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ABSTRACT
The artificial bee colony (ABC) algorithm is a widely used algorithm in the field of function opti-
mization problems. The traditional ABC algorithmhas long search time, slow convergence speed
and easy to fall into local optimum at the end of the search. In this paper, the design scheme
and method of implementing parallel ABC algorithm are studied, which makes use of the char-
acteristics of many data bits and easy expansion of data bits of the ternary optical computer
(TOC). First, by analysing the traditional ABC algorithm, we can find the parallel parts and paral-
lel design. Then the detailed algorithm implementation flow is given and the clock cycle of the
algorithm is analysed. Finally, the correctness of the parallel scheme is verified by experiments.
Compared with the ABC algorithm and parallel ABC algorithms based on computer (PABC), the
ABC algorithmbasedon TOC (TOC-PABC) effectively shortens the search time, improves the opti-
mization performance of complex multimodal function optimization problems and obtains a
higher speedup.
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1. Introduction

In 2005, Karaboga proposed an artificial bee colony
(ABC) algorithm based on Seeley’s colony self-
organizing model [1]. The algorithm is a swarm intelli-
gence optimization algorithm for simulating honey bee
collecting behaviour and achieves target search through
bee colony division of labour. It has the characteristics
of simple parameter setting and easy implementation.
The algorithm can solve a series of optimization prob-
lems, including function optimization and combinato-
rial optimization problem [2–4], etc. Literature [5–6]
improved the ABC algorithm and improved the search
performance to some extent. In the literature [7], an
improved artificial bee colony algorithm (IABC) is pro-
posed, which uses the generation of adjacent solutions
to improve theABC algorithm. Aiming at the drawback
of ABC algorithmwith local search ability, the literature
[8] proposed an ABC algorithm based on the balanced
search. However, many of the existing ABC algorithms
are serial. When solving large-scale complex engineer-
ing optimization problems, the search performance of
serial ABC algorithm is not ideal. This poses a challenge
to the traditional ABC algorithm in finding the optimal
solution of the function, so it is necessary to seek new
solutions to meet this challenge.

The ternary optical computer (TOC) is named after
its processor uses three-state optical signals to rep-
resent information and can perform all ternary logic

operations [9]. The biggest difference between this opti-
cal processor and the traditional electronic processor
is that optical processor allows the user to reconfig-
ure the calculation function of each data bit at any
time, and a large number of data bits can be grouped
arbitrarily [10]. These advantages make it more suit-
able to solve the problems faced by the current ABC
algorithm. TOC uses liquid crystal arrays and embed-
ded control components, so compared with electronic
computers, TOC’s lower energy consumption, less heat,
and its numerous data bits and data bits are easy to
expand, making it more suitable for parallel implemen-
tation of ABC algorithm in hardware. At present, TOC
has a preliminary theoretical system and experimental
platform [11–16]. Beginningwith the idea of publishing
TOC in 2003, after Decrease-Radix Design theory [17],
TOC encoder and decoder [18], FFT algorithm imple-
mentation andDFT algorithm implementation [19,20],
performance analysis of a TOC [21], improved sym-
bol number (MSD) adder [22–26], the implementation
of reconfigurable ternary optical processor [27,28] and
vector matrix multiplication [29,30], cellular automata
[31] and other TOC-based applications, the current
TOC has the conditions to implement parallel ABC
algorithm.

This paper makes use of the advantages of TOC data
bits and can be reconstructed at any time. By decom-
posing the parallel part of ABC algorithm in the search
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process, ABC algorithm can realize parallel search on
hardware, thus improving search speed and optimiza-
tion performance as a whole. And introduces the char-
acteristics of TOC and the corresponding addition and
multiplication operations, analyses the parallelism of
ABC algorithm, and the implementation scheme on
TOC, and analyses the clock cycle in the implementa-
tion process.

2. Related work

2.1. ABC algorithm

InABC algorithm, the position of the food source refers
to a feasible solution in the optimization problem, and
the richness of the food source indicates whether the
quality (fitness value) of the solution is high. The ABC
algorithm consists of employed bees, onlooker bees and
scout bees. Generally, the number of employed bees and
onlooker bees is equal, and the number of scout bees is
1. In theABC algorithm, the process of collecting honey
of employed bees is similar to the process of finding
the optimal solution in evolutionary computation. The
honey source of the bee search is expressed as a pos-
sible solution. The whole process of searching for the
honey source is equivalent to searching for the optimal
solution. The quality of the honey source is regarded
as the fitness value fit. The corresponding relation-
ship between bee collecting honey and optimization
problems is shown in Table 1.

In the ABC algorithm, the behaviour of collect-
ing honey contains three main factors: food source,
employed bees and unemployed bees.

a. Food source. Food source refers to various possi-
ble solutions. The quality of food depends onmany
factors, such as the distance from the hive, the con-
centration of honey source, whether it is easy to be
extracted, etc., which is attributed to fitness.

b. Employed bees. The employed bees are associated
with food sources that carry information about
specific food sources, including the distance of the
food source from the hive, the direction of the food
source and the quality. The employed bees share
this information with other bees by jumping and
dancing.

c. Unemployed bees are divided into two types:
onlooker bees and scout bees, and the scout bees
are responsible for searching for food sources near

Table 1. Corresponding relationship between bee collecting
honey and optimization problems.

Bee collecting honey Optimization problems

Honey source location Feasible solution
Quality of honey source Quality of feasible solution
Speed of collecting honey Optimized speed of feasible solution
Maximum fit value Optimal solution

the hive. The onlooker bees wait in the hive, look-
ing for the employed bees to follow by observ-
ing the dance of the employed bees. Once the
employed bees are selected to be followed, the
onlooker bees become the employed bees.

The group of solutions is represented by SN D-
dimensional vectors. The ith solution can be expressed
as xi, xi = (xi1, xi2, . . . , xiD), i = 1, 2, . . . , SN. The
amount of pollen from the food source corresponds to
the quality of the solution. Fitness is represented by fit1,
fit2, . . . , fitSN . If a food source has not been updated
after a presetmaximumnumber of cycles limit, then the
employed bee will give up the food source to become
a scout bee. The basic principles can be described as
follows:

(1) Initialize the food source
In the initial state of the ABC algorithm, the scout

bees search for SN food sources randomly. Generated
according to Equation (1):

xij = xmin(j) + rand(0, 1) · (xmax(j) − xmin(j)) (1)

where xij is the j-dimensional coordinate of the food
source xi and xmax(j), xmin(j) are the two boundary val-
ues of the search space, and rand is a random number
between 0 and 1.

(2) Employed bees’ stage
After initializing the food source, each employed bee

gets a food source and collects honey. In the process of
collecting honey, employed bee updates the location of
the food source by actually observing the information
and self-memory information. The food source update
via Equation (2):

vij = xij + ∅ij(xij − xkj) (2)

where vij is the location of the new food source and k,
k∈{1, 2, . . . , BN}, are chosen at random (BN is the
number of populations). k�=i, j∈ {1, 2, . . . , D} (D is
the dimension of the target space),Ø is a random num-
ber between [−1, 1], which controls the generation of
food sources adjacent to the x position.

(3) Onlooker bees’ stage
Onlooker bees calculates the probability value Pi of

the quality of the food source searched by employed
bees according to Equation (3) and selects a food source
by greedy selection strategy:

Pi = fit/
SN∑

n=1
fitn (3)

where fit is the fitness of the position of the food source
corresponding to the ith employed bee.
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2.2. Performance analysis of ABC algorithm and
comparisonwith other swarm intelligence
algorithms

Since ABC algorithm was proposed, it has attracted the
attention of many scholars and compared it with other
intelligent algorithms. The literature [3] first made a
detailed and comprehensive performance analysis of
ABC. It is tested by 50 numerical benchmark func-
tions and compared with other well-known evolution-
ary algorithms such as genetic algorithm (GA), particle
swarm optimization (PSO), differential algorithm (DE)
and ant colony algorithm (ACO). The literature [4]
analyses the performance comparison between ABC
and other intelligent algorithms and the influence of
the value of ABC control parameters under multidi-
mensional and multimodal numerical problems. The
analysis of the performance of the ABC algorithm is
summarized as follows:

(a) ABC algorithm has good exploration ability. Scout
bees can jump out of the original solution set and
find a new solution to completely replace the old
solution randomly. This feature also weakens the
dependence of the algorithm on the group size
and is affected by the initial solution set, ensuring
the diversity of the group, preventing the prema-
ture convergence problem and making ABC suit-
able for solving multidimensional and multimodal
problems.

(b) ABC algorithm has fewer parameters and the
algorithm is easy to control. In addition to the
maximumnumber of cycles (maxCycle) and popu-
lation size (SN), the algorithmhas only one control
parameter limit. The limit value depends on the
population size (SN) and the dimension of the
problem (D), that is, limit = SN×D, so ABC has
only two control parameters,maxCycle and SN.

(c) ABC algorithm has a long search time. GA
algorithm and DE algorithm generate a new solu-
tion by means of hybridization, which is more
complicated, depends on the initial population,
and it is easy to prematurely converge. The local
optimization ability of the PSO algorithm is poor,
the calculation amount is large and the initial infor-
mation is scarce. ABC algorithm only generates
new solutions based on its parent solution (old
solution), and the operation is simple, suitable for
local search. However, this leads to the inability
of good information to spread quickly in the pop-
ulation, while each variation only modifies one
dimension of the parent solution, and the mag-
nitude of the change is small. All of these reduce
the local optimization accuracy of ABC, and the
convergence speed is slower, especially in solving
the problem of complexmultimodal function opti-
mization. Therefore, we choose convergence time

Monitoring system

S E O D

Figure 1. The processor structure of TOC. S: Surface light
source, E: Encoder, O: Optical processor, D: Decoder.

and optimization precision as the performance
evaluation criteria of ABC algorithm.

2.3. The basis that TOC can implement the ABC
algorithm

2.3.1. Architecture of TOC
TOC uses no intensity light, horizontal polarized light
and vertical polarized light to represent information,
and utilizes liquid crystal devices (LCDs) to control the
polarization directions of light, as shown in Figure 1
[30]. The bit reconfigurable processor of TOC is a prod-
uct of the Decrease-Radix Design Theory [17]. The
main conclusion of the theory is that: if the D-state is
included in n (n > 1) physical states which is used to
represent information, each of n-valued logic opera-
tors with 2-inputs can be made of no more than n×
(n–1) basic operation units via a determinate proce-
dure, where there are up to n× n× (n–1) types of basic
operation units. The total number of different 2-inputs
n-valued logic operator is known to be n (n× n). The
D-state is a special physics state which would still gen-
erate state λ as the result of superimposition with any
other physical state λ. A basic operation unit is an n-
valued logic operator with the simplest structure and
the following feature: only one combination of input
values would produce a non D-state as the output,
whereas all the remaining input combinations produce
the D-state invariably.

When applying theDecrease-RadixDesign theory to
TOC, there are 39 = 19,683 ternary logic operators and
18 basic operation units. And any ternary logic opera-
tion unit can bemade of nomore than 6 basic operation
units. After deep research we found there is a uniform
structure for the 18 basic operation units of the TOC as
display in Figure 2. We can see in Figure 2, there are
two optical paths: one is the main light path and the
other is control light path. These two optical paths are
composed of liquid crystal array, and they have differ-
ent polarizers. The liquid crystal of the main light path
is divided into four parts (HH, HV, VH, VV), and the
liquid crystal of the control light path is divided into two
parts (H, V), as shown in Figure 3 [22]. The input sig-
nal “a” enters the main optical path which involves two
polarizers (P1 and P2) holding a liquid crystal (LC) to
form a sandwich-like structure. Other input signal “b”
enters the control optical path. The differences between
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Figure 2. Uniform structures of TOC’s basic operation units.

basic operation units are that there are two opposite
cases for the optical rotation of LC in static state, four
combinations of P1’s and P2’s polarization directions,
and three kinds of control optical paths. The three con-
trol optical paths are produced via dividing the input
signal “b” into three sub-beams by two half-reflecting
mirror f1, f2 and a mirror F. Because there is a vertical
polarizer V in the top branch of the control optical path,
the phototube g1 outputs high voltage only when the
“b” is vertical polarized light. Similarly, for a horizontal
polarizer H in middle branch, the g2 outputs high volt-
age only when the “b” is horizontal polarized light. And
for no polarizer in the bottom branch, the g3 outputs
high voltage when the “b” is bright whether vertical or
horizontal polarized light. The device S (three choose
one multiplexer) selects right one from the outputs of
g1, g2 or g3 according to the reconfigure directive bits
k2 and k3 and sends the right signal to XOR gate Y. The
Y will negate the output signal of S when the reconfig-
ure directive bit k1 is 1, and no negate when k1 is 0. The
output signal of Y controls the optical rotation of the LC
inmain optical path [27]. So the output signal “c” is pro-
duced from themain optical path under the sway of the
control optical path. The main optical path is split into
four kinds in accordance with the combinations of P1’s
and P2’s polarization directions. When P1 is vertical
polarizer and P2 is horizontal polarizer themain optical
path is called as VH; P1 is horizontal polarizer and P2 is
vertical polarizer as HV. By that analogy, P1 and P2 are
vertical polarizers as VV, and P1 and P2 are horizontal
polarizers as HH.

2.3.2. MSD adder
According to the Decrease-Radix Design principle dis-
closed in 2008 [17], any area of the data bits of the
ternary optical processor can be reconstructed as a
ternary (including binary) logic calculator at any time.
However, the number of data bits cannot tolerate the
delay of the carry process in the travelling wave adder,
and it is difficult for the optical component to imple-
ment the carry tree structure in the carry lookahead
of adder. Therefore, a numerical calculation system for
the MSD counting system of TOC is established, which
includes anMSD adder, amultiplication routine, a divi-
sion routine and a matrix multiplication routine, in
which MSD adder is the basis.

In 1961, Avizienis proposed an additive technique
that can eliminate the carry delay—MSD (Modified
Signed Digit) digital representation [32]. The MSD
expression of A is

A =
∑

i
ki2i (4)

Among them, the domain of ki ∈{u, 0, 1}, umeans −1;
2iindicates that MSD is also a binary counting method.
Since ki has three optional values, a decimal number
can have multiple MSD representations. For conve-
nience of description, the decimal number in this paper
is labelledwith subscriptD, theMSDnumber is labelled
with subscriptM and the binary number is labelledwith
subscript B. The MSD addition includes T, W, T’, W’,
T2 (equivalent to T) five ternary logical transforms, as
shown in Table 2. The operation process can be divided
into three steps:

Step 1: Apply operation T andW to the operands a and
b bit by bit and append one 0 to the tail of the result
of T.

Step 2: Apply operation T’ and W’ separately to the
result of T and result ofW bit by bit. And append
one 0 to the tail of the result of T’.

Step 3: Apply operation T2 which is the same to oper-
ation T to the results of T’ and result of W’ bit by
bit. The result is the sum of the two.

2.3.3. MSDmultiplier
The logical operation corresponding to the multipli-
cation of two MSD numbers is called M, and the

Figure 3. Optical processor light path division.
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Table 2. Truth table for T,W, T ’,W ’ andM transformations.

a b T W T’ W’ M

−1 −1 −1 0 −1 0 1
−1 0 −1 1 0 −1 0
−1 1 0 0 0 0 −1
0 −1 −1 1 0 −1 0
0 0 0 0 0 0 0
0 1 1 −1 0 1 0
1 −1 0 0 0 0 −1
1 0 1 −1 0 1 0
1 1 1 0 1 0 1

truth table is shown in Table 2. When the n-digit data
A = an−1 . . . a1a0 and B = bn−1 . . . b1b0 are multi-
plied. Apply operation M to the ith digit data in the
multiplier B and each digit data in the multiplicand A.
The result is shifted to the left by i bits, and the result
of the shift is called the partial product of the multipli-
cation operation. The result of the accumulation of n
partial products is the final result of the multiplication
operation.

The accumulation process of n partial products is
completed using a binary iteration method, and the
operation steps are as follows:

(1) The two adjacent partial products are input to
an MSD adder to complete the operation. When
n is an even number, the operation requires n/2
adders, and when n is an odd number, the opera-
tion requires n/2−1 adders. The result of the adder
output is called partial sum.

(2) Input the adjacent two partial sums into one MSD
adder, and output the result as partial sum of the
next operation.

(3) Repeat the second step until there is only one par-
tial sum, which is the MSD multiplication result.

3. Design of parallel ABC algorithm based on
TOC

3.1. Design of parallel ABC algorithm

In the ABC algorithm, the employed bees and the
onlooker bees need to search the neighbourhood of the
food source and need to calculate a large number of
fitness values. As the function dimension increases, it
takes longer to calculate and search for fitness values.
Through the performance test of the serial algorithm in
50 dimensions, the running time of the main function
of the ABC algorithm is shown in Table 3.

Through the results of Table 3 and the study of
the ABC algorithm, the most time-consuming part
is: SendOnlookerBees function and SendEmployedBees
function. Parallel design of ABC algorithm from the
following sections:

(1) Before the iterative loop of ABC, the entire pop-
ulation is initialized and then the fitness of these
solutions is evaluated. The process of evaluating

Table 3. Performance analysis of serial ABC algorithm.

Function CPU time (s)

SendOnlookerBees() 8.280
SendEmployedBees() 5.429
CalculateFitness() 0.132
main() 0.181
CalculateProbabilities() 0.179
MemorizeBestSource() 0.088
SendScoutBees() 0.032
init() 0.021

the fitness of all solutions is a cyclical calculation
process. Each cycle is independent of each other,
which satisfies the basic requirements of paral-
lelism, so this phase can be processed in parallel.

(2) In the process of finding the honey source by
employed bees, each employed bee searches in
its own area and its neighbours. The degree of
dependence between employed bees is low, so
there is natural parallelism. Initially, each honey
source corresponds to an employed bee, and
employed bee randomly searches for the vicin-
ity of the honey source through Equation (2).
Therefore, the search of employed bee can be per-
formed on the TOC, and the main steps are as
follows:
Step 1: Organize the position information and fit-

ness value of the honey source into SZG file
[11] and send the SZG file to the ternary
optical processor (TOP).

Step 2: The TOP reconstructs n (depends on
the size of the population) composite opera-
tors according to Equation (2), and employed
bees searches the position information of the
honey source in parallel randomly and calcu-
lates a new fitness value.

Step 3: Wait until the end of the search, greedy
selection for the fitness value of each honey
source, and compare the new fitness value
with the old one, retain the honey source
information with higher fitness value, and
update the position information fitness value
of the honey source in the global memory.

(4) In the process of finding the honey source by
onlooker bees, the selection process is a global
probability selection, which is a global roulette
selection method. According to the probability
equation (3), a honey source is selected. And the
onlooker bee is converted into an employed bee for
neighbourhood search. This stage is completed on
the TOC. Each bee completed the neighbourhood
search and the new honey source fitness evaluation
independently, so the onlooker bees’ stage also has
parallelism. The specific steps are as follows:
Step 1: The TOP reconstructs n (depends on

the size of the population) composite opera-
tors according to Equation (3), including the
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Figure 4. Framework of the parallel ABC algorithm based on
TOC.

adder and the divider, and the onlooker bees
selects a honey source by probability.

Step 2: The onlooker bees searches the position
information of the honey source in parallel
randomly and calculates a new fitness value.

Step 3: Wait until the end of the search, greedy
selection for the fitness value of each honey
source, and compare the new fitness value
with the old one, retain the honey source
information with higher fitness value, and
update the position information fitness value
of the honey source in the global memory.

(4) At the end of the stage of the employed bees and
the onlooker bees, detect all solutions that have not
been updated. If the number of times a solution
has not been updated exceeds the set threshold, the
solution is discarded, and the scout bees will again
find a new solution to replace the abandoned solu-
tion. This loop process is also independent of each
other, so it can be processed in parallel.

Wemaintain amaster–slave parallelmodel with only
one population without changing the basic structure of
the ABC algorithm. The framework of the parallel ABC
algorithm based on TOC is given, as shown in Figure 4.

3.2. Implementation of parallel ABC algorithm
based on TOC

Combined with the above analysis, the specific imple-
mentation steps of the algorithm are as follows:

Step 1: Initialize the parameters and evaluate the fitness
value of the initial food source.

Step 2: Using the Mason rotation algorithm to generate
a 1024× 1024 random number array on an elec-
tronic computer at one time and store it in the
TOP.

Step 3: Parallel method of searching for food sources
by employed bees according to section (2) of 3.1.
Each employed bee searches in the vicinity of the
corresponding honey source and calculates the fit-
ness value, and chooses the greedy value according
to the fitness value. Update the location informa-
tion and fitness value for the honey source that
meets the conditions.

Step 4: Parallel method of searching for food sources
by onlooker bees according to section (3) of 3.1,
onlooker bees select the food source to follow.
Then the food source update process is com-
pleted on the TOC. Each onlooker bee searches
in the vicinity of the corresponding honey source
and calculates the fitness value, and chooses the
greedy value according to the fitness value. Update
the location information and fitness value for the
honey source that meets the conditions.

Step 5: If the food source is searched for more than a
certain limit, and still has no honey source with
higher fitness value, give up the honey source and
generate a new honey source randomly.

Step 6: Record the current global optimal solution and
jump to step 2 until the maximum number of
cycles maxCycle is reached. And send the final
global optimal solution from the TOC to the CPU,
output the final result.

3.3. Analysis of the clock cycle of algorithm

In the search phase of the employed bees, each
employed bee finds a new honey source by Equation
(2) vij = xij+Øij(xij – xkj). By splitting Equation (2),
it includes an addition, a subtraction and a mul-
tiplication. Addition uses a three-step adder, which
requires three clock cycles to complete an addition.
Since there is no sign bit in the MSD number, the
subtraction is also implemented by the adder. It takes
three clock cycles to complete one subtraction. One
multiplication requires an M transform, which is one
clock cycle, and requires logSN2 layers of addition, that
is 3log2SN clock cycles. Therefore, for a single cal-
culation, a total of T = 7+ 3log2SN clock cycles are
required.
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Figure 5. SD11 experimental system.

In the search phase of the onlooker bees, the
onlooker bees calculate the probability value of the
food source selected by Equation (3). By analysing
Equation (3), it contains SN consecutive additions
and a division. On an electronic computer, SN con-
secutive additions require SN-1 calculations. How-
ever, on the TOC, when the processor bits are large
enough, we can reconstruct �SN/2� adders. Partial
sums are calculated by the binary iteration method,
which requires [log2SN] calculations, which has great
advantages in computing time compared to electronic
computers.

4. Experiment and analysis

4.1. Experiment environment

TOC environment configuration: This experiment uses
the TOC prototype system – SD11 (for short SD11,
means: Shanghai University 2011), the shape is shown
in Figure 5. Among them, the liquid crystal (LC) array
of the TOP (black area with bright spots in the middle)
has 576 pixels arranged in a 24× 24 array. The three
adjacent pixels in each line form one bit of the opti-
cal processor, so the experimental device has a total
of 192 processor bits, meaning that 192 bits of data
can be processed in parallel. For more details about
TOC, we recommend the interested readers to the
literature [24].

Computer environment configuration: The hardware
environment is AMD Athlon (tm) 64-bit Core Duo
PC,memory 4G; the software environment isMicrosoft
Windows 7; the compilation environment is Visual Stu-
dio 2013, and the performance testing tool is Intel
Parallel Studio.

Table 4. Comparison of optimization results of test functions
(D = 50).

Function Algorithm Variance Maximum value Minimum value

Sphere ABC 1.24973E-13 4.21825E-13 2.6308E-15
PABC 2.83156E-16 2.09483E-15 1.0321E-15

TOC-PABC 4.24732E-17 2.37654E-15 3.01425E-16
Griewank ABC 1.73325E-02 9.26400E-2 6.2477E-15

PABC 2.14697E-09 9.34008E-06 0.0073E-16
TOC-PABC 3.45854E-10 5.48962E-06 0.0051E-16

Rastrigin ABC 0.46074 1.76652 4.7125E-12
PABC 8.74712E-10 4.09921E-09 6.1497E-14

TOC-PABC 6.37524E-12 2.34528E-09 4.2548E-11

4.2. Test benchmark functions and parameter
setting

In the simulation experiment, the population size
SN = 20, BN = SN/2, take D = 50 dimension and
D = 100 dimension, maxCycle = 1000, limit = 100,
and perform30 times to find the average value indepen-
dently. The experiment selects three classic Benchmark
functions in the literature [33] for testing.

(1) Sphere function: f (x) = ∑n
i=1 x

2
i ,−100 ≤ xi ≤

100.

The Sphere function is a continuous unimodal func-
tion, which can well test the optimization accuracy of
the algorithm [34]. The Sphere function reaches the
minimum value of 0 when xi = 0 (i = 1, 2, . . . , n).

(2) Griewank function: f (x) = 1
4000

∑n
i=1 x

2
i

− ∏n
i=1 cos(

xi√
i
) + 1, − 600 ≤ xi ≤ 600.

The Griewank function is a typical nonlinear multi-
modal function with a large number of local extremum
points. With the function dimension increases, the
number of local extremum points increases exponen-
tially. The function has a wide search space, so it is
usually considered to be a complex multimodal opti-
mization problem that is difficult to handle by general
optimization algorithms [34]. The function canwell test
the global search ability of the algorithm. TheGriewank
function reaches the minimum value of 0 when xi = 0
(i = 1, 2, . . . , n).

(3) Rastrigin function: f (x) = ∑n
i=1 (x2i − 10 cos

(2πxi) + 10), − 5.12 ≤ xi ≤ 5.12.

The Rastrigin function is a multimodal function.
There are approximately 10n (n is the dimension of the
problem) local minimum point in the domain of the
definition. It is a typical nonlinear multimodal func-
tion. The peak shape of the function is high and low
fluctuations, so the general optimization algorithm is
difficult to search for the global optimal value [34]. We
use this function to detect the global optimization abil-
ity of the algorithm. The Rastrigin function reaches the
minimum value of 0 when xi = 0 (i = 1, 2, . . . , n).
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Table 5. Comparison of optimization results of test functions
(D = 100).

Function Algorithm Variance Maximum value Minimum value

Sphere ABC 6.09423E-05 1.73493E-04 2.4776E-09
PABC 2.49364E-15 0.04632E-12 4.0781E-13
TOC-PABC 2.501275E-15 0.09564E-13 4.65872E-15

Griewank ABC 4.68713 27.06907 8.64776
PABC 0.79112E-08 2.98234E-05 0.7422E-15
TOC-PABC 0.54821E-11 4.24598E-08 0.5412E-17

Rastrigin ABC 0.00772 0.02930 6.4765E-07
PABC 7.01312E-11 0.00973E-10 0.0004E-15
TOC-PABC 6.54897E-16 0.00034E-10 0.0001E-20

4.3. Experimental results and analysis

Analysis 1: Tables 4 and Table 5 are the comparison
results of the variance, the maximum value and the
minimum value of the function in the case of D = 50
dimensions and D = 100 dimensions. The compara-
tive algorithms are a serial ABC algorithm and a PABC
algorithm implemented by an electronic computer, and
a TOC-PABC algorithm implemented by TOC. It can
be seen that theTOC-PABCalgorithm is better than the
ABC algorithm and the PABC algorithm, which fully
demonstrates that the TOC-PABC algorithm has good
global search performance.

Analysis 2: It can be seen from Figure 6 that for
the unimodal function Sphere, the PABC algorithm
is slightly better than the ABC algorithm. When
D = 50, the convergence speed of PABC and TOC-
PABC algorithm is close, which does not reflect the

efficiency of TOC-PABC algorithm, but the advantage
of TOC-PABC algorithm appears in high-dimensional
complex space.

Analysis 3: From Figure 7(a) and Figure 8(a), the
convergence speed and accuracy of the PABCalgorithm
are significantly higher than the ABC algorithm, and
tend to be stable in the later stage. The TOC-PABC
algorithm converges slightly slower in the early stage
of evolution, but the convergence speed is significantly
better than the first two algorithms in the later stage.
It is concluded from Figure 7(b) and Figure 8(b) that
the ABC algorithm converges very slowly in high-
dimensional complex space, and there are almost no
changes. However, the PABC algorithm and the TOC-
PABC algorithm can quickly search for the optimal
value. The optimization speed and stability of the TOC-
PABC algorithm in the late evolution are obviously
improved, and the Rastrigin function is particularly
obvious.

Analysis 4: If the average running time of the
ABC algorithm is Ts and the average running time of
the TOC-PABC algorithm is Tp, the speedup Sp is:
Sp = Ts/Tp. Table 6 shows the speedup of the two algo-
rithms in 100 dimensions. It can be concluded that the
parallel algorithm using TOC effectively improves the
calculation performance and the speedup performance.
Among them, the Griewank function has increased by
more than 80%, and the other two algorithms have
increased by nearly 70%, which is sufficient to illustrate

Figure 6. Comparison of sphere functions in different dimensions.

Figure 7. Comparison of Griewank functions in different dimensions.
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Figure 8. Comparison of Rastrigin functions in different dimensions.

Table 6. Speedup.

Time (D = 100)

Function ABC TOC-PABC Speedup

Sphere 0.00355 0.0013 1.677
Griewank 0.00643 0.00348 1.857
Rastrigin 0.00721 0.00425 1.683

the superiority of TOC in solving high-dimensional
global problems with large search space.

Analysis 5: The TOC-PABC algorithm given in this
paper is based on the TOC platform, which has many
data bits and great potential for parallel computing. The
TOC-PABC algorithm is improved by taking advantage
of the highly parallel of TOC. On this basis, the dif-
ferences between TOC-PABC and the traditional ABC
algorithm are as follows:

(1) In order to make full use of the parallel comput-
ing potential of TOC, through the parallel anal-
ysis of the various stages of the ABC algorithm,
the TOC-PABC algorithm proposed in this paper
adopts hardware parallelmode, which is supported
bymany data bits of TOC. For example, in the pro-
cess of finding the honey source by onlooker bees,
by decomposing the food source probability calcu-
lation formula and reconstructing the correspond-
ing operator on the TOP, the onlooker bees can
shorten the food source selection time to [log2SN]
clock cycles, while on the computer, it requires
SN–1 consecutive calculations.

(2) It is undeniable that the TOC-PABC algorithm
increases the amount of calculation while reduc-
ing the clock cycle. However, the TOC-PABC
algorithm keeps the required hardware resources
within the acceptable range of the TOC while
shortening the clock cycle. At present, this paral-
lel scheme is difficult to implement for the ABC
algorithm based on electronic computer.

(3) Differences in the underlying platform lead to dif-
ferences in algorithm performance. In the paral-
lel TOC-PABC algorithm of this paper, the par-
tial product of MSD multiplication is generated

by the M operation in the ternary logic opera-
tion, and the partial product addition is realized
by the MSD addition without carry. In the con-
ventional method, the multiplication method uses
bit and logic circuits or Booth coding circuits to
generate partial products, and binary addition is
used to realize partial product addition, which is
a carry delay problem inevitably. This difference
makes the time advantage of this paper more obvi-
ous when dealing with large quantities of data
operations.

5. Conclusion

In this paper, the parallel ABC algorithm based on
TOC is designed, and the implementation steps of
the method are given. The correctness is proved by
experiments. The effectiveness of the parallel strat-
egy proposed in this paper is illustrated by compar-
ing the algorithm clock cycle and comparing with the
algorithm based on electronic computer. The realiza-
tion method of improving the convergence time and
search precision of ABC algorithm is analysed from
a new perspective. It provides an effective means for
the optimization problem of high-dimensional com-
plex functions and also provides a new idea for parallel
computing of other bionic algorithms.
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