 1
Lline

(−rlineilineQ + vbQ2 − vbQ1)

+ ωPLLilineD (14)

where, rline, Lline are line resistance and inductance
respectively and vbDi, vbQi are bus voltages in common
DQ-reference frame.

The line state space contributes two state variables in
the overall dynamics given as, xline = [ilineD21ilineQ21].

After linearization of the complete system about a
stable operating point as given and rearranging the
state variables and output variables in order as in
(17), the complete 36th order state space model for
the autonomous microgrid system is obtained from
(10–14) as;

Δẋ = AΔx + BΔu (15)

Δy = CΔx (16)

Where; A is the state matrix (36×36), B is the input
matrix (36×4), and C is the output matrix (6×36)

State vector, x = [xinv1 xinv2 xload xline]T

(17)
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Output vector, y = [ΔioDQ1ΔioDQ2ΔωPLL1ΔωPLL2]T

(18)

Input vector, u = [ΔvbD1ΔvbQ1ΔvbD2ΔvbQ2]T

(19)

Given a state perturbation of ΔA in state space, as;
ẋ = (A + ΔA)x + Bu

The perturbed eigen-triplets; i.e. eigenvalue �λ,
right eigenvectors�∅R and left eigenvectors�∅L of the
perturbed system are given as;

(∅L + �∅L)(A + �A) = (∅L + �∅L)(λ + �λ) (20)

(A + �A)(∅R + �∅R) = (λ + �λ)(∅R + �∅R) (21)

The perturbations in state space modelling may
affect the small signal stability and hence, needs to be
considered while evaluating the complete state space
modelling of the isolated microgrids [13,20]. While a
small state perturbation,ΔAmay not drastically unsta-
bilize a stable system, but the stability of a marginally
stable system or systems on the boundary, such as
those with very small real-valued poles, may shift
towards the right half of s-plane and, hence system
may become unstable. This is discussed in section 7 in
case 2.

4.2. Transfer functionmodelling

When the transfer function model of a system is
given, its response to a specific input signal can easily
be determined. Even mathematical computations are
much easier when the system is in its Laplace trans-
form domain. The current work utilizes the transfer
function model for reduced order modelling so as to
visualize the dominant poles in s-plane and develop
reduced order response for any input signal. The over-
all transfer function model of autonomous microgrid
(15,16) with outputs ioD1, ioQ1, ioD2, ioQ2ωPLL1,ωPLL2
and inputs vbD1, vbQ1, vbD2, vbQ2, is represented by 24
transfer functions from all inputs to outputs, given
below;

G(s) = C(sI − A)−1B

=

⎡
⎢⎢⎢⎢⎢⎢⎣

G11(s) G12(s) G21(s) G22(s)
G31(s) G32(s) G13(s) G14(s)
G23(s) G24(s) G33(s) G34(s)
G41(s) G42(s) G51(s) G52(s)
G61(s) G62(s) G43(s) G44(s)
G53(s) G54(s) G63(s) G64(s)

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

where, Gij(s) is the transfer function between ithoutput
and jth input,

Gij(s) = Nij(s)
DC(s)

(23)

DC(s) is the 36th order common denominator,

Nij(s) is the numerator of the transfer function Gij(s).
Out of this transfer function set of autonomous

microgrid system, six are static gain due to no rela-
tionship between those pair of input-output signals.
Table 3 tabulates all the 36 common poles of DC(s)
with their damping ratios and oscillatory frequencies
obtained from their real and complex parts.

5. Optimal model order reduction

The processing speed and storage requirements of high-
order systems, as well as their limitations in accuracy
due to the high probability of errors in state matri-
ces, makes the analysis computationally cumbersome.
Parsimony principle defines the best approximant as
“the one that accurately represents a transfer function
with a minimum number of parameters.” MOR facili-
tates the analysis of such systems by providing a near-
to-good lower order replacement for its large order
model [6].

The widely applied technique for MOR of LTI sys-
tems is Balanced Truncation approach, which origi-
nates from the controllability and observability grami-
ans,WC,WO, respectively, as a solution of the Lypunov
algebraic equation,

AWC + WCAT = −BBT (24)

ATWO + WOA = −CTC (25)

The “balanced” approach equalizes the gramians
of the system through similarity transformation. The
MOR is achieved by elimination of the smaller energy
or uncontrollable-unobservable states. BT involves
largematrix computationswhile analyzing larger power
systems, for evaluating the controllability and observ-
ability of system. DC offset may occur while eval-
uating lower order approximations due to its ineffi-
ciency in following the original system’s steady-state
behaviour [4].

The method proposed in the paper to reduce the
higher order microgrid model in (22) to its lower order
counterpart is by using a combination of Dominant
pole and Particle Swarm Optimisation technique. This
proposed optimal reduction method takes the advan-
tages of both the conventional dominant pole reten-
tion method and the most popular swarm intelligence
technique of PSO. The principle of the dominant pole
method is to retain the eigenvalues closes to the ori-
gin, hence retaining dominant time constants in the
reduced model. Since the eliminated poles only impact
the response at the beginning of a system, the reten-
tion of dominant poles gives the reduced model overall
behaviour similar to the original one [9]. Considering
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the reduced order transfer function model of (22) as

Gr(s) = Cr(sI − Ar)
−1Br

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Gr11(s) Gr12(s) Gr21(s) Gr22(s)
Gr31(s) Gr32(s) Gr13(s) Gr14(s)
Gr23(s) Gr24(s) Gr33(s) Gr34(s)
Gr41(s) Gr42(s) Gr51(s) Gr52(s)
Gr61(s) Gr62(s) Gr43(s) Gr44(s)
Gr53(s) Gr54(s) Gr63(s) Gr64(s)

⎤
⎥⎥⎥⎥⎥⎥⎦
(26)

where,Grij(s) is the transfer function between output ith

output and jth input with order “r” (r < 36);

Grij(s) = Nrij(s)
DCr(s)

= br−1sr−1 + br−2sr−2 + . . . . + b0
arsr + ar−1sr−1 + . . . . + a0

(27)
DCr(s) is the rth order common denominator,

Nrij(s) is the numerator of the transfer function
Grij(s).

The eigenvalues of the small signal model, high-
lighted in Table 3, are significantly closer to the origin
as compared to other ones, and thus, are preserved in
the reduced order approximant. This table also lists
all the eigenvalues with mode nos. Thus, for a 9th

order reduced model, the modes taken from the orig-
inal system are; oscillatory modes: 10,11,12,13 and a
non-oscillatory mode: 16.

Now for optimal model order reduction, the numer-
ator Nrij(s) is to be determined such that the L1 error
norm between original and reduced order approximate
system is minimum, i.e.

|error|step =
∞
∫
0

|g(t) − gr(t)| (28)

where, g(t) = L−1(G(s)), is the step response of
the original system; gr(t) = L−1(Gr(s)), is the step
response of the reduced order system.

To fulfil the above requirement of minimum error,
error minimization is achieved by determining the
numerator polynomial, Nrij(s) in (27) by utilising the
evolutionary optimisation tool, Particle Swarm Opti-
mization (PSO).

PSO is successfully used in optimization problems
in every field of study [10,11]. It was developed by
Eberhart and Kennedy in mid-1990s and adapted its
behaviour from natural instances like a flock of birds, a
shoal of fishes, etc. This tool results in higher flexibility
and higher accuracy, which in turn helps to achieve the
desired optimality with simple iterative programming.
In the PSO algorithm, a collection of particles is placed
randomly in the search space of the optimization prob-
lem. These particles move in a manner which is identi-
cal to movement of a flock of birds in nature in search
of food and shelter. Then for a predefined number of
iterations, the objective or fitness function of each parti-
cle is evaluatedwith theirmovements towards positions

with better fitness. These movements are based on the
particles own history of the best location in terms of fit-
ness and best positions attained by other particles in the
group, and some inertia from the current position with
some random perturbations. Thus, the swarm obtains
themost optimum solution to the fitness function in the
problem space with a fixed number of particles working
in synchronization [21]. The PSOupdate rule equations
are given as;

vk+1
id = wvkid + c1rk1(pbest

k
id − xkid)

+ c2rk2(gbest
k
id − xkid) (29)

xk+1
id = xkid + vk+1

id (30)

where, vkid and x
k
id represents velocity and position of the

ith particle (out of n particles) at d-dimension (out of D
dimensions) in kth iteration respectively.

pbestkid and gbest
k
id represents the personal best posi-

tion and global best position (i.e. group’s best) of the
ith particle (out of n particles) at d-dimension (out of D
dimensions) in kth iteration respectively.

w represents inertial weight attached to the particle’s
previously attained position; c1, c2 represent accelera-
tion constants; rk1, r

k
2 represent random numbers in the

range of [0,1]. The flexibility, simple computations and
high convergence rate in PSO based reduction tech-
nique yields an efficient lower order model which gives
a good approximation to its full order original system.

6. Results and discussion

Uncertainty in systemparameters, changes in operating
point, fluctuations in the renewable energy resources
connected asDGs as fluctuating irradiance, wind speed,
etc. and load changes are some of the key reasons for
state perturbation. It is worthy of mentioning that sub-
ject to these perturbations the stability analysis for full
order as well as reduced order is indispensable.

The complete small signal modelling and order
reduction of the microgrid system, in this paper, take
into account the effect of uncertainty on the state space
model, by considering a small perturbation of ΔA on
the state matrix A linearized in the vicinity of a steady
state operating point. The small signal model of an
autonomous microgrid system consisting of two DERs,
local loads and a connecting line is represented in state
space by state space equations and output equations
as in (15) and (16). The PLL angular frequency pro-
file for perturbed and unperturbed microgrid system
considered are given in Figure 4. The effect of state per-
turbations on autonomousmicro grid system dynamics
can be seen in Figure 5.

The dynamical response of vodq and iodq correspond-
ing the systemwith andwithout perturb, arementioned
in Figure 5(c) and Figure 5(d). It is worthy to men-
tion that the effect of the perturbation on the output
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Figure 4. Measured frequency by PLL.

voltage and current profile almost tracks with little
deviation in the initial period due to certain system
uncertainties. After 0.5 s the tracking error is almost
zero. Similar case is also visualized corresponding to
other system behavioural quantities. Here convergence
is almost achieved even earlier in the initial period.

The mathematical modelling with small signal anal-
ysis of the two inverter configuration as considered in
this paper is represented by 36 state variables. In prac-
tical systems, the autonomous microgrid consists of
a large number of DERs interconnected to meet the

Table 1. PSO Algorithm parameter values.

Parameter Value

No. of generations 150
Swarm size 40
c1 ,c2 2.2,2.1
[wmax,wmin] [0.9,0.4]

load requirements of an area. Thus, the small signal
model tends to become computationallymore complex.
The order of higher order transfer functions is dimen-
sionally simplified by utilizing the advantages of con-
ventional dominant pole technique and PSO method.
The error norm is used as the fitness function of par-
ticles in multiple iterations. The various parameters
used in PSO algorithm are given in Table 1. The time
responses of the full order and reduced order transfer
functions by balanced truncation and proposed tech-
nique are given in Figure 6. The reduced order step
response of (ωPLL1(s))/(vbD2(s)) shows a steady state
error by balanced reduction. The ISE and ITAE to step
inputs, in the resulting reduced order transfer function
model are given inTableA1 in theAppendix. The trans-
fer functions from vbD1 to ωPLL1 ,ωPLL2, as seen from
the table, give better-reduced order model by balanced
truncation whereas, the other transfer functions give

Figure 5. Autonomous Microgrid System Profile (blue line indicates unperturbed system and red line indicates perturbed system)
(a) Active and reactive power, (b) ∅d , ∅q, (c) d-axis output current and voltage, (d) q-axis output current and voltage.
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Figure 6. Time responses of full order and reduced order autonomous microgrid system. (a) Impulse response (b) Ramp response

(c) Step response of ωPLL2(s)
vbQ1(s)

, (d) Step response of ωPLL1(s)
vbD2(s)

.

better results with the proposedmethod. This table also
gives the errors in the reduction of the same system by
balanced truncation approach.

The step, impulse and ramp responses of PLL angu-
lar frequency in Figure 6(a-c), show the dominance of
the proposedmethod. Thus, the comparative analysis of
these errors clearly indicates that the proposed method
achieves better order reduction than the other method.

The changes in system dynamics due to pertur-
bation (as in Figure 5), in the initial time period of
system responses, makes it necessary to analyze the
reduced order modelling of the perturbed system as
well. Though for small changes in eigenvalues due
to this perturbation, the deviations in reduced order
transfer functions for the perturbed system will not be
remarkable still their magnified impact can be seen in
Figure 7. This figure shows that the proposed reduc-
tionmethod is not only good for the earlier small signal
model of the microgrid, also gives a good approxima-
tion of perturbed microgrid systems as well.

The error norm (28) of the reduced ordermodelwith
different standard inputs: Unit impulse input δ(t), unit
step input u(t). and unit ramp input r(t); for both sys-
tem without uncertainty and system with uncertainty,
for some of the transfer functions of the system are
given in Table 2. The impulse error norm is seen to be
higher than the ramp and step error norm values.

The comparative analysis of the effects of MOR
by the proposed method with BT, in the frequency

Figure 7. Model order reduction of the perturbed and unper-
turbed transfer function iOQ1(s)

vbD1(s)
.

domain, in terms of gain margin (GM) and phase mar-
gin (PM) are given in Table A2 in Appendix. It is clearly
seen that the GM and PM of the reduced order model
by the proposed method are close to that of the origi-
nal system. Therefore, it can be said that the results of
reduced ordermodelling in the time domain are equally
applicable in the frequency domain as the frequency
domain features of the overall system remain close to
that of the original system. Figure 8 represents the com-
parative analysis of the frequency response achieved by
the proposed reduction technique as compared to the
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Table 2. Impulse, step and ramp errors for microgrid transfer functions.

ErrorNorm
iOQ1(s)
vbD1(s)

ωPLL1(s)
vbD1(s)

ωPLL2(s)
vbD1(s)

iOQ1(s)
vbQ1(s)

ωPLL1(s)
vbQ1(s)

ωPLL2(s)
vbD2(s)

Without Perturbation |error|δ(t) 352.6298 674.4917 171.1216 83.1974 83.6241 48.1488
|error|u(t) 5.6677 5.8919 1.1341 2.0779 1.3624 1.7320
|error|r(t) 32.2833 33.6750 2.8756 0.3150 2.6041 6.6707

With Perturbation |error|δ(t) 433.9358 732.2713 129.0163 15.6335 65.8360 29.3462
|error|u(t) 6.3115 2.5837 0.2793 0.0957 14.0356 0.5082
|error|r(t) 166.1388 29.6479 0.2750 0.4107 0.6040 4.9194

Figure 8. Bode plot of full order and reduced order transfer functions. (a) ioQ1(s)
vbQ2(s)

, (b) ioQ2(s)
vbQ1(s)

, (c) ωPLL1(s)
vbQ1(s)

, (d) ωPLL2(s)
vbQ1(s)

.

balanced truncation method. These magnitude plots of
the optimal reduced order transfer function from input
vbQ1 to outputωPLL12, ioQ12, give a better approximation
to the full order model till frequencies of 100 rad/sec.
The phase plots can be seen to give best approximants
till 10 rad/sec.

The frequency analysis of the reduced order model
of the perturbed system is not shown here as it will be
much similar to that for the unperturbed system, which
is been analyzed thoroughly in this paper. Stability and
Eigenvalue analysis

A real eigenvalue corresponds to a non-oscillatory
mode whereas, a complex eigenvalue is an oscilla-
tory mode. The frequency of oscillation for oscillatory
modes is obtained from the imaginary part of eigen-
values. The real part of eigenvalues gives the damping
effect of that root on the system [22]. All the eigenval-
ues of the system in Table 3, have negative real parts.
Thus, the necessary condition for small signal stability

is fulfilled, i.e. σi < 0. The evaluation of the partici-
pation factor of a system is crucial to further enhance
the stability. The participation matrix combines the
right eigenvectors and left eigenvectors to measure the
degree of association between all the state variables of
the system and the system modes. The eigenvalue sen-
sitivity is found out from this matrix, which gives the
contribution or influence of a certain state variable to a
certain mode [23].

As seen in Table 3, a total of 16 oscillatory/non-
oscillatorymodes are identified. The states representing
output voltage and current in both d and q axis are
observed to be highly oscillatory with frequencies of
up to 1995Hz approximately. The lowest frequency of
0.005Hz is in Mode 13 whose major contributors are
active and reactive powers of the inverters. For eigenval-
ues with damping ratios from 0 to 1, i.e. underdamped
dynamics, the settling time is inversely proportional
and hence, lower ξ , corresponds to higher settling time.
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Table 3. Eigenvalues, modes and mode contributor.

Mode

Eigen values
Real part± j Imaginary

part
Damping
ratio, ξ

Damped
frequency, f i(Hz) Oscillatory

Non-
Oscillatory

Highest
Contributors

3,4 −2500.5541 12528.6187 0.1958 1995.0030 1 voq1, ioq1
5,6 −2499.7826 12526.5737 0.1957 1994.6773 2 voq2, ioq2
7,8 −2321.4976 11784.7233 0.1933 1876.5483 3 vod1, iod1
9,10 −2317.9076 11780.4993 0.1930 1875.8757 4 vod2, iod2
11 −7912.5942 0 1 14 vod1,f
12 −7903.6296 0 1 15 vod2,f
1,2 −375 376.6084 0.7056 59.9695 5 ilineDQ
13,14 −3333.3300 376.6084 0.9937 59.9695 iloadDQ2
15,16 −1666.6667 376.6084 0.9754 59.9695 iloadDQ1
19,20 −258.0320 64.1104 0.9705 10.2087 6 ildq2
17.18 −257.5532 60.9617 0.9731 9.7073 7 ildq1
21,22 −79.3639 16.5199 0.9790 2.6306 8 γdq1
23,24 −77.3698 19.2989 0.9703 3.0731 9 γdq2
25,26 −10.6101 7.8436 0.8041 1.2490 10 δ2,∅PLL2
27,28 −0.4722 6.0420 0.0779 0.9621 11 ∅dq1
29,30 −1.2883 4.6232 0.2684 0.7362 12 ∅dq2
31 −2.1209 0 1 16 ∅PLL1
32,33 −50.2448 0.0308 0.9999 0.0049 13 P12,Q12
34,35 −50.2515 0.0315 0.9999 0.0050
36 0 0 δ1

Figure 9. Bar graph representation of participation factors.(a) mode 10 (b) mode 11 (c) mode 12 (d) mode 13 (Reduced order
oscillatory modes).

The damping ratios of the complex eigenvalues demon-
strate the damped oscillations which die out and gives
a stable overall system dynamics.

As system’s reduced order model retains the eigen-
values with the smallest real part, thus, for a 9th order
reduction, the corresponding modes that are consid-
ered are; mode 10, 11,12,13,16. Although the angle

deviation of inverter 1 is considered as a slow state at
the origin, it’s small- signal response during both the
transient and the steady state is zero. This state is thus
ignored in the subsequent analysis when the reduced
order system is being developed. Fast modes die out
quickly in the system response, whereas, the slower
mode’s effect predominates throughout in response.
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Table 4. Effect of perturbation on slowmode.

λ +� λ Damping ratio Damped freq.(Hz)

Indices λ CASE 1 CASE 2 ξλ ξλ+�λ
1 ξλ+�λ

2 fλ fλ+�λ
1 fλ+�λ

2

25,26 −10.6101± j7.8436 −10.6204± j7.8297 −10.7297± j7.6884 0.804 0.805 0.813 1.249 1.247 1.224
27,28 −0.4722± j6.0420 −0.4732± j6.0419 0.0144± j4.6165 0.078 0.078 −0.003 0.962 0.962 0.735
29,30 −1.2883± j4.6232 −1.2785± j4.6296 −1.2521± j2.6654 0.268 0.266 0.425 0.736 0.737 0.424
31 −2.1209± j0 −2.1207± j0 −3.0613± j0 1 1 1
32,33 −50.2448± j0.0308 −50.2515± j0.0235 −50.2532± j0.0130 0.999 0.999 0.999 0.005 0.004 0.002

Since thesemodes are slowwith larger time constants as
compared to the othermodes, the overall reduced order
response will be similar to the original system response,
with negligible inaccuracies,mainly in the initial period
of the response. The impact of the major state vari-
ables in these modes combined obtains the system
response in reduced order. The quantitative analysis of
the various state contributions in the retained oscilla-
tory modes, i.e. Mode 10, 11, 12 and 13, are presented
as a bar graph in Figure 9.

The state perturbation in the small signal model of
the microgrid system causes the eigenvalues to devi-
ate from their values calculated by linearization of the
system about a steady state operating point. The small
perturb in the eigenvalues will be insignificant for fast
modes, as a change of 0.001Hz will not change their
dynamics much, but, for the slower modes, a change
of 0.001Hz will significantly increase the time constant
of the system. Table 4 shows the effect of the pertur-
bation on low-frequency eigenvalues. The changes in
damping ratios and frequencies on thesemodes thereby
changes the overall system response under perturba-
tion. Significant parameter or load changes may even
affect the stability of the overall system. Cases 1 and 2,
in the table, demonstrate two different levels of uncer-
tainty, wherein, the comparatively larger perturbation
in case 2 makes the system unstable by the movement
of the smallest real-valued mode toward the unstable
region of s-plane. The state perturbation, in this case,
results in a net negative damping in the overall system
and frequencies as low as 0.002Hz.

Due to small uncertainties considered in the system,
the relative participation of states in different mode will
not change and so, it is not evaluated again in this work.

7. Conclusion

An optimal reduced order model of the autonomous
microgrid system is derived using the dominant pole
retention and PSO technique. The poles nearest to ori-
gin are retained in the reduced order model, and the
error between full order and reduced order model is
minimized by adopting the PSO algorithm. The 36th
order small signal model is reduced to a 9th order
approximation with high accuracies in time as well
as frequency domain. The comparative analysis of the
proposed order reduction method with that of bal-
anced truncationmethod is also obtained by comparing

the impulse, step and ramp responses; and bode plots
obtained through both the methods. The eigenvalue
analysis identifies the state variables of the original
system, whose major influences are preserved in the
reduced order model.

Considering a general perturbation in the system
which may be due to parameter changes, changes in
operating conditions etc., the effect of subsequent state
perturbation on the full order and reduced order sys-
tem have been critically analysed by considering their
effects on the slower modes, as the deviations in the fast
modes will not impact the system dynamical behaviour.
Cases 1 and 2 in Table 4 demonstrate two different per-
turbations on the state space model wherein, the later
one alters the system stability. The system dynamics of
the derived 9th order model of an autonomous micro-
grid is approximately same as that of its 36th full-order
model, which has been proved by time and frequency
domain analysis and, hence the optimal reduced order
model can be used in all small signal analysis, stability
requirements and other controller requirements.
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Appendix

Table A1. ISE and ITAE for all transfer functions of autonomous
microgrid.

ISE ITAE

Transfer function BT Proposed BT Proposed

iOD1(s)/vbD1(s) 25.3748 22.4097 125.7981 106.4528
iOQ1(s)/vbD1(s) 7.1662 5.6677 1148.3734 53.9848
iOD2(s)/vbD1(s) 63.1841 3.0671 26.0544 22.9404
iOQ2(s)/vbD1(s) 9.3897 5.2964 32.8778 47.8019
ωPLL1(s)/vbD1(s) 2.6144 5.8919 274.0537 194.6047
ωPLL2(s)/vbD1(s) 0.3021 1.1341 166.1873 127.2240
iOD1(s)/vbQ1(s) 0.0782 0.0297 10.1155 7.2792
iOQ1(s)/vbQ1(s) 2.0955 2.0779 42.2261 86.1811
iOD2(s)/vbQ1(s) 0.7502 0.2190 53.0852 40.0971
iOQ2(s)/vbQ1(s) 1.8197 1.1118 78.3357 32.6199
ωPLL1(s)/vbQ1(s) 11.7868 1.3624 1354.6428 175.0446
ωPLL2(s)/vbQ1(s) 2.8359 1.7320 807.2399 184.1313
iOQ1(s)/vbD2(s) 1.9255 1.4104 3.0392 0.7847
ωPLL1(s)/vbD2(s) 4.9850 4.3867 17.9070 2.2281
ωPLL2(s)/vbD2(s) 26.9338 25.128 213.3036 63.8961
iOQ1(s)/vbQ2(s) 0.07350 0.0522 9.5347 0.6392
ωPLL1(s)/vbQ2(s) 23.5205 1.4432 18.1278 1.4519
ωPLL2(s)/vbQ2(s) 15.3154 13.4021 27.3498 11.7831
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Table A2. Gain margin and phase margin of full order and reduced order autonomous microgrid.

GM PM (degrees)

Transfer Function Original BT Proposed Original BT Proposed

iOD1(s)/vbD1(s) 0.82489 1.09702 0.82365 −23.62158 28.44517 –
iOQ1(s)/vbD1(s) 0.82774 0.84322 1.06409 25.94144 −25.48198 –
iOD2(s)/vbD1(s) 0.74987 0.70827 0.75015 −108.08955 −111.31156 −107.51302
iOQ2(s)/vbD1(s) 1.58496 – 2.12825 −2.76498 6.24817 −1.77988
ωPLL1(s)/vbD1(s) 0.74269 0.75544 0.74818 −1.31455 −124.30003 −1.26627
ωPLL2(s)/vbD1(s) 0.19983 0.20343 0.20787 −23.06178 −20.54071 −18.70413
iOD1(s)/vbQ1(s) 0.55514 0.55089 0.55715 45.37122 45.62369 45.18011
iOQ1(s)/vbQ1(s) 0.57881 0.52184 0.65434 37.93962 48.88312 40.54128
iOD2(s)/vbQ1(s) 0.35861 0.35861 0.35858 −161.72776 −161.41563 −159.97817
iOQ2(s)/vbQ1(s) 0.74939 0.74946 0.74931 −15.01546 −14.77873 −15.82536
ωPLL1(s)/vbQ1(s) 0.09319 0.09360 0.09254 120.98238 121.89210 122.88868
ωPLL2(s)/vbQ1(s) 0.75688 0.75551 0.75542 −73.20487 −72.74533 −73.65761
iOQ1(s)/vbD2(s) 4.36680 586.20700 9.68474 – – –
ωPLL1(s)/vbD2(s) 1.47394 3.31899 2.51810 – – –
ωPLL2(s)/vbD2(s) 16.78432 41.08055 1.25690 – – –
iOQ1(s)/vbQ2(s) 14.71627 13.23669 12.46060 – – –
ωPLL1(s)/vbQ2(s) 0.31552 0.31545 0.31519 −1.46538 −145.41158 −13.17513
ωPLL2(s)/vbQ2(s) 3.00617 3.32984 0.16855 −59.11295 −60.62443 −94.09749
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