Taylor & Francis
Taylor & Francis Group

Automatika

Journal for Control, Measurement, Electronics, Computing and
Communications

[eo] _imela

Sk ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Performance-efficient integration and
programming approach of DCT accelerator for
HEVC in MANGO platform

Igor Pilji¢, Leon Dragi¢ & Mario Kovac

To cite this article: Igor Pilji¢, Leon Dragi¢ & Mario Kova¢ (2019) Performance-efficient integration
and programming approach of DCT accelerator for HEVC in MANGO platform, Automatika, 60:2,
245-252, DOI: 10.1080/00051144.2019.1618526

To link to this article: https://doi.org/10.1080/00051144.2019.1618526

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

ﬂ Published online: 20 May 2019.

(&
Submit your article to this journal &

||I| Article views: 245

A
& View related articles &'

P

@ View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=taut20

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1618526
https://doi.org/10.1080/00051144.2019.1618526
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1618526
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1618526
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1618526&domain=pdf&date_stamp=2019-05-20
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1618526&domain=pdf&date_stamp=2019-05-20

AUTOMATIKA
2019, VOL. 60, NO. 2, 245-252
https://doi.org/10.1080/00051144.2019.1618526

IVI N Taylor & Francis
N Taylor & Francis Group

REGULAR PAPER

8 OPEN ACCESS W) Check for updates

Performance-efficient integration and programming approach of DCT

accelerator for HEVC in MANGO platform

Igor Pilji¢ ©, Leon Dragi¢ @@ and Mario Kovac

Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

ABSTRACT

Video encoding based on novel HEVC standard is an extremely computationally expensive pro-
cess and achieving efficient encoding requires intelligent utilization of all available resources,
from both software and hardware perspective. Profiling and analysis of the encoding pro-
cess identified Discrete cosine transform (DCT) as one of the key kernels that consume most
of the time in the application’s runtime. Therefore, high-throughput, fully-pipelined hardware
accelerator was designed in FPGA and integrated into MANGO platform. MANGO platform is het-
erogeneous HPC system that consists of different types of nodes, from general purpose nodes
(GN) to heterogeneous nodes (HN). While executing specific kernels on GN nodes is a straight-
forward process, executing kernels on accelerator-based HNs is a more complex procedure
and requires specific integration to successfully exploit heterogeneous architecture. This paper
presents performance-efficient integration of DCT hardware accelerator in MANGO platform,
focusing on the performance of the encoder while maintaining coding efficiency and video qual-
ity of the encoded bitstream. Several approaches were considered, tested and compared; from
the standalone integration where series of single tasks were offloaded to the DCT accelerator, to

ARTICLE HISTORY
Received 20 February 2019
Accepted 4 April 2019

KEYWORDS

Video encoding; HEVC; DCT;
hardware accelerators;
heterogeneous computing;
MANGO

more complex solutions based on smart buffer utilization.

Introduction

Latest analysis and statistics show that 82% of global
IP traffic will be video traffic by 2022, which is an
increase from 75% in 2017 [1]. Handling and transfer-
ring this huge amount of data requires efficient systems,
in terms of performance, power and predictability, that
are able to deliver video content with desired Qual-
ity of Experience (QoE). High-efficiency video coding
(HEVC) is one of the latest video coding standards that
can achieve up to 50% bitrate reduction when com-
pared to the previous standard Advanced Video Coding
(AVC) [2]. However, the computational complexity and
resource requirements of HEVC are increased by up
to 10 times [3]. To deal with the increased computa-
tional complexity it is necessary to intelligently utilize
all software and hardware components of the system.
Although software algorithms can lead to significant
improvements, heterogeneous accelerator-based archi-
tectures on high performance computers can drastically
improve power-performance ratio of the system, so
their analysis and exploitation, especially for large-scale
video content providers are necessary.

Custom hardware accelerators can improve perfor-
mance and lower the power consumption, however
efficient utilization of such architectures is a challeng-
ing task. Overhead of data transfer often suppresses
performance benefits gained by the accelerator.

In this paper, we present and compare several
approaches for performance-efficient integration of
hardware accelerator for one of the key kernels in
the HEVC encoder/decoder: discrete cosine transform
(DCT). In this paper, we describe HEVC DCT imple-
mentation in heterogeneous, accelerator-based archi-
tecture developed as a part of MANGO project.

The rest of the paper is organized as follows: Sec-
ond section describes the motivation for this research,
Section three describes system on which all integrations
and tests were concluded, while Section four presents
integration and programming approaches. Finally, per-
formance evaluation is presented in Section five.

Motivation and related work

Heterogeneous, accelerator-based architectures pro-
vide great potential for increasing efficiency of compute
and data-intensive applications, such as video encod-
ing from both performance and power perspective.
However, exploiting such architectures requires a deep
understanding of both application requirements and
system design, as well as intelligent utilization of all
available resources.

Previous research in this field rarely cover integra-
tion of the accelerators in heterogeneous systems con-
taining different types of processing cores, from general

CONTACT Igor Pilji¢ @ igor.piljic@fer.hr @ Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1618526&domain=pdf&date_stamp=2019-05-20
http://orcid.org/0000-0003-2345-0322
http://orcid.org/0000-0002-4558-7269
http://orcid.org/0000-0002-8365-7002
mailto:igor.piljic@fer.hr
http://creativecommons.org/licenses/by/4.0/

246 I. PILJIC ET AL.

| |

|
I :
| DCT RI?C GPU-like DCT |
| Multicore| core |
CPU host : |
|

| .

. |
| GPU-like DCT RISC RI.SC |
Po— | | core Multicore [Multicore |
manager | | IL ******************** |
. . |
: ACC GPU-like | GPU-like DeT |
core core |
! |
! |

|
|
| DCT DCT RI.SC ACC |
| Multicore |
: MC MC |

|
|
L _ -l ___———_ 1
FPGA 2 FPGA 3

Figure 1. MANGO platform scheme.

processing nodes to heterogeneous nodes. In [4-6]
CPU + GPU heterogeneous platform is used to accel-
erate HEVC decoder, either by deploying a subset of
functions (IDCT and de-quantization) or by imple-
menting entire decoder on GPU. In comparison with
the HEVC encoder, the decoder is computationally
much less demanding than HEVC encoder, which is
why our focus is set on improving the encoding process.
GPU-based accelerators can offer large performance
improvements compared to the CPU, especially for
highly parallelizable algorithms, however, FPGA-based
accelerators could provide even more performance and
energy-efficient solutions.

There is a lot of research on specialized hardware
accelerators for several different kernels that are used
in HEVC. FPGA-based solutions for Intra coding are
presented in [7,8]. Architectures for HEVC standard
DCT acceleration introduced in [9-12] show several
different approaches for optimizing integer based DCT.
Interpolation [13] and deblocking filter [14] as another
compute demanding algorithms are also subject of the
research in this area. However, all these papers focus
their research on a specific accelerator as a stand-alone
module, without measuring impacts of its integration
within the existing heterogeneous system.

System

The MANGO heterogeneous high-performance com-
puting system was used as an architecture exploration
platform for this research such that high-level encod-
ing algorithm was instantiated on general-purpose pro-
cessor cores while the custom designed HEVC DCT
accelerator cores were used for DCT computations.
Below we give a more detailed overview of the complete
system and the approach.

Platform - MANGO platform

MANGO platform [15,16] is a heterogeneous high-
performance computing system consisting of general-
purpose compute nodes (GN) that are intertwined
with heterogeneous acceleration nodes (HN), linked
by an across-boundary homogeneous interconnect.
GNs are based on CPUs (i.e. Intel Xeon), while HNs
are FPGA-based next-generation manycore chips cou-
pled with deeply customized heterogeneous comput-
ing resources. HNs are open and can be tailored for a
specific purpose, which was used to incorporate DCT
accelerator in MANGO architecture. Figure 1 shows
the scheme of one cluster in MANGO platform with
integrated DCT accelerator.

CPU host is a general node (GN) connected with
the heterogeneous node (HN) deployed on four FPGAs.
HN consists of different processing nodes, such as
RISC multicore, GPU-like core, different accelerator
cores and a hardware accelerator for DCT. Topology
and number of the accelerators can be adapted to the
requirements of the system. For each FPGA, there is
one memory controller (MC) that connects the process-
ing cores with local DDR memory. Resource manager
located on a CPU host side manages the allocation of
computing resources (GNs and HNs) to multiple con-
current application that can run on MANGO platform.

Host - HEVC encoder application

In-house “clean-room” implementation of HEVC
encoder was used as a base for integration on the host
side. The encoder was profiled and analysed to deter-
mine most time-consuming tasks of the application’s
runtime. The analysis was done on CPU-only single-
core implementation configured for fast encoding, aim-
ing at Just-in-Time video encoding. Verification and

0 5

AUTOMATIKA 247

seconds [s]

10 15 20 25

forward2DinverseTransform - |
forward2DTransforrm - |

cabacEncode [NNRNENRNRNEGGE
parseResidual _
encodetlement | NN
diagonalScanBlock | N RN
predictBlockinter _
putsit | N
binarizeElement -

Figure 2. HEVC encoder profiling results.

validation of HEVC encoded bitstreams were con-
ducted using StreamEye software [17].

Results are obtained using Intel Amplifier tool and
are shown in Figure 2.

As can be seen from the figure above, most time-
consuming tasks are: forward2DTransform and its
counterpart forward2DInverseTransform. The main
kernel used in both functions is 2-dimensional Dis-
crete Cosine Transform, which is why DCT was chosen
as a kernel that can be used to demonstrate benefits
of offloading to a custom hardware accelerator. Sev-
eral modifications to the applications were made to
meet the requirements of the DCT accelerator. Resid-
ual samples had to be stored in a 16-bit format which
halved the amount of data being transferred between
host and accelerator. However, this modification leads
to additional changes such as packing and unpacking
of samples for AVX DCT implementation which had a
minor impact on its performance.

Accelerator - DCT

Based on HEVC encoder analysis, a custom hardware
accelerator for DCT was designed and implemented
in FPGA. Symmetry properties of 2D DCT trans-
form were exploited to design area-optimized, 1D DCT
architecture that can be reused to implement full 2D
core transform. The accelerator architecture is fully
pipelined and applicable for all transform sizes used
in HEVC (from 4 x 4 to 32 x 32 blocks). After evalua-
tion as a stand-alone module, DCT accelerator core was
integrated as a MANGO HN processing core.

Benchmarks

In the test scenario, HW DCT accelerator was used
for processing DCT tasks. The baseline for benchmarks
were two implementations of DCT kernel on Intel GN:

e Single thread
e Single thread + AVX

In addition to the different accelerator types, the
MANGO platform enables the use of a group of units
working in parallel, either isolated or in collaboration,
on a given task. Therefore, we can also identify and
exercise the following working modes in MANGO:

e Standalone mode - units work in standalone mode
running parts of the tasks. No communication or
collaboration is exercised between the host and the
unit and between concurrent units.

e Host iterative mode - the unit works in an iterative
mode with the host computing parts of the task. The
kernel running on the unit is completely synchro-
nized with the host application. All the units work in
the same fashion but there are no direct interactions
between units.

Due to the nature of the DCT algorithm and the
design of DCT accelerator, the unit collaborative mode,
also available in MANGO, was not exercised, and focus
was put on standalone and host iterative mode.

Integration and programming approach
Standalone approach

The standalone mode was the first working mode in
which HW DCT accelerator was integrated into the
MANGO platform. In standalone mode, a single task
represents a single matrix with sizes ranging from
32 x 32to 4 x 4 which is then offloaded to the accelera-
tor that processes the data and returns the transformed
matrix to the host. For each task, initialization proce-
dures such as registration of kernels, buffers, and events,
allocation of resources or transfer of arguments are
repeated. In the first phase, initialization of mango con-
text and kernel function takes place. Depending on the
matrix size, input, config and output buffers are regis-
tered and added to the task graph shown in Figure 3.
Input data is then written to the buffers and the kernel
is started. After this, host waits (or does some use-
ful work) for the end event which indicates that the
accelerator has processed input data. On the accelerator

248 (&) 1.PIUICETAL

Application
v
: A
'
H
o
c
@
L A
P 3
Input buffer Config M ‘/ \‘ Output buffer
(matrix_size) | buffer (88) | A end event (matrix_size)
v 4
DCT kernel
>
»
>

Task Graph <standalone>

Figure 3. Task graph for standalone integration.

side, starting kernel initiates the loop in which accel-
erator fetches the data through 512-bit data bus from
MANGO memory. When data is fetched, it is put into
the pipeline of the accelerator. With each clock cycle,
data propagates through the pipeline until it is written
in the local buffer from which it is stored to MANGO
memory. When all data is stored, the task is finalized
by triggering end event which notifies the host applica-
tion that the data is ready to be retrieved from MANGO
memory. The application then initiates the memory
transfer and if needed restarts the above described cycle
with a new set of input data.

To benchmark the performance, the application was
run with DCT kernel offloaded to HW DCT acceler-
ator operating in standalone working mode. A single
32 x 32 matrix of 16-bit residuals was transferred to
the MANGO memory, processed by the accelerator and
then returned to the host application. Figure 4 shows
the time distribution for processing a single 32 x 32
residual block. Accelerator part corresponds to the time
required by the accelerator to load, process and store
data to MANGO memory. Host part corresponds to the
time spent on executing the application on Intel GN
which consists of filling the buffers with data intended
for processing on the accelerator, transferring the data
from host to MANGO memory and vice versa. As it can
be seen from the figure, almost 50% of the runtime is
spent on the mangolibs initialization which makes stan-
dalone working mode performance inefficient. Man-
golibs is a software stack that consists of:

e API provided by the MANGO application library

e HN library that implements the communication
functions between applications and resource man-
ager with the FPGA subsystem

e BOSP - Barbeque Run-Time Resource Manager [18]
and several MANGO unit specific modules.

100%
90%
80%
70% W MangoLibs

60% M Host - Reading

50% Host - Writing
40% Host - Init

M Accelerator

30% -
Processing

20%

10%

o o

Standalone

Figure 4. Time distribution for standalone integration.

Application
: : ? A
H
£ : <
© H c
*;I ' 9
= H =
v v 2 . AN
Config & N
Input buffer W E’ { endevent | & Output buffer
[20 MB] B8l E /g [20 MB]
7 : A

. .
A4 8

mode

[32 16,

8,4]

counter

>
>
DCT kernel
Task Graph <iterative>

Figure 5. Task graph for iterative integration.

Iterative approach

To tackle the problem of mangolibs overhead, itera-
tive working mode of the accelerator was proposed. In
iterative working mode, resources are registered and
allocated only once for any number of tasks offloaded to
the accelerator. Several modifications were necessary to
adapt the accelerator to iterative working mode. Since
buffers now get registered only once, buffer sizes have
been increased to max_buffer_size which is defined as
20 MB for the current version of the accelerator. The
iterative working mode also required additional syn-
chronization mechanisms which were implemented in
the form of interrupts. Introduced changes reflected the
task graph structure shown in Figure 5.

100%

90%

80%

70%
B MangolLibs
60%
M Host - Reading

50% Host - Writing

Host - Init
40%

M Accelerator
Processing

30%
20%
10%

0%
Iterative

Figure 6. Time distribution for iterative integration.

The kernel is now started before the data is writ-
ten to the buffer. After host transfers the input data to
MANGO memory, it issues the interrupt_start which
triggers the accelerators to start loading and process-
ing the data. After all the data is processed and stored,
accelerator issues the interrupt back to the host, signi-
fying that the output data is available for reading. The
host then reads the data and the cycle ends. This cycle is
repeated if the host has more data to process and when
there is no more data, the host issues the end event
which indicates that the accelerator is no longer used
by the application. Figure 6 shows time distribution
between different stages when processing three 32 x 32
blocks in iterative working mode. As it can be seen,
mangolibs overhead, in this case, is lowered and will
continue to drop as the number of blocks for processing
increases.

To benchmark the performance of the iterative
working mode, 10,000 tasks of 32 x 32, 16 x 16, 8 x 8,
4 x 4 blocks were offloaded in series to the HW DCT
accelerator. The results are shown in the following table:

It is interesting to note that block size does not affect
the time needed to process the data even though the
pipeline for processing 4 x 4 matrices is much shorter
than the pipeline for processing 32 x 32 matrices. The
reason for this is that the bottleneck for processing time
is the time spent on loading data by the accelerator and
then storing it once the processing is finished. This is
a limitation introduced by the fact that the MANGO
platform is indeed architecture exploration platform for
HPC and not processing efficient HPC platform itself.
The memory bandwidth impacts the performance of

AUTOMATIKA 249

Table 1. Time distribution — 10,000 x 2 kB.

Processing Read
Buffer Block Size Total time time Write time
2kB 32 x32 17,68 14,45 1,800 0,406
2kB 16 x 16 17,67 14,45 1,798 0,406
2kB 8x8 17,69 14,46 1,801 0,406
2kB 4x4 17,69 14,46 1,804 0,407

the accelerator, which is an obvious and expected con-
clusion. However, additional optimizations which can
lead to better performance of the accelerator are possi-
ble. These optimizations will be explained in the next
section. Since the matrix size doesn’t impact the per-
formance, the rest of the document will consider only
32 x 32 matrices.

Optimizations

Table 1 shows average time distribution per phase
when processing 10,000 instances of 32 x 32 blocks.
Write and read time corresponds to the time needed
to transfer data from host to the MANGO memory
or from MANGO memory to the host respectively.
Processing time is the duration from the moment when
the interrupt_start has been sent to the accelerator to
the moment when interrupt_end has been received by
the host. Processing time thus includes the time needed
for the accelerator to load data from the memory, pro-
cess it, and then store it back. Here we do not address
how the total processing time of the accelerator is dis-
tributed between memory accesses and data passing
through the pipeline. Usually, small buffer sizes suf-
fer from the problem of significant memory transfer
overhead but in this case, almost 90% of the time is
contributed to the processing time of the accelerator,
as shown in Table 1. However, a detailed analysis of
the different buffer sizes showed that processing time is
significantly affected by the time accelerator spends on
loading and storing the data. The results of this analysis
are shown in Table 2.

Total time spent on transferring and processing data
linearly grows with the increase of buffer size from 2 kB
up to 64 kB. However, when the buffer becomes 64 kB or
larger, the average time needed to transfer and process
data significantly shortens and thus we witness signifi-
cantly higher efficiency. The explanation for this lies in
the fact that for buffer sizes smaller than 64 kB, data is
transferred from the host to MANGO using item net-
work while for larger buffers, shared buffers are used.
Figure 7 shows the time cost per single block for buffer
sizes ranging from 2 to 20,000 kB. The total time cost
for transferring and processing single block in a 60 kB
buffer is 14,67 milliseconds while for 64 kB buffer it is
0,61 milliseconds. The time cost continues to decline to
0,44 for a buffer size of 2000 kB after which it flatlines.
This analysis shows that to efficiently exploit acceler-
ator, buffer sizes should be greater than 2 MB. In the
accelerator, the max buffer size is limited to 20 MB

250 I. PILJIC ET AL.

Table 2. Benchmarked performance of DCT kernel for different 1/0 buffer sizes, all time are shown in milliseconds.

Buffer size #of runs Processing time Read data time Write data time Total time 32 x 32 blocks processed Total per block
2kB 100 15.5345 1.8409 0.4142 18.8748 1 18.8748
4kB 100 27.7040 2.1224 0.7477 32.1012 2 16.0506
20kB 100 138.3400 4.1918 3.3358 150.1410 10 15.0141
60 kB 100 414.2460 7.6073 9.5798 440.0900 30 14.6697
64 kB 100 2.6461 8.9927 7.1893 19.4663 32 0.6083
200 kB 100 4.5282 25.1933 19.0508 49.4060 100 0.4941
2MB 100 29.9313 233.6350 176.7760 440.9960 1000 0.4410
10 MB 100 143.0100 1233.7600 897.8580 2275.2900 5000 0.4551
20 MB 100 284.5090 2461.4800 1790.8300 4537.5000 10000 0.4538
20.00
18.00
—. 16.00
(%]
(S
—'14.00
~
O
o
5 12.00
—
o
Q 10.00
]
£
S 8.00
)
Qo
C 6.00
>
< 400
2.00
0.00
2 4 20 60 64 200 2000 10000 20000

Buffer size [kB]

Figure 7. Total time for transferring and processing per block.

Table 3. Comparison of DCT kernel on different processing
cores.

Core Blocksize Process Read Write Total per block
DCT 32x 32 284.50 2461.48 1790.83 0.4538
DCT 16 x 16 283.10 2465.58 1790.20 0.1135
DCT 8x8 279.32 245188 1791.44 0.0283
DCT 4 x4 286.05 2459.17 1789.57 0.0071
CPU 32x 32 1981.51 - - 0.1985
CPU 16 x 16 1016.66 - - 0.0254
CPU 8x38 541.27 - - 0.0033
CPU 4 x4 331.89 - - 0.0005
AVX 32x 32 580.54 - - 0.0580
AVX 16 x 16 363.17 - - 0.0090
AVX 8x8 181.70 - - 0.0011
AVX 4 x4 220.33 - - 0.0003

which is enough to support use cases of transcoding full
HD video sequences.

Performance evaluation

Performance evaluation was performed for three types
of accelerator kernels: HW DCT accelerator, CPU and
CPU + AVX.In all tests, a buffer size of 20 MB was used
and blocks sizes ranging from 32 x 32 to 4 x 4 were
transferred. Results are shown in Table 3.

If we take into consideration the time spent on aver-
age for processing a single block of data, AVX is the

fastest, followed by CPU and HW DCT accelerator.
Total time consists of processing time, read time and
write time. Read and write time represent time spent
for transferring data from the host to MANGO and
vice versa and are equal to 0 for CPU and AVX since
in this case, the data never leaves the host. However,
read and write time participate with a share of over 90%
when it comes to HW DCT accelerator. This can be
explained with MANGO platform being an exploration
platform for HPC. Implemented data transfer buses do
not exercise real-world scenarios in which high band-
width buses are fully exploited. If we take only process-
ing time into consideration, for 32 x 32 and 16 x 16
blocks, HW accelerator, even running at 40 MHz, out-
performs Intel (running at 3.3 GHz) AVX optimized
implementation. However, for smaller blocks, 8 x 8 and
4 x 4, HW DCT accelerator doesn’t provide the fastest
results. The main issue that explains this behaviour is
slow memory access from the accelerator to MANGO
memory which is the bottleneck of accelerator process-
ing time. Because of this bottleneck, processing times
of HW DCT accelerator for all block sizes are approxi-
mately the same even though the pipeline for processing
4 x 4 blocks is much shorter than the one for processing
8 x 8, 16 x 16 or 32 x 32 blocks. The second fact that
needs to be considered is that the accelerator runs on

MANGO architecture with the clock of 40 MHz while
in real world scenario it can run with a frequency that
is one order of magnitude larger for FPGA implemen-
tation and even higher for ASIC implementation.

Conclusion

In this paper, we have investigated several approaches
for integration of custom designed hardware acceler-
ator for discrete cosine transform in novel heteroge-
neous architecture developed as a part of Horizon 2020
project MANGO: exploring Manycore Architectures
for Next-generation HPC systems. Fully pipelined, area
optimized DCT accelerator is used to improve the per-
formance of compute and data-intensive video encod-
ing process based on a HEVC standard. Different
approaches of accelerator utilization were identified as
a standalone and iterative approach. Each accelerator
and approach were analysed and benchmarked. Itera-
tive mode proved to be more efficient than standalone
mode due to high mangolibs initialization overhead.
Analysis of the data transfer from MANGO to host and
vice-versa showed that for efficient data transfer buffer
sizes should be 200 kB or larger.

Performance comparison of different processing
cores showed that DCT HW accelerator, even run-
ning at 40 MHz mode, outperforms Intel (running at
3.3GHz) AVX optimized implementation for block
sizes of 16 x 16 or larger when it comes to process-
ing time. However, due to the MANGO platform being
an exploration platform for HPC, data transfers and
memory access provide a bottleneck for maximum uti-
lization of HW DCT accelerator.

Our future work in this area will include the devel-
opment and integration of other types of accelerators
designed for HEVC video encoding and transcoding.
Different types of processing units, besides custom
accelerator-based cores, will also be investigated, such
as RISC-V and GPU-like cores. Resource manager will
be adapted and improved to facilitate management of
all integrated modules.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This project has received funding from the European Union’s
H2020 Future and Emerging Technologies under [grant
agreement No. 671668].

ORCID
Igor Pilji¢
Leon Dragi¢
Mario Kovac

http://orcid.org/0000-0003-2345-0322
http://orcid.org/0000-0002-4558-7269
http://orcid.org/0000-0002-8365-7002

AUTOMATIKA (&) 251

References

[1] Cisco. Cisco visual networking index: forecast and
methodology, 2017-2022. [cited 2018 Nov 26]. Avail-
able from: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-
vni/white-paper-c11-741490.html

[2] Sullivan GJ, Ohm J-R, Han W-J, et al. Overview of
the high efficiency video coding (HEVC) standard.
IEEE Trans Circuits Syst Video Technol. 2012;22(12):
1649-1668.

[3] Bossen E Bross B, Sithring Ket al. HEVC complexity
and implementation analysis. IEEE Trans Circuits Syst
Video Technol. 2012;22(12):1685-1696.

[4] d Souza DF, Roma N, Sousa L. Opencl parallelization
of the HEVC de-quantization and inverse transform
for heterogeneous platforms. 2014 22nd European Sig-
nal Processing Conference (EUSIPCO); Lisbon; 2014. p.
755-759.

[5] Wang B, et al. Efficient HEVC decoder for heteroge-
neous CPU with GPU systems. 2016 IEEE 18th Inter-
national Workshop on Multimedia Signal Processing
(MMSP); Montreal, QC; 2016. p. 1-6.

[6] Ma A, Guo C. Parallel acceleration of HEVC decoder
based on CPU+ GPU heterogeneous platform. 2017
Seventh International Conference on Information Sci-
ence and Technology (ICIST); Da Nang; 2017. p.
323-330.

[7] Amish EBourennane E. A novel hardware accelerator
for the HEVC intra prediction. 2015 IEEE 13th Inter-
national New Circuits and Systems Conference (NEW-
CAS); Grenoble; 2015. p. 1-4.

[8] Sjovall P, Viitaméki V, Vanne J, et al. FPGA-Powered
4K120p HEVC Intra encoder. 2018 IEEE International
Symposium on Circuits and Systems (ISCAS); Florence;
2018. p. 1-5.

[9] Meher PK, Park SY, Mohanty BK, et al. Efficient integer
DCT architectures for HEVC. IEEE Trans Circuits Syst
Video Technol. 2014 Jan;24(1):168-178.

[10] Chatterjee S, Sarawadekar KP. A low cost, constant
throughput and reusable 8X8 DCT architecture for
HEVC. Proceedings of IEEE 59th International Mid-
west Symposium on Circuits and Systems (MWSCAS);
Abu Dhabi, United Arab Emirates; 2016 Oct 16-19.
p- 1-4.

[11] Bolafos-Jojoa JD,Velasco-Medina J. Efficient hardware
design of N-point 1D-DCT for HEVC, Proceedings of
20th Symposium on Signal Process, Images and Com-
puter Vision (STSIVA), Bogota, Colombia; 2015 Sept
2-4.p. 1-6.

[12] Abdelrasoul M, Sayed MS,Goulart V. Scalable integer
DCT architecture for HEVC encoder. Proceedings of
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI); Pittsburgh, Pennsylvania, 2016 Jul 11-13. p.
314-318.

[13] Diniz CM, Shafique M, Bampi S, et al. A reconfigurable
hardware architecture for fractional pixel interpolation
in high efliciency video coding. IEEE Trans Comput-
Aided Des Integr Circuits Syst. 2015 Feb;34(2):238-251.

[14] Diniz CM, Shafique M, Dalcin FV, et al. A deblock-
ing filter hardware architecture for the high efficiency
video coding standard. 2015 design, Automation & Test
in Europe Conference & Exhibition (DATE); Grenoble;
2015. p. 1509-1514.

[15] Flich J, Agosta G, Ampletzer P, et al. MANGO: explor-
ing manycore architectures for next-Generation HPC
systems. 2017 Euromicro Conference on Digital System
Design (DSD); Vienna; 2017. p. 478-485.

http://orcid.org/0000-0003-2345-0322
http://orcid.org/0000-0002-4558-7269
http://orcid.org/0000-0002-8365-7002
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

252 I. PILJIC ET AL.

[16] Flich J, et al. The MANGO FET-HPC project: an [18] Massari G, Libutti S, Fornaciari W, et al. Resource-aware

overview. 2015 IEEE 18th International Conference on application execution exploiting the BarbequeRTRM.
Computational Science and Engineering; Porto; 2015. p. Proceedings of 1st Workshop on Resource Aware-
351-354. ness and Application Autotuning in Adaptive and
[17] Elecard: StreamEye software. Available from: https:// Heterogeneous Computing (RES4ANT); CEUR; 2016.

www.elecard.com/products/video-analysis/streameye. p. 3-7.

https://www.elecard.com/products/video-analysis/streameye

	Introduction
	Motivation and related work
	System
	Platform – MANGO platform
	Host – HEVC encoder application
	Accelerator – DCT
	Benchmarks

	Integration and programming approach
	Standalone approach
	Iterative approach
	Optimizations

	Performance evaluation
	Conclusion
	Disclosure statement
	Funding
	ORCID
	References

