
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Elementary operations: a novel concept for
source-level timing estimation

Nikolina Frid, Danko Ivošević & Vlado Sruk

To cite this article: Nikolina Frid, Danko Ivošević & Vlado Sruk (2019) Elementary
operations: a novel concept for source-level timing estimation, Automatika, 60:1, 91-104, DOI:
10.1080/00051144.2019.1581695

To link to this article: https://doi.org/10.1080/00051144.2019.1581695

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 20 Feb 2019.

Submit your article to this journal

Article views: 224

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1581695
https://doi.org/10.1080/00051144.2019.1581695
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1581695
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1581695
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1581695&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1581695&domain=pdf&date_stamp=2019-02-20

AUTOMATIKA
2019, VOL. 60, NO. 1, 91–104
https://doi.org/10.1080/00051144.2019.1581695

REGULAR PAPER

Elementary operations: a novel concept for source-level timing estimation

Nikolina Frid , Danko Ivošević and Vlado Sruk

Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

ABSTRACT
Early application timing estimation is essential in decision making during design space explo-
ration of heterogeneous embedded systems in terms of hardware platform dimensioning and
component selection. The decisionswhich have the impact on project duration and costmust be
made before a platform prototype is available and software code is ready to be linked and thus
timing estimation must be done using high-level models and simulators. Because of the ever
increasing need to shorten the time to market, reducing the amount of time required to obtain
the results is as important as achieving high estimation accuracy. In this paper, we propose a
novel approach to source-level timing estimation with the aim to close the speed-accuracy gap
by raising the level of abstraction and improving result reusability. We introduce a concept – ele-
mentary operations as distinct parts of source code which enable capturing platform behaviour
without having the exact model of the processor pipeline, cache etc. We also present a timing
estimationmethodwhich relies on elementary operations to craft hardwareprofilingbenchmark
and to build application and platform profiles. Experiments show an average estimation error of
5%, with maximum below 16%.

ARTICLE HISTORY
Received 9 October 2018
Accepted 5 February 2019

KEYWORDS
Timing estimation; system
level design; heterogeneous
embedded systems;
elementary operations

1. Introduction

Systems on Chip (SoC), which are used to run mod-
ern complex applications, must have the heterogeneous
structure of processing, memory and communication
elements to meet high performance, energy efficiency
and low price goals. Due to the exponential growth of
heterogeneous system complexity, it is estimated that
designers productivity will have to increase up to ten
times to successfully meet system requirements and
constraints within the similar time and cost limits [1].
The key to success is making good decisions in early
design stages, before assembly of the first prototype.
Raising abstraction level in all design phases enables
separation of computation from communication and
using separated application and platform models. This
leads to amore efficient approach to design space explo-
ration (DSE) [2]. Early timing estimation is one of the
most important phases in DSE. In recent years, the tra-
ditional approach using highly accurate Instruction Set
Simulator (ISS) has been replaced by high-level timing
estimation models which enable obtaining estimates in
early design stages [3–10].

In this paper, we propose a source-level applica-
tion execution time estimation method based on a
concept named elementary operations which enables
capturing architectural effects and compiler optimiza-
tions influence. The estimation method consists of two
phases: analysis and estimation. In the analysis phase,

application and platform configurations considered for
design are profiled. Application profile is obtained by
transforming application source code into a list of ele-
mentary operations structured in loops, branches and
sequences. It is independent from platform and com-
piler optimization level, and hence the same applica-
tion profile can be used to estimate execution time on
any platform. Platform profile is obtained by executing
a benchmark entitled “ELOPS benchmark”1 on every
platform configuration and for each compiler opti-
mization level separately. This benchmark was specially
crafted as a part of this research to measure execu-
tion times of elementary operations on real platforms.
Results of benchmark run on each platform config-
uration make the platform profile for that respective
configuration. In the estimation phase, the proposed
timing estimation algorithm combines application and
target platform profiles to provide timing estimate.

Accuracy of our approach is evaluated using the
JPEG image compression algorithm and Advanced
Encryption Standard (AES) algorithm on several hard-
ware configurations based on two RISC processors:
ARM A9 and Microblaze, custom-built for Xilinx
Zynq-based ZC706 platform. Achieved accuracy (i.e.
error rate) is similar to the most accurate state of
the art source-level timing estimation methods. The
strong point is a significant reduction in time and
effort required to obtain results due to reusability of

CONTACT Nikolina Frid nikolina.frid@fer.hr

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1581695&domain=pdf
http://orcid.org/0000-0002-2592-8206
mailto:nikolina.frid@fer.hr
http://creativecommons.org/licenses/by/4.0/

92 N. FRID ET AL.

application and platform profiles. Also, the proposed
method can be easily scaled for systems with hundred
or more elements of the same type, in a similar fashion
to the method demonstrated in [11].

The rest of this paper is organized as follows.
Section 2 provides an overview of the current state of
art in area of high-level timing estimation. The pro-
posed method for source-level timing estimation is
presented in Section 3. The flow of application timing
estimation is described in Section 4. Test cases used for
evaluating the proposed method are given in the first
part of Section 5. The results of the conducted exper-
iments are presented and discussed in the rest of the
section.

2. Related work

Authors in [12] propose a source-level simulation
infrastructure that provides a full range of perfor-
mance, energy, reliability, power and thermal estima-
tion. For timing simulation, they build upon their pre-
vious work [3] which uses simulation-based approach
with back annotation on intermediate representation
(IR) level. Simulating pipeline effects on basic block
boundaries requires additional pair-wise block simu-
lation for every possible block pair combination on
a cycle-accurate reference. They consider a high-level
cache model by reconstructing target memory traces
solely based on IR and debugger information. Simula-
tion of the entire application execution is done using
System C and transaction-level modeling (TLM) [13]
with estimation error below 10%. Simulating pipeline
effects on basic block boundaries requires additional
pair-wise block simulation for every possible block pair
combination.

Other approaches use machine learning and math-
ematical models for early timing estimation. Authors
in [8] use artificial neural networks (ANN). ANN gives
timing estimate based on execution time and total num-
ber of each instruction type. Estimation error is around
17% but themethod is muchmore flexible compared to
simulationmethods and provides a higher level of result
reusability. After the initial training period, estimation
results are obtained rapidly.

Methods presented in [9] and [10] are based on
linear regression and ANNs with higher error rates
– around 20%. Authors in [14] use model tree-based
regression technique as a machine learning method of
choice.

Authors in [11,15,16] propose hybrid methods: first
simulation is used to obtain the execution time of each
procedure on each type of processing element, then
analytical methods are used to account for cache and
communication effects.

In [17], authors use linear regression for calculat-
ing timings but they use a set of specially crafted
training program to identify instruction costs of an

abstract machine. Authors try to capture effects of
cache, pipeline and code optimization by crafting
examples with longer instruction sequences and loops.
However, since they rely on IR, they face challenges
when introducing code optimizations because virtual
instructions in the translation of the training program
are not in close correspondence with the compiled
version.

The concept of elementary operations has first been
introduced in [18] in attempt to characterize platform
behaviour without having the exact hardware model.
This preliminary method for early timing estimation
lacked compiler optimization support and ability to
estimate input dependent application tasks. In this
paper, we extend our previous work and present an
improved method.

3. Elementary operations approach

Our approach is based on decomposing a piece of
source code written in C programming language (stan-
dard C11) to elementary operations – distinct parts of
source codewhich enable capturing platformbehaviour
without having the exact model of processor pipeline,
cache etc. The set of elementary operations is finite
with several subsets: integer, floating point logic and
memory operations. These sets are co-related to parts
of RISC-like architecture processor and memory data-
path.

3.1. Classification of elementary operations

We propose a multi-level elementary operations classi-
fication scheme. The top level contains four operation
classes: INTEGER, FLOATING POINT, LOGIC and
MEMORY. Second level of classification is based on ori-
gin of operands (i.e. location in memory space): local,
global or procedure parameters. This stems from the
difference in locality due to the way compiler imple-
ments operands stored in different parts of memory
space. It is expected that each group will show different
timing behaviour: local variables, being heavily used,
are almost always in cache, while global and parameter
operandsmust be loaded from an arbitrary address and
can cause a cache miss. Third level of classification is by
operand type: (1) scalar variables and (2) arrays of one
or more dimensions. Pointers are treated as scalar vari-
ables when the value of pointer is given using a single
variable, or as arrays when the value of pointer is given
using multiple variables.

Operations which belong to INTEGER and FLOAT-
ING POINT classes are: addition (ADD),2 multiplica-
tion (MUL) and division (DIV). LOGIC class contains
logic operations (LOG): (i.e.and, or, xor and not)
and shift operations (SHIFT): operations that perform
bit-wise movement (e.g. rotation, shift, etc.). Opera-
tions in MEMORY class are: single memory assign

AUTOMATIKA 93

Table 1. Elementary operation classification.

INTEGER FLOATING POINT LOGIC MEMORY

local variable INT_loc_var ADD FP_loc_var ADD LOG_loc_var LOG MEM_loc_var ASSIGN
INT_loc_var MUL FP_loc_var MUL LOG_loc_var SHIFT MEM_loc_var PROC
INT_loc_var DIV FP_loc_var DIV

array INT_loc_arr ADD FP_loc_arr ADD LOG_loc_arr LOG MEM_loc_arr ASSIGN
INT_loc_arr MUL FP_loc_arr MUL LOG_loc_arr SHIFT MEM_loc_arr BLOCK
INT_loc_arr DIV FP_loc_arr DIV MEM_loc_arr PROC

global variable INT_glob_var ADD FP_glob_var ADD LOG_glob_var LOG MEM_glob_var ASSIGN
INT_glob_var MUL FP_glob_var MUL LOG_glob_var SHIFT
INT_glob_var DIV FP_glob_var DIV

array INT_glob_arr ADD FP_glob_arr ADD LOG_glob_arr LOG MEM_glob_arr ASSIGN
INT_glob_arr MUL FP_glob_arr MUL LOG_glob_arr SHIFT MEM_glob_arr BLOCK
INT_glob_arr DIV FP_glob_arr DIV

parameter variable INT_par_var ADD FP_par_var ADD LOG_par_var LOG MEM_par_var ASSIGN
INT_par_var MUL FP_par_var MUL LOG_par_var SHIFT MEM_par_var PROC
INT_par_var DIV FP_par_var DIV

array INT_par_arr ADD FP_par_arr ADD LOG_par_arr LOG MEM_par_arr ASSIGN
INT_par_arr MUL FP_par_arr MUL LOG_par_arr SHIFT MEM_par_arr BLOCK
INT_par_arr DIV FP_par_arr DIV MEM_par_arr PROC

Figure 1. An example of elementary operations identification in source code.

(ASSIGN), block transaction (BLOCK) and proce-
dure call (PROC). MEMORY BLOCK represents a
transaction of a block of size 1000 and it can only have
array operands.MEMORYPROCrepresents a function
call with one argument and a return value. Arguments
can be variables and arrays, declared locally or given
as parameters of the caller function, but never global.
All of these operations are listed in Table 1. Abbrevia-
tions indicated in the table are used further on when
referring to a specific class. Sample source code given
in Figure 1 illustrates how code statements can be cor-
related to elementary operations classification scheme.
Each operation is denoted using abbreviations from
Table 1.

Accuracy of timing estimation using the proposed
classification schemewas analysed on twoRISC proces-
sors: ARM Cortex-A9 andMicroblaze, implemented on
Xilinx Zynq-based ZC706 platform. First, the actual exe-
cution time of each elementary operation from Table 1
was measured for each processor. Each operation was

repeated in a for-loop a thousand times to compensate
for timer setup and to create a context to capture the
effects of compiler optimizations, cache and pipeline.
Then, test cases were crafted in a way to contain
constructs commonly found in real-world application
code. For each test case, elementary operations were
identified and, using previously obtained execution
times, a timing estimate was calculated. Finally, each
test case was executed on both target processors in
order to obtain actual execution times and compare
them to estimated ones.

3.1.1. Sequence of operations
A sample source code given in Figure 2 illustrates four
examples of sequences of operations:

(1) five INT_loc_var ADD operations in a single state-
ment

(2) for-loop with five statements in a sequence, each
containing one INT_loc_arr ADD operation

94 N. FRID ET AL.

Figure 2. Sequence of elementary operations.

Table 2. Execution times for operations in Figure 2.

INT_loc_var ADD INT_loc_arr ADD FP_loc_var MUL FP_loc_arr MUL
5 operations 5 operations 5 operations 5 operations

ARM Estimated time [s] 7.13E−08 2.57E−04 1.13E−07 2.57E−04
Actual time [s] 2.14E−08 2.16E−04 4.20E−08 2.15E−04
Error [%] 233.18 18.98 169.05 19.53

Microblaze Estimated time [s] 4.50E−07 9.89E−04 5.75E−07 1.06E−03
Actual time [s] 1.70E−07 7.38E−04 2.55E−07 8.13E−04
Error [%] 164.71 34.01 125.49 30.38

(3) five FP_loc_var MUL operations in a single state-
ment

(4) for-loop with five statements in a sequence, each
containing one FP_loc_arr MUL operation

It must be noted that in our approach for-loops are
considered to be an implicit part of operations with
array type of operands. This is because when the exe-
cution time of each elementary operation is measured,
it is done in a loop and all overhead added by the loop
is already included in the obtained timings.

According to the initial classification scheme pro-
posal, each elementary operation is treated separately
during code analysis and timing estimation. Estimated
and actual execution times for the source code in
Figure 2 are presented in Table 2. Estimation error is
calculated using formula

Error = (Estimated time − Actual time)/

Actual time ∗ 100%

Due to high error, which in some cases goes above
200%, additional analysis was done to investigate how
execution time per operation varies with increase in
total number of operations in a sequence. Execution
time of sequences of 2, 3, 4, 5, 10, 20, 50 and 100

operations for all operation classes have been mea-
sured on both ARM and Microblaze for optimization
levels O0 – O2. Results for the INT_loc_var ADD,
INT_loc_arr ADD, FP_loc_var MUL and FP_loc_arr
MUL are shown in Figure 3.

It can be observed that execution time per one ele-
mentary operation decreases exponentially with the
increase in total number of operations in a sequence.
The same behaviour is observed for all other types of
elementary operations on both processors, but for the
sake of brevity is not shown here. This leads to conclu-
sion that due to pipelining and decreasing of loop over-
head, sequence lengths plays an important role when
estimating timings of sequences of operations which
belong to the same class. Experiments also show that
by measuring timings only for several lengths such as
2, 3, 4, 5, 10, 20 and 50 an approximation with less than
10% error can be done for any other sequence lengths.
This makes profiling a much faster and more efficient
process.

3.1.2. Operations withmixed types and origin of
operands
Source code in Figure 4 represents four cases of
operations with mixed type and origin of operands.
The initial elementary operations classification scheme

AUTOMATIKA 95

Figure 3. Execution time per statement. (a) ARM opt. level O0 (b) Microblaze opt. level O0 (c) ARM opt. level O1 (d) Microblaze opt.
level O1 (e)ARM opt. level O2 and (f) Microblaze opt. level O2.

proposal does not give explicit specifications for
determining elementary operation class in such cases.
Thus,we additionally introduce origin priority. Priorities

are defined based on difference in locality due to the
way the compiler implements each of the operand
type (from highest to lowest) and the idea is to select

96 N. FRID ET AL.

Figure 4. Example of operations with mixed types and origin of operands.

Table 3. Execution times for operations in Figure 4.

OP1 OP2 OP3 OP4

ARM Estimated time [s] 2.89E−08 3.48E−05 3.48E−05 3.48E−05
Actual time [s] 2.85E−08 4.73E−05 2.86E−05 3.53E−05
Error [%] 1.33 −26.49 21.85 −1.36

Microblaze Estimated time [s] 1.05E−07 1.83E−04 1.83E−04 1.83E−04
Actual time [s] 1.00E−07 1.88E−04 1.53E−04 1.58E−04
Error [%] 5.00 −2.66 19.61 15.82

operation class based on the operand with the highest
priority:

(1) parameter array
(2) global array
(3) local array
(4) parameter variable
(5) global variable
(6) local variable

All operations in the given example are classified
as operations with global operands, even though OP1,
OP3 and OP4 contain local variables while OP2 and
OP4 contain local array operands. The comparison of
estimated and actual execution times for these test cases
is presented in Table 3. It shows that in the case of OP2
and OP3, where local operands are present, estimation
error goes over 20%. Error for OP4 is slightly lower,
but this is probably because the proposed method gives
underestimation in case of local arrays (OP2) and over-
estimation in case of local variables (OP3), so the num-
bers even-out.

These results indicate that it is necessary to mod-
ify the existing solution by expanding the origin
priority-based approach and give each operation addi-
tional attributes to denote different types and origin of
operands. Attribute mod will be added in case when
an operation has operands of mixed types and ori-
gin. Attribute value will indicate the following cases:
(1) presence of variable operands in an operation with
arrays, (2) presence of global variable in operations with
parameter operands, (3) presence of global arrays in
operations with parameter array operands, (4) presence
of local variables in operations with parameter or global

operands, (5) presence of local arrays in operations with
parameter or global array operands and (6) presence
of constants. List of these values is given in Table 5 in
column Values for operation modifier attributemod.

3.1.3. Array operands index
Index of array operands can havemore than one dimen-
sion and/or can be calculated using the values of more
than one variable. The same applies to struct types in C
source code. Sample source code in Figure 5 illustrates
such examples. OP1 is an example of MEM_par_arr
ASSIGN operation with a 3-dimensional array, and
OP2 is a similar example with a struct containing 2-
dimensional array. At this point, operations with structs
are classified as operations with arrays. Operations OP3
to OP7 are examples of arrays with index calculated
based on values of several variables.

Table 4 shows the results for code in Figure 5. In case
of OP1 and OP2 estimation error is above 60%. Almost
the same error is observed in case of 3-dimensional
array and struct containing 2-dimensional array (mak-
ing it also a 3-dimensional structure). In case of OP3
to OP7 it can be observed that the results are severely
underestimated, but it can also be observed that the
underestimation increases as the number of operations
required for index calculation increases.

These results suggest that the initial classification
scheme, which does not recognize multiple dimen-
sions and index structure, should be extended even
further. Several attributes will be added to operations
with arrays to indicate specifics about index type. These
attributeswill indicate (1) type of array index, which can
be simple – given using a single variable, complex – cal-
culated based on two or more variables and a constant,

AUTOMATIKA 97

Figure 5. Array index examples.

Table 4. Execution times for operations in Figure 5.

OP1 OP2 OP3 OP4 OP5 OP6 OP7

ARM Estimated time [s] 2.55E−05 2.55E−05 3.48E−05 3.48E−05 3.48E−05 3.48E−05 3.48E−05
Actual time [s] 6.94E−05 6.26E−05 6.25E−05 6.15E−05 6.80E−05 6.86E−05 7.88E−05
Error [%] −63.21 −59.30 −44.32 −43.44 −48.81 −49.28 −55.81

Microblaze Estimated time [s] 1.60E−04 1.60E−04 1.83E−04 1.83E−04 1.83E−04 1.83E−04 1.83E−04
Actual time [s] 2.42E−04 2.52E−04 2.58E−04 2.73E−04 2.93E−04 2.98E−04 3.28E−04
Error [%] −33.88 −36.51 −29.07 −32.97 −37.54 −38.59 −44.21

Table 5. Extended model: attributes overview.

Attribute group Attribute name Values

Sequence of operations seq positive integer
Operation modifier mod “var” – at least one variable operand of the same origin is present

“glob_var” – at least one global variable operand is present
“glob_arr” – at least one global array operand is present
“loc_var” – at least one local variable operand is present
“loc_arr” – at least one local array operand is present
“const” – at least one constant operand is present

Index modifier type “simple” – index is given as a single variable
“complex” – index must be calculated using more than one variable
“const” - index is a constant value

dim positive integer – dimension of array index
add_nr positive integer – number of addition operations used for index

calculation
mul_nr positive integer – number of multiplication operations used for index

calculation

(2) dimension of array index (3) number of addition
operations in complex type array index, (4) number of
multiplication operations in complex type array index.
List of these attributes is given in Table 5 under index
modifier attribute description. Finally, since arrays and
structs show similar timings, they will continue to be
treated equally.

3.2. Classification scheme attributes overview

Based on previously discussed observations, the clas-
sification scheme is extended to incorporate the

proposed modifications. These extensions are included
as attributes to each class of elementary operations.
According to the three groups of possible cases
which have effect on execution duration of elementary
operations defined in Table 1, three groups of attributes
are listed in Table 5 under column Attribute group.

Sequence of operations is denoted with attribute
seq. Operation modifier group contains attribute mod
which is present in operations with operands of mixed
types and origin. Attribute value is a space separated
list which can contain one or more of the following
elements as listed in Table 5

98 N. FRID ET AL.

Figure 6. Application timing estimation flow.

Index modifiers is a group of four attributes, all listed
in Table 5, which are added to elementary operations
with arrays.

4. Application timing estimation

The proposed application execution time estimation
method based on elementary operations consists of
analysis and estimation phase as indicated in Figure 6.
The first step of analysis phase is platform profiling.
In this step a specially crafted ELOPS benchmark,
described later, is compiled and run on every plat-
form configuration and for each optimization level
separately. The platform profile is created based on
the results of benchmark runs and contains timings
of elementary operations. The second step is applica-
tion profiling. Application profile is a transformation of
original C source code into a list of elementary oper-
ations structured in loops, branches and sequences.
Application profiling is done only once on the origi-
nal C source code. For this purpose common compiling
constructs such as abstract syntax tree (AST) and con-
trol and data flow graph (CDFG) are used. Application
and platform profiles created during the analysis phase
are permanently stored in database.

In estimation phase, first platform and application
profiles are retrieved from database. Then a timing
estimation algorithm, described later in this section,
combines application and platform profiles to provide
timing estimate.

4.1. Platform profiling

Platform profiling starts with the execution of ELOPS
benchmark3 on every platform configuration consid-
ered for final design.A platform configuration is a pair
of a specific processor and a memory connected to it,
used to store instructions and data.

ELOPS benchmark is designed based on elemen-
tary operations classification scheme to measure exe-
cution time of each operation from Table 1 and timing
effect of every possible attribute listed in Table 5. For
each operation sub-class listed in Table 1 (e.g. INTE-
GER ADD, LOGIC SHIFT etc.), three main groups of
benchmark entries are defined: local, global and param-
eters. Each group contains two sub-groups: variable and
array. Array sub-group branches further by two crite-
ria, array index type and dimension. This means that
for each operation from Table 1 and for each origin
operand group, there are five base benchmark entries.
All benchmark entries are systematized in Table 6.

Each base benchmark entry has sub-variants in
which the different lengths of sequences of operations
are measured. The distinction is made between mul-
tiple occurrences of the same operation in one state-
ment – named sequential operations, and sequence of
statements belonging to same elementary operations
class – named sequential statements. In our current
implementation, the benchmark contains entries for
the following sequence lengths: 2,3,5 and 10.

Timing effects of attributes listed in Table 5 are
also measured using this benchmark by introducing

AUTOMATIKA 99

Table 6. Platform benchmark systematization.

Origin Base Modifiers Sequence lengths measured

Local variable const single
sequential operations (length: 2,3,5,10)a

sequential statements (length: 2,3,5,10)
array type= “simple”, dim= 1 var single

type= “simple”, dim= 2 const sequential operations (length: 2,3,5,10)a

type= “simple”, dim= 3 sequential statements (length: 2,3,5,10)
type = “complex”, dim= 1 add_nr single

mul_nr
Global variable loc_var single

const sequential operations (length: 2,3,5,10)a

sequential statements (length: 2,3,5,10)
array type= “simple”, dim= 1 const single

type= “simple”, dim= 2 Var sequential operations (length: 2,3,5,10)a

type= “simple”, dim= 3 loc_var sequential statements (length: 2,3,5,10)
loc_arr

type = “complex”, dim= 1 add_nr single
mul_nr

Parameters variable glob_var single
loc_var sequential operations (length: 2,3,5,10)a

const sequential statements (length: 2,3,5,10)
array type= “simple”, dim= 1 const single

type= “simple”, dim= 2 var sequential operations (length: 2,3,5,10)a

type= “simple”, dim= 3 loc_var sequential statements (length: 2,3,5,10)
loc_var
glob_arr
glob_arr

type = “complex”, dim= 1 add_nr single
mul_nr

a Measured only for base benchmarks.

modifiers to each base benchmark entry. For eachmod-
ifier listed in Table 6 under columnModifiers, separate
benchmark entry is created. Also, for each modifier,
the following lengths of sequential statements are mea-
sured: 2,3,5 and 10.

All measurements are done by executing an oper-
ation in a loop for a thousand times to compensate
for timer setup effects and to create a context which
will capture effects of optimizations and hardware fea-
tures such as cache and pipeline better. The special case
are two elementary operation sub-classes: MEMORY
BLOCK an MEMORY PROC. The MEMORY BLOCK
class is measured as a single transaction of a block
of size 1000 (using memcpy function) and it can have
only array operands. MEMORY PROC class is mea-
sured as a function call with one argument and a return
value.

In our implementation benchmarks do not contain
entries for arrays with an index of dimension higher
then 3 because at this point, there was no code in our
test applications which contained structures of higher
dimensions.

In order to enable accurate estimations for code con-
taining compiler optimizations, the benchmark has to
be compiled and run separately for all optimization lev-
els. Thisway the sameoptimizationswhichwill occur in
e.g. looped or sequential execution in the source code,
will also be present in the benchmark code. The mea-
surements are then combined into a platform element
profile in an XML document.

4.2. Application profiling

Application profiling uses code analysis and profiling
method described in [19] which is slightly adapted
to be compatible with the elementary operations clas-
sification scheme. Application source code process-
ing starts with the generation of call-tree statistics to
produce profiling information at procedure call-graph
abstraction level. The compiler transformation flow
starts with parsing the source code to the abstract syn-
tax tree (AST). During recursive traversal of the tree,
information about data structures, types of variables
and procedure arguments is used to identify elemen-
tary operations according to the proposed classifica-
tion scheme. AST is further transformed to a con-
trol and data flow graph (CDFG) representation by
using recursive traversal of the tree with the intro-
duction of temporary variables that form the three-
address code statement notation. During that process,
the key is recognizing points where uniform instruc-
tion flow is broken by condition testing in branch or
loop jump conditions. The final application profile is
obtained by unifying procedures calls statistics and pro-
files obtained using AST and CDFG for each procedure
separately.

The output of the entire process is application pro-
file as an abstract model written in an XML structure.
In it, the original application source code is trans-
formed into a multi-level structure of elementary oper-
ations organized in loops, branches and sequences.

100 N. FRID ET AL.

Table 7. Application profile elements.

Element Possible sub-elements Attributes Name Description

application procedure name application name
procedure loop, branch, operation name procedure name
loop loop, branch, operation count number of time the loop is executed
branch true-body, false-body cond condition of branching
true-body loop, branch, operation t_count number of times the true-body element is executed
false-body loop, branch, operation f_count number of times the false-body element is executed
operation – class elementary operation class (INT, FLOAT, MEM, LOG)

type elementary operation subclass (e.g. add, mul)
mod operation modifier (e.g. var, glob_var)
index_type type of index: simple, complex or consta

dim index dimensiona

add_nr number of addition operations used for index calculationb

mul_nr number of multiplication operations used for index
calculationb

a Applicable only to operations with arrays.bApplicable only to operations with arrays with complex index type.

Each application is composed of one ormore procedures
which directly correspond to procedures (functions)
in original C source code. Procedures can contain any
number of loops, branches or operations. Loop repre-
sents a for or a while loop, and branch represents an
if-else or switch-case conditional constructs. Loops and
branches can have any number of loops, branches and
operations as sub-elements. Operation represents a sin-
gle statement or a sequence of operations that has been
assigned an elementary operation class. Operations
have attributes which cover the extension to classifica-
tion scheme as discussed in Section 3.1.1. All possible
profile elements and attributes are listed in Table 7.

For applications which have data-dependent beha-
viour, the precision of profiling can be highly depend-
able on input data in run-time. In such cases, loops
iteration count or branch condition evaluation result
cannot be resolved without simulation and analysis of
variable data values. Since these facts define the num-
ber of existing running paths through the application
source code both during analysis of hierarchical task
graph and formation of control and data flow graph,
estimation must rely on one or more simulation runs
to determine either the exact number or upper and
lower boundaries and statistical probabilities for these
values. In our research so far, we have employed a
commonly accepted approach of running instrumented
code on a host PC (i.e. host-compiled) for determining
data-dependent behaviour, [3,4,7].

4.3. Timing estimation

After obtaining both application and platform profiles,
the final step is to combine the two to estimate applica-
tion execution time. The algorithm is described in short
using pseudo-code in Figure 7.

Finally, it is important to accent the reusability of the
proposedmethod. Each application needs to be profiled
only once and the obtained profile can be used in the
future as is for any platform configuration at hand. In
the same manner, each type of platform element needs
to be profiled only once and the obtained data can be

reused for timing estimation of any other application.
The reusability of profiling results also helps achieve
better scalability when building platformswithmultiple
elements of the same type.

5. Experimental setup and results

Verification of elementary operation approach has been
done on the commonly used real-world applications:

(1) The Advanced Encryption Standard (AES) [20] –
used in two different implementation versions.
(a) AES_G – the first version of the AES where

data is accessed via global variables,
(b) AES_P – the second version of the AES where

data is accessed via procedure parameters.
(2) JPEG image compression algorithm – using imple-

mentation as described in [21].

This particular set of applications encompasses all
types of elementary operations and represents well the
key features of applications for which heterogeneous
embedded systems are used most often: multimedia,
compression and encryption.

Xilinx Zynq ZC706 reconfigurable evaluation board
has been chosen as target platform. Three configura-
tions, each composed of one processor and one mem-
ory element have been used:

(1) MB1 – MicroBlaze, a 32-bit RISC Harvard archi-
tecture soft processor core in the following config-
uration: 5-stage pipeline with hardware multiplier,
barrel shifter and floating-point unit operating at
200MHz. The processor is connected to 128KB
FPGA-based BRAM memory, operating also at
200MHz, via local memory bus (LMB). This
memory is used for storing both instructions and
data.

(2) ARM1 – A single core of ARM Cortex-A9 proces-
sor is used in the following configuration: oper-
ating frequency at 667MHZ, 32KB L1 cache and
512KB L2 cache with both instructions and data

AUTOMATIKA 101

Figure 7. Timing estimation algorithm.

stored in DDR3 SDRAM memory operating at
533MHz.

(3) ARM2 – A single core of ARM Cortex-A9 proces-
sor is used in the following configuration: oper-
ating frequency at 667MHZ, 32KB L1 cache and
512KB L2 cache but the instructions were stored
in DDR3 SDRAM operating at 533MHz and data
is stored in 128KB FPGA-based BRAM memory
operating at 200MHz.

These configurations are a popular general purpose
choice for low-power or thermally constrained, cost-
sensitive devices (e.g. smart-phones, digital TV, and
both consumer and enterprise applications enabling the
Internet of Things).

5.1. Test cases

AES_G and AES_P have been tested for an example
input of 32 bytes of data and JPEG has been tested
on Lenna image. Each test case and each platform
configuration have been profiled and timing estima-
tion has been calculated based on these profiles using
method described in Section 4. Then, each test case
has been executed on each platform configuration to
obtain actual timings. Total execution time for AES_G,
AES_P and JPEG was measured as the time taken
for the entire application to run. Parts of AES_G and
AES_P (AddRoundKEy, ShiftRows, etc.) were mea-
sured in 1000x loops because of very small time scale,

to negate timer setup effects. Parts of JPEG applica-
tions were not measured in a loop because time scale
is orders of magnitude larger than the timer setup over-
head. Tests were performed for optimization level O0
– O2. Optimization level O3 has not been considered
since level O2 is still the recommended option by most
embedded systems manufacturers in order to avoid
potentially incorrect execution if the source code is not
written exactly following C standard, [6].

Table 8 contains results of timing estimation for
AES_G implementation on all three configurations:
MB1, ARM1 and ARM2.

Estimation results are calculated for a single run
of each individual procedure in AES encryption
algorithm: KeyExpansion, AddRoundKey, SubBytes,
ShiftRows and MixColumns. Each table column con-
tains the results for one procedure: (1) Est. – estimated
execution time, (2) Act. – actual execution time, and
(3) Err. – error between estimated and actual execution
time. In the last column of the table are the results for a
complete run of the AES algorithm. Timing estimation
has been done for three optimization levels: O0, O1 and
O2. Average error is around 4.5%withminimum below
1% and maximum below 16%.

Results for second AES implementation – AES_P,
for all three platform configurations are presented in
Table 9. The achieved average error is around 6% with
minimum below 1% and maximum below 16%.

Table 10 shows results for JPEG test case. Timing
estimation has been done for all three configurations:

102 N. FRID ET AL.

Table 8. Timing estimation comparison for AES_G.

KeyExpansion AddRoundKey SubBytes ShiftRows MixColumns Total

MB-O0 Est. [s] 5.81E−05 4.71E−06 5.95E−06 5.20E−07 5.60E−06 4.33E−04
Act. [s] 5.88E−05 4.98E−06 5.47E−06 5.05E−07 5.57E−06 4.08E−04
Err. [%] −1.19 −5.40 8.76 2.97 0.54 6.13

MB-O1 Est. [s] 1.77E−05 1.38E−06 1.46E−06 2.80E−07 1.62E−06 1.22E−04
Act. [s] 1.72E−05 1.35E−06 1.41E−06 2.55E−07 1.48E−06 1.14E−04
Err. [%] 2.91 2.22 3.55 9.80 9.46 7.02

MB-O2 Est. [s] 1.83E−05 1.38E−06 1.38E−06 2.00E−07 1.47E−06 1.17E−04
Act. [s] 1.76E−05 1.42E−06 1.39E−06 1.90E−07 1.47E−06 1.15E−04
Err. [%] 3.98 −2.82 −0.72 5.26 0.00 1.74

ARM1-O0 Est. [s] 1.42E−05 1.01E−06 1.23E−06 8.28E−07 1.81E−06 1.03E−04
Act. [s] 1.38E−05 1.11E−06 1.18E−06 8.10E−07 1.65E−06 9.89E−05
Err. [%] 2.90 −9.01 4.24 2.22 9.70 4.15

ARM1-O1 Est. [s] 2.33E−06 1.67E−07 1.73E−07 3.93E−08 2.81E−07 1.68E−05
Act. [s] 2.29E−06 1.71E−07 1.58E−07 3.75E−08 2.82E−07 1.78E−05
Err. [%] 1.75 −2.34 9.49 4.80 −0.36 −5.62

ARM1-O2 Est. [s] 1.93E−06 1.35E−07 1.73E−07 4.60E−08 2.21E−07 1.46E−05
Act. [s] 2.02E−06 1.35E−07 1.58E−07 4.95E−08 2.11E−07 1.50E−05
Err. [%] −4.46 0.00 9.49 −7.07 4.74 −2.67

ARM2-O0 Est. [s] 3.19E−04 2.37E−05 3.01E−05 3.93E−06 3.22E−05 2.28E−03
Act. [s] 3.17E−04 2.65E−05 2.83E−05 3.79E−06 3.07E−05 2.22E−03
Err. [%] 0.63 −10.57 6.36 3.69 4.89 2.70

ARM2-O1 Est. [s] 9.79E−05 5.18E−06 5.14E−06 2.57E−06 5.66E−06 4.99E−04
Act. [s] 9.96E−05 5.36E−06 5.32E−06 2.46E−06 5.21E−06 5.00E−04
Err. [%] −1.71 −3.36 −3.38 4.47 8.64 −0.20

ARM2-O2 Est. [s] 9.79E−05 5.18E−06 5.14E−06 2.57E−06 5.66E−06 4.99E−04
Act. [s] 9.51E−05 5.24E−06 5.31E−06 3.04E−06 5.28E−06 5.05E−04
Err. [%] 2.94 −1.15 −3.20 −15.46 7.20 −1.19

Table 9. Timing estimation comparison for AES_P.

KeyExpansion AddRoundKey SubBytes ShiftRows MixColumns Total

MB-O0 Est. [s] 6.69E−05 5.73E−06 6.51E−06 8.24E−07 6.14E−06 4.74E−04
Act. [s] 7.25E−05 5.64E−06 5.88E−06 8.80E−07 6.58E−06 4.72E−04
Err. [%] −7.72 1.6 10.71 −6.4 −6.69 0.42

MB-O1 Est. [s] 1.81E−05 1.38E−06 1.47E−06 2.70E−07 1.48E−06 1.03E−04
Act. [s] 1.78E−05 1.37E−06 1.44E−06 2.50E−07 1.46E−06 1.15E−04
Err. [%] 1.68 0.73 2.08 8 1.37 −10.44

MB-O2 Est. [s] 1.74E−05 1.10E−06 1.22E−06 1.79E−07 1.29E−06 1.00E−04
Act. [s] 1.56E−05 1.11E−06 1.08E−06 1.80E−07 1.26E−06 9.23E−05
Err. [%] 11.54 −0.9 12.96 −0.56 2.38 8.34

ARM1-O0 Est. [s] 2.10E−05 1.30E−06 1.46E−06 3.09E−07 2.35E−06 1.34E−04
Act. [s] 2.23E−05 1.50E−06 1.54E−06 3.02E−07 2.53E−06 1.47E−04
Err. [%] −5.83 −13.33 −5.2 2.32 −7.12 −8.84

ARM1-O1 Est. [s] 3.80E−06 2.43E−07 2.73E−07 5.89E−08 4.97E−07 2.59E−05
Act. [s] 3.78E−06 2.46E−07 2.51E−07 6.05E−08 4.56E−07 2.84E−05
Err. [%] 0.53 −1.22 8.77 −2.65 8.99 −8.8

ARM1-O2 Est. [s] 3.11E−06 2.22E−07 2.81E−07 6.81E−08 3.60E−07 2.29E−05
Act. [s] 3.16E−06 2.26E−07 2.62E−07 7.29E−08 3.48E−07 2.40E−05
Err. [%] −1.58 −1.77 7.25 −6.58 3.45 −4.58

ARM2-O0 Est. [s] 3.41E−04 2.41E−05 2.16E−05 6.27E−06 3.51E−05 2.21E−03
Act. [s] 3.56E−04 2.69E−05 2.39E−05 5.41E−06 3.32E−05 2.26E−03
Err. [%] −4.21 −10.41 −9.62 15.89 5.72 −2.21

ARM2-O1 Est. [s] 9.68E−05 5.12E−06 2.94E−06 2.05E−06 5.37E−06 4.37E−04
Act. [s] 8.86E−05 4.44E−06 2.96E−06 2.09E−06 4.73E−06 4.01E−04
Err. [%] 9.26 15.32 −0.68 −1.90 13.50 8.24

ARM2-O2 Est. [s] 9.63E−05 5.12E−06 2.94E−06 2.21E−06 4.89E−06 4.28E−04
Act. [s] 8.76E−05 4.44E−06 2.96E−06 2.59E−06 4.82E−06 3.99E−04
Err. [%] 9.93 15.32 −0.68 −14.70 1.45 7.27

MB1, ARM1 and ARM2. Timing estimation wass cal-
culated for a single run of each individual procedure
in JPEG compression algorithm: CreateBlocks, Shift,
DCT, ZigZag, HuffEncode and CreateImage. Last col-
umn of the table contains results for the complete
run of the JPEG algorithm. Application profiling of
HuffEncode procedure required manual instrumenta-
tion and execution on a host PC using the exact same
input as was used for test configurations because it is
data-dependent and encoding result varies greatly in
length between two different inputs. Overall, average

estimation error for JPEG is around 5% with the mini-
mum below 1% and maximum below 17%.

To summarize, for all three test applications and
for all three target platform configurations estimation
accuracy remains approximately at the same level, with
the average error around 5% and the maximum error
below 17%. Estimation accuracy shows no significant
degradation for any level of compiler optimization.
Even for ARM2 configuration, there is no deviation
in error rate compared with results on the other two
configurations. This particular configuration is more

AUTOMATIKA 103

Table 10. Timing estimation comparison for JPEG.

CreateBlocks Shift DCT ZigZag HuffEncode CreateImage Total

MB-O0 Est. [s] 1.71E−03 6.96E−04 1.56E−03 7.59E−04 1.00E−02 4.35E−04 3.16E−02
Act. [s] 1.70E−03 7.17E−04 1.41E−03 7.41E−04 9.37E−03 4.61E−04 2.94E−02
Err. [%] 0.59 −2.93 10.64 2.43 6.72 −5.64 7.48

MB-O1 Est. [s] 2.96E−04 1.39E−04 4.28E−04 1.77E−04 2.75E−03 1.29E−04 1.31E−02
Act. [s] 2.80E−04 1.42E−04 4.40E−04 1.73E−04 2.83E−03 1.38E−04 1.25E−02
Err. [%] 5.71 −2.11 −2.73 2.31 −2.83 −6.52 4.8

MB-O2 Est. [s] 2.17E−04 1.12E−04 2.69E−04 1.50E−04 2.66E−03 1.13E−04 1.22E−02
Act. [s] 2.06E−04 1.14E−04 2.88E−04 1.45E−04 2.46E−03 1.22E−04 1.15E−02
Err. [%] 5.34 −1.75 −6.6 3.45 8.1 −7.38 6.09

ARM1-O0 Est. [s] 3.38E−04 1.12E−04 2.77E−04 9.09E−05 2.16E−03 7.68E−05 5.26E−03
Act. [s] 3.43E−04 1.09E−04 2.66E−04 9.41E−05 2.27E−03 7.13E−05 5.22E−03
Err. [%] −1.46 2.75 4.14 −3.4 −4.85 7.71 0.77

ARM1-O1 Est. [s] 4.08E−05 1.97E−05 7.95E−05 2.01E−05 6.76E−04 1.75E−05 1.40E−03
Act. [s] 4.42E−05 2.08E−05 7.94E−05 2.11E−05 7.50E−04 1.67E−05 1.44E−03
Err. [%] −7.69 −5.29 0.13 −4.74 −9.87 4.8 −2.78

ARM1-O2 Est. [s] 3.94E−05 1.97E−05 7.69E−05 1.61E−05 6.57E−04 1.48E−05 1.33E−03
Act. [s] 4.45E−05 2.06E−05 7.40E−05 1.75E−05 7.28E−04 1.51E−05 1.39E−03
Err. [%] −11.46 −4.34 3.92 −8.0 −9.75 −1.99 −4.32

ARM2-O0 Est. [s] 8.97E−03 3.04E−03 1.22E−02 4.22E−03 5.98E−02 2.79E−03 1.30E−01
Act. [s] 8.36E−03 3.05E−03 1.24E−02 3.62E−03 5.88E−02 2.90E−03 1.27E−01
Err. [%] 7.3 −0.33 −1.67 16.58 1.7 −3.79 2.36

ARM2-O1 Est. [s] 1.34E−03 4.49E−04 2.81E−03 4.67E−04 4.71E−03 6.18E−04 1.78E−02
Act. [s] 1.42E−03 4.49E−04 2.70E−03 4.77E−04 4.23E−03 6.15E−04 1.71E−02
Err. [%] −5.63 0.00 4.07 −2.1 11.35 0.49 4.09

ARM2-O2 Est. [s] 1.34E−03 4.53E−04 2.82E−03 4.70E−04 4.64E−03 6.18E−04 1.78E−02
Act. [s] 1.42E−03 4.56E−04 3.00E−03 4.97E−04 4.17E−03 6.13E−04 1.84E−02
Err. [%] −5.63 −0.66 −6.0 −5.43 10.13 0.82 −3.26

sensitive to cache effects because processor commu-
nicates with a very slow memory. In case of inability
to accurately capture cache hits – method would give
overestimation, or in case of cache miss - underesti-
mation. However, it must be noted that for all three
test cases there was much larger chance of having a
cache hit than a cache miss, because memory footprint
of each of these applications remains within range of
50KB – 250KB. This means they fit well to cache size
typical for embedded processors like ARM and likeli-
hood for cache hits is much larger. On the other hand,
all three test applications represent well, in both size
and structure, common tasks for which embedded sys-
tems are used for: signal processing, vector and matrix
operations, numeric calculations, search and sorting
[22].

Comparing to results achieved by analytical meth-
ods, which have an average error in the range from
17% [8] to 20% [9,10], our results are better. They are,
however, slightly worse than those obtained using sim-
ulation methods which achieve estimation error below
10% in worst cases, [3–7]. But compared to simulation
methods, the strong point of our method is reusability
of profiling results because both application and plat-
form profiles can be reused in future. In that way, our
method enables obtaining accurate source-level estima-
tion in a shortened amount of time and helps close the
gap between accuracy and speed.

6. Conclusion and future work

In this paper, we have proposed a method for source-
level application execution time estimation in a hetero-
geneous computing environment based on a concept

named elementary operations. The method features a
classification scheme used for identifying elementary
operations in the source code. It enables profiling appli-
cations and platforms in a way which successfully han-
dles compiler optimizations, pipeline and cache effects.
This enables providing accurate application timing esti-
mation while keeping the required effort input within
reasonable limits. Based on the classification scheme,
ELOPS benchmark is designed to measure execution
time of each elementary operation type, within con-
text like loops and sequences of operations, on real
platforms.

Experimental results show an estimation error to
be around 5% with maximum below 17%, which is
comparable to best state-of-art simulation methods.
The strong point of this method is that platform pro-
filing needs to be done only once for each hard-
ware configuration and these results are reused again
later for any other application which is executed on
the same hardware. The same applies to the appli-
cation profiling: each application has to be profiled
only once and the obtained profile can be used as is
for any platform configuration at hand. Reusability of
profiling results helps achieve better scalability when
building platforms with multiple elements of the same
type.

In the future, emphasis will be put on the full inte-
gration of the method into design space exploration
process for heterogeneous multi-processor and multi-
memory environments to eliminate the need to re-link
and recompile source code using different develop-
ment environments. Finally, application analysis will be
improved by automating the instrumentation process
in data-dependent parts of code.

104 N. FRID ET AL.

Notes

1. Available at: https://gitlab.com/Frid/ELOPS.git
2. both addition and subtraction operations are classified as

ADD operation
3. Available at: https://gitlab.com/Frid/ELOPS.git

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Nikolina Frid http://orcid.org/0000-0002-2592-8206

References

[1] Gajski DD, Vahid F. Specification and design of embed-
ded hardware-software systems. IEEE Design Test
Comput. 1995 Spring;12(1):53–67.

[2] Keutzer K, Newton A, Rabaey J, et al. System-level
design: orthogonalization of concerns and platform-
based design. IEEETransComputer-AidedDesign Inte-
grated Circuits Syst. 2000Dec;19(12):1523–1543. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber= 898830

[3] Chakravarty S, Zhao Z, Gerstlauer A. Automated, retar-
getable back-annotation for host compiled performance
and powermodeling. In: 2013 International Conference
on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2013 Sep. IEEE; 2013. p. 1–10. Available
from: http://ieeexplore.ieee.org/lpdocs/epic03/wrap
per.htm?arnumber= 6659023

[4] Lin KL, Lo CK, Tsay RS. Source-level timing annotation
for fast and accurate TLM computation model gener-
ation. In: Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC; Jan. IEEE;
2010. p. 235–240. Available from: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber= 5419890

[5] Wang Z, Henkel J. Accurate source-level simulation of
embedded software with respect to compiler optimiza-
tions. Design, Automation&Test in Europe Conference
& Exhibition. 2012. p. 382–387.

[6] Cheung E, Hsieh H, Balarin F. Fast and accurate per-
formance simulation of embedded software forMPSoC.
In: Proceedings of the Asia and South Pacific Design
Automation Conference, ASP-DAC; Jan. IEEE; 2009. p.
552–557. Available from: http://ieeexplore.ieee.org/lpd
ocs/epic03/wrapper.htm?arnumber= 4796538

[7] Gerin P, Hamayun MM, Pétrot F. Native MPSoC co-
simulation environment for software performance esti-
mation. In: Proceedings of the 7th IEEE/ACM Interna-
tional Conference onHardware/Software Codesign and
System Synthesis – CODES+ISSS ’09; New York, New
York, USA: ACM Press; 2009. p. 403. Available from:
http://dl.acm.org/citation.cfm?id= 1629435.1629490

[8] Oyamada M, Wagner FR, Bonaciu M, et al. Soft-
ware performance estimation in MPSoC design. In:
2007 Asia and South Pacific Design Automation Con-
ference; Jan. IEEE; 2007. p. 38–43. Available from:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber= 4195993

[9] Palermo G, Silvano C, Zaccaria V. ReSPIR: a response
surface-based pareto iterative refinement for applica-
tion-specific design space exploration. IEEE Trans
Computer-Aided Design Integrated Circuits Syst. 2009
Dec;28(12):1816–1829. Available from: http://ieeex

plore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber
= 5324029

[10] Cilardo A, Gallo L, Mazzocca N. Design space explo-
ration for high-level synthesis of multi-threaded appli-
cations. J Syst Archit. 2013 Nov;59(10):1171–1183.
Available from: http://linkinghub.elsevier.com/retrieve/
pii/S1383762113001537

[11] Roloff S, Hannig F, Teich J. Fast architecture eval-
uation of heterogeneous MPSoCs by host-compiled
simulation. In: Proceedings of the 15th International
Workshop on Software and Compilers for Embedded
Systems – SCOPES ’12; New York, New York, USA.
ACM Press; 2012. p. 52–61. Available from: http://dl.
acm.org/citation.cfm?doid= 2236576.2236582

[12] Zhao Z, Gerstlauer A, John LK. Source-level perfor-
mance, energy, reliability, power and thermal (perpt)
simulation. IEEE Trans Computer-Aided Design Inte-
grated Circuits Syst. 2017 Feb;36(2):299–312.

[13] Abdi S, SchirnerG,HwangY, et al. Automatic TLMgen-
eration for early validation of multicore systems. IEEE
Design Test Comput. 2011 May;28(3):10–19. Available
from: http://ieeexplore.ieee.org/lpdocs/epic03/wrap
per.htm?arnumber= 5620889

[14] GuoQ, Chen T, Chen Y, et al. Microarchitectural design
space exploration made fast. Microprocess Microsyst.
2013 Feb;37(1):41–51. Available from: http://linking
hub.elsevier.com/retrieve/pii/S0141933112001433

[15] Javaid H, Ignjatovic A, Parameswaran S. Performance
estimation of pipelined multiprocessor system-on-
chips (MPSoCs). IEEE Trans Parallel Distrib Syst.
2014 Aug;25(8):2159–2168. Available from: http://ieeex
plore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber
= 6636892

[16] Flasskamp M, Sievers G, Ax J, et al. Performance
estimation of streaming applications for hierarchical
MPSoCs. In: Proceedings of the 2016 Workshop on
Rapid Simulation and Performance Evaluation Meth-
ods and Tools – RAPIDO ’16; New York, NY. ACM
Press; 2016. p. 1–6. Available from: http://dl.acm.
org/citation.cfm?doid= 2852339.2852342

[17] Altenbernd P, Gustafsson J, Lisper B, et al. Early execu-
tion time-estimation through automatically generated
timing models. Real-Time Syst. 2016 Nov;52(6):731–
760. Available from: http://link.springer.com/10.1007/
s11241-016-9250-7

[18] Frid N, Ivošević D, Sruk V. Performance estimation in
heterogeneous MPSoC based on elementary operation
cost. In: 2016 39th International Convention on Infor-
mation and Communication Technology, Electronics
and Microelectronics (MIPRO); May. IEEE; 2016. p.
1202–1205. Available from: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber= 7522322

[19] Ivošević D, Sruk V. Unified flow of custom processor
design and fpga implementation. In: Eurocon 2013 July.
2013. p. 1721–1727.

[20] NIST. Advanced encryption standard (aes) – fips 197,
2001. Cited 2016-12-10. Available from: http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf

[21] Wallace GK. The JPEG still picture compression stan-
dard. Commun ACM. 1991 Apr;34(4):30–44. Avail-
able from: http://portal.acm.org/citation.cfm?doid= 10
3085.103089

[22] Bui BD, Caccamo M, Sha L, et al. Impact of cache
partitioning on multi-tasking real time embedded sys-
tems. In: 2008 14th IEEE International Conference
on Embedded and Real-Time Computing Systems and
Applications; Aug; 2008. p. 101–110.

http://orcid.org/0000-0002-2592-8206
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=898830
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6659023
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5419890
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4796538
http://dl.acm.org/citation.cfm?id=1629435.1629490
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4195993
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5324029
http://linkinghub.elsevier.com/retrieve/pii/S1383762113001537
http://dl.acm.org/citation.cfm?doid=2236576.2236582
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5620889
http://linkinghub.elsevier.com/retrieve/pii/S0141933112001433
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6636892
http://dl.acm.org/citation.cfm?doid=2852339.2852342
http://link.springer.com/10.1007/s11241-016-9250-7
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7522322
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://portal.acm.org/citation.cfm?doid=103085.103089

	1. Introduction
	2. Related work
	3. Elementary operations approach
	3.1. Classification of elementary operations
	3.1.1. Sequence of operations
	3.1.2. Operations with mixed types and origin of operands
	3.1.3. Array operands index

	3.2. Classification scheme attributes overview

	4. Application timing estimation
	4.1. Platform profiling
	4.2. Application profiling
	4.3. Timing estimation

	5. Experimental setup and results
	5.1. Test cases

	6. Conclusion and future work
	Notes
	Disclosure statement
	ORCID
	References

