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encoding for heterogeneous architectures
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ABSTRACT
This paper proposes a novel algorithm for dynamic tile partitioning to achieve the optimal work-
load balance for parallel processing architectures in just-in-time HEVC encoding. Tile boundaries
are dynamically shifteddependingon the tile cost, a value that denotes predicted computational
complexity of a single tile in a frame. The overall cost of a tile is determined as a combina-
tion of costs of three computationally most expensive and resource-hungry operations in HEVC
encoding: prediction, transformation, and entropy coding. The algorithm aims at exploiting dif-
ferent types of processing architectures, from homogeneous multicore CPU architectures to
heterogeneous architectures in the actual conditions in which streaming servers operate. The
experimental results showthat theproposedalgorithmoutperformsuniform tiling, byup to5.5%
in processing time, whilemaintaining the same video quality and bitrate. Compared to the state-
of-the-art algorithms, the proposed algorithm achieves up to 8.85% speedup depending on the
number of videos that are being encoded concurrently on a video streaming server.
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Introduction

IP video trafficwill be 82%of all consumer Internet traf-
fic by 2022, which is an increase from 75% compared to
2017 [1]. High EfficiencyVideoCoding (HEVC/H.265)
is the latest standard that achieves approximately 50%
bitrate reduction compared with its predecessor AVC
[2], but at the same time increases the computational
complexity and resource requirements by up to 10
times [3]. To deal with the computational complex-
ity, HEVC introduces two new parallelization con-
cepts: Tiles and Wavefront parallel processing (WPP).
Tiles, performance-wise, outperform other paralleliza-
tion concepts used in HEVC [4]. The computational
complexity and parallelization concepts become even
more essential when video processing is constricted
with the timing requirement. One of such examples is
just-in-time video encoding, a process in which a video
source is encoded in real-time. To maximize perfor-
mance, it is necessary to fully exploit parallel processing
architectures and to do thatworkloadmust be optimally
balanced. In this paper, a novel workload balancing
algorithm for Just-In-Time video encoding based on
HEVC standard is presented. The algorithm can target
different architectures, from homogeneous multicore
CPU to heterogeneous accelerator-based architectures.

The algorithm extracts the information from the
previously encoded frames to predict workload cost for
each tile. Tile cost is based on the number of operations
needed to encode the tile in the previous frame. After

the cost for each tile is calculated, tile boundaries are
adjusted to balance the workload between processing
cores.

The rest of the paper is organized as follows: In
section two, previous work and related state-of-the-
art algorithms are described; In section three, a novel
algorithm for workload balancing using tiles in HEVC
is presented; In section four, experimental results are
shown.

Related work

The parallelization optimization and workload balanc-
ing in video encoding have been subject of previous
research, but only a few of them focused on tiles and
even less considered their implementation for hetero-
geneous platforms with just-in-time requirements.

In [5], authors adapt tile boundaries to maximize
coding efficiency, but only on Intra frames. They use
the frame variance map to determine highly corre-
lated regions and group them in tiles. However, all-intra
configuration requires more time for frame processing
which is not suitable for just-in-time video encoding.

Power efficient workload balancing using tiles is
introduced in [6]. The algorithm uses a number
of CTUs (Coding Tree Units) as a main parame-
ter for tile distribution, ignoring video content. Such
an approach causes less precise balance between tiles
since more CTUs do not necessarily imply an increase
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in computational requirements. Video sequences used
were limited to 832× 480 pixels or less, while no focus
was set on high-resolution sequences.

An algorithm, called Time-based Tile Load Balanc-
ing algorithm or TTLB, for workload balancing using
tiles, is presented in [7]. It calculates the processing
time of each tile and uses it to dynamically adapt tile
boundaries. The similar algorithm, that uses processing
time as the main parameter, is analyzed in [8]. Authors
measure processing time of each CTU and then deter-
mine the best possible distribution, first vertically, then
horizontally. There are several known problems that
affect the predictability of execution time for individual
tile data computations and thus compromise strict pro-
cessing time boundaries defined in Just-in-Time codec
applications.Distribution of threads to processing cores
by the OS as well as the movement of data to be pro-
cessed is widely known to be sources of uncertainty
regarding the kernel execution start and end time. In
addition to that, in heterogeneous, accelerator-based
architectures, the time to process tile data is also related
to the type of the heterogeneous processing core. All the
above can lead to the suboptimal distribution of the tile
workload between processing cores. Use of the histori-
cal tile processing time as the only parameter for future
workload distribution can thus lead to the suboptimal
solution.

Tile adaptation in the decoding process is investi-
gated in [9]. The proposed algorithm uses CTU com-
plexity matrix that is composed of a number of bits
in each CTU. This matrix is then used in combination
with the decoding time of the tile to distribute work-
loads by adjusting the tile boundaries. This algorithm
is designed mostly for the decoding process, which is
much less computationally demanding than encoding.

Algorithm

Uniform tile distribution sets tile boundaries uniformly
across the frame so that every tile contains approxi-
mately the same number of CTUs. However, a uniform
distribution can lead to inefficient workload balance
that results in performance degradation. Ideally, the
complexity would be measured by the number of oper-
ations necessary to encode the individual tile, but the
overhead of exact calculation would suppress all per-
formance benefits gained by workload balancing.

The algorithm proposed in this paper approximates
the processing complexity of a tile based on the number
of operations needed to encode the tile in the previous
frame. This approximation will be referred to as the tile
workload cost.

The initial step was to profile and determine ker-
nels that have the most impact on the frame process-
ing time. Three key kernels were identified: prediction,
transformation, and entropy coding. Other parts of the
algorithm are either negligible in terms of processing

time or related to one of the three mentioned ker-
nels. Total workload cost for selected tile was therefore
defined as follows (1).

TWC = ψPC + τTC + εEC (1)

where PC, TC and EC are prediction cost, transforma-
tion cost, and entropy coding cost respectively. Coeffi-
cientsψ , τ and ε represent theweight of each individual
cost. Next step was to determine and define parameters
used to approximate each of the defined costs. Predic-
tion process for each CTU containing CUs (Coding
Units) [10] consists of estimating motion to determine
amotion vector and forming a residual block in the first
phase of the encoding process and of motion compen-
sation and block reconstruction in the second phase
[11]. Profiling and analysis showed that cost of these
operations mainly depends and can be approximated
by two factors: the number of block comparisons in the
motion estimation process (i.e. SAD) and size of CU
block. Processing complexity of a single comparison is
linearly scaled depending on a CU block size. Thereby
block comparison cost (BCC) can be described as

BCC = BlockSize ∗ BlockSize
MinBlockSize ∗ MinBlockSize

(2)

where BlockSize represents the size of CU block and
MinBlockSize represents minimal CU block size of
4× 4.

Prediction cost can be now defined as a sum of all
block comparison costs (nBC) in a tile (3). The number
of block comparison costs (nBC) is the number of block
comparisons performed for the specific tile region in
the previous frame.

PC =
nBC∑

1
BCC (3)

The transformation [12] of residual after the pre-
diction, along with inverse transformation is another
complex kernel in HEVC algorithm. Similar as for pre-
diction cost, transform cost depends on the block size
and number of transform operations. Standard HEVC
DCT transformation is implemented usingmatrixmul-
tiplication so each element of block matrix that has
BlockSize*BlockSize elements has exactlyBlockSizemul-
tiplications and (BlockSize-1) additions. Therefore, if we
scale factors so that the minimum block of 4× 4 has
transform block cost of 1, transform block cost can be
calculated as in (4). Overall transform cost is the sum
of all transform blocks (nTB) and is shown in (5).

TBC = BlockSize ∗ BlockSize
MinBlockSize ∗ MinBlockSize

∗ BlockSize
MinBlockSize

(4)

TC =
nTB∑

1
TBC (5)
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Notice that both prediction and transformation cost
depend on the search algorithm and RDO mode deci-
sion. The number of block comparisons (nBC) for pre-
diction cost and the number of transform block oper-
ations (nTB) for transform cost will increase with the
complexity of RDO.

HEVCusesCABAC (Context-BasedAdaptive Binary
Arithmetic Coding) [13] to encode syntax values and
output final bitstream. The higher the number of bits
needed to encode the tile, the more computationally
expensive this phase of the encoding is. The cost of
entropy coding can thus be approximated with a num-
ber of bits used to encode one tile (6).

EC = nBits (6)

Coefficients ψ , τ and ε in (1) are one of the key
elements of our approach and are calculated a priori,
depending on the environment onwhich video encoder
will be deployed. They determine which of the three
costs is given more weight in the determination of
overall tile workload cost.

Calculating tile workload cost for all tiles is done to
determine which tile is more computationally expen-
sive so that tile boundaries can be adjusted to distribute
the workload more efficiently. Adjustment of tiles is
done as follows:

(1) Tiles in the first frame are divided uniformly
(2) Theworkload cost is calculated for each tile in the

previous frame
(3) The workload cost of each tile row is calculated as

the sum of all tiles in a row
(4) Workload cost of each CTU row is calculated as

an average from tile row workload cost. Con-
sequently, all CTU rows in same tile row have
identical workload cost

TWC(tileRow) =
numOfTilesInRow∑

i=0
TWC(tileRow,i) (7)

(5) Tile boundary is moved vertically by one CTU
row

(6) Tile row costs are recalculated by adding/removing
CTU row cost from tile rows

(7) Steps (4) and (5) are repeated until the differ-
ence between workload cost of upper tile row and
bottom tile row is minimal

(8) The process is done for each horizontal tile
boundary by repeating steps (4)-(6)

(9) After adjustment of all horizontal boundaries, the
analog process is done for vertical boundaries

(10) Interval of tile boundaries adjustment can be
defined in the configuration

Experimental results

In this work, just-in-time HEVC encoder developed as
a part of previous work and research was used. Ten
videos were used in the experiment, with different spa-
tial resolutions (shown in Table 1). Higher resolution
videos were used in the experiment because exploiting
parallel architectures and efficient workload balancing
has a higher impact on the performance and efficiency
of the encoder.

All tests were conducted on a system with two Intel
Xeon E5-2630 v3 processors, each with 8 cores and
16 threads. In-depth bitstream analysis and verification
of compliance to the standard was done using Elecard
StreamEye tool [14]. Two experiments were made. The
goal of the first experimentwas to validate the efficiency
of the algorithm presented in the section above by cal-
culating the workload costs of tiles and distributing the
workload evenly between processing cores. The second
experiment was designed to validate and measure the
performance of the algorithm in actual real-life condi-
tions, where a large number of videos are being encoded
concurrently on the same system.Video sequenceswere
divided into 4 tiles, 2 horizontal and 2 vertical (2× 2),
and each of the tiles was processed in parallel on a sep-
arate thread. The configuration of the encoder was set
for fast encoding, aiming for the Just-In-Time encod-
ing, and is shown in Table 2. Different quantization
parameters (22, 27, 32, and 37) were used, as defined in
Common Test Conditions [15] to test the performance
of the algorithm.

Determining workload cost requires coefficients ψ,
τandεthat depend on processing core types on which
specific kernel is executed. In this scenario, CPU cores
of the same typewere used butwere differentiated based
on the inclusion of AVX extensions. Both sets of cores

Table 1. Test video sequences.

Video Resolution
Number of frames

(frame rate)

BasketballDrive 1920× 1080 500 (50 fps)
BQTerrace 1920× 1080 600 (60 fps)
BlueSky 1920× 1080 217 (25 fps)
PedestrianArea 1920× 1080 375 (25 fps)
RiverBed 1920× 1080 250 (25 fps)
RushHour 1920× 1080 500 (25 fps)
Traffic 2560× 1600 150 (30 fps)
DuckTakeOff 3840× 2160 500 (50 fps)
Beauty 3840× 2160 600 (120 fps)
Bosphorus 3840× 2160 600 (120 fps)

Table 2. HEVC encoder configuration.

Coding option Parameter

QP 22, 27, 32, 37
Search algorithm Three step search
Search range 12
GOP IPPPPPPPPPPPP . . .
SAO and deblocking filter Disabled
Max CU 32× 32
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Table 3. Benchmarked performance of kernels per core.

Core Pc/t Tc/t Ec/t

CPU 769.965 5.582 10.597
CPU+AVX 854.568 39.316 10.597

Table 4. Kernel coefficients per core.

Core ψ τ ε

CPU 0.001299 0.179147 0.094366
CPU+AVX 0.00117 0.025435 0.094366

were benchmarked, and the results are shown in the
following table:

Table 3 shows that this CPU core can process
769.965 prediction costs, 5.582 transformation costs or
10.597 entropy costs in a unit of time. As can be seen
from the table, AVX extension has a big impact on
the performance of the transformation kernel while it
has no effect on entropy kernel due to its sequential
nature. Based on acquired data, we can now extract
the required coefficients as the ratio between kernel
performance:

ψ = 1
PC/t

(8)

τ = 1
TC/t

(9)

ε = 1
EC/t

(10)

Coefficients for each core are shown in the following
table:

After determining coefficients for the algorithm,
defined a set of video sequences were encoded on
CPU+AVX extension, with all the combinations ofQP
for two cases: using uniform tiles and using a proposed
algorithm with associated coefficients (Table 4).

TWC = 0.00117 ∗ PC + 0.025435 ∗ TC

+ 0.094366 ∗ EC (11)

Processing times of encoding each video sequence
were compared and results are shown in Table 5.

Results show that the algorithm outperforms uni-
form tiles on average by 2.5–5.5%, depending on QP.
The impact on the quality of the video and bitrate was
alsomeasured. Deviation of PSNR is less than 0.01% on
each video sequence, while bitrate loss is approximately
0.04% on average.

As can be seen in Table 5, gains of using the
algorithm vary significantly, depending on the content
of the video sequence. In some video sequences, per-
formance gains were up to 12.05% while in the worst
case, the algorithm was slower by 1.25%. Some videos
have evenly distributed motion throughout the frame,
so uniform tiles already have a balanced workload.
Adjusting tile boundaries in these cases will not signif-
icantly improve or reduce performance (e.g. Riverbed).

Table 5. Comparison of using our algorithm vs uniform tiles
– numbers represent the speedup of the proposed algorithm
compared to uniform tiles.

Quantization parameter

Video 22 27 32 37

BasketballDrive 12.05% 11.64% 9.25% 7.97%
BQTerrace 5.68% 9.45% 8.56% 4.18%
Traffic −0.35% 1.8% −0.94% −1.25%
BlueSky 9.35% 9.55% 8.29% 3.53%
PedestrianArea 4.17% 1.57% 1.29% 0.59%
Riverbed −2.39% −0.64% 2.10% 0.80%
RushHour 8.47% 1.75% 3.49 3.65%
DuckTakeOff 4.67% 7.15% 7.77 5.67%
Beauty 3.64% 10.91% 0.37 0.00%
Bosphorus 5.24 1.58% −0.09% 0.31%
Average 5.05% 5.48% 4.01% 2.55%

Table 6. Comparison of using our algorithm vs performance
time algorithm–numbers represent the average improvements
on encoding times in comparison with uniform tiles.

Quantization parameter

Algorithm 22 27 32 37

Proposed algorithm 5.05% 5.48% 4.01% 2.55%
TTLB 5.94% 5.89% 4.55% 4.14%
Difference 0.89% 0.41% 0.54% 1.59%

In fast motion video sequences where motion is local-
ized to a specific region in the frame (e.g. Basket-
ballDrive), which is usually the most performance-
demanding coding scenario, the algorithm can increase
performance by up to 12%.

The results were also compared with Time-based
Tile Load Balancing Algorithm (TTLB) [7] and are
shown in Table 6.

In the described environment, with same sets
of video sequences, and same configuration, TTLB
achieves up to 1.59% better performance on average
than proposed algorithm that uses tile workload cost,
depending on QP. TTLB algorithm relies entirely on
performance time measurement for workload balance,
so an idle system with enough processing cores of the
same type presents an ideal environment for deploying
this algorithm. However, in real-life scenarios in which
video content service provider deals with a vast num-
ber of parallel jobs, it is almost impossible to expect
an idle system. So, rather than running the encod-
ing process on an idle system, we tried to simulate
the environment where multiple videos are encoded at
the same time. To achieve this, we ran multiple tasks
at the same time, with each task encoding all 10 test
video sequences, with 4 different QP’s, measuring the
time needed to finish all jobs, with TTLB and with
the proposed algorithm. As can be seen in Figure 1,
the proposed algorithm achieves better performance as
the number of jobs running concurrently on a system
increases. In the heavily-utilized system, the processing
time of the tile does not accurately represent tile com-
plexity, considering that a lot of time is spent on other
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Figure 1. Improvement in performance (%) when using proposed algorithm vs TTLB, depending on the number of jobs running
concurrently.

processes (e.g. resource contention, memory accesses,
etc.), so tiles rearrangement in case of TTLB algorithm
results in unbalanced workloads. Contrarily, the pro-
posed algorithm avoids this problem, and calculates
tile complexity without relying on the utilization of
the system, achieving up to 8.85% better results on the
heavily-loaded system.

Conclusion

In this paper, we presented a novel algorithm that
approximates tile’s computational complexity to achieve
better workload balance by dynamically adapting tile
boundaries. Special focus was set on its usability
on all platforms, from homogeneous to heteroge-
neous accelerator-based systems. Proposed algorithm
achieves 2.5–5.5% speedup on average, depending on
QP when compared to uniform tiles, while keep-
ing the same quality and bitrate. Proposed algorithm
provides similar performance as other state-of-the-art
algorithms for tile balancing in an ideal environment
consisting of idle and homogeneous systems. However,
in a real-life scenario where video processing systems
are heavily-utilized by a vast number of concurrent
jobs, the proposed algorithm achieves up to 8.85%
improvement in processing time.

Our future work will include using this algorithm
on HEVC transcoder, where statistics from previously
decoded frames can be used to balance the workload
of the encoder. The algorithm will also be deployed
on heterogeneous accelerator-based architectures to
investigate possible speedup and workload balancing
between different types of processing cores. Use of intel-
ligent resource manager and scheduler in heteroge-
neous systemswould also probably boost the benefits of
using the proposed algorithm and will also be the topic
of our future research in this domain.
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