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Circulatory-assist devices (CAD) are commonly used in clinical practice for end stage 

cardiovascular disease patients as a bridge to transplant or as destination therapy. Despite 

decades of research, mechanical blood damage remains a problem in the clinical utilization of 

CAD, which results in a myriad of patient complications including device-induced erythrocyte 

lysis (hemolysis), bleeding and thrombosis. There is a clinical need to better understand the 

mechanisms of flow-induced blood damage to aid in the design and clinical utilization of CAD 

with enhanced biocompatibility as well as to determine specific factors responsible for blood 

damage and methods of their assessment.  

 The objectives were to study in vitro the mechanisms of flow-induced blood trauma and 

the parameters that affect in vitro hemolysis testing of CAD. The tested hypotheses were: 1) 

Mechanically induced polymer degradation in a high molecular weight polyethylene oxide 

(PEO) solution could predict the degree of shear-induced hemolysis within a CAD candidate 

without the use of animal or human blood; 2) Blood bank storage of packed red blood cells 

(RBC) could adversely affect RBC mechanical properties which may reduce the efficiency of 

RBC transfusion in CAD patients; 3) Cell-cell interactions and suspension viscosity are potential 

mechanisms of flow-induced hemolysis; and 4) The geometry of micro-gaps and crevices in 

 iv 



CAD blood flow paths could affect cell trafficking at supra-physiological shear stresses relevant 

to operating CAD. 

 We demonstrated that polymer mechanical degradation was highly correlated with 

hemolysis obtained due to circulation in the same CAD circuit as blood and ascertained valuable 

information on CAD performance predicting blood trauma without the need to use blood. We 

found that RBC deformability significantly decreased during blood bank storage which 

contributes to blood damage produced by CAD. Moreover, two additional mechanisms of flow-

induced hemolysis relevant to operating CAD, cell-cell collisions and suspension viscosity, were 

elucidated. Finally, recirculating regions were observed in 100 µm wide rectangular and 

triangular crevices but not in wider crevices studied up to 500 µm, thus demonstrating the 

importance of the width of gaps and crevices in CAD blood flow paths for potential 

thrombogenesis.          

 This work provided information on mechanisms of flow-induced hemolysis and 

elucidated an important variable affecting thrombosis development in CAD blood flow paths at 

flow conditions relevant to in vitro and in vivo CAD operation. These results can contribute to 

the computational analysis, design and preclinical testing of next generation CAD. 
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1.0  INTRODUCTION 

Circulatory-assist devices (CAD) are commonly used in clinical practice for end stage 

cardiovascular disease patients as a bridge to heart transplant or as destination therapy. Pre-

clinical CAD must demonstrate safety and efficacy prior to clinical approval by the FDA in the 

United States. Yet, mechanical (flow-induced) blood damage remains a significant complication 

in the development and clinical utilization of CAD, which results in a myriad of patient 

complications including stroke, pulmonary embolism, gastrointestinal bleeding, device-induced 

hemolysis and thrombosis.  

Despite decades of research by numerous investigators the mechanisms of mechanical 

blood damage are not well understood. The generally accepted manifestation of mechanical 

blood damage is the amount of hemoglobin released into plasma, or hemolysis [1-5]. Other 

potential indicators of mechanical blood trauma include the activation of platelets [6-8], platelet 

aggregation [9-11], and changes in the mechanical properties of red blood cells (RBC) [12-15]. 

Newly developed or modified CAD require extensive in vitro testing in order to sufficiently 

demonstrate blood biocompatibility, a minimum trauma to RBC and other blood components, 

prior to conducting animal studies and ultimately translating the devices for clinical use.  

Patients supported with CAD typically have prophylactic anticoagulation to offset the 

risk of thrombosis. Anticoagulation and anti-thrombotic protocols have been developed for CAD 
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patients, but bleeding and thromboembolic events often occur [16]. It is therefore imperative to 

better understand the mechanisms of flow-induced hemolysis and thrombosis to aid in the design 

and clinical utilization of CAD with enhanced blood compatibility. The objectives of this PhD 

study were to study in vitro the mechanisms of flow-induced blood trauma and the parameters 

that affect in vitro hemolysis testing of CAD. The specific aims in this thesis are listed as 

follows:  

1) To model flow-induced hemolysis using solutions of degradable polymers as a 

rheological substitute for blood 

In vitro evaluation of pre-clinical CAD to damage blood cells has generally been 

performed using human or animal blood. Yet, the variability of RBC sensitivity to 

mechanical stress in different species, the preparation of blood including the adjustment 

of hematocrit to a standard value, the inconsistency of blood viscosity due to variability 

in plasma composition, the necessity to pool blood from different donors to obtain an 

adequate amount of blood for laboratory test systems and other issues related to work 

with blood (i.e. biohazard) remain problems of in vitro hemolysis testing. The use of a 

standard test fluid for the evaluation of potential hemolysis generated by CAD would be 

beneficial and obviate the need for blood. The objective of this specific aim was to 

investigate whether the mechanical degradation of a DRP in circulating solution can 

indicate/predict the degree of shear-induced hemolysis within a CAD candidate. 

2) To study adverse changes in rheological properties of donor RBC during blood 

bank storage that may cause hemolysis and impair microcirculation in CAD 

patients after blood transfusion 
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Patients requiring transfusion of whole blood or packed RBC during surgery or the period 

of CAD implantation receive units from a blood bank that are stored for up to 42 days in 

an FDA-approved additive solution at 1-6°C. It is known that RBC-D decreases with 

storage time and thus the transfusion of less deformable stored RBC may lead to an 

increased blood viscosity, increased RBC-MF and the potential obstruction of capillaries 

in the microcirculation. The objective of this specific aim was to determine the effects of 

RBC storage time in the Blood Bank on RBC-MF and RBC-D; changes that may be 

harmful for CAD patients requiring RBC transfusion. 

3) To study flow-induced hemolysis as a function of shear stress and exposure time  

A mechanism of flow-induced hemolysis reported in the literature is the combination 

effects of shear stress and exposure time. The objective of this specific aim is to study the 

effects of shear stress and exposure time on mechanical hemolysis using in vitro flow 

systems with a CAD. The effect of varying blood exposure time to a constant shear stress 

on mechanical hemolysis was the study of Sub Aim 3.1. The objective of Sub Aim 3.2 

was the examination of the effect of RBC-MF of the blood used for hemolysis testing of 

CAD on flow-induced hemolysis to discern whether RBC-MF can influence mechanical 

hemolysis in RBC exposed to the same shear stress and exposure times in an in vitro flow 

system with a CAD.  

4) To study potential mechanisms of flow-induced hemolysis and thrombosis  

Despite decades of research by numerous investigators, the mechanisms of flow-induced 

blood trauma are not well understood. The objective of Sub Aim 4.1 was to study the 

effects of cell-cell interactions and suspension media viscosity on flow-induced 

hemolysis using RBC and hemoglobin-depleted RBC ghosts (GRBC) suspended in 
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viscous media in a microtube flow system with a CAD. The objective of Sub Aim 4.2 

was to examine the thrombogenicity of microscopic crevice flow by studying the 

trafficking of GRBC and platelet-sized fluorescent particles in a microchannel containing 

multiple crevices similar to the size of small gaps in some CAD at supra-physiological 

shear stresses. The microscopic examination of GRBC and PSFP pathlines may provide 

additional insight into the flow conditions and interaction of cells that promote 

thrombogenesis in the complex, microscopic geometries within CAD blood flow paths. 
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2.0  BACKGROUND 

2.1 HEMORHEOLOGY 

In the mammalian circulation, blood is pumped from the heart through arteries to deliver oxygen, 

hormones, electrolytes and heat to all cells, remove carbon dioxide and other waste products and 

then transports to the heart through venous return. Blood has an intrinsic mechanism for clotting 

to aid against the invasion of foreign materials in the body and also an extrinsic clotting 

mechanism to prevent considerable blood loss in the event of blood vessel penetration or rupture. 

The flow of blood is regulated to maintain adequate tissue perfusion in the normal circulation. 

Disturbances in blood flow can result in severe complications or exacerbate existing pathological 

conditions. 

 Blood is a suspension of erythrocytes (RBC), leukocytes (WBC) and thrombocytes 

(platelets) in plasma. The cellular elements in one microliter of normal human blood are 4-6 

million RBC, 4,000-8,000 WBC and 200,000-500,000 platelets [17]. Erythrocytes have the 

shape of biconcave disks with a diameter of 7-8 µm and thickness of 2-2.5 µm [18]. WBC 

(lymphocytes, granulocytes, monocytes) are roughly spherical with a diameter of ~10–20 µm 

[19]. Platelets are discoid with a diameter of 2-3 µm and thickness of ~0.5 µm. Plasma consists 

of many proteins (albumin, fibrinogen, immunoglobulins, lipoproteins, etc.), ions, clotting 

factors and metabolites suspended in a salt solution [17].  
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RBC function in gas transport (oxygen delivery and carbon dioxide removal) from cells 

and constitute approximately 99% of blood corpuscles. RBC are filled with a viscous, Newtonian 

Hb solution [20] that is surrounded by a viscoelastic membrane consisting of an outer lipid 

bilayer and inner membrane cytoskeleton [21]. The normal Ht (volume fraction of RBC in whole 

blood) range is 45±5% for males and 41±5% for females [22]. RBC pronounced influence on 

hemorheology is due to their high concentration in whole blood. 

 The science of hemorheology comprises the flow properties of blood cells and plasma in 

macroscopic and microscopic dimensions [23]. Hemorheology is one of the oldest clinical 

sciences, but was not studied in great detail until the work of Fåhraeus in the early 20th century. 

Knowledge of microcirculatory blood flow was expanded by the discovery of the Fåhraeus [24] 

and Fåhraeus-Lindqvist [25] effects. Moreover, Fåhraeus’ studies of the suspension stability of 

blood in pregnancy [26] and several pathological conditions [27] found augmented red corpuscle 

sinking velocity, or RBC aggregability, compared to normal human blood. 

Work by numerous investigators has shown that human blood is a non-Newtonian, shear-

thinning [28-31], viscoelastic [32, 33], and thixotropic fluid [29, 34-36]. The shear-thinning 

nature of human blood was found to be dependent on RBC aggregability at stasis or low shear 

rates (below 80 s-1 [37]) and RBC deformability at medium to high shear rates [38-40]. As shear 

rate is increased, blood viscosity decreases until an asymptotic value is reached as modeled by 

the Casson equation [41].  
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2.2 HEMORHEOLOGY IN THE MICROCIRCULATION 

The microcirculation is considered to comprise all blood vessels with less than ~300 μm 

diameter. A typical capillary has a 3-5 μm diameter, 350 μm length and pressure drop of ~25 

mmHg [42]. In general, the vessels of the microcirculation have laminar, Stokes flow (Re<<1) 

[43, 44]. In microcirculatory blood flow, RBC, leukocytes and platelets interact differently than 

in larger blood vessels [45]. In 1921, Smith et al. reported that a non-uniform distribution of 

RBC in the microcirculation was possible [46] and soon confirmed by the in vitro work of 

Fåhraeus and Lindqvist. Fåhraeus found a reduction of Ht in capillary tubes below ~250 µm 

diameter due to augmented RBC velocity compared to the mean bulk flow velocity, i.e. the 

Fåhraeus effect [24]. Fåhraeus and Lindqvist studied the relative viscosity of blood (compared to 

water) in 40-500 µm diameter glass capillaries and discovered that in capillaries with ~300 µm 

diameter, blood viscosity progressively decreased with decreasing vessel diameter, i.e. the 

Fåhraeus-Lindqvist effect  [25]. In capillaries less than 15 µm diameter, Dintenfass found an 

inverse Fåhraeus-Lindqvist effect in which relative blood viscosity increased with decreasing 

capillary diameter below ~14 µm [47]. Barbee and Cokelet studied RBC suspensions flowing in 

29-221 µm glass capillaries and found that in capillary tubes with 59 µm or greater, the Ht of the 

RBC suspension flowing from the tube, when mixed, is equal to the feed Ht into the capillary 

[48].  

In a novel in vivo study, Whittaker and Winton perfused the hind leg of a dog with blood 

of various Hts at several driving pressures and compared the flow rates with saline flow rates to 

examine the apparent viscosity of flowing blood [49]. Their results demonstrated a nearly 

constant blood viscosity at the pressure gradients and flow rates studied [49]. Further work by 
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Lipowsky et al. compared “in vivo” cat blood viscosity in 24–47 µm diameter vessels (calculated 

using the Hagen-Poiseuille equation) with viscometric data for the same blood at a 2000 s-1 shear 

rate and found very similar results over a range of Hts [50]. Thus, at high shear rates in the 

microcirculation in vivo and in viscometric methods in vitro, blood behaves approximately as a 

Newtonian fluid with an asymptotic value. Asymptotic viscosity occurs due to the effects of 

RBC deformation and flow-induced RBC organization [51].   

The ability of RBC to deform when subjected to external forces is crucial to their role in 

tissue perfusion and gas transport. Normal mammalian erythrocytes are capable of deformation 

due to their low cytoplasmic viscosity, excess of surface membrane area in relation to cell 

volume, and viscoelastic membrane properties [52-54]. In the microcirculation, as RBC travel 

through vessels of decreasing diameter, the increase in external shear stresses compels them to 

undertake larger deformations. An erythrocyte can undergo innumerable large deformations that 

preserve the volume of the cell and surface area of the cell membrane without stretching or 

tearing the membrane [55]. As a result, normal, human RBC 7-8 μm in diameter are able to pass 

through capillaries as small as 3 μm without damaging the cell. Moreover, RBC circulating in the 

vascular system must frequently pass the wall of the splenic sinus where they squeeze through 

narrow (~2 µm) slits between endothelial cells numerous times during their lifespan. Any RBC 

that cannot pass are destroyed by the reticuloendothelial system and removed from the 

circulation [56].  

The normal lifespan of human RBC is 100-120 days; thus the RBC in circulation 

comprise a spectrum of ages and deformabilities with the youngest cells being the most 

deformable and the oldest cells the least deformable [57, 58]. RBC-D may be reduced by 
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fluctuations in osmotic/oncotic pressure [53], contact with thermal stresses [59, 60], blood bank 

storage [61, 62] or prolonged exposure to non-physiological shear stresses in CADs [58, 63, 64].  

2.3 DETERMINATION OF BLOOD OR RBC SUSPENSION VISCOSITY AND 

VISCOELASTICITY 

Capillary viscometers were the first viscometer type used to measure the viscosity of blood and 

RBC suspensions [65]. For steady, laminar flow of a Newtonian, incompressible fluid in a rigid 

cylindrical tube, the Hagen-Poiseuille equation can be used to calculate the dynamic viscosity of 

the fluid: 

QL8
Pr 4∆

=
πη

            
(1)  

where η is the dynamic viscosity, ΔP is the pressure drop in the capillary tube of length L, r is 

tube radius and Q is volumetric flow rate.  

The Reynolds number (Re) is the ratio of inertial to viscous forces in a fluid flow and 

quantifies the type of flow conditions, whether laminar, transitional or turbulent. Laminar flow 

occurs for Re<2000, turbulent flow conditions for Re>4000 and transitional flow for 

2000<Re<4000. The Re in a cylindrical tube is calculated as:      

νπν d
QvR meanH 44Re ==


                                                       (2) 

where RH is the hydraulic radius and ν is kinematic viscosity.  

Couette viscometers have been widely used to study the dynamic viscosity of Newtonian 

and Non-Newtonian fluids for decades [28, 31, 34]. In general, the rotational speed of an outer 
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cylinder (stationary inner cylinder) and the total torque exerted by a test fluid in the small gap 

between the inner and outer cylinders on the rotating outer cylinder is measured [66, 67]. The 

dynamic viscosity of a fluid in the small gap between a rotating outer cylinder and a stationary 

inner cylinder is calculated as: 

32
)(

o

Io

LR
RRT

πω
η

−
=                                                                 (3) 

where T is the measured torque on the outer cylinder, Ro is the radius of the outer cylinder, RI is 

the radius of the inner cylinder, ω is the rotational speed of the outer cylinder, and L is the length 

of the outer cylinder. 

The Re for determining laminar flow in Couette viscometers is calculated as: 

η
ωρ )(Re IOo RRR −

=                                                        (4) 

where ρ is fluid density. 

 Cone-and-plate viscometers are another common viscometer type used to measure the 

dynamic viscosity of Newtonian and Non-Newtonian fluids [68-71]. This viscometer consists of 

a rotating cone spindle at a small angle (<1°) with respect to a stationary flat plate. A test fluid is 

placed in the small gap between the rotating cone and the stationary plate. The cone is rotated at 

a range of rotational speeds and the torque on the cone produced by the test fluid is measured. 

The dynamic viscosity of a fluid in the small gap between a rotating cone and a stationary plate 

is calculated as: 

32
sin3

r
T
πω

θη =                                                                     (5) 

where T is the measured torque on the cone, θ is the cone angle, ω is the rotational speed of the 

cone, and r is the radius of the cone. 
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The Re for determining laminar flow in cone-and-plate viscometers is calculated as: 

η
ωρ 2

Re r
=                                                                         (6)  

In vivo, blood flow exhibits both elastic (energy storing) and viscous (energy dissipating) 

properties. In vitro measurements of blood or RBC suspension viscosity and elasticity depend on 

Ht, plasma viscosity, RBC-D, RBC-A, osmolality, pH, and temperature [32, 35, 51, 53, 54]. The 

measurement of fluid viscoelasticity can be performed under oscillatory flow at a standard 

frequency, e.g. of 2 Hz, in a rigid capillary tube [33]. For viscoelastic fluids undergoing 

oscillating flow of small amplitudes: 

( )ωtsinγγ 0=
                                                                      

(7) 

( )φωtcosττ 0 −=
                                                              

(8) 

where γ is shear strain, γ0 is shear strain amplitude, τ is shear stress, τ0 is shear stress amplitude, 

ω is radian frequency, Φ is viscoelastic phase angle between shear stress and shear rate and t is 

time [72]. Newtonian fluids lack elasticity and thus shear stress is in phase with shear rate (Φ=0). 

For non-Newtonian viscoelastic fluids, shear stress and shear rate have a non-zero phase angle 

(0<Φ<90°) that results in rheological behavior described as:  

ηηη ′′−′= i*                                                                      (9) 

where *η  is the complex viscosity, η′  is the viscosity, and η ′′ is the elasticity [32, 72].  

 11 

 



2.4 CARDIOVASCULAR DISEASE AND CIRCULATORY-ASSIST DEVICES 

Cardiovascular disease is the number one cause of death in the United States. Based on mortality 

data acquired from 2008, the American Heart Association reported that one out of every three 

Americans died of CVD, or approximately one death every 40 seconds [73]. Common CVD 

include congestive heart failure, atherosclerosis, hypertension, coronary artery disease, and 

myocardial infarction. Numerous morbidities can occur from CVD that significantly reduce the 

quality of life of patients, including stroke, pulmonary embolism, thromboembolism and multi-

organ complications or failure.    

 Although medication may alleviate the degree of CVD in some patients, the use of 

mechanical circulatory support devices such as dialyzers, VAD and extracorporeal membrane 

oxygenation (ECMO) may be necessary for patients suffering from severe CVD. Each day, there 

are approximately 3,000 people in the United States on the waiting list for a heart transplant and 

only ~2,000 donor hearts are available annually [74]. Patients with end stage heart failure may 

require single or bi-ventricular VAD implantation as a bridge to transplant or as destination 

therapy (the patient will have the device for the remainder of their life) [75, 76]. The large 

patient population, lack of donor organs, long transplant wait times and use in destination 

therapy demonstrate the need for CAD with superior hemocompatibility to help improve the 

survival rate and quality of life for numerous patients that require mechanical circulatory 

support.  
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2.5 MECHANICAL BLOOD DAMAGE IN CIRCULATORY-ASSIST DEVICES 

CAD have been in development since the 1950s and today there are numerous VAD with FDA 

approval for end stage heart failure, including the HeartMate II LVAS, HeartWare VAS, and 

Thoratec CentriMag. Yet, all of the approved CAD carry a risk of mechanical blood trauma and 

require prophylactic anticoagulation to reduce the risk of thrombosis. The problem of blood 

trauma in CAD and extracorporeal circulation was identified by investigators several decades 

ago, yet still remains one of the main problems associated with mechanical circulatory support. 

Studies by Kusserow [2] and Galletti [3, 77, 78] using extracorporeal perfusion in dogs first 

identified mechanical blood damage in CAD including hemolysis, leukocytosis, 

thrombocytopenia, post-perfusion anemia, and pump thrombus formation. Additional studies by 

Bernstein [4, 79-81], Kusserow [82], Sutera [15, 83] and Dormandy [84] demonstrated that RBC 

sublethal damage can occur in blood-contacting devices: morphological changes to RBC, 

increased RBC-MF and increased blood viscosity. More recent work by Baker et al. [85], Snyder 

et al. [86-88], and Woolley et al. [89] demonstrated platelet activation, platelet aggregation and 

leukocyte-platelet aggregate formation due to CAD exposure in vivo.  

Newly developed or modified CAD undergo extensive in vitro testing to sufficiently 

demonstrate hemocompatibility, a minimum trauma to RBC and other blood components, to the 

FDA prior to conducting animal studies and translating the devices for clinical use. Yet, patients 

that require CAD implantation risk exacerbating the effects of preexisting diseases affecting the 

circulation due to mechanical blood trauma [56, 58, 90]. CAD design is an important parameter 

that affects mechanical blood damage and is largely still a trial-and-error process [91-95]. It is 

therefore necessary to elucidate the mechanisms governing flow-induced hemolysis and 
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thrombosis to aid in the design and clinical utilization of CAD with enhanced 

hemocompatibility.  

2.6 FLOW-INDUCED HEMOLYSIS 

Proposed mechanisms of flow-induced hemolysis reported in the literature include the effects of 

shear stress and exposure time [5, 96-98], accumulated sublethal RBC damage [3, 12, 78, 99, 

100], cell-surface interactions [79, 101, 102], cell-cell interactions [98, 103] and turbulent flow 

conditions [83, 104-106]. 

 A well supported mechanism of flow-induced hemolysis is the effect of shear stress and 

shear exposure time [5, 96, 97, 107]. Previous reports that studied hemolysis as a function of 

shear stress and exposure time primarily used concentric cylinder [67] or cone-and-plate 

viscometers [108] that exposed RBC to uniform shear conditions for certain shear exposure 

times [5, 97, 98]. Studies of variable shear stresses and exposure times have also been conducted 

in roller pumps [80], a capillary system [109] and other systems [110, 111]. Numerical 

predictions of blood damage are normally performed using power-law models of shear stress and 

shear exposure time such as those of Giersiepen et al [112] or Song et al [113, 114]:   

           (10) 

where D is damage, τ  is shear stress, t is shear exposure time, and A, α and β are empirical 

coefficients. 

 Blackshear and colleagues investigated the effect of cell-wall interactions on mechanical 

hemolysis using stainless steel tubes and a turbulent flow jet [101, 102]. They reported that 

βατ tAD =
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hemolysis in tube flow appears to be related to wall interactions that are dependent upon shear 

[101]. Bacher and Williams reported similar findings in their study of flow through capillary 

tubes of different materials [109]. Their results demonstrated disparate amounts of hemolysis 

among the materials studied, which suggested that the tube surface affected the flow-induced 

hemolysis. 

 RBC have been shown to tank-tread and the relative velocity difference between 

colliding cells can alter the local shear rate on a cellular scale [115, 116]. Cell-cell interactions 

were first proposed as a potential mechanism for flow-induced hemolysis by Shapiro and 

Williams [103] and Sutera et al [83], but the authors did not study it. Leverett et al studied the 

effect of cell-cell collisions on mechanical hemolysis using 0.3-60% Ht human blood samples 

exposed to a 300 Pa shear stress in a Couette viscometer and concluded that the effect of cell-cell 

interaction was negligible on flow-induced hemolysis [98].  

 The type of flow (laminar, transitional or turbulent) is another parameter that affects 

flow-induced hemolysis in vitro and in vivo. In a pipe, laminar flow occurs when Re<2000 and 

turbulent flow conditions for Re>4000. Turbulent flow conditions have been shown to augment 

mechanical hemolysis in jet flow systems [102, 105], concentric cylinder viscometers [83, 104] 

and in an in vitro flow system with a CAD [106]. 

 In the assisted circulation, RBC exposed to supra-physiological shear stresses can be 

damaged without membrane failure, which is demonstrated by a change in the mechanical 

properties of the cells. Although the damage does not result in immediate hemolysis, 

accumulated sublethal RBC damage in blood-contacting devices has been shown to augment 

mechanical hemolysis [3, 12, 13, 78, 99, 100]. Sublethal RBC damage is characterized by a 
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decrease in RBC-D and an increase in RBC-A, RBC-MF and RBC suspension or blood 

viscosity.  

 Numerous studies have demonstrated the adverse effects of in vivo and in vitro CAD 

exposure on the deformability of erythrocytes using micropipette aspiration [117], filtration [90], 

ektacytometry [118, 119], asymptotic blood viscosity [58, 63, 120, 121] and blood viscoelasticity 

measurements [122]. Decreased RBC-D may lead to shortening of erythrocyte lifespan [14], the 

obstruction of small capillaries [123] and an increase in blood viscosity [38], potentially leading 

to decreased capillary density, tissue ischemia, anemia, and organ failure [56]. Additional 

information on methods for determining RBC deformability is presented in Appendix A. 

 RBC-MF is a reliable hemorheological test for the evaluation of sublethal damage to 

RBC due to natural aging [124], blood bank storage [61], or exposure to mechanical stress in 

blood-contacting devices [12, 58, 63]. RBC-MF is assessed by measuring the freeHb produced 

after RBC are subjected to a standard mechanical stress for a controlled time [125, 126]. 

RBC aggregability (RBC-A) is generally assessed by measuring the erythrocyte 

sedimentation rate (ESR) in whole blood or suspensions at a normalized Ht in standard tubes for 

a standard time [22, 127, 128]. Another method for determining RBC-A is to shear RBC in 

suspension at a low shear rate in an aggregometer, stop flow after a controlled time and take 

images of RBC aggregate formation [129]. RBC-A is augmented in pathological conditions [27, 

130, 131] and after CAD exposure in vitro and in vivo primarily due to elevated levels of 

fibrinogen [58, 63, 120, 132].  

 Viscometric methods have demonstrated augmented whole blood viscosity compared to 

normal human blood in patients after CAD exposure in vivo which is due to the reduction in 

RBC-D, increase in RBC-A and augmented plasma viscosity [90, 120, 133, 134]. In a 
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viscoelastometry study, Undar et al. reported an increase in blood viscoelasticity in pediatric 

patients after cardiopulmonary bypass [135].  

2.7 THROMBOSIS IN ASSISTED CIRCULATION  

Since Virchow’s triad of blood, flow and surface were identified as potential factors for the 

development of thrombosis in vivo [136], numerous investigators have performed studies to 

elucidate the mechanisms of thrombosis. In vivo, the intrinsic coagulation system is activated by 

protein adsorption to foreign surfaces and ends with the activation of the common pathway and 

the formation of thrombin and fibrin (Figure 2.1).  

 

Figure 2.1. Intrinsic, extrinsic and common pathways of the coagulation cascade. 
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The mechanisms of thrombosis in the assisted circulation with a CAD are not well 

understood. Shear-induced damage to platelets can result in platelet adhesion [137-141], 

activation [6, 142-145], reversible or irreversible aggregation [9, 10, 146-148], and microparticle 

formation [149]. Moreover, the biochemical interactions between RBC, platelets and leukocytes 

in the assisted circulation with a CAD can contribute to thrombosis in vivo [87, 89].   

Hellem first suggested that a humoral factor from RBC, Factor R, augmented platelet 

adhesion in a Ht dependent manner [150] and Gaarder et al confirmed that this factor was 

adenosine diphosphate (ADP) [151]. The work of Born [146, 147, 152] and Hellem and 

Odegaard [153] demonstrated that the addition of exogenous ADP to PRP or alternatively, the 

release of ADP from platelets or RBC can induce bulk platelet aggregation in vitro.  

Reimers et al. [154] studied in vitro ADP release from RBC and platelet aggregation in a 

Couette viscometer (5 Pa shear stress for 5 minutes) using suspensions of RBC in PRP at 

different Hts. The authors found that ADP release from RBC increased with increasing Ht and 

resulted in augmented platelet aggregation [154]. In a complementary study, Alkhamis et al. 

[155] investigated ADP and Hb release from RBC, platelet aggregation and adhesion in a cone-

and-plate viscometer (0-20 Pa shear stress) using whole blood, RBC in PPP and GRBC in PRP at 

the same Ht. The authors found that the release of Hb and ADP from RBC increased with 

increasing shear rate and that sheared whole blood produced the highest amount of ADP release, 

single platelet reduction, and platelet adhesion, followed by RBC in PPP and GRBC in PRP 

[155]. Hemoglobin alone can also cause platelet aggregation in vitro as reported by Wurzinger 

and colleagues who showed that the addition of stroma-free RBC lysate with Hb concentrations 

of 30 mg/dl and higher to PRP produced a significant increase in platelet aggregation in PRP 

exposed to a 40 s-1 shear rate for 12 minutes in a cone-and-plate viscometer [143, 156]. 
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  In the assisted circulation, there are regions within some CAD blood flow path that have 

microscopic crevices or steps that are a potential nidus for thrombosis development due to flow 

separation or flow stagnation [143, 157-160]. These CAD regions may be large enough for only 

a few cells to pass through concurrently, hence it is impossible to examine these regions 

macroscopically. The microscopic examination of cell trafficking within crevices similar to the 

size of small gaps in some CAD at supra-physiological shear stresses has not been previously 

reported in the literature.  
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3.0  POLYMER SOLUTION AS A TEST FLUID FOR IN VITRO EVALUATION OF 

POTENTIAL BLOOD DAMAGE IN CIRCULATORY-ASSIST DEVICES  

Chapter 3 has been published in the ASAIO Journal [70]. 

3.1 INTRODUCTION 

The problem of blood trauma in CAD and extracorporeal circulation was studied by prominent 

investigators such as Galletti [3, 77, 78], Kusserow [82, 99, 100], Bernstein [4, 79-81], 

Blackshear [5, 161], and Sutera [15, 83] decades ago, yet still remains one of the main problems 

associated with mechanical circulatory support. Newly developed or modified CAD require in 

vitro testing in order to sufficiently demonstrate hemocompatibility, a minimum trauma to RBC 

and other blood components, prior to conducting animal studies and ultimately translating the 

devices for clinical use. Sources of blood damage include non-physiological hemodynamics, cell 

contact with foreign surfaces, and chemical factors released from mechanically damaged blood 

cells or the vessel wall [56]. Potential indicators of mechanical blood trauma include hemolysis, 

activation of platelets and leukocytes, and sub-lethal trauma to RBC. The generally accepted 

manifestation of mechanical blood damage is the amount of Hb released into plasma, or 

hemolysis [1, 3, 15, 79, 100].  
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Assessment of hemolysis has been performed using animal blood from different species 

in mock circulation systems with the tested blood pump [91, 162-166]. The variations in testing 

conditions, sensitivity to mechanical stress of RBC from different species and dependence of 

RBC-MF on storage time make the comparison of hemolysis test results quite difficult [58, 61, 

163, 167-170]. A standard test fluid for the evaluation of potential blood damage within blood 

pumps would be beneficial for comparison of different pre-clinical CAD. 

Previous test solutions proposed for the evaluation of hemolytic characteristics of CAD 

include suspensions of polyurethane microcapsule filled with leuco dye [171]. According to the 

authors, microcapsule suspensions were proposed due to their non-biological nature and ability 

to simulate the static mechanical properties of RBC [171]. Yet, this method has several 

disadvantages, such as the difficult preparation of microcapsule suspensions and the broad size 

distribution (from ~70 to ~200 µm) of polyurethane capsules with the largest concentration of 

capsules at 100 µm. Consequently, these suspensions cannot simulate the hemodynamics in 

CAD. 

Polyacrylamide (PAA) solutions with molecular weight (MW) 107 Da at 300 ppm 

concentration were also proposed as a potential test fluid for evaluation of CAD due to their 

comparable rheological behavior as that of blood and the shear-induced degradation of PAA 

molecules over time [172, 173]. The authors characterized the shear-induced degradation of PAA 

via measurement of viscosity over a wide range of shear rates in a shearing device [172, 173]. 

The authors observed changes in low shear viscosity of PAA solution without significant 

changes in viscosity at high shear rates, which may be related to disentanglement and 

disaggregation of the polymer molecules, not to their physical degradation [172, 173]. Since the 

authors did not test PAA solutions in a flow system with a CAD, it is not clear how relevant their 
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method of testing the potential damage to PAA molecules during a very short exposure time in a 

shearing device is for in vitro hemolysis testing of rotary blood pumps. The authors did not 

discuss how to apply their method for this purpose nor did they prove whether a damage index 

based on changes of low shear viscosity would be informative for in vitro testing of CAD.    

For this study, a DRP solution of ~4000 kDa MW PEO at a concentration of 1 mg/ml in a 

turbulent flow circulating system is proposed as a potential blood substitute for the in vitro 

assessment of potential mechanical blood damage in a tested CAD. Previous studies of PEO 

performed in the Kameneva Laboratory using a Viscotek Triple Detector Array gel permeation 

chromatography (GPC) system (Viscotek, Houston, TX) found that the average MW of this 

polymer was 4.4x106 ± 0.2x106 Da and the polydispersity index was 1.7 ± 0.4 [174]. Turbulent 

flow conditions (Re greater than 4000) must be attained in order to observe DRP drag reduction 

[175]. A PEO test fluid for in vitro testing of CAD has many advantages; PEO is a non-toxic, 

water-soluble, readily available DRP that is known to be the most effective drag reducer and also 

the most fragile compared to other DRPs [176-179]. Finally, the relatively fast mechanical 

degradation of PEO solutions over a 1-2 hour test time is advantageous for in vitro testing of 

CAD [70]. 

3.2 MATERIALS AND METHODS 

A stock PEO solution of 2500 ppm concentration was prepared from Polyox WSR-301 (Dow 

Chemical, Midland, MI) by slowly dissolving the polymer powder in saline over several hours to 

avoid molecular degradation during the preparation procedure. Prior to testing, the stock solution 
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was diluted with saline to 1000 ppm and gently mixed for 2 hours. A fresh stock solution was 

prepared 1-2 days prior to each test. 

Porcine blood was collected in plastic containers with 10% acid-citrate-dextrose 

anticoagulant (ACD; Gambro BCT, Lakewood, CO) from a local abattoir. Blood was filtered in 

40 μm pore size filters (Pall Biomedical, SQ49S, Fajardo, PR) to remove white blood cells and 

platelet aggregates. Gentamicin (0.25 g/L; American Pharmaceutical Partners, Schaumburg, IL) 

was added to prevent bacterial growth. Blood Ht was measured using microhematocrit 

centrifugation (IEC MB Centrifuge, International Equipment Company, Needham Heights, MA) 

at 2,000×g for four minutes. Hematocrit was adjusted to a standard value of 30.0 ± 1.0% using 

autologous plasma. All blood testing was completed within three days of blood collection. 

A Wells-Brookfield Cone/Plate viscometer (Model LVDV-IIIUCP, Middleboro, MA) 

with CPE-40 cone (cone radius = 2.4 cm, cone angle = 0.8º, sample volume = 0.5 ml) was used 

to measure viscosity of PEO solutions and blood samples. The viscosity of tested fluids was 

measured over a range of shear rates (40 to 400 s−1) at a temperature of 25°C. A circulating water 

bath (Neslab RTE7, Thermo Fisher Scientific, Waltham, MA) was used to maintain constant 

temperature.  

The turbulent flow circulating system used in this study is shown schematically in Figure 

3.1. The system consisted of a centrifugal pump, either the Bio-Pump® BPX-80 (Medtronic, 

Inc., Minneapolis, MN) or CentriMag® (Thoratec Corporation), a glass tube (0.44 cm ID, 91.5 

cm length), and a one liter open fluid reservoir. All parts of the flow system were interconnected 

with 3/8 inch ID Tygon® tubing (Cole-Parmer, Vernon Hills, IL). The fluid reservoir (1000 ml 

glass beaker) was immersed in a water bath to maintain constant temperature. A flow probe 

(8CB9, Transonic Systems Inc., Ithaca, NY) and pressure transducer (PCB Piezotronics, Inc., 
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Depew, NY) were used to record flow rate and pressure. Wall shear stress ( wallτ ) was maintained 

constant in the glass tube during each test and was calculated according to Equation 11. wallτ  

was approximately 50 Pa for all tests. 

Lwall 2
Pr∆

=τ            (11) 

 

Figure 3.1. Schematic of the flow system used for studies of DRP mechanical degradation and shear-induced 

hemolysis in the centrifugal pumps studied. 

[A] flow probe, [B] glass tube (0.44 cm ID, 91.5 cm length), [C] pressure transducer, [D] centrifugal pump (Bio-

Pump® BPX-80 or CentriMag®), [E] open reservoir, [F] water bath. 

 1 L of 1000 ppm PEO solution was driven through the flow system for 120 minutes. The 

pressure gradient across the glass tube was maintained constant at 300 mmHg and flow rates 

were recorded. Since polymer drag reduction occurs only at turbulent flow conditions, the 

presence of turbulence in the system was verified by calculation of Re (Equation 2). 

Mechanical degradation of DRP is defined as the loss of effectiveness in a polymer drag-

reducing ability that is not regained once mechanical stress is removed [180]. In our study, PEO 

degradation was evaluated via reduction in drag-reducing efficiency and polymer solution 
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viscosity. Four experiments were performed (n=2 for each pump) and small samples (2 ml) of 

PEO solution were collected from the reservoir at 0, 3, 15, 30, 60 and 120 minutes to measure 

viscosity. DR was calculated as a percentage:  

        100×
−

=
saline

salineDRP

Q
QQDR

                                                    
(12) 

where DRPQ  is the flow rate of the DRP solution and salineQ  is the flow rate of saline at the same 

pressure.  

 Mechanical degradation of PEO solution was quantified using the DRP mechanical 

degradation index (PDI) defined as: 

   
∫
−

=
Qdt

DRDR
PDI 1200

                                                    
(13) 

where DR0 is the original drag reduction of the PEO solution and DR120 is the drag reduction of 

the PEO solution after 120 minutes of testing.  

 For each centrifugal pump, hemolysis tests (n=4) were performed using the same flow 

circuit and conditions as in DRP degradation studies to directly compare the mechanical 

degradation of PEO with hemolysis generated by the pumps during 120 minute studies. 

Temperature in the flow system was maintained at 23 ± 2.0°C. Blood samples were obtained 

every 30 minutes from the reservoir for measurement of plfHb. Briefly, sample tubes were 

centrifuged for 15 minutes at 2200×g to obtain plasma. Plasma was transferred to 

microcentrifuge tubes and centrifuged at 20,800×g for 20 minutes in a microcentrifuge 

(Eppendorf 5417R, Eppendorf North America). Plasma was then transferred to disposable semi-

micro cuvettes (Thermo Fisher Scientific, Waltham, MA). PlfHb was assessed for each sample 

using a spectrophotometer (Spectronic GENESYS 5, Thermo Fisher Scientific Inc., Waltham, 
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MA) at 540 nm wavelength. The spectrophotometer was calibrated to zero using a water blank. 

A standard curve of bovine Hb concentrations vs. absorbance values was used to calculate plfHb. 

The plfHb value used for subsequent blood damage quantification was the difference between 

the plfHb concentration in the 120 minute sample and the baseline sample.  

Blood damage was characterized by the NIH [181]: 

100100
)100(

×
×

−
××∆

=
TQ

HtVfreeHb
NIH

                                 
(14) 

where ΔfreeHb is freeHb released during the test period T and V is blood volume of the circuit. 

Statistical analysis was performed using two-tailed Student’s t-tests for paired 

observations to determine the statistical significance of the difference in mean drag reduction, 

DRP degradation index (PDI), plfHb and NIH for the two flow systems. Linear regression 

analysis was performed to determine the correlation between the PDI and NIH for the Bio-

Pump® and CentriMag® flow systems. Statistical significance was defined at p<0.05. 

Additional information regarding statistical analysis is presented in Appendix B. 

3.3 RESULTS 

Figure 3.2 shows the similar rheological behavior of 1000 ppm PEO solutions (n=4) and 30% Ht 

porcine samples (n=4) at a temperature of 25°C. To ensure comparable flow fields within the 

centrifugal pumps studied, H-Q testing was performed on the Bio-Pump® and CentriMag® flow 

systems using water as a test fluid. H-Q behavior was very similar in both systems (Figure 3.3). 
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Figure 3.2. Viscosity of 30% hematocrit porcine blood and 1000 ppm PEO solution measured at 25°C. Values are 

shown as mean±SD. 

 

Figure 3.3. Flow-pressure characteristics of the flow system and rotational speed of the Bio-Pump® and 

CentriMag® centrifugal pumps. 

 Reynolds numbers in the glass tube ranged from 7000 to 11000 in the DRP experiments 

characterizing a fully-developed turbulent flow in the tube. Flow rate of the PEO solution in the 

flow system at the beginning of each study was 5.0 L/min. After two hours, flow rate in both the 

Bio-Pump® and CentriMag® flow systems decreased to 4.05 ± 0.01 and 4.17 ± 0.03 L/min 

respectively. The decrease in flow rate represented the decrease in PEO drag-reducing ability, 

hence indicating polymer mechanical degradation (Figure 3.4). Calculated drag reduction of the 
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PEO solution declined during 120 minute tests in the two flow systems (Figure 3.5). Analysis 

revealed a statistically significant difference (р = 0.005) between the mean DR calculated for the 

two flow systems. 

 

Figure 3.4. Changes in PEO solution flow rate in Bio-Pump® and CentriMag® flow systems. Values are shown as 

mean±SD. 

 

Figure 3.5. Changes in PEO solution drag reduction in Bio-Pump® and CentriMag® flow systems. Values are 

shown as mean±SD. 

A direct measurement of PEO mechanical degradation was attained by evaluating the 

changes in PEO MW and solution viscosity during degradation tests. Figure 3.6 shows the 

extrapolation of MW vs. viscosity values obtained for several commercial PEO with known MW 
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to determine PEO MW during tests. At 120 minutes, PEO MW was calculated as 868 kDa and 

1,410 kDa in the Bio-Pump® and CentriMag® flow systems, respectively (Figure 3.7). 

Statistical analysis revealed a significant difference (р = 0.01) between the MW calculated for 

the two flow systems. Viscosity of PEO solution (150 s-1 shear rate, 25°C temperature) decreased 

in both flow systems during tests. At baseline, PEO solution viscosity was 3.80 ± 0.12 cP in each 

flow system and decreased to 1.79 ± 0.05 cP and 2.19 ± 0.08 cP after 120 minutes in the Bio-

Pump® and CentriMag® flow systems, respectively (Figure 3.8).  

 

Figure 3.6. 1000 ppm PEO MW calculated using PEO solution viscosities measured during flow tests and measured 

for 1000 ppm PEO preparations with known MW. 

 

Figure 3.7. Changes in molecular weight of PEO solution in Bio-Pump® and CentriMag® flow systems. 
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Figure 3.8. Changes in asymptotic viscosity of PEO solution in Bio-Pump® and CentriMag® flow systems. Values 

are shown as mean±SD. 

 Mean PDI of the Bio-Pump® and CentriMag® flow systems at 120 minutes was 

calculated as 0.049 ± 0.001 %/L and 0.041 ± 0.002 %/L, respectively. Statistical analysis 

revealed a significant difference (р=0.03) between the mean PDI calculated for the two flow 

systems.   

 Change in plfHb from baseline to end of study was 29.8% higher in the Bio-Pump® than 

the CentriMag® flow system (Figure 3.9). Mean plfHb values were statistically significantly 

different (р = 0.048) in the two flow systems. Mean NIH of the CentriMag® and Bio-Pump® 

flow systems at 120 minutes was calculated as 0.005 ± 0.003 g/100L and 0.018 ± 0.003 g/100L, 

respectively. Analysis revealed a significant difference (р=0.006) between the mean NIH 

calculated for the two flow systems.  
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Figure 3.9. Changes in plasma free hemoglobin concentration of 30% Ht porcine blood in Bio-Pump® and 

CentriMag® flow systems. Values are shown as mean+SD. 

 Linear regression of the PDI and the NIH at 120 minute time points for the CentriMag® 

and Bio-Pump® flow systems is shown in Figure 3.10. The coefficient of determination for this 

analysis is 0.991.   

 

Figure 3.10. Linear regression of the DRP degradation index and normalized index of hemolysis at 120 

minutes of testing for the Bio-Pump® and CentriMag® flow systems. 
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3.4 DISCUSSION 

Development of mechanical circulatory support devices requires extensive in vitro testing prior 

to conducting animal studies and the ultimate realization of clinical use. Due to the variations in 

testing conditions, different sensitivity to mechanical stress of RBC from various species, and 

dependence of RBC-MF on storage time, the comparison of results of different blood pump tests 

is difficult. I proposed to use a solution of water-soluble DRP with rheological properties and 

shear stress sensitivity similar to that of blood as a substitute for human or animal blood in the in 

vitro assessment of potential mechanical blood damage in CAD.   

A PEO solution was investigated to determine whether the loss of PEO drag-reducing 

ability due to the mechanical degradation of the polymer can indicate the degree of shear-

induced blood damage within two clinically-used CAD. DRP mechanical degradation was 

determined empirically via recording a decrease in fluid flow rate at a constant pressure gradient 

and by calculation of drag reduction after 120 minutes of circulation in the two flow systems 

(Figure 3.4 and Figure 3.5). In addition, PEO mechanical degradation was confirmed by 

reduction in PEO molecular weight and solution viscosity (Figure 3.7 and Figure 3.8). PEO 

solution viscosity, MW, and drag-reducing ability exhibited a larger decrease in the Bio-Pump® 

system than in the CentriMag® flow system, signifying that the Bio-Pump® exerted greater 

mechanical stress on PEO molecules.  

The novel PDI, based upon the change in PEO drag reduction per passing volume, was 

significantly higher in the Bio-Pump® than the CentriMag® flow system at 120 minutes of 

testing. Hemolysis testing revealed that mean plfHb concentration and NIH in the Bio-Pump® 

flow system were also significantly higher than corresponding values for the CentriMag® flow 
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system, thereby confirming a higher degree of mechanical stress in the Bio-Pump® than the 

CentriMag®. The PDI was compared to the NIH typically used to characterize blood damage in 

in vitro hemolysis tests and compare various CAD. The two indices were found to be highly 

correlated with a coefficient of determination of 0.991 (Figure 3.10).  

With improvements in biocompatibility of novel CAD, in vitro hemolysis testing 

becomes more challenging due to the reduction in mechanical blood damage produced by the 

devices. Thus, hemolysis testing of novel CAD would require prolonged test times to detect 

blood damage with the likelihood for test artifacts. The results of this study showed that the 

mechanical degradation of DRP can predict the potential mechanical hemolysis produced in 

CAD. The PDI may be used as a sensitive indicator of hemolysis produced in the pumps without 

the use of blood and with a faster response to mechanical stress. PEO solutions may provide 

simple standard test fluids for the in vitro evaluation of potential blood trauma produced in CAD. 

3.5 CONCLUSIONS 

This chapter summarizes the investigation to determine whether the mechanical degradation of a 

DRP solution resulting in the loss of drag-reducing ability can indicate the degree of shear-

induced blood damage within blood pumps. Results demonstrated that DRP mechanical 

degradation in a turbulent flow system with an incorporated blood pump may provide useful 

information on the device performance predicting potential hemolysis produced by a CAD 

without the use of blood. A simple, reliable method for the characterization of DRP mechanical 

degradation was realized via recording the decrease in DRP solution flow rate at a constant 
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pressure and measurements of polymer solution viscosity in samples collected from the flow 

system during testing. A novel PDI was found to be highly correlated to the NIH in these studies. 

Moreover, the use of a PEO solution as a test fluid for the in vitro testing of CAD and calculation 

of the PDI yields an innovative, useful substitute to blood and a similar damage index as the NIH 

traditionally used for evaluation and comparison of CAD.     
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4.0  BLOOD BANK STORAGE EFFECT ON THE RHEOLOGICAL PROPERTIES 

OF MALE AND FEMALE DONOR ERYTHROCYTES 

Chapter 4 has been published in the journal Clinical Hemorheology and Microcirculation [62]. 

4.1 INTRODUCTION 

It has been long known that RBC-D decreases during blood bank storage of donor RBC [182]. 

The various changes that occur to RBC during storage in blood banks are known as the storage 

lesion [183] and include decreased intracellular concentrations of adenosine triphosphate (ATP) 

[182] and 2,3-diphosphoglycerate (2,3-DPG) [184], increased freeHb and microparticle 

formation [185]. Currently, allogeneic RBC units can be transfused within 42 days when 

preserved in an FDA approved additive solution and stored at 1-6°C. One unit of RBC contains 

approximately 200 ml RBC, 100 ml additive solution and approximately 50 ml donor plasma. 

AS-5 is a commonly used additive solution for packed RBC storage and consists of saline, 

mannitol, adenine, and dextrose [186]. 

Previous investigators examined the changes in RBC-D of whole blood or RBC 

suspensions during prolonged laboratory storage (up to 42 days) at ~4°C using filtration [184], 

viscometry [187], a cell flow properties analyzer [188], an oscillatory flow chamber [189] and 
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ektacytometry [187]. Another sensitive assessment of RBC-D was proposed and implemented 

through the measurement of RBC suspension or whole blood viscoelasticity [32, 190]. Human 

blood and RBC suspensions were proven to be viscoelastic fluids that exhibit both viscous 

(energy-dissipative) and elastic (energy-storing) characteristics when exposed to shear 

deformation [32, 190]. The measurement of fluid viscoelasticity can be performed under 

oscillatory flow at a standard frequency, e.g. of 2 Hz, in a rigid capillary tube [33]. Additional 

information on the measurement of whole blood or RBC suspension viscoelasticity is presented 

in Section 2.3. 

Human blood or RBC suspensions under flow require a finite time for microstructural 

changes to occur and the rate of change is dependent on the time for the fluid to reach 

equilibrium upon a change in flow conditions [191]. Hence, flowing human blood or RBC 

suspensions possess a non-zero relaxation time, which defines the time dependency of how 

elastic structures return to their original shape after the cessation of flow [72]. Increased RBC 

suspension relaxation times are a result of decreased RBC deformability and increased RBC-A 

[72, 191]. Relaxation time can be calculated as [72, 191]: 

ηω
ηλ

′
′′

=
                                                              

(15)  

where variables are defined in Section 2.3. 

Previous studies of the effect of prolonged laboratory storage at ~4°C on blood or RBC 

suspension viscoelasticity were conducted with donor RBC units prepared in a laboratory.  

Farges et al. examined the changes in RBC membrane viscoelasticity of stored RBC in SAG-M 

(sodium chloride, adenine, glucose, mannitol) solution during 42 days of storage using an 

oscillatory flow chamber with 0.03% Ht samples [189]. Riquelme et al. studied whole blood and 
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RBC from three donors stored in CPDA (trisodium citrate, citric acid, sodium dihydrogen 

phosphate, dextrose and adenine) solution for 28 days using a cone-and-plate viscometer and 

homemade ektacytometer [187]. Although a general decrease in RBC-D as storage time 

increased was reported in both studies, neither study investigated the effects of prolonged storage 

on donor RBC at blood bank preparation and storage conditions.  

 Recent studies of the effect of prolonged blood bank storage at ~4°C on RBC membrane 

deformability were conducted with AS-3 [192] and SAG-M [193] preserved leukoreduced RBC 

units using a laser-assisted optical rotational cell analyzer (LORCA). Bennett-Guerrero et al. 

reported significant decreases in RBC membrane deformability (elongation indices measured at 

3 Pa and 30 Pa shear stresses) during 42 days of storage in AS-3 solution [192] while Henkelman 

et al. reported significant decreases in RBC membrane deformability (elongation indices 

measured at 50 Pa shear stress) during 49 days of storage in SAG-M solution [193]. Although 

both studies examined single RBC membrane deformability during blood bank storage, neither 

assessed changes in cell deformability of a bulk RBC suspension. In this study, the potential 

effects of donor gender and storage period on RBC suspension viscoelasticity and relaxation 

time using leukoreduced RBC preserved in AS-5 solution tested at 7, 28 and 49 days of storage 

at ~ 4ºC in a blood bank were investigated. 

4.2 MATERIALS AND METHODS 

AS-5 preserved, prestorage leukoreduced RBC units were provided by the regional FDA 

licensed Blood Bank (Central Blood Bank, Pittsburgh, PA). A total of 24 packed RBC units 
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(three units from each of the ABO groups) were obtained from both male (n=12) and female 

donors (age<50 years, n=12) and stored between 1-6°C in a blood bank refrigerator for seven 

weeks. Approximately 60 ml of RBC were aseptically removed from each unit and transferred 

into a sterile container. The original Ht of each sample was measured using microhematocrit 

centrifugation with an average Ht of 58.8±2.6%. Each sample was then diluted to a 40±1% Ht 

using DPBS in 50 ml conical tubes at the end of storage weeks 1, 4, and 7. The storage times 

were chosen to maintain a three week interval between measurements. 

 Viscoelasticity of male (n=12) and female (n=12) RBC suspensions was measured using 

a Vilastic-3 Viscoelasticity Analyzer (Vilastic Instruments Inc., Austin, TX) with a stainless steel 

capillary measurement tube (0.512 mm inner radius, 6.18 cm length). The RBC suspensions 

were exposed to oscillating flow at a fixed frequency of 2 Hz at linearly increasing shear rates 

ranging from 25 to 250 s−1 with increments of 25 s-1. Prior to recording results at each shear rate, 

the RBC suspensions were permitted to equilibrate to the higher shear rate for five seconds. A 

circulating water bath (Neslab RTE7, Thermo Fisher Scientific, Waltham, MA) was used to 

maintain a temperature of 25.0±0.1ºC for all measurements. Relaxation time of the stored RBC 

suspensions was calculated by the Vilastic software utilizing the measured RBC suspension 

viscosity and elasticity at each shear rate according to Equation 15 with a frequency of 2 Hz.     

Statistical analysis was performed using ANOVA to analyze the effect of storage time on 

the viscosity, elasticity and relaxation time of RBC suspensions measured at shear rates of 25 s-1 

and 100 s-1. Post-hoc testing was conducted using the Tukey method. Independent two-way t-

tests were performed to compare male and female RBC suspension viscosity, elasticity and 

relaxation time measured at 25-250 s−1 shear rates at equivalent storage times. Correlations 

between the changes in the RBC-MFI measured for the same RBC suspensions prepared from 
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the same male and female donor units and reported in [61] and the changes in RBC rheological 

parameters reported in this study were calculated using bivariate correlation analysis. Statistical 

significance was defined at p<0.05. Additional information regarding statistical analysis is 

presented in Appendix C. 

4.3 RESULTS 

Figures 4.1 and 4.2 show male and female RBC suspension viscosity measured at shear rates of 

25 s-1 and 100 s-1 at each storage time. Male RBC suspension viscosity demonstrated significant 

increases from Week 1 to Week 4 and from Week 1 to Week 7 of blood bank storage (Figure 

4.1), while female RBC suspension viscosity significantly increased during each storage time 

period (Figure 4.2).  

 

Figure 4.1. Viscosity of male 40% hematocrit RBC suspensions measured at 25 s-1 and 100 s-1 shear rates at   

Weeks 1, 4 and 7 of storage. Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 
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Figure 4.2. Viscosity of female 40% hematocrit RBC suspensions measured at 25 s-1 and 100 s-1 shear rates at 

Weeks 1, 4 and 7 of storage. Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 

Similarly, Figures 4.3 and 4.4 show male and female RBC suspension elasticity, 

respectively, measured at shear rates of 25 s-1 and 100 s-1 at each storage time. Male RBC 

suspension elasticity demonstrated significant increases from Week 1 to Week 4 and from Week 

1 to Week 7 of blood bank storage (Figure 4.3), while female RBC suspension elasticity 

significantly increased during each storage time period (Figure 4.4). 

 

Figure 4.3. Elasticity of male 40% hematocrit RBC suspensions measured at 25 s-1 and 100 s-1 shear rates at   

Weeks 1, 4 and 7 of storage. Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 
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Figure 4.4. Elasticity of female 40% hematocrit RBC suspensions measured at 25 s-1 and 100 s-1 shear rates at 

Weeks 1, 4 and 7 of storage. Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 

 Figures 4.5 and 4.6  show male and female RBC suspension relaxation time calculated at 

25 s-1 and 100 s-1 shear rates at each storage time.  Male RBC suspension relaxation time 

demonstrated significant increases from Week 1 to Week 4 and from Week 1 to Week 7 of blood 

bank storage (Figure 4.5), while female RBC suspension relaxation time significantly increased 

during each storage time period (Figure 4.6).  

 

Figure 4.5. Relaxation time of male 40% hematocrit suspensions calculated at 25 s-1 and 100 s-1 shear rates at 

Weeks 1, 4 and 7 of storage. Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 
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Figure 4.6. Relaxation time of female 40% hematocrit suspensions calculated at 25 s-1 and 100 s-1 shear rates at 

Weeks 1, 4 and 7 of storage. Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 

 RBC suspension elasticity, viscosity and relaxation time measured at shear rates of 25 - 

250 s-1 were not statistically significantly different (p>0.05) between males and females at any 

storage time point. Table 4.1 shows the correlations between the changes in RBC-MFI reported 

in [61] and RBC suspension VE and relaxation time measured in this study using the same RBC 

suspensions prepared from the same 12 male and 12 female RBC units during seven weeks of 

blood bank storage. The correlations between RBC-MFI and RBC suspension VE and relaxation 

time are highly significant and suggest that both parameters, RBC-D and RBC-MFI, are 

indicative of changes in sublethal RBC damage during blood bank storage. 
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Table 4.1. Correlation between changes from Week 1 to Week 7 of storage in RBC mechanical fragility index 

reported in [61] and RBC suspension elasticity, viscosity, and relaxation time measured at a 100 s-1 shear rate 

reported herein. 

 MFI vs. Elasticity  MFI vs. Viscosity MFI vs. Relaxation time 

  Pearson correlation 
coefficient, r   p-value  Pearson correlation 

coefficient, r   p-value   Pearson correlation 
coefficient, r   p-value  

Male 
(n=12) 0.44 <0.01 0.29 >0.05 0.49 <0.01 

Female 
(n=12) 0.76 <0.01 0.68 <0.01 0.50 <0.01 

4.4 DISCUSSION 

It has been long known that laboratory storage of RBC at 4ºC results in a decrease in RBC-D as 

the length of storage increases. Yet, there are no reported studies of the effects of prolonged 

blood bank storage of donor RBC preserved in AS-5 solution on packed RBC VE and relaxation 

time. In this chapter, we investigated the effect of storage time on male and female RBC-D and 

relaxation time derived from the measurement of bulk RBC suspension VE.   

Male and female RBC suspension VE and relaxation time significantly increased during 

seven weeks of blood bank storage. These results demonstrate that RBC-D of the male and 

female RBC decreased during the blood bank storage period, which was evident at 28 days and 

continued to decrease as the storage time increased to 49 days. There were no statistically 

significant differences between male and female RBC suspension viscosity, elasticity and 

relaxation time at any storage time.  

RBC suspension relaxation time is a calculated parameter that is an indicator of RBC 

rigidity. Thurston and Henderson found that the relaxation time of hardened human RBC had 
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longer relaxation times than normal RBC [191]. Chmiel et al. found that RBC relaxation time of 

human blood increased in several pathological conditions, including cardiovascular disease, 

stroke and peripheral vascular disease compared to normal human blood [72]. These results 

corroborate the results presented herein that the increase in male and female RBC suspension 

relaxation time during blood bank storage is due to the progressively decreased deformability of 

stored male and female RBC during the seven week period. The decrease in RBC-D during 

blood bank storage may reduce capillary flow and tissue perfusion in transfused patients and 

accelerate RBC post-transfusion removal from the vascular system. 

The storage related changes in RBC-MF measured in the same set of male and female 

RBC units as those used in this study and reported in [61] were compared to the changes in RBC 

suspension viscosity, elasticity and relaxation time presented in this report. Bivariate correlations 

of storage related changes in the RBC-MFI and viscoelastic parameters demonstrated significant 

correlations for the male and female donor groups. This suggests that the assessment of RBC-D 

can be used in conjunction with the RBC-MF test [126] to provide a comprehensive evaluation 

of the extent of sublethal RBC damage in a variety of conditions, including blood bank storage. 

Recent publications report numerous incidences of adverse clinical outcomes associated 

with the transfusion of older blood bank RBC units, but it is highly debated whether there is a 

significant relationship between storage-induced RBC changes (i.e. decreased RBC-D, increased 

RBC-MF, etc.) and the outcome in transfused patients [194-198]. Results of our study support 

the need for large, randomized, controlled trials that elucidate the clinical impact of transfusing 

patients with brief storage versus prolonged storage blood bank RBC [197].   
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4.5 CONCLUSIONS 

This chapter summarizes the investigation of the effects of donor gender and blood bank storage 

time on bulk RBC-D (RBC suspension VE and relaxation time) of leukoreduced RBC stored in 

AS-5 solution at 4ºC. Both male and female RBC suspensions demonstrated significant increases 

(р<0.05) in viscosity, elasticity and relaxation time over seven weeks of blood bank storage, 

which signifies a decrease in donor RBC-D. No statistically significant differences in RBC-D or 

relaxation time were observed between male and female RBC at any storage time point. The 

clinical significance of the changes in donor RBC-D and relaxation time during blood bank 

storage warrant further investigation. 
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5.0  EXPERIMENTAL INVESTIGATION OF FLOW-INDUCED HEMOLYSIS AS A 

FUNCTION OF SHEAR STRESS AND EXPOSURE TIME  

5.1 EFFECT OF VARYING EXPOSURE TIME TO A CONSTANT SHEAR STRESS 

ON FLOW-INDUCED HEMOLYSIS 

5.1.1 Introduction 

A well supported mechanism of flow-induced hemolysis reported in the literature is the effect of 

shear stress and exposure time (texp) [5, 96, 97, 107]. Previous reports that studied hemolysis as a 

function of shear stress and exposure time primarily used concentric cylinder viscometers [67] 

that exposed RBC to uniform shear conditions for certain exposure times [5, 97, 98]. Studies of 

variable shear stresses and exposure times have also been conducted in roller pumps [80], a 

capillary system [109] and other systems [110, 111].  

For testing in vitro blood damage produced by a CAD, the ASTM recommends using 500 

ml or 1 L of human or animal blood in a large flow circuit [199]. Currently, there are no ASTM 

recommendations for hemolysis testing of pediatric CAD. The testing of CAD designed for these 

small patients should be performed using a circulating volume similar to the blood volume of 

these children, approximately 150-350 ml [77]. However, in vitro hemolysis testing in small 

volume flow systems may affect the resulting blood damage due to increased RBC total exposure 
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time (Texp) in the CAD [200]. This may cause cumulative sublethal damage during testing and 

lead to elevated hemolysis not accounted for by the NIH, but a study of this effect has not been 

reported. The objective of this study was to examine the effect of varying blood Texp at a constant 

shear stress on the resulting mechanical hemolysis and calculated NIH. 

5.1.2 Materials and Methods 

Bovine blood was collected from donor or abattoir animals, filtered and Ht was measured and 

adjusted to 30±1% using autologous plasma. THb was measured for blood samples at T=0 of 

testing using a hemoximeter (OSM3, Radiometer Inc.). The centrifugal pump flow system used 

in this study was modified from Kameneva et al. [106] and consisted of a blood bag (Qosina 

Inc.), microtube, CentriMag® or PediMag® centrifugal pump (Thoratec Corporation), flow 

probe (Transonic Systems Inc.), thermistor (Cole-Parmer Instrument Company), three pressure 

transducers (PCB Piezotronics, Inc.) and Tygon tubing.  

 Blood volumes of 60 ml (n=6), 125 ml (n=8), 250 ml (n=6) and 500 ml (n=6) were tested 

in the flow systems at similar τ wall ~150-190 Pa in the microtubes. Hemolysis tests were 

performed in the CentriMag® system with a microtube (1.4 mm ID, 140 mm length) and blood 

volumes of 250 ml (n=6) and 500 ml (n=6). The flow rate was ~0.8 L/min which corresponded 

to τ wall ~150 Pa and Re in the tube ~3000-3400. The PediMag® flow system had a microtube (1 

mm ID, 70 mm length) and tests were performed with blood volumes of 60 ml (n=6) and 125 ml 

(n=12). The flow rate in these tests were ~0.30 L/min which corresponded to τ wall ~190 Pa and 

Re~1600-2000 in the microtube. All tests were performed for one hour and blood samples were 
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withdrawn from the loop at 0 and 60 minutes of testing for measurement of freeHb and 

calculation of NIH. Exposure time in the microtubes were calculated as:    

Q
Lr

Q
Vt

2

exp
π

==
          

(16) 

where V is the volume of the tube, L is tube length, r is tube radius, and Q is flow rate.  

The number of passes through the system was calculated as:  

V
QTN =

           
(17)     

where Q is flow rate, T is test time and V is circulating blood volume.  

Total exposure time (Texp) was calculated as:  

expexp NtT =
           

(18) 

For each blood volume,  Texp was between ~1.6-3.3 s.  

Blood damage was further characterized by an Index of Hemolysis (IH): 

tHb
freeHbIH ∆

=                                                               (19) 

where ΔfreeHb is the change in freeHb from baseline after testing and tHb is the total 

hemoglobin concentration in the RBC suspension. 

Statistical analysis was performed using ANOVA to determine the statistical significance 

of the difference in freeHb generation and the calculated NIH among the 60 ml, 125 ml, 250 ml 

and 500 ml blood volumes tested in the centrifugal pump flow systems. Post-hoc testing was 

conducted using either the Tukey or Games-Howell methods contingent upon the results of 

homogeneity of variances tests. Multiple regression analysis was performed using the power 

model to determine the empirical coefficients (A, α and β) for the IH (ΔfreeHb/tHb) in the 
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centrifugal pump flow systems. Statistical significance was defined at p<0.05. Additional 

information regarding statistical analysis is presented in Appendix D. 

5.1.3 Results 

Figure 5.1 shows freeHb measured for the 60 ml, 125 ml, 250 ml and 500 ml blood volumes at 

1.6-3.3 s total exposure times in the glass capillaries of the CentriMag® or PediMag® flow 

systems. All blood volumes studied had a similar rate of increase in freeHb at comparable total 

exposure times in the microtubes of the centrifugal pump flow systems, but the change in freeHb 

from baseline (ΔfreeHb) for the 250 ml blood volume was statistically significantly different 

from the 500 ml blood volume (p=0.045) tested at the same 150 Pa τ wall in the glass capillary of 

the CentriMag® flow system.  

 Figure 5.2 shows the NIH calculated for each blood volume at 60 minutes of testing, 

which corresponds to RBC Texp of 1.6-3.3 s. The NIH calculated for the 60 ml blood volume was 

statistically significantly different from all other blood volumes studied (Figure 5.2). Moreover, 

the NIH calculated for the 125 ml blood volume was significantly different than the 500 ml 

blood volume (p=0.04). 
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Figure 5.1. Free hemoglobin concentration in 60 ml, 125 ml, 250 ml and 500 ml 30% hematocrit bovine blood 

volumes at various total exposure times in centrifugal pump flow systems. Values are shown as mean±SEM. 

 

Figure 5.2. Normalized index of hemolysis calculated for 60 ml, 125 ml, 250 ml and 500 ml 30% hematocrit bovine 

blood volumes at various total exposure times in centrifugal pump flow systems.  

Values are shown as mean±SEM. * indicates p<0.05 and ** indicates p<0.001. 

 Multiple regression analysis of the IH (ΔfreeHb/tHb) of the centrifugal pump hemolysis 

results was performed using the power model and compared to published results in the literature 
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[112-114]. The empirical coefficients A, α and β, of the power law model (Equation 10) of IH in 

mechanical heart valves [112] and centrifugal pumps [113, 114] are shown in Table 5.1. 

Table 5.1. Power law empirical coefficients obtained from multiple regression of mechanical hemolysis in three 

reported studies. 

Author Index of 
Hemolysis A α β Primary source of 

blood damage 

Giersiepen et al. (1990) ΔHb/Hb 0.0000362 2.416 0.758 Mechanical heart valves 

Song et al. (2003 & 2004) ΔHb/Hb 0.0000018 1.991 0.765 Centrifugal pump 

Sivek (current work) ΔHb/Hb 0.0000482 1.748 0.514 Centrifugal pumps 

5.1.4 Discussion 

It is well known that shear stress and exposure time contribute toward mechanical hemolysis in 

vitro [5, 96, 97, 107]. Yet, a dearth of literature regarding the effect of in vitro CAD testing using 

small volume (< 500 ml) systems on mechanical hemolysis and the NIH exists. The objective of 

this study was to examine the effect of varying blood Texp at constant shear stresses in centrifugal 

pump flow systems. 

In centrifugal pump flow systems with glass capillaries, testing of 60 ml, 125 ml, 250 ml 

and 500 ml 30% Ht bovine blood volumes for 60 minutes demonstrated similar rates of increase 

in freeHb at comparable total exposure times in the microtubes (Figure 5.1). The ΔfreeHb 

between the 250 ml and 500 ml blood volumes were significantly different (p=0.045). The tests 

occurred at the same 150 Pa wall shear stress in the glass capillary, but had Texp of 1.6 s (500 ml) 

and 3.1 s (250 ml). The NIH calculated for the 60 ml blood volume was significantly different 

from all other blood volumes studied (Figure 5.2). The NIH between the 125 ml and 500 ml 
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blood volumes were significantly different (p=0.039). Although the 30% Ht blood volumes were 

tested at approximately the same 1.6 s Texp in the capillary flow system, the 125 ml volume (190 

Pa) was exposed to a ~40 Pa higher wall shear stress in the glass capillaries than the 500 ml 

blood volume (150 Pa). 

Numerical predictions of blood damage are commonly performed using power-law 

models such as those of Giersiepen et al. [112] and Song et al. [113, 114]. To compare the 

hemolysis results from the centrifugal pump studies with these reports, multiple regression 

analysis was performed using the power model to determine the empirical coefficients (A, α and 

β) of the IH. The empirical coefficients A, α and β were 0.0000482, 1.748 and 0.514, 

respectively. The coefficients in this study were similar to the empirical coefficients in published 

reports (Table 5.1) and thus, the predicted blood damage in the centrifugal pump flow system is 

comparable to results in the literature [112-114].  

For hemolysis testing of pediatric CAD, a circulating blood volume similar to the blood 

volume of these children, approximately 150-350 ml [77], should be used in the test circuit. This 

study examined in vitro hemolysis in 60-500 ml volume flow systems to elucidate whether blood 

damage and the calculated NIH was augmented by increased RBC Texp in CAD in small volume 

test circuits. The results from the centrifugal pump flow system tests identify a range of blood 

volumes suitable for in vitro hemolysis testing of pediatric CAD as 150ml≤V<500 ml. 

5.1.5 Conclusions 

This section summarizes the investigation of the effects of shear stress and RBC total exposure 

time in centrifugal pump flow systems using blood volumes ranging from 60-500 ml. In vitro 
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hemolysis testing in centrifugal pump flow systems demonstrated the statistically significant 

effect of RBC Texp on flow-induced hemolysis (ΔfreeHb, NIH and ΔfreeHb/tHb). Multiple 

regression analysis using the power model demonstrated similar blood damage (ΔfreeHb/tHb) in 

the centrifugal pump flow systems as predicted in published reports. The hemolysis results from 

the centrifugal pump flow systems indicate that a suitable blood volume range for conducting in 

vitro hemolysis testing of pediatric CAD is 150ml≤V<500 ml.  

5.2 EFFECT OF RED BLOOD CELL MECHANICAL FRAGILITY ON FLOW-

INDUCED HEMOLYSIS 

5.2.1 Introduction 

Sublethal RBC damage was first described by Galletti [3, 78] for partial extracorporeal 

circulation experiments and is characterized by a decrease in RBC-D and an increase in RBC-A, 

RBC-MF and RBC suspension or blood viscosity [117, 134]. RBC-MF is defined qualitatively as 

the erythrocytes susceptibility to damage due to mechanical forces encountered in vivo or in 

vitro.  

The relationship of mechanical hemolysis and RBC-MF in vitro was examined by several 

investigators using different apparatus. Rous and Turner studied the species difference in RBC-

MF of human, dog, rabbit and sheep RBC by shaking tubes of RBC in salt solution [167]. Shen 

et al. used two wheels with slots for tubes containing blood and glass beads that rotated at 

specific RPM to assess RBC-MF [125]. Fok and Schubothe used a rotating platform with slots 
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for Erlenmeyer flasks containing quartz beads and blood [201, 202] and a Fleisch 

hemoresistometer [12, 13, 203] has been used to investigate RBC-MF under various conditions.  

Gu et al. performed a comparison study of six methods for assessing RBC-MF: a 

hemoresistometer, Couette viscometer, spinning disk, capillary tube (driven by a syringe pump), 

a stainless steel bead test with a rocker platform [126] and a glass bead test with a rocker 

platform [204]. Gu et al. also compared the results of the different RBC-MF tests with the 

hemolysis produced by a Bio-Pump® (BP-80, Medtronic Inc.) tested in a flow circuit at a 5 

L/min flow rate, 100 mmHg pressure head and a 4 hour test time. They reported that the stainless 

steel bead test with a rocker platform described in Kameneva et al. [126] was the most practical 

RBC-MF test and had a high correlation with in vitro hemolysis produced by the Bio-Pump® 

[204]. The standard RBC-MF test [126] has proven to be a reliable hemorheological test for the 

evaluation of sublethal damage to RBC due to storage, natural aging, and exposure to mechanical 

stress [58, 61, 124].  

RBC-MF has often been overlooked in hemolysis testing of CAD although this parameter 

may have a potential influence on the resulting mechanical hemolysis. There is currently a dearth 

of literature regarding the relationship between the blood quality as assessed by the measurement 

of RBC-MF and the mechanical hemolysis produced by a CAD in a flow circuit. The objective 

of this study was to examine the effect of RBC-MF of the blood used for hemolysis testing of 

CAD on flow-induced hemolysis to discern whether RBC-MF can influence mechanical 

hemolysis of RBC exposed to the same shear stress and exposure times in an in vitro flow 

system with a CAD. 
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5.2.2 Materials and Methods 

Bovine blood was purchased from Lampire Biological Laboratories, filtered and RBC were 

washed thrice in PBS. Ht of the washed RBC was measured and adjusted to 30±1% using 

autologous plasma or DPBS. The flow system used in this study was modified from Kameneva 

et al. [106] and consisted of a compliance chamber (R-38, Medtronic Inc), plastic nozzle (2.5 

mm ID, 6 mm length), PediMag® centrifugal pump (Thoratec Corporation), flow probe 

(Transonic Systems Inc.), thermistor (Cole-Parmer Instrument Company), two pressure 

transducers (Cole-Parmer Instrument Company) and Tygon tubing. 65 ml (n=13) or 200 ml 

(n=4) of RBC suspension was circulated through the flow system for 120 minutes at a constant 

rate of 2 L/min corresponding to a Re~5000, τ wall in the capillary~250 Pa, and Texp in the tube 

~1-3.5 s. Samples were withdrawn from the loop at 0, 60 and 120 minutes of testing for 

measurement of freeHb and calculation of the NIH according to Equation 14.  

RBC-MF was assessed in the same RBC suspension filled in the flow loop for hemolysis 

testing using the standard RBC-MF test [61, 126]. Six 7 ml no-additive vacutainers (BD) were 

opened and in three tubes five 1/8” stainless steel ball bearings (BBs, Small Parts, Inc.) were 

added. The remaining three tubes without BBs served as a no-rocked control and two control 

samples. The no-rocked control was used to verify the freeHb measured in the control samples 

and not used in analysis. 

Three milliliters of RBC suspension was added to each tube and the control BB tubes 

were rocked on a platform rocker at 18 cycles per minute and a rocking angle of ±17° for one 

hour. After one hour, freeHb was measured for all samples and a RBC mechanical fragility index 

(RBC-MFI) was calculated as:  
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where ΔfHbexper is the freeHb in samples with BBs, ΔfHbcontrol is the freeHb in control samples 

and tHb is the total hemoglobin concentration of the RBC suspension used for test. 

Bivariate correlations were performed to determine the Pearson correlation coefficients and 

statistical significance of the RBC-MFI, the change in freeHb from baseline (ΔfreeHb) and the 

NIH obtained from 17 RBC-MF and hemolysis tests. 

5.2.3 Results 

Table 5.2 shows the correlations for the RBC-MFI, ΔfreeHb and NIH obtained from RBC-MF 

and hemolysis tests (n=17). A large, significant correlation between RBC-MFI and the ΔfreeHb 

from hemolysis testing in the PediMag® flow system was observed. The Pearson correlation 

coefficient for this analysis was 0.95 (p<0.01). A moderate but statistically significant correlation 

between the RBC-MFI and NIH data was found (Figure 5.3). The Pearson correlation 

coefficient for this analysis was 0.83 (p<0.01). 
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Table 5.2. Correlations between the RBC mechanical fragility index obtained from RBC mechanical fragility tests 

and the normalized index of hemolysis and change in free hemoglobin concentration from baseline in hemolysis 

tests in a PediMag® flow system. 

  

 

Figure 5.3. Correlation between the normalized index of hemolysis calculated for in vitro tests in a PediMag® flow 

system and the RBC mechanical fragility index. 

Correlations 

 MFI NIH delta_freeHb 

MFI Pearson Correlation 1 .828** .950** 

Sig. (2-tailed)  .000 .000 

N 17 17 17 

NIH Pearson Correlation .828** 1 .876** 

Sig. (2-tailed) .000  .000 

N 17 17 17 

delta_freeHb Pearson Correlation .950** .876** 1 

Sig. (2-tailed) .000 .000  

N 17 17 17 

**. Correlation is significant at the 0.01 level (2-tailed). 
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5.2.4 Discussion 

There is currently a dearth of knowledge regarding the relationship between the blood quality as 

assessed by RBC-MF and flow-induced hemolysis produced by a CAD in a flow system. The 

objective of this study was to examine the effect of RBC-MF of the blood used for CAD 

hemolysis testing on mechanical hemolysis to discern whether RBC-MF can influence flow-

induced hemolysis of RBC exposed to the same shear stress and Texp in an in vitro flow system 

with a CAD. 

Seventeen experiments with the standard RBC-MF test [126] and an in vitro PediMag® 

flow system were conducted using the same 30% Ht bovine RBC suspensions. The results 

demonstrated a large, statistically significant correlation between the ΔfreeHb from the 

hemolysis tests and RBC-MF (r=0.95, p<0.01). Moreover, RBC-MF is correlated (r=0.83, 

p<0.01) with the NIH and can be used in conjunction with in vitro hemolysis testing of CAD to 

ensure the quality of blood used for tests.  

5.2.5 Conclusions 

This section summarizes the investigation of the relationship between RBC mechanical fragility 

and flow-induced hemolysis produced by a CAD in a flow system. RBC-MF was found to be 

correlated with the change in freeHb during hemolysis testing (r=0.95, p<0.01) and the NIH 

(r=0.83, p<0.01). The standard RBC-MF test [126] can aid in the analysis of hemolysis testing of 

blood pumps by providing important information on the susceptibility of the blood used for 

testing to flow-induced trauma. 
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6.0  EFFECTS OF CELL-CELL INTERACTIONS AND SUSPENSION MEDIA 

VISCOSITY ON FLOW-INDUCED HEMOLYSIS  

6.1 INTRODUCTION 

Cell-cell interactions were first proposed as a potential mechanism for flow-induced hemolysis 

by Shapiro and Williams [103] and Sutera et al. [83], but the authors did not study it. Leverett et 

al. studied the effect of cell-cell collisions on mechanical hemolysis using a Couette viscometer 

[98]. The authors exposed 0.3-60% Ht human blood samples to a 300 Pa shear stress for 120 

seconds. They reported ~10% hemolysis at each Ht and thus concluded that the effect of cell-cell 

interaction was negligible on mechanical hemolysis [98]. However, the authors do not report 

whether they used blood of multiple donors or a single donor nor do they state the sample size of 

this study [98]. Furthermore, the Couette viscometer used by Leverett et al. operated at shear 

rates up to ~180,000 s-1 for the low Ht blood samples and produced a linear increasing 

temperature up to 20ºC during the 120 second exposure time [98]. Thus, the hemolysis of the 

low Ht samples in the Couette viscometer used by Leverett et al. was augmented by the rapid 

temperature increase to a greater degree than the higher Ht blood samples during the two minute 

exposure time. Therefore, cell-cell interactions are a potential mechanism of hemolysis that 

warrants further study. 
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The relationship between the macroscopic flow conditions and blood damage on the 

cellular level are not well understood. A study of the effect of cell-cell interactions on 

mechanical hemolysis should be performed with RBC suspensions with both normal and very 

little Hb concentration to examine the release of Hb independent of cell concentration. For this 

purpose, Hb-depleted resealed RBC ghosts (GRBC) are used. The preparation of resealed GRBC 

[205] with similar rheological properties as RBC has been reported [71, 206, 207]. GRBC were 

shown to behave similarly to RBC in maintaining a normal platelet interaction with 

subendothelium under conditions of moderate shear rate [1000 s-1] and constant Ht [40%] in an 

ex vivo perfusion chamber [208]. 

The objective of this study was to examine the effect of cell-cell interactions and 

suspension viscosity on flow-induced hemolysis in a microtube flow system with flow conditions 

and exposure times relevant to those in operating CAD. The effects of RBC/GRBC concentration 

and the suspension medium on hemolysis were directly examined to determine a potential 

proportional difference in hemolysis between suspensions. The use herein of RBC, GRBC, and 

dextran additive allows for independent control of bulk Ht, viscosity, tHb, shear stress and total 

exposure time (Texp).  

6.2 MATERIALS AND METHODS 

Donor bovine blood was collected via venipuncture in K3-EDTA anticoagulant purchased from 

Lampire Biological Laboratories and shipped overnight to the laboratory. Blood was filtered and 

RBC were washed thrice in PBS. Gentamicin (0.25 g/L; American Pharmaceutical Partners, 
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Schaumburg, IL) was added to prevent bacterial growth. RBC suspension Ht was measured 

using microhematocrit centrifugation (IEC MB Centrifuge, International Equipment Company) 

at 2,000×g for three minutes. RBC were used within four days of blood collection.  

 GRBC were prepared (n=8) according to the “two-day” resealed GRBC protocol 

described in Jamiolkowski et al. [71]. Briefly, an 80 ml of washed RBC resuspended at 50% Ht 

in PBS was added to 720 ml of hemolysis buffer (MgSO4 4.0 mM; glacial acetic acid 3.8 mM; 

pH 4-5) at a temperature of 0°C. After five minute incubation, 5X PBS (0.3 ml/ml) and Tris 

buffer (2µL/mL) were added to refill lysed RBC and increase the pH. Cell suspensions were 

incubated overnight at 0°C for approximately 16 hours. Suspensions were then incubated in a 

water bath at 37°C for 60 minutes to reseal GRBC membranes. The GRBC suspension was 

centrifuged (30 minutes, 27,000×g) and the supernatant was discarded. The pellet of GRBC 

concentrate was washed thrice with PBS containing 1% BSA (30 minutes, 27,000×g). 

Gentamicin (0.25 g/L; American Pharmaceutical Partners, Schaumburg, IL) was added to the 

packed GRBC to prevent bacterial growth. Ht of the packed GRBC and all GRBC/RBC 

suspensions was measured using microhematocrit centrifugation (30 minutes, 2,000×g). GRBC 

were used within five days of preparation. 

 Suspensions of 40% RBC in PBS (n=12), 10% RBC and 30% GRBC in PBS (n=6), 20% 

RBC and 20% GRBC in PBS (n=6), and the viscosity-matched controls for the GRBC/RBC 

suspensions, 20% RBC in 7% Dextran 40 (n=6) and 10% RBC in 7% Dextran 40 (n=6) were 

prepared and used on the same day as hemolysis testing. Dextran 40 solution was chosen to 

increase the viscosity of the 10% and 20% Ht RBC suspensions to closely match the viscosity of 

the corresponding RBC/GRBC suspensions. A pilot study found that 7% Dextran 40 in PBS was 

a suitable concentration for the suspension medium to achieve the desired suspension viscosities 
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(Figure 6.1). Polyvinylpyrrolidone (PVP) solution in PBS was also investigated as a cell 

suspension medium but was too dense for the accurate measurement of freeHb in hemolysis 

tests.  

 

Figure 6.1. Viscosity of RBC and GRBC suspended in phosphate buffered saline and viscosity controls of 10% and 

20% RBC suspended in Dextran 40 and polyvinylpyrrolidone measured at 10-500 s-1 shear rates. Values are shown 

as mean±SD. 

The flow system used for this study consisted of a compliance chamber (R-38, Medtronic 

Inc.), glass microtube (1.4 mm D, 140 mm length), PediMag® centrifugal pump (Thoratec 

Corporation), flow probe (Transonic Inc.), thermistor (Cole-Parmer Instrument Company), two 

pressure transducers (PCB Piezotronics, Inc.) and ¼” D Tygon tubing (Figure 6.2). Flow was 

assessed by calculation of Re (Equation 2). Wall shear stress (τ wall), number of passes (N), 

exposure time (texp) and total exposure time (Texp) in the glass microtube were calculated 

according to Equations 11, 16, 18 and 17 respectively.    
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Figure 6.2. Capillary flow system filled with RBC and GRBC suspended in phosphate buffered saline. 

70 ml of each suspension was circulated in the flow system for 2 hours at 0.80 LPM flow 

rate corresponding to a ~5300 pump RPM, Re~3500-4200, τ wall~150 Pa, and Texp~24 sec. Flow-

induced damage to RBC and GRBC was assessed through the measurement of freeHb in samples 

withdrawn from the loop at T=0, 60 and 120 minutes of testing. Briefly, sample tubes were 

centrifuged for 15 minutes at 2200×g. Supernatant was transferred to microcentrifuge tubes and 

centrifuged at 21,800×g for 20 minutes in a microcentrifuge. Supernatant was then transferred 

into spectrophotometer cuvettes for measurement of freeHb at a 540 nm wavelength.  

THb was measured for all suspensions at T=0 and 120 minutes of testing using a 

hemoximeter (OSM3, Radiometer Inc.). Blood damage was characterized by the Index of 

Hemolysis (Equation 19). Cell mechanical fragility was assessed in the same RBC/GRBC 

suspensions filled in the flow loop for hemolysis testing using the standard RBC-MF test [61, 

126] described in Section 5.2.2.   

 A Wells-Brookfield Cone/Plate viscometer (Model LVDV-IIIUCP, Middleboro, MA) 

with CPE-40 cone (cone radius= 2.4 cm, cone angle=0.8°, sample volume=0.5 mL) was used to 
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measure viscosity of RBC/GRBC suspensions at T=0 and 120 minutes of testing. The viscosity 

of tested suspensions was measured over a range of shear rates (25–500 s-1) at a temperature of 

25°C. A circulating water bath (Neslab RTE7, Thermo Fisher Scientific, Waltham, MA) was 

used to maintain constant temperature.  

Statistical analysis was performed using ANOVA with the Games-Howell post-hoc 

method to analyze the change in freeHb from baseline after 120 minutes of testing (ΔfreeHb), 

MFI and IH among the five RBC/GRBC suspensions. Additional information regarding 

statistical analysis is presented in Appendix E. 

6.3 RESULTS  

Figure 6.3 and Figure 6.4 show the viscosity of all tested suspensions measured at a 25ºC 

temperature and 50 and 500 s-1 shear rates, respectively. The 40% RBC in PBS, 20% RBC in 7% 

Dextran 40 and 10% RBC in 7% Dextran 40 suspensions did not change from baseline and were 

similar to the baseline measurements of the GRBC suspensions. The suspensions containing 

GRBC demonstrated a reduction in viscosity during the test period due to a ~3-4% decrease in 

GRBC concentration. 
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Figure 6.3. Viscosity of cell suspensions measured at a 50 s-1 shear rate at baseline and after 120 minutes of testing 

in a capillary flow system.  

 

Figure 6.4. Viscosity of cell suspensions measured at a 500 s-1 shear rate at baseline and after 120 minutes of testing 

in a capillary flow system. 

 The freeHb measurements and the change in freeHb from baseline (ΔfreeHb) of GRBC 

and RBC suspended in PBS and RBC suspended in 7% Dextran 40 after 120 minutes of testing 

in the glass capillary flow system are shown in Figure 6.5 and Figure 6.6. For the 120 minutes 

samples, the ΔfreeHb was 55 mg/dl, 75 mg/dl and 131 mg/dl for the 30% GRBC and 10% RBC 

suspension, 20% GRBC and 20% RBC suspension and 40% RBC suspension, respectively. 
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Figure 6.6 shows the ΔfreeHb of the 40% RBC in PBS suspension was significantly different 

from all tested suspensions (p<0.01). Moreover, the ΔfreeHb of the 30% GRBC and 10% RBC 

in PBS and 20% GRBC and 20% RBC in PBS suspensions were significantly different from 

their viscosity matched controls, 10% RBC in 7% Dextran 40 (p<0.002) and 20% RBC in 7% 

Dextran 40 (p<0.02), respectively. 

 

Figure 6.5. Free hemoglobin concentration in the 40% RBC in PBS, 10% RBC and 30% GRBC in PBS, 20% RBC 

and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% Dextran 40 suspensions during 120 

minutes of testing in the capillary flow system. Values are shown as mean±SEM. 
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Figure 6.6. Change in free hemoglobin concentration from baseline in the 40% RBC in PBS, 10% RBC and 30% 

GRBC in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% Dextran 40 

suspensions after 120 minutes of testing in the capillary flow system. Values are shown as mean±SEM. 

 Figure 6.7 shows the Index of Hemolysis calculated for each tested suspension. The IH 

was similar for all suspensions with 40% cell concentration and statistically significantly lower 

for the 20% RBC and 10% RBC suspensions in 7% Dextran 40 (p<0.02). Figure 6.8 shows the 

cell mechanical fragility index calculated for each tested suspension. Similarly to the IH results, 

the MFI for all suspensions with 40% cell concentration was similar and statistically 

significantly lower for the 20% RBC and 10% RBC suspensions in 7% Dextran 40 (p<0.003). 
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Figure 6.7. Index of Hemolysis calculated for the 40% RBC in PBS, 10% RBC and 30% GRBC in PBS, 20% RBC 

and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% Dextran 40 suspensions after 120 

minutes of testing in the capillary flow system. Values are shown as mean±SEM. 

 

Figure 6.8. Mechanical fragility index calculated for the 40% RBC in PBS, 10% RBC and 30% GRBC in PBS, 20% 

RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% Dextran 40 suspensions after 120 

minutes of testing in the capillary flow system. Values are shown as mean±SEM. 
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6.4 DISCUSSION 

The proposed mechanisms of flow-induced hemolysis reported in the literature include the 

effects of shear stress and exposure time [5, 96-98], accumulated sublethal RBC damage [3, 12, 

78, 99, 100], cell-wall interactions [79, 101, 102], cell-cell interactions [98, 103] and turbulent 

flow conditions [83, 104-106]. This in vitro study examined the effects of cell-cell interactions 

and suspension viscosity on flow-induced hemolysis. 

The viscosity of RBC suspensions did not change from baseline and were similar to the 

baseline measurements of the GRBC suspensions (Figure 6.3 and Figure 6.4). The viscosity of 

the RBC/GRBC suspensions measured at 120 minutes decreased from baseline due to a ~3-4% 

decrease in GRBC concentration during testing. 

The ΔfreeHb after 120 minutes of testing is nearly proportional to the amount of RBC in 

cell suspensions (Figure 6.6). Statistical analysis of the ΔfreeHb in the 40% RBC in PBS 

suspensions demonstrated significant differences from the ΔfreeHb of the 20% RBC and 20% 

GRBC in PBS and 10% RBC and 30% GRBC in PBS suspensions (p=0.01 and p=0.001, 

respectively). The 20% RBC and 20% GRBC in PBS suspension was significantly greater than 

the viscosity-matched control, 20% RBC in 7% Dextran 40 (p=0.02). Similarly, the 10% RBC 

and 30% GRBC in PBS suspension was significantly greater than its viscosity matched control, 

10% RBC in 7% Dextran 40 (p=0.002). These results demonstrate a greater effect of cell-cell 

collisions on flow-induced hemolysis than suspension viscosity. 

The calculated IH normalized the ΔfreeHb by the tHb of the tested suspension. The IH 

was not significantly different among the suspensions with 40% cell concentration. However, the 

IH of the 20% RBC in 7% Dextran 40 and 10% RBC in 7% Dextran 40 were significantly lower 
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than the IH of the 40% cell concentration suspensions (p<0.02). Similarly, the calculated MFI for 

40% cell concentration suspensions were not significantly different. Yet, the MFI of the 10% 

RBC and 20% RBC suspensions in 7% Dextran 40 were significantly lower than the MFI of the 

40% cell concentration suspensions (p<0.003). The IH and MFI results demonstrate a greater 

effect of cell-cell interaction on flow-induced hemolysis than the suspension viscosity.  

At physiological hematocrits, RBC continuously collide with other RBC in the 

circulation, resulting in the displacement of nearby cells. Goldsmith and colleagues studied RBC 

collisions in a microtube flow system and found that a collision between two RBC results in the 

displacement of both RBC trajectories in a direction normal to the flow direction [209]. The 

mechanism of cell-cell interactions on flow-induced hemolysis is likely the result of a local 

velocity gradient between colliding cells when cells traveling along adjacent streamlines are 

brought into close proximity and interact [210].  

6.5 CONCLUSIONS 

This chapter summarizes the investigation of the effects of cell-cell interactions and suspension 

viscosity on flow-induced hemolysis in a capillary flow system. The increase in freeHb from 

baseline for RBC and GRBC suspensions was nearly proportional to the amount of RBC in 

suspension. Moreover, the hemolysis in the RBC and GRBC suspensions was found to be 

significantly higher than that in their viscosity-matched controls (RBC in viscous media). The 

results demonstrate a greater contribution of cell-cell interactions to flow-induced hemolysis than 

that of the suspension bulk viscosity. 
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7.0  TRAFFICKING OF ERYTHROCYTE GHOSTS AND PLATELET-SIZED 

PARTICLES IN A MICROFLUIDIC SYSTEM UNDER FLOW CONDITIONS THAT 

MAY PROMOTE THROMBOSIS IN ASSISTED BLOOD CIRCULATION 

7.1 INTRODUCTION 

In microcirculatory blood flow, RBC and platelets interact differently than in larger blood 

vessels [45]. In 1921, Smith et al. reported that a non-uniform distribution of RBC in the 

microcirculation was possible [46] and soon confirmed by the studies of Fåhraeus [24] and 

Fåhraeus and Lindqvist [25] in vessels with less than 300 µm diameter. In capillaries less than 14 

µm diameter, Dintenfass found an inverse Fåhraeus-Lindqvist effect in which relative viscosity 

increased with decreasing capillary diameter due to approaching the scale of single RBC [47]. 

Goldsmith et al. [211, 212], Turitto and Baumgartner [213], Eckstein et al. [214, 215], and Aarts 

et al. [216-218] demonstrated the non-uniform distribution of RBC and platelets in the 

microcirculation. 

 Goldsmith studied the flow of suspensions of 44% RBC ghosts (GRBC) and platelet-

sized particles in a ~80 µm straight tube and reported the platelet-sized particles have increased 

radial motion and collisions with the wall compared to GRBC [219, 220]. Eckstein and 

colleagues and Aarts et al. examined flow of whole blood, GRBC and PRP in straight channels 

and reported an elevated platelet concentration near the tube wall [214, 218, 221]. Goldsmith 
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reported that after flow through in vitro models of bifurcations and constrictions that produced 

flow separation and recirculating regions, platelet thrombus can occur [159]. Moreover, the flow 

of platelets in recirculation zones (deadwaters), regions with local supra-physiological shear rates 

and stagnation points have been shown to contribute toward thrombosis in vitro [143].  

The transport of platelets toward the vessel wall by RBC in the microcirculation is one 

important cause for the development of thrombosis. RBC size [216], RBC deformability [217, 

222], Ht [223] and shear rate [137, 223] were shown to augment platelet adhesion to artery 

subendothelium in the ex vivo perfusion system developed by Baumgartner [224, 225]. Aarts et 

al. showed that GRBC expel platelets toward the vessel wall in the microcirculation in a similar 

manner as normal RBC [218]. Sakariassen et al. [226] used an in vitro endothelial cell covered 

perfusion system and Bozzo et al. [208] used an ex vivo perfusion chamber to show that GRBC 

behaved similarly to normal RBC in maintaining a normal platelet interaction with 

subendothelium under conditions of moderate shear rate [1000 s-1] and constant Ht [40%].  

In the assisted blood circulation, RBC and platelets are exposed to non-physiological 

forces and surfaces that may promote hemolysis and thrombosis. Channel geometries previously 

used to study particle/cell distributions under physiological or supra-physiological shear stresses 

include straight channels (τwall~0.15-30 Pa) [214, 221], sudden expansions [159, 227] and 

rounded and square T-junctions [228, 229]. Platelet margination was first reported by Goldsmith 

in sudden expansion channels using GRBC and particles [159]. Zhao recently extended these 

studies to consider elevated shear stresses, representative of that found in assisted circulation. 

Her studies were conducted in a 100 µm height straight channel (τwall~40-200 Pa) [230] and a 

100 µm:200 µm height backward step microchannel (τwall~20-100 Pa) [231] using suspensions of 

bovine RBC and 2 µm diameter platelet-sized fluorescent particles (PSFP). 
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The objective of this study was to examine the trafficking of GRBC and PSFP in more 

complicated geometries, specifically a microchannel containing multiple crevices similar to the 

size of small gaps in some VAD under flow conditions that may cause thrombosis in the assisted 

blood circulation. The microscopic examination of GRBC and PSFP pathlines in these channels 

may provide additional insight into the flow conditions and interaction of cells that lead to the 

development of thrombosis in the microcirculation and small crevices similar to those within 

some CAD. 

7.2 MATERIALS AND METHODS 

A microchannel containing multiple crevices was made in SolidWorks 2013 by Professor Antaki 

(Figure 7.1). Microchannel fabrication was performed using polydimethylsiloxane (PDMS) with 

a mask of the novel channel designs. Individual PDMS channels and coverslips (Fisherfinest 

Premium Cover Glasses, Fisher Scientific Inc.) were treated with no-residue tape before sealing 

the channels to coverslips using corona treatment. The sealed channels were incubated overnight 

at 60°C. After cooling, polyethylene capillary (PE-60, 0.76 mm ID, Braintree Scientific Inc.) was 

treated with no-residue tape and inserted into the inlet (8 cm length) and outlet (11 cm length) of 

the microchannel to be tested. Additional information regarding microchannel fabrication is 

presented in Appendix F. 
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Figure 7.1. Multiple crevice microchannel used to study the trafficking of erythrocyte ghosts and platelet-sized 

fluorescent particles under flow conditions that may promote thrombosis in the assisted blood circulation. Channel 

height was 75 µm. Units are shown in millimeters. 

The red numbers designate the crevice numbering convention. 

 Human O- RBC units were purchased from Valley Biomedical Inc. RBC were sterilely 

extracted from the unit and washed thrice in PBS. GRBC were prepared according to the method 

described in Section 6.2. Platelet-sized fluorescent polystyrene particles (2 µm mean diameter, 

light excitation peak=542 nm, emission peak=612 nm; R0200, Duke Scientific Corporation, Palo 

Alto, CA) were well mixed prior to pipetting into GRBC suspensions. Suspensions of 20% 

GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 solution (n=6) and 40% GRBC and 

~1,000,000 PSFP/µl in 20% Dextran 40 solution (n=6) were prepared and the viscosity of all 

tested suspensions was measured using a Wells-Brookfield Cone/Plate viscometer (LVDV-

IIIUCP, Middleboro, MA) at shear rates of 10-100 s-1 and a 25°C temperature. The viscosity of 

all tested suspensions was ~20 cP at a 100 s-1 shear rate (Figure 7.2). 
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Figure 7.2. Viscosity of GRBC suspensions in Dextran 40 measured at 10-100 s-1 shear rates in a cone-and-plate 

viscometer at a 25°C temperature. Values are shown as mean±SEM. 

 The microfluidic system used in this study consisted of a syringe pump (PHD2000, 

Harvard Apparatus), 200 µl pipet tip (fluid inlet), small cap over the inlet (prevent debris from 

entering the channel), an outlet pressure transducer (Abbott Laboratories), 5 ml syringe, and a 

crevice microchannel on the stage of a microscope (Figure 7.3). All microchannels were rinsed 

twice with sterile filtered PBS and incubated with sterile filtered 1% BSA for 30 minutes prior to 

testing to passivate all cell-contacting surfaces. Test suspensions were examined at controlled 

withdrawal flow rates of 5 and 25 µl/min corresponding to Re~0.03-0.3 and wall shear stresses 

of 30-200 Pa in the main branch of the crevice microchannels.  
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Figure 7.3. Microchannel flow system filled with GRBC suspension on the stage of an inverted microscope.  

Microchannel testing was performed using suspensions of 20% GRBC and ~1,000,000 

PSFP/µl in 30% Dextran 40 (n=6) and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 

(n=6). Suspensions were visualized in crevice microchannels using an inverted fluorescent 

microscope (IX70, Olympus Inc., Melville, NY) with a 20X objective (LCPlanFL, working 

distance=7.55mm, numerical aperture=0.40; Olympus Inc.) and a 103W HBO short arc mercury 

lamp light source (OSRAM GmbH, Munich, Germany) to examine PSFP trafficking. A 40X 

objective (PlanFL, phase contrast, working distance=6.5–8.3 mm, numerical aperture=0.55, 

maximum coverslip thicknesses=2.6 mm; Olympus Inc.) and a halogen backlight were used for 

Brightfield visualization of GRBC trafficking in crevices. The channel height visualized for all 

experiments was 38±5 µm. 

A high speed camera (FastCam SA4, Photron USA Inc.) attached to the side port of the 

microscope was used to capture magnified images of GRBC (40X Brightfield visualization) and 

PSFP (20X fluorescent visualization). A personal computer with Photron FASTCAM Viewer 

software was used to record video (2000-8500 images) of flowing GRBC (125 frames per 

second, 1 s exposure time) and PSFP (60 frames per second, 1 s exposure time) in Crevices 1-8 

at each flow rate. Analysis software (PFA, Photron USA Inc.) was used to obtain 10-40 GRBC 
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and 25-75 PSFP pathlines in the videos of each crevice at both flow rates and GRBC 

suspensions. Particle counts were obtained by processing 50 images (Analyze Particles, ImageJ, 

NIH) in stepwise increments of 25-100 images for the 2000-8500 total images for each Crevice 

1-8 at both flow rates and GRBC suspensions. 

 Statistical analysis was performed using ANOVA to analyze the difference in mean PSFP 

counts in Crevices 1-8 at flow rates of 0, 5 and 25 µl/min. Post-hoc testing was conducted using 

either the Tukey or Games-Howell methods contingent upon the results of homogeneity of 

variances tests. Two-tailed Student’s t-tests for independent observations was performed to 

determine the statistical significance of the difference in mean PSFP counts in Crevices 1-8 for 

the two GRBC concentrations. Statistical significance was defined at p<0.05. 

7.3 RESULTS 

7.3.1 Trafficking of platelet-sized particles and GRBC in a 500 µm wide and 500 µm long 

square crevice (Crevice 1) 

Figure 7.4 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 1 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension is shown at 

both flow rates in Figure 7.5. Pathlines of PSFP in Crevice 1 for the 20% GRBC suspension at 5 

and 25 µl/min flow rates are shown in Figure 7.6 and Figure 7.7, respectively. Platelet-sized 

particle trafficking in Crevice 1 for the 20% GRBC suspension had apex distances less than 400 
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µm for 90% of PSFP studied at 5 µl/min (Figure 7.6) and 47% of PSFP examined at 25 µl/min 

(Figure 7.7). 

 

Figure 7.4. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 1 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 
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Figure 7.5. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 1. 20x magnification. Dimension shown with horizontal green line is 500 µm. Origin 

defined at channel entrance.  

 

Figure 7.6. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 1.  
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Figure 7.7. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 1.  

Figure 7.8 shows a representative analysis of PSFP trafficking in Crevice 1 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. PSFP pathlines for the 40% GRBC suspension 

at 5 and 25 µl/min flow rates are shown in Figure 7.9 and Figure 7.10, respectively. Platelet-

sized particle trafficking in Crevice 1 for the 40% GRBC suspension had apex distances less than 

400 µm for 61% of the PSFP studied at 5 µl/min (Figure 7.9) and 50% of PSFP examined at 25 

µl/min (Figure 7.10). 

 

Figure 7.8. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 1. 20x magnification. Dimension shown with horizontal green line is 500 µm. Origin 

defined at channel entrance. 

 80 

 



 

Figure 7.9. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 1.  

 

Figure 7.10. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 1.  

 Figure 7.11 shows a representative analysis of GRBC trafficking in Crevice 1 for the 

40% GRBC suspension examined at 5 and 25 µl/min. GRBC pathlines for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.12 and Figure 7.13, 

respectively. GRBC trafficking in Crevice 1 for the 20% GRBC suspension had apex distances 

less than 400 µm for 65% of GRBC studied at 5 µl/min (Figure 7.12) and 45% of GRBC 
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examined at 25 µl/min (Figure 7.13). GRBC pathlines for the 40% GRBC suspension in Crevice 

1 were not analyzed due to the inability to accurately track GRBC at a 5 µl/min flow rate. 

 

Figure 7.11. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 1. 40x magnification. Dimension shown with horizontal green line is 500 µm. Origin defined at channel 

entrance. 

 

Figure 7.12. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 1.  
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Figure 7.13. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 1.  

7.3.2 Trafficking of platelet-sized particles and GRBC in a 200 µm height and 1000 µm 

base triangular crevice (Crevice 2) 

Figure 7.14 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 2 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension is shown at 

both flow rates in Figure 7.15. Pathlines of PSFP in Crevice 2 for the 20% GRBC suspension at 

5 and 25 µl/min flow rates are shown in Figure 7.16 and Figure 7.17, respectively. Platelet-

sized particle trafficking in Crevice 2 for the 20% GRBC suspension had apex distances less than 

200 µm for 80% of PSFP studied at 5 µl/min (Figure 7.16) and 87% of PSFP examined 25 

µl/min (Figure 7.17). 
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Figure 7.14. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 2 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 

 

Figure 7.15. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 2. 20x magnification. Dimension shown with horizontal green line is 1000 µm. Origin 

defined at channel entrance. 
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Figure 7.16. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 2.  

 

Figure 7.17. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 2.  

Figure 7.18 shows a representative analysis of PSFP trafficking in Crevice 2 for the 40% 

GRBC suspension examined at both flow rates. PSFP pathlines for the 40% GRBC suspension at 

5 and 25 µl/min flow rates are shown in Figure 7.19 and Figure 7.20, respectively. Platelet-

sized particle trafficking in Crevice 2 for the 40% GRBC suspension had apex distances less than 
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200 µm for all PSFP studied at 5 µl/min (Figure 7.19) and 46% of PSFP examined 25 µl/min 

(Figure 7.20).  

 

Figure 7.18. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 2. 20x magnification. Dimension shown with horizontal green line is 1000 µm. Origin 

defined at channel entrance. 

 

Figure 7.19. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 2.  
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Figure 7.20. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 2.  

Figure 7.21 shows a representative analysis of GRBC trafficking in Crevice 2 for the 

20% GRBC suspension examined at 5 and 25 µl/min. GRBC pathlines for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.22 and Figure 7.23, 

respectively. GRBC trafficking in Crevice 2 for the 20% GRBC suspension had apex distances 

less than 200 µm at a 5 µl/min flow rate (Figure 7.22) and 96% of GRBC pathlines with less 

than 200 µm apices at a 25 µl/min flow rate (Figure 7.23). 

 

Figure 7.21. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 2. 40x magnification. Dimension shown with horizontal green line is 400 µm. Origin defined at channel 

entrance. 
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Figure 7.22. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 2.  

 

Figure 7.23. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 2.  

Figure 7.24 shows a representative analysis of GRBC trafficking in Crevice 2 for the 

40% GRBC suspension examined at 5 and 25 µl/min. GRBC pathlines for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.25 and Figure 7.26, 

respectively. GRBC trafficking in Crevice 2 for the 40% GRBC suspension had apex distances 
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less than 200 µm for 70% of GRBC studied at 5 µl/min (Figure 7.25) and 50% of GRBC 

examined at 25 µl/min (Figure 7.26). 

 

 

Figure 7.24. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 2. 40x magnification. Dimension shown with horizontal green line is 400 µm. Origin defined at channel 

entrance. 

 

Figure 7.25. Pathlines of GRBC in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 2.  
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Figure 7.26. Pathlines of GRBC in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 2.  

7.3.3 Trafficking of platelet-sized particles and GRBC in a 250 µm wide and 500 µm long 

rectangular crevice (Crevice 3) 

Figure 7.27 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 3 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension is shown at 

both flow rates in Figure 7.28. Pathlines of PSFP in Crevice 3 for the 20% GRBC suspension at 

5 and 25 µl/min flow rates are shown in Figure 7.29 and Figure 7.30, respectively. Platelet-

sized particle trafficking in Crevice 3 for the 20% GRBC suspension had apex distances less than 

400 µm for 97% of PSFP studied at 5 µl/min (Figure 7.29) and 76% of PSFP examined at 25 

µl/min (Figure 7.30). 
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Figure 7.27. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 3 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 

 

Figure 7.28. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 3. 20x magnification. Dimension shown with horizontal green line is 500 µm. Origin 

defined at channel entrance. 
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Figure 7.29. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 3.  

 

Figure 7.30. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 3.  

Figure 7.31 shows a representative analysis of PSFP trafficking in Crevice 3 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. PSFP pathlines for the 40% GRBC suspension 

at 5 and 25 µl/min flow rates are shown in Figure 7.32 and Figure 7.33, respectively. Platelet-

sized particle trafficking in Crevice 3 for the 40% GRBC suspension had apex distances less than 
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400 µm for 93% of PSFP studied at 5 µl/min (Figure 7.32) and 48% of PSFP examined at 25 

µl/min (Figure 7.33). 

 

Figure 7.31. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 3. 20x magnification. Dimension shown with horizontal green line is 500 µm. Origin 

defined at channel entrance. 

 

Figure 7.32. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 3.  
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Figure 7.33. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 3.  

Figure 7.34 shows a representative analysis of GRBC trafficking in Crevice 3 for the 

20% GRBC suspension examined at 5 and 25 µl/min. GRBC pathlines for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.35 and Figure 7.36, 

respectively. GRBC trafficking in Crevice 3 for the 20% GRBC suspension had apex distances 

less than 300 µm for 96% of GRBC studied at 5 µl/min (Figure 7.35) and 72% of GRBC 

examined at 25 µl/min (Figure 7.36). 

 

Figure 7.34. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 3. 40x magnification. Dimension shown with horizontal green line is 500 µm. Origin defined at channel 

entrance. 
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Figure 7.35. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 3.  

 

Figure 7.36. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 3.  

Figure 7.37 shows a representative analysis of GRBC trafficking in Crevice 3 for the 

40% GRBC suspension examined at 5 and 25 µl/min. GRBC pathlines for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.38 and Figure 7.39, 

respectively. GRBC trafficking in Crevice 3 for the 40% GRBC suspension had apex distances 
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less than 300 µm for 70% of GRBC studied at 5 and 25 µl/min flow rates (Figure 7.38 and 

Figure 7.39). 

 

Figure 7.37. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 3. 40x magnification. Dimension shown with horizontal green line is 500 µm. Origin defined at channel 

entrance. 

 

Figure 7.38. Pathlines of GRBC in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 3.  
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Figure 7.39. Pathlines of GRBC in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 3.  

7.3.4 Trafficking of platelet-sized particles and GRBC in a 250 µm height and 500 µm 

base triangular crevice (Crevice 4) 

Figure 7.40 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 4 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension examined at 

5 and 25 µl/min is shown in Figure 7.41. Pathlines of PSFP in Crevice 4 for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.42 and Figure 7.43, 

respectively. Platelet-sized particle trafficking in Crevice 4 for the 20% GRBC suspension had 

apex distances less than 200 µm for 75% of PSFP studied at 5 µl/min (Figure 7.42) and 27% of 

PSFP examined at 25 µl/min (Figure 7.43). 
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Figure 7.40. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 4 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 

 

Figure 7.41. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 4. 20x magnification. Dimension shown with green line is 515.4 µm. Origin defined at 

channel entrance. 
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Figure 7.42. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 4.  

 

Figure 7.43. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 4.  

Figure 7.44 shows a representative analysis of PSFP trafficking in Crevice 4 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. Pathlines of PSFP for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.45 and Figure 7.46, 

respectively. Platelet-sized particle trafficking in Crevice 4 for the 40% GRBC suspension had 
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apex distances less than 200 µm for 68% of PSFP studied at 5 µl/min (Figure 7.45) and 48% of 

PSFP examined at 25 µl/min (Figure 7.46). 

 

Figure 7.44. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 4. 20x magnification. Dimension shown with green line is 515.4 µm. Origin defined at 

channel entrance. 

 

Figure 7.45. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 4.  
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Figure 7.46. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 4.  

Figure 7.47 shows a representative analysis of GRBC trafficking in Crevice 4 for the 

20% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.48 and Figure 7.49, 

respectively. GRBC trafficking in Crevice 4 for the 20% GRBC suspension had apex distances 

less than 200 µm for all GRBC studied at 5 µl/min (Figure 7.48) and 72% of GRBC examined at 

25 µl/min (Figure 7.49). 

 

Figure 7.47. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 4. 40x magnification. Dimension shown with green line is 371.7 µm. Origin defined at channel entrance. 
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Figure 7.48. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 4.  

 

Figure 7.49. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 4. 

Figure 7.50 shows a representative analysis of GRBC trafficking in Crevice 4 for the 

40% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.51 and Figure 7.52, 

respectively. GRBC trafficking in Crevice 4 for the 40% GRBC suspension had apex distances 
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less than 200 µm for 70% of GRBC studied at 5 µl/min (Figure 7.51) and 10% of GRBC 

examined at 25 µl/min (Figure 7.52). 

 

Figure 7.50. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 4. 40x magnification. Dimension shown with green line is 371.7 µm. Origin defined at channel entrance. 

 

Figure 7.51. Pathlines of GRBC in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 4.  
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Figure 7.52. Pathlines of GRBC in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 4.  

7.3.5 Trafficking of platelet-sized particles and GRBC in a 100 µm wide and 500 µm long 

rectangular crevice (Crevice 5) 

Figure 7.53 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 5 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension is shown at 

both flow rates in Figure 7.54. PSFP pathlines in Crevice 5 for the 20% GRBC suspension 

examined at 5 and 25 µl/min are shown in Figure 7.55 and Figure 7.56, respectively. PSFP 

trafficking in Crevice 5 for 20% GRBC suspension studied at 5 and 25 µl/min identified a 

recirculating region beginning between 75-80 µm. Three PSFP pathlines that had greater than 75 

µm apex distance recirculated 1-6 times before PSFP adhesion to the crevice wall near the outlet 

(Figure 7.55 and Figure 7.56). Trafficking of non-recirculating PSFP in Crevice 5 for the 20% 
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GRBC suspension had apex distances less than 60 µm for 93% of PSFP studied at 5 µl/min 

(Figure 7.55) and 42% of PSFP examined at 25 µl/min (Figure 7.56).  

 

Figure 7.53. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 5 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 
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Figure 7.54. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 5. 20x magnification. Dimension shown with horizontal green line is 500 µm. Origin 

defined at channel entrance. 

 

Figure 7.55. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 5.  
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Figure 7.56. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 5.  

Figure 7.57 shows a representative analysis of PSFP trafficking in Crevice 5 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. Platelet-sized particle pathlines for the 40% 

GRBC suspension at 5 and 25 µl/min flow rates are shown in Figure 7.58 and Figure 7.59, 

respectively. PSFP trafficking in Crevice 5 for the 40% GRBC suspension at 5 and 25 µl/min 

confirmed the presence of a recirculating region in Crevice 5 beginning between 75-80 µm. 

Recirculation of PSFP in Crevice 5 for the 40% GRBC suspension occurred for 44% of PSFP 

studied at 5 µl/min and 52% of PSFP examined at 25 µl/min before PSFP exit or adhesion to the 

crevice wall near the outlet (Figure 7.58 and Figure 7.59). Trafficking of non-recirculating 

PSFP in Crevice 5 for the 40% GRBC suspension had apex distances less than 60 µm for 93% of 

PSFP studied at 5 µl/min (Figure 7.58) and 58% of PSFP examined at 25 µl/min (Figure 7.59). 
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Figure 7.57. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 5. 20x magnification. Dimension shown with horizontal green line is 500 µm. Origin 

defined at channel entrance. 

 

Figure 7.58. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 5.  
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Figure 7.59. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 5.  

Figure 7.60 shows a representative analysis of GRBC trafficking in Crevice 5 for the 

20% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.61 and Figure 7.62, 

respectively. GRBC trafficking in Crevice 5 for 20% GRBC suspension at 5 and 25 µl/min flow 

rates had apex distances less than 60 µm (Figure 7.61 and Figure 7.62). GRBC pathlines in 

Crevice 5 for the 20% GRBC suspension did not recirculate at either flow rate. 

 

Figure 7.60. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 5. 40x magnification. Dimension shown with horizontal green line is 500 µm. Origin defined at channel 

entrance. 

 109 

 



 

Figure 7.61. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 5.  

 

Figure 7.62. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 5.  

Figure 7.63 shows a representative analysis of GRBC trafficking in Crevice 5 for the 

40% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.64 and Figure 7.65, 

respectively. GRBC trafficking in Crevice 5 for the 40% GRBC suspension had apex distances 

less than 60 µm for all GRBC studied at 5 µl/min (Figure 7.64) and 60% of GRBC examined at 
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25 µl/min (Figure 7.65). GRBC pathlines in Crevice 5 for the 40% GRBC suspension did not 

recirculate at either flow rate. 

 

Figure 7.63. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 5. 40x magnification. Dimension shown with horizontal green line is 500 µm. Origin defined at channel 

entrance. 

 

Figure 7.64. Pathlines of GRBC in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 5.  
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Figure 7.65. Pathlines of GRBC in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 5.  

7.3.6 Trafficking of platelet-sized particles and GRBC in a 150 µm height and 500 µm 

base triangular crevice (Crevice 6) 

Figure 7.66 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 6 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension is shown at 

both flow rates in Figure 7.67. PSFP pathlines in Crevice 6 for the 20% GRBC suspension 

examined at 5 and 25 µl/min are shown in Figure 7.68 and Figure 7.69, respectively. PSFP 

trafficking in Crevice 6 for the 20% GRBC suspension had apex distances less than 150 µm for 

all PSFP studied at 5 µl/min (Figure 7.68) and 76% of PSFP examined at 25 µl/min (Figure 

7.69). 
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Figure 7.66. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 6 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 

 

Figure 7.67. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 6. 20x magnification. Dimension shown with green line is 505.6 µm. Origin defined at 

channel entrance. 
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Figure 7.68. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 6. 

 

Figure 7.69. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 6.  

Figure 7.70 shows a representative analysis of PSFP trafficking in Crevice 6 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. Platelet-sized particle pathlines for the 40% 

GRBC suspension at 5 and 25 µl/min flow rates are shown in Figure 7.71 and Figure 7.72, 

respectively. PSFP trafficking in Crevice 6 for the 40% GRBC suspension had apex distances 
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less than 150 µm for 64% of PSFP studied at both 5 and 25 µl/min (Figure 7.71 and Figure 

7.72). 

 

Figure 7.70. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 6. 20x magnification. Dimension shown with green line is 505.6 µm. Origin defined at 

channel entrance. 

 

Figure 7.71. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 6.  
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Figure 7.72. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 6.  

 Figure 7.73 shows a representative analysis of GRBC trafficking in Crevice 6 for the 

20% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.74 and Figure 7.75, 

respectively. GRBC trafficking in Crevice 6 for the 20% GRBC suspension had apex distances 

less than 100 µm for 88% of GRBC studied at both 5 and 25 µl/min flow rates (Figure 7.74 and 

Figure 7.75). 

 

Figure 7.73. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 6. 40x magnification. Dimension shown with green line is 357.9 µm. Origin defined at channel entrance. 
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Figure 7.74. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 6.  

 

Figure 7.75. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 6.  

Figure 7.76 shows a representative analysis of GRBC trafficking in Crevice 6 for the 

40% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.77 and Figure 7.78, 

respectively. GRBC trafficking in Crevice 6 for the 40% GRBC suspension had apex distances 
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less than 100 µm for 90% of GRBC studied at 5 µl/min (Figure 7.77) and 30% of GRBC 

examined at 25 µl/min (Figure 7.78). 

 

Figure 7.76. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 6. Dimension shown with green line is 382.4 µm. Origin defined at channel entrance. 

 

Figure 7.77. Pathlines of GRBC in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 6.  
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Figure 7.78. Pathlines of GRBC in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 6.  

7.3.7 Trafficking of platelet-sized particles and GRBC in a 100 µm wide and 100 µm long 

square crevice (Crevice 7) 

Figure 7.79 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 7 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking in Crevice 7 for the 20% GRBC suspension 

examined at 5 and 25 µl/min is shown in Figure 7.80. Pathlines of PSFP for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.81 and Figure 7.82, 

respectively. Platelet-sized particle trafficking for the 20% GRBC suspension had apex distances 

less than 60 µm for 68% of PSFP studied at 5 µl/min (Figure 7.81) and 50% of PSFP examined 

at 25 µl/min (Figure 7.82). PSFP pathlines in Crevice 7 for the 20% GRBC suspension did not 

recirculate at either flow rate. 
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Figure 7.79. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 7 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 

 

Figure 7.80. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 7. 20x magnification. Dimension shown with horizontal green line is 100 µm. Origin 

defined at channel entrance. 

 120 

 



 

Figure 7.81. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 7. 

 

Figure 7.82. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 7.  

Figure 7.83 shows a representative analysis of PSFP trafficking in Crevice 7 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. Pathlines of PSFP for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.84 and Figure 7.85, 

respectively. Platelet-sized particle trafficking in Crevice 7 for the 40% GRBC suspension at 5 

and 25 µl/min flow rates identified a recirculating region beginning between 78-85 µm. Seven 
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PSFP pathlines that had greater than 78 µm apex distance recirculated 2-10 times before PSFP 

adhesion to the crevice wall near the outlet (Figure 7.84 and Figure 7.85). Trafficking of non-

recirculating PSFP in Crevice 7 for the 40% GRBC suspension had apex distances less than 60 

µm for 43% of PSFP studied at 5 µl/min (Figure 7.84) and 44% of PSFP examined at 25 µl/min 

(Figure 7.85). 

 

Figure 7.83. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 7. 20x magnification. Dimension shown with horizontal green line is 100 µm. Origin 

defined at channel entrance. 

 

Figure 7.84. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 7.  
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Figure 7.85. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 7.  

 Figure 7.86 shows a representative analysis of GRBC trafficking in Crevice 7 for the 

20% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.87 and Figure 7.88, 

respectively. GRBC trafficking in Crevice 7 for the 20% GRBC suspension had apex distances 

less than 60 µm for all GRBC studied at 5 µl/min (Figure 7.87) and 84% of GRBC examined at 

25 µl/min (Figure 7.88); GRBC pathlines did not recirculate at either flow rate. 
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Figure 7.86. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 7. 40x magnification. Dimension shown with horizontal green line is 100 µm. Origin defined at channel 

entrance. 

 

Figure 7.87. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 7.  
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Figure 7.88. Pathlines of GRBC in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 7.  

 Figure 7.89 shows a representative analysis of GRBC trafficking in Crevice 7 for the 

40% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.90 and Figure 7.91, 

respectively. GRBC trafficking in Crevice 7 for the 40% GRBC suspension had apex distances 

less than 60 µm for 60% of GRBC studied at 5 µl/min (Figure 7.90) and 20% of GRBC 

examined at 25 µl/min (Figure 7.91); GRBC pathlines did not recirculate at either flow rate. 

 

 125 

 



 

Figure 7.89. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 7. 40x magnification. Dimension shown with horizontal green line is 100 µm. Origin defined at channel 

entrance. 

 

Figure 7.90. Pathlines of GRBC in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 7.  
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Figure 7.91. Pathlines of GRBC in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 7.  

7.3.8 Trafficking of platelet-sized particles and GRBC in a 100 µm height and 250 µm 

base triangular crevice (Crevice 8) 

Figure 7.92 shows images of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% 

GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 flowing through Crevice 8 at 5 and 25 

µl/min. A representative analysis of PSFP trafficking for the 20% GRBC suspension is shown at 

both flow rates in Figure 7.93. PSFP pathlines in Crevice 8 for the 20% GRBC suspension 

examined at 5 and 25 µl/min are shown in Figure 7.94 and Figure 7.95, respectively. Platelet-

sized particle trafficking in Crevice 8 for the 20% GRBC suspension had apex distances less than 

60 µm for 85% of PSFP studied at 5 µl/min (Figure 7.94) and 64% of PSFP examined at 25 

µl/min (Figure 7.95). 
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Figure 7.92. Representative fluorescent images of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% 

Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 examined in Crevice 8 at 5 and 25 µl/min 

flow rates. Channel height was 75 µm. 

[A] 20% GRBC suspension at 5 µl/min, [B] 20% GRBC suspension at 25 µl/min, [C] 40% GRBC suspension at 5 

µl/min, [D] 40% GRBC suspension at 25 µl/min. 20x magnification. Field of view in A-D is 1000 µm by 1000 µm. 

 

Figure 7.93. Trafficking of five platelet-sized particles in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 8. 20x magnification. Dimension shown with green line is 254.95 µm. Origin defined at 

channel entrance. 
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Figure 7.94. Pathlines of platelet-sized particles in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 8. 

 

Figure 7.95. Pathlines of platelet-sized particles in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 8.  

 Figure 7.96 shows a representative analysis of PSFP trafficking in Crevice 8 for the 40% 

GRBC suspension examined at 5 and 25 µl/min. Pathlines of PSFP for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.97 and Figure 7.98, 

respectively. Platelet-sized particle trafficking in Crevice 8 for the 40% GRBC suspension had 
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apex distances less than 60 µm for 92% of PSFP studied at 5 µl/min (Figure 7.97) and 60% of 

PSFP examined at 25 µl/min (Figure 7.98).  

 

Figure 7.96. Trafficking of five platelet-sized particles in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min 

[right] flow rates in Crevice 8. 20x magnification. Dimension shown with green line is 254.95 µm. Origin defined at 

channel entrance. 

 

Figure 7.97. Pathlines of platelet-sized particles in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 8.  
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Figure 7.98. Pathlines of platelet-sized particles in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 8.  

Figure 7.99 shows a representative analysis of GRBC trafficking in Crevice 8 for the 

20% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 20% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.100 and Figure 7.101, 

respectively. GRBC trafficking in Crevice 8 for the 20% GRBC suspension had apex distances 

less than 60 µm for all GRBC studied at 5 µl/min (Figure 7.100) and 96% of GRBC examined at 

25 µl/min (Figure 7.101).  

 

Figure 7.99. Trafficking of five GRBC in 20% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 8. 40x magnification. Dimension shown with green line is 254.95 µm. Origin defined at channel entrance. 
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Figure 7.100. Pathlines of GRBC in 20% GRBC suspension at a 5 µl/min flow rate in Crevice 8.  

 

Figure 7.101. GRBC pathlines in 20% GRBC suspension at a 25 µl/min flow rate in Crevice 8.  

Figure 7.102 shows a representative analysis of GRBC trafficking in Crevice 8 for the 

40% GRBC suspension examined at 5 and 25 µl/min. Pathlines of GRBC for the 40% GRBC 

suspension at 5 and 25 µl/min flow rates are shown in Figure 7.103 and Figure 7.104, 

respectively. GRBC trafficking in Crevice 8 for 40% GRBC suspension studied at 5 µl/min 

identified a recirculating region beginning between 75-80 µm. Two GRBC pathlines that had 
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greater than 75 µm apex distance recirculated 1-3 times before GRBC crevice exit (Figure 

7.103). Trafficking of non-recirculating GRBC in Crevice 8 for the 40% GRBC suspension had 

apex distances less than 60 µm for 70% of GRBC studied at 5 µl/min (Figure 7.103) and 50% of 

GRBC examined at 25 µl/min (Figure 7.104).  

 

Figure 7.102. Trafficking of five GRBC in 40% GRBC suspension at 5 µl/min [left] and 25 µl/min [right] flow rates 

in Crevice 8. 40x magnification. Dimension shown with green line is 254.95 µm. Origin defined at channel entrance. 

 

Figure 7.103. GRBC pathlines in 40% GRBC suspension at a 5 µl/min flow rate in Crevice 8.  
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Figure 7.104. GRBC pathlines in 40% GRBC suspension at a 25 µl/min flow rate in Crevice 8.  

7.3.9 Platelet-sized particle counts in the crevice microchannel  

PSFP counts in Crevices 1-8 for the 20% GRBC and 40% GRBC suspensions examined at 0, 5 

and 25 µl/min are shown in Table 7.1. Statistical analysis revealed a significant difference 

(р<0.05) between the mean PSFP counts in Crevices 1-8 at 0, 5 and 25 µl/min flow rates for both 

GRBC concentrations, with one exception of the PSFP count in Crevice 2 for the 20% GRBC 

suspension between 5 and 25 µl/min flow rates (р=0.25).  

 Table 7.1 shows that platelet-sized particle counts in Crevices 3-7 for the 20% GRBC 

suspension significantly increased when flow rate increased from 0 to 5 µl/min (р<0.001) and 5 

µl/min to 25 µl/min (р<0.005). In Crevice 2, PSFP count for the 20% GRBC suspension 

significantly increased from 0 to 5 µl/min (р<0.001) and 0 to 25 µl/min (р=0.02). In Crevices 1 

and 8, PSFP counts for the 20% GRBC suspension significantly decreased when flow rate 

increased from 0 to 5 µl/min and 5 µl/min to 25 µl/min (р<0.001).  
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 Platelet-sized particle counts in Crevices 1, 2, 4, 5, 7 and 8 for the 40% GRBC 

suspension significantly increased when flow rate increased from 0 to 5 µl/min and 5 µl/min to 

25 µl/min (р<0.001) (Table 7.1). In Crevices 3 and 6, PSFP counts for the 40% RBC suspension 

significantly increased from 0 to 5 µl/min (p<0.001) and significantly decreased when flow rate 

increased from 5 µl/min to 25 µl/min (р<0.001). 

 Analysis of the PSFP counts in Crevices 1-8 at flow rates of 0, 5 and 25 µl/min revealed 

significant differences between the PSFP counts of the 20% and 40% GRBC suspensions in the 

eight crevices at each flow rate (р<0.001), except for the PSFP counts of the 20% and 40% 

GRBC suspensions examined in Crevice 4 at zero flow (р=0.49) and 5 µl/min (р=0.11), Crevice 

6 at 25 µl/min (р=0.09) and Crevice 8 at zero flow (р=0.19).  
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Table 7.1. Platelet-sized particle counts in the crevice microchannel for suspensions of 20% GRBC and ~1,000,000 

PSFP/µl in 30% Dextran 40 and 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 tested at 0, 5 and 25 

µl/min flow rates. 
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7.3.10 Comparison of platelet-sized particle and GRBC trafficking in the crevice 

microchannel 

Platelet-sized particle and GRBC trafficking in Crevices 1-8 for the 20% and 40% GRBC 

suspensions were compared by computing the percent increase in PSFP and GRBC pathline 

apices from 5 to 25 µl/min. An apex distance threshold for the comparison of PSFP and GRBC 

trafficking in each crevice was established prior to calculation of the percent increase of PSFP 

and GRBC apex distance from 5 to 25 µl/min for both GRBC suspensions (Table 7.2).   

Table 7.2. Percent increase of platelet-sized particle and GRBC apex distance in the crevice microchannel for a five-

fold flow rate increase of suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 and 40% GRBC 

and ~1,000,000 PSFP/µl in 20% Dextran 40. 
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 Platelet-sized particle and GRBC trafficking in Crevices 1-8 for the 20% versus 40% 

GRBC suspensions were compared by computing the percent increase in PSFP and GRBC 

pathline apices at 5 and 25 µl/min flow rates. An apex distance threshold for the comparison of 

PSFP and GRBC trafficking for 20% versus 40% GRBC suspensions in each crevice was 

established prior to calculation of the percent increase of PSFP and GRBC apex distance 

examined at 5 and 25 µl/min flow rates (Table 7.3). 

Table 7.3. Percent increase of platelet-sized particle and GRBC apex distance in the crevice microchannel for 20% 

GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 versus 40% GRBC and ~1,000,000 PSFP/µl in 20% Dextran 40 

suspensions tested at 5 and 25 µl/min flow rates. 
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7.4 DISCUSSION 

Microscopic crevices or steps are unavoidable features within CAD blood flow path that are 

potentially thrombogenic areas due to flow separation, recirculation zones (deadwaters) and flow 

stagnation [143, 157-160, 232]. The objective of this study was to examine the thrombogenicity 

of microscopic crevice flow by studying the trafficking of erythrocyte ghosts and platelet-sized 

particles in a microchannel containing multiple crevices similar to the size of small gaps in some 

CAD at supra-physiological shear stresses. 

 The results of this study showed that platelet-sized particle concentration inside the 

crevices was augmented by flow rate and GRBC trafficking. Platelet-sized particle counts in 

Crevices 1-8 were significantly different between 5 and 25 µl/min flow rates for both GRBC 

concentrations (р<0.05), except for the 20% GRBC suspension counts in Crevice 2 (p=0.25). 

The effect of GRBC concentration on platelet-sized particle concentration in the crevices 

demonstrated significant differences between PSFP counts in Crevices 1-8 at 5 and 25 µl/min 

flow rates for both GRBC suspensions (р<0.001), except for the PSFP counts of 20% and 40% 

GRBC suspensions in Crevice 4 at 5 µl/min (р=0.11) and Crevice 6 at 25 µl/min (р=0.09).   

 Trafficking of platelet-sized particles in rectangular and triangular crevices with 500 µm 

or less length demonstrated augmented apex distances for 20% GRBC suspension when flow 

rate increased from 5 µl/min to 25 µl/min. For the 40% GRBC suspension, PSFP trafficking in 

all crevices demonstrated greater PSFP apex distances or negligible changes in PSFP pathline 

apices when flow rate increased from 5 µl/min to 25 µl/min.  

 Overall, platelet-sized particle trafficking in the crevices was augmented by GRBC 

concentration. A comparison of PSFP trafficking in eight crevices for the 20% and 40% GRBC 
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suspensions examined at 25 µl/min demonstrated a negligible change in PSFP apex distances in 

Crevice 1, augmented PSFP apex distances in Crevices 2, 3, 5-8 and a decrease in PSFP pathline 

apices in Crevice 4 for 40% GRBC suspensions. 

 Flow rate had much less influence on GRBC trafficking in the crevices compared to 

GRBC concentration. Trafficking of GRBC in the crevice microchannel for 20% GRBC 

suspension demonstrated negligible changes in GRBC pathlines (Crevices 2, 3, 5, 6 and 8) or 

augmented GRBC apex distances (Crevices 1, 4 and 7) when flow rate increased from 5 µl/min 

to 25 µl/min. For the 40% GRBC suspension, negligible changes in GRBC apex distance were 

observed in Crevices 1 and 3, increased GRBC pathline apices were found in Crevices 2 and 4-8, 

and a decrease in GRBC apex distance in Crevice 8 above 75 µm occurred when flow rate 

increased from 5 µl/min to 25 µl/min. GRBC trafficking in Crevices 2-8 for the 20% and 40% 

GRBC suspensions examined at 25 µl/min demonstrated augmented GRBC apex distances in all 

crevices studied. 

An important finding of this study was the occurrence of flow separation in 100 µm wide 

crevices. A separated flow is a region in which streamlines form closed areas and fluid elements 

follow closed paths until diffusion occurs [232]. Flow recirculation is known to contribute to 

thrombogenesis as shown in in vitro studies of bifurcations, bends and expansions [157, 159, 

233]. Recirculation regions were observed in a 100 µm wide and 500 µm long rectangular 

crevice (Crevice 5), a 100 µm square crevice (Crevice 7) and a 100 µm height triangular crevice 

(Crevice 8) starting at approximately 75-85 µm in the crevices. Trafficking of PSFP and GRBC 

in Crevices 5 and 8 with greater than 75 µm apex distance had recirculating pathlines while in 

Crevice 7, PSFP with greater than 78 µm apex distance had recirculating pathlines. Platelet-sized 
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particle and GRBC pathlines with less than 75 µm apex distance in the 100 µm width crevices 

did not recirculate.  

 The novel result of this study is the discovery of the effect of crevice width on thrombosis 

development at supra-physiological shear stresses relevant to the operation of CADs. Flow 

separation occurred for GRBC suspensions studied in 100 µm wide rectangular and triangular 

crevices but not in wider crevices studied up to 500 µm. Crevices 5, 7 and 8 are each 100 µm 

wide and have rectangular, square, and triangular geometries. Although Crevices 1, 3 and 5 have 

the same crevice length, recirculation regions were not observed in Crevices 1 or 3 that have 

larger entrance widths. The presence of recirculation regions in 100 µm wide crevices in this 

study demonstrated that the width of gaps and crevices in CAD blood flow paths is an important 

parameter for thrombogenesis at supra-physiological shear stresses encountered during in vitro 

and in vivo CAD operation.  

7.5 CONCLUSIONS 

This chapter summarizes the microscopic visualization and analysis of the trafficking of 

erythrocyte ghosts and platelet-sized particles in a custom-fabricated microchannel containing 

multiple crevices similar to the size of small gaps within CAD at supra-physiological shear 

stresses. The results of this study showed that platelet-sized particle concentration and PSFP 

trafficking inside the crevices were augmented by flow rate and GRBC concentration; flow rate 

had much less influence on GRBC trafficking in the crevices compared to GRBC concentration. 

A novel finding was the importance of the width of gaps and crevices in CAD blood flow paths 
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for thrombosis development at supra-physiological shear stresses encountered during in vitro and 

in vivo CAD operation. Recirculation regions were observed in 100 µm wide rectangular and 

triangular crevices but not in wider crevices studied up to 500 µm. The width of gaps and 

crevices in the blood flow path of CAD is an important variable to include in the modeling of 

thrombosis in the assisted circulation and warrants further study in vitro. 
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8.0  SUMMARY 

8.1 CONCLUSIONS 

The goals of this dissertation were to study in vitro the mechanisms of flow-induced blood 

trauma and the parameters that affect in vitro hemolysis testing of circulatory-assist devices. The 

specific aims of this study were as follows: to model flow-induced hemolysis using solutions of 

degradable polymers as a rheological substitute for blood, to study adverse changes in the 

rheological properties of donor RBC during blood bank storage, to study flow-induced hemolysis 

as a function of shear stress and exposure time, and to study potential mechanisms of flow-

induced hemolysis and thrombosis. 

 A drag-reducing polymer solution of ~4000 kDa MW polyethylene oxide at a 

concentration of 1 mg/ml in a turbulent flow circulating system was shown to be a novel blood 

substitute for the in vitro assessment of potential mechanical blood damage in a tested CAD. 

DRP mechanical degradation was successfully characterized by recording the decrease in DRP 

solution flow rate at a constant pressure and measurements of polymer solution viscosity in 

samples collected from the flow system during testing. A novel polymer degradation index was 

found to be highly correlated to the normalized index of hemolysis in these studies. Hence, the 

use of a PEO solution as a test fluid for the in vitro testing of CAD and calculation of the PDI 
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yields an innovative, useful substitute to blood and a similar damage index as the NIH 

traditionally used for evaluation and comparison of CAD. 

 The effects of donor gender and storage time on bulk RBC deformability (RBC 

suspension viscoelasticity and relaxation time) of leukoreduced RBC stored in AS-5 solution at 

4ºC in a blood bank were successfully demonstrated. Both male and female RBC suspensions 

showed significant increases in viscosity, elasticity and relaxation time over seven weeks of 

blood bank storage, which signifies a decrease in donor RBC deformability. No significant 

differences in RBC deformability were observed between male and female RBC at any storage 

time point. The clinical significance of the changes in donor RBC deformability during blood 

bank storage warrant further study to elucidate the impact of transfusion of brief storage versus 

prolonged storage blood bank RBC on patient morbidity and mortality. 

 In vitro flow systems were used to further elucidate the effects of shear stress, exposure 

time and RBC mechanical fragility on flow-induced hemolysis at flow conditions relevant to 

CAD operation. In vitro hemolysis testing in a centrifugal pump flow system demonstrated the 

statistically significant effect of RBC total exposure time on mechanical hemolysis. Multiple 

regression using the power model demonstrated similar blood damage in two centrifugal pump 

flow systems as in published reports. Notably, this study identified a blood volume range for 

conducting in vitro hemolysis testing of pediatric CAD as 150ml≤V<500 ml. The RBC 

mechanical fragility index was found to be largely correlated with the results of in vitro 

hemolysis testing and thus demonstrated that the standard RBC mechanical fragility test can aid 

in the analysis of hemolysis testing of CAD by providing important information on the 

susceptibility of the blood used for testing to flow-induced trauma. 
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 A capillary flow system with a clinically used centrifugal CAD was used to discern the 

effects of cell-cell interactions and suspension viscosity on flow-induced hemolysis. Novel 

results showed that the increase in freeHb from baseline for RBC and GRBC suspensions was 

nearly proportional to the amount of RBC in suspension. Notably, the hemolysis in the RBC and 

GRBC suspensions was found to be significantly higher than that in their viscosity-matched 

controls (RBC in viscous media). Hence, cell-cell interactions is a greater contributor to 

mechanical hemolysis than bulk viscosity. 

 In vitro microfluidic experiments and image analysis of the trafficking of GRBC and 

platelet-sized particles in a custom-fabricated microchannel containing multiple crevices similar 

to the size of small gaps within CAD at supra-physiological shear stresses revealed a significant 

finding. Flow separation occurred in 100 µm wide rectangular and triangular crevices but not in 

wider crevices studied up to 500 µm. Thus, this study demonstrated that the width of gaps and 

crevices in CAD blood flow paths are an important parameter for thrombogenesis at supra-

physiological shear stresses encountered during in vitro and in vivo CAD operation.  

This dissertation provided additional information on the mechanisms of flow-induced 

hemolysis and elucidated that the width of gaps and crevices in the blood flow path of CAD is an 

important parameter affecting the development of thrombosis at supra-physiological shear 

stresses in the assisted circulation.  
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8.2 STUDY LIMITATIONS 

Although the completed dissertation work provided additional information on mechanisms of 

flow-induced hemolysis and revealed an important parameter affecting thrombogenesis in some 

CAD blood flow paths, there were several limitations in this study. The work of Specific Aim 1 

was performed under turbulent flow conditions in order to ascertain the effectiveness of a DRP 

solution as a potential test fluid for in vitro testing of pre-clinical CAD by assessing the changes 

in PEO drag-reducing ability during testing. Turbulent stresses are known to augment 

mechanical hemolysis [105, 106, 234, 235] and in this study, wall shear stress was approximately 

50 Pa in the capillary tube for DRP and hemolysis tests. Kameneva et al. reported that hemolysis 

levels were not significantly augmented from laminar flow conditions in a capillary flow system 

tested at a 100 Pa wall shear stress [106]. Hence, it is unlikely that turbulent stresses significantly 

augmented the resulting hemolysis in this study. An additional limitation in the work of Specific 

Aim 1 was that DRP mechanical degradation occurring in the capillary tube and centrifugal 

pumps, respectively, was not examined.   

 A limitation in the study of Specific Aim 2 was the preparation of donor RBC 

suspensions in PBS rather than autologous donor plasma. RBC deformability is reduced in 

suspensions of PBS compared to plasma [63]. Due to the unavailability of donor plasma, it was 

necessary to use PBS as the suspension medium for donor RBC in this study. The work of 

Specific Aim 3 was performed under laminar, transitional and turbulent flow conditions in the 

capillary flow systems used for in vitro hemolysis tests. The results of the study of exposure time 

of blood to a constant shear stress was likely not significantly affected by the transitional flow 

conditions for the 250 ml and 500 ml blood volumes tested at 150 Pa wall shear stresses as 
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demonstrated by Kameneva et al. [106]. However, the comparison of RBC-MFI and the resulting 

in vitro hemolysis in a capillary flow system with a CAD may have been affected by the 

augmented hemolysis produced at a wall shear stress of ~250 Pa and Reynolds number of ~5000 

in the studied capillary.   

 The first study of Specific Aim 4 to elucidate the effects of cell-cell interactions and 

suspension viscosity on flow-induced hemolysis was performed using RBC and GRBC 

suspensions in a 70 ml volume capillary flow system. Tests were performed at wall shear stresses 

of ~150 Pa under transitional flow conditions in a capillary, but the resulting hemolysis was 

likely not significantly increased by the non-laminar flow conditions in the capillary as 

demonstrated by Kameneva et al. [106]. Although the low circulating volume may have 

augmented hemolysis in this study as shown by the results of Specific Aim 3, this study was a 

comparative study of the flow-induced hemolysis among RBC and GRBC suspensions and their 

viscosity-matched controls (RBC in viscous media).  

 The study of GRBC and platelet-sized particle trafficking in a multiple crevice 

microchannel at flow conditions relevant to CAD operation had several limitations. The supra-

physiological concentration of 1,000,000 PSFP/µl was chosen to visualize PSFP trafficking in 

both GRBC suspensions in the microfluidic system. Platelet-sized spherical particles were used 

in this study as a substitute for discoid human platelets, but the shape of the platelet-sized 

particles could have affected their trafficking in the studied crevices. A pilot study of cell 

trafficking in PDMS channels was performed using fixed, fluorescently-dyed human platelets 

prior to conducting this work. The results of that study revealed that fixed platelets were reactive 

to PDMS and adhered to the channel surfaces. Thus, platelet-sized spherical particles were used 

to investigate the fluid dynamic effect on thrombogenesis in small gaps and crevices in VAD 
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independent of the effects of surface and other biochemical factors. An additional limitation is 

that this study was performed under steady flow conditions, whereas blood flow in continuous-

flow CAD and the microcirculation exhibits some pulsatility.  

 A major limitation of the final study of Specific Aim 4 was particle trafficking and 

adhesion at the walls of the inlets and outlets of some crevices in the seal between the PDMS 

channel and glass coverslip. Adhered particles could disrupt the pathlines of flowing particles, 

which was an unintended outcome of this study. An additional limitation of this work was the 

direction of flow in the crevice microchannel. Crevices 1-8 were examined microscopically at 5 

and 25 µl/min flow rates entering the channel into Crevice 1. There is a possibility that flow into 

the largest crevice first could affect the trafficking of PSFP and GRBC in the smaller crevices 

further down the channel. Furthermore, the study of platelet-sized particle and GRBC trafficking 

in eight crevices within a 5 mm long channel may not be representative of the crevices and gaps 

in many CAD blood flow paths.     

8.3 FUTURE STUDIES 

This dissertation provided additional information on mechanisms of flow-induced hemolysis and 

parameters that affect in vitro hemolysis testing of CAD through the design and use of in vitro 

flow systems with several clinical CAD. Moreover, microfluidic studies in a novel multiple 

crevice channel at flow conditions relevant to CAD operation revealed an important variable 

affecting thrombogenesis in CAD blood flow paths. This work provides a basis for several future 
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studies to further elucidate mechanisms of flow-induced hemolysis and parameters affecting 

thrombosis development in the assisted circulation. 

A supplementary study of the effect of cell-cell interactions on flow-induced hemolysis 

should be conducted in a microfluidic system to discern GRBC streamlines in suspensions of 

10%, 20% and 40% GRBC in high viscosity Dextran 40 solutions with similar viscosities. A 

nozzle microchannel with similar geometry as the FDA benchmark nozzle model [236] was 

previously fabricated in PDMS and would be useful for this study. Hence, the proposed 

mechanism of cell-cell interactions as the consequence of a local velocity gradient between 

colliding cells when cells traveling along adjacent streamlines interact could be examined 

microscopically.  

The microfluidic studies in an eight crevice channel at supra-physiological shear stresses 

revealed an important variable affecting thrombosis development in some CAD blood flow 

paths. To further investigate the effect of crevice width on thrombogenesis at flow conditions 

relevant to CAD operation, the study of individual crevices with various geometries (rectangular, 

triangular, etc.) and widths (~20-150 µm) is recommended. A microfluidic system similar to the 

one used by Jamiolkowski et al. [71] could be modified to study individual crevices, or several 

crevice microchannels fabricated in PDMS could be used for this study. The results of this work 

could elucidate the effect of crevice width on the development of thrombosis at supra-

physiological shear stresses in some CAD and possibly identify a range of crevice widths in 

which recirculation regions occur.   

Supplementary microfluidic studies to the investigation of the effect of crevice width on 

thrombogenesis in some CAD blood flow paths are investigations of the effects of GRBC 

deformability, pulsatile flow and use of fluorescently-labeled platelets in test suspensions studied 
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in the crevice widths and geometries of most interest. Suspensions of GRBC and fluorescently-

dyed platelets or PSFP should be examined in crevices with the same shape and width to directly 

compare platelet and PSFP trafficking and adhesion in the crevices. Ektacytometric studies of 

GRBC and glutaraldehyde-treated GRBC [104] would quantify cell elongation indices and the 

trafficking of PSFP or fluorescently-dyed platelets in suspensions of GRBC and glutaraldehyde-

treated GRBC could be assessed in the crevices. Finally, the effect of pulsatile flow on the 

trafficking of GRBC and platelet-sized particles or platelets in the crevice microchannels could 

be performed by programming a syringe pump to infuse and refill test suspension at specific time 

intervals. This study would allow a direct comparison of cell trafficking and adhesion at steady 

flow and pulsatile flow conditions in crevice widths and geometries that affect the development 

of thrombosis at supra-physiological shear stresses within some CAD blood flow paths. 
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APPENDIX A 

METHODS FOR THE ASSESSMENT OF ERYTHROCYTE DEFORMABILITY 

The deformation of erythrocytes in the microcirculation was first observed by van Leeuwenhoek 

[237] and studied in vitro by Goldsmith in Poiseuille and Couette flow [238, 239]. Chien et al. 

studied the effect of RBC-D on blood viscosity using normal and acetaldehyde hardened human 

and canine RBC [38]. At the same 45% Ht, rigid dog RBC suspended in saline exhibited 

Newtonian fluid behavior with a higher viscosity than normal dog RBC suspended in saline with 

Non-Newtonian properties at the same shear rates [38]. Further work by Chien et al. [240-242], 

Sutera et al.  [57, 243] and Kameneva et al. [124, 170] have shown that RBC-D affects the Non-

Newtonian behavior of human blood and that changes in RBC-D can impact the preponderance 

of patient morbidities due to augmented blood viscosity. There are several methods for the 

assessment of RBC membrane deformability (micropipette aspiration and ektacytometry) and 

bulk RBC suspension deformability (filtration and viscoelastometry).  
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A.1      MICROPIPETTE ASPIRATION  

Micropipette aspiration of an entire RBC or part of its membrane has been used as a technique 

for measuring cellular membrane deformability since the original studies of Mitchison and 

Swann in 1954 [244]. In this method, a negative pressure is applied to partially or completely 

aspirate a single RBC into a glass micropipette with diameter ranging from less than 1 μm to 5 

μm [54, 60]. Quantification is based on the amount of negative pressure needed to aspirate either 

a part or the entire RBC: aspiration of a portion of the RBC membrane yields the shear elastic 

modulus of the membrane, while complete aspiration ascertains RBC membrane deformability 

[245, 246]. Micropipette aspiration is an established technique that has been used to quantify 

RBC membrane deformability in malaria [247], sickle-cell anemia [248-250], and assisted 

circulation [117]. 

Determination of the viscoelastic behavior of individual erythrocytes and quantification 

of RBC membrane deformability of a single cell are advantages of the micropipette method. 

However, a high degree of technical skill is required to use this method and reproducibility of 

micropipette fabrication can be problematic [246]. Due to the study of individual cells, the 

method is time consuming and limited in that only a small numbers of cells can be studied.  

A.2      FILTRATION 

Filtration is a technique for determining bulk erythrocyte deformability developed by Reid et al. 

[251] that involves the filtering of RBC suspensions through 3-5 μm polycarbonate membranes 

 152 

 



by a constant negative pressure of -20 cm H2O. Quantification of the process is achieved either 

by the time required for passage of a certain volume of RBC suspension (transit time) or by the 

pressure-flow relationship [251]. Filtration is an established technique that has been used to 

study bulk RBC-D in diabetes [252, 253], pregnancy [254], neonates [255, 256], sickle-cell 

anemia [257], acute anemia [258], cardiopulmonary bypass [259], sepsis [260] and cold storage 

[261, 262].  

Problems with filtration technique can develop if whole blood is used. Factors present 

within whole blood, including leukocytes and platelet microaggregates, may impair RBC 

filtration by causing pore blockage [54, 60, 246]. Thus, it is necessary to thoroughly wash RBC 

and prepare RBC suspensions at a standard Ht prior to filtration tests so that an accurate measure 

of RBC filterability can be achieved [54, 60]. A further problem with this method is the lack of 

calibration standards due to variations in the filters used, leading to poor reproducibility of 

results [54, 60, 246].  

A.3      EKTACYTOMETRY (ELLIPSOMETRY) 

Ektacytometry is a conventional technique for assessment of RBC membrane deformability that 

subjects RBC suspended in a highly viscous medium to a defined, continuous shear flow in a slit 

rheometer, counter-rotating cone-and-plate, plate-and-plate, or Couette system [263-266]. In this 

method, shear-deformed RBC appear as ellipsoids that can be analyzed using imaging ellipse-fit 

software [e.g. Image J (NIH)]. An elongation index (EI) of erythrocyte membrane deformability 

is calculated according to Equation 21.  
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 Quantification of the deformability of numerous erythrocyte membranes yields a RBC 

membrane deformability distribution for a given sample [264, 267]. Rheoscopy provides data for 

individual erythrocytes, and as such allows for a more precise quantification at the individual cell 

level. For example, direct visualization of individual malaria-infected RBC in sheared 

suspension in a rheoscope allowed Cranston [268] to extend the earlier viscometric studies of 

Miller [269] to relate the extent of modification of RBC mechanical properties to different life 

cycle stages of the malaria parasite.   

 RBC suspensions sheared within flow chambers of laser diffraction ektacytometers are 

traversed with a laser beam that is diffracted by the RBC present in the volume [263, 265]. Laser 

diffraction ektacytometry methods have been used to study RBC membrane deformability in 

various pathological situations associated with impaired microcirculatory flow, including 

diabetes, malaria, elliptocytosis, and sickle-cell anemia [270, 271]. 

 The Laser-Assisted Optical Rotational Cell Analyzer (LORCA) device incorporates a 

Couette shearing system in which RBC membrane deformability is assessed in the gap between 

the inner cylinder (bob) and outer cylinder (cup). This device uses minute blood or RBC volumes 

(≤ 25 μL) and is advantageous for the rapid assessment of membrane deformability of several 

hundred RBC [272]. Yet, these techniques are not used clinically due to the need for 

considerable human interaction: suspending RBC in a highly viscous medium at a prescribed 

concentration, loading/cleaning the device, and image analysis. 
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A.4      VISCOELASTOMETRY 

Blood and RBC suspension viscoelastometry is a sensitive, established technique for assessing 

bulk erythrocyte deformability that approximates blood flow in longer vessels of the circulation 

[32, 51]. In viscometric (viscosity and viscoelastometry) techniques, decreased erythrocyte 

deformability is observed by an increase in blood viscosity and elasticity without changes in Ht, 

plasma viscosity or temperature. Elasticity is a direct measure of erythrocyte deformability as it 

relates the amount of energy storage due to the elastic deformation of RBC [273].   

 155 

 



APPENDIX B 

CHAPTER 3 STATISTICAL ANALYSIS 

Dependent t-tests are reliable and robust statistical tests when two assumptions are followed (p. 

287 of [274]): 

1) Data are measured on at least an interval scale 

2) Data is approximately normally distributed 

Table B. 1 shows the descriptive statistics for the normalized index of hemolysis of 30% 

Ht porcine blood in the CentriMag® and Bio-Pump® flow systems. Table B. 2 shows the 

descriptive statistics for the drag reduction of 1000 ppm PEO solution calculated at 120 minutes 

of testing in the CentriMag® and Bio-Pump® flow systems. 
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Table B. 1. Descriptive statistics for the normalized index of hemolysis of 30% Ht porcine blood calculated 

at 120 minutes of testing in the CentriMag and BPX-80 flow systems. 

 
 

Table B. 2. Descriptive statistics for the drag reduction of 1000 ppm PEO solution calculated at 120 

minutes of testing in the CentriMag and BPX-80 flow systems. 

 
 

 Statistics 

NIH   
CentriMag N Valid 3 

Missing 0 

Mean .00567 

Std. Error of Mean .001856 

Std. Deviation .003215 

Variance .000 

Range .006 

Minimum .002 

Maximum .008 

BPX-80 N Valid 3 

Missing 0 

Mean .01867 

Std. Error of Mean .001764 

Std. Deviation .003055 

Variance .000 

Range .006 

Minimum .016 

Maximum .022 

. N Valid 0 

Missing 73 
 

 Statistics 

DR   
CentriMag N Valid 2 

Missing 1 

Mean 22.3000 

Std. Error of Mean .40000 

Std. Deviation .56569 

Variance .320 

Range .80 

Minimum 21.90 

Maximum 22.70 

BPX-80 N Valid 2 

Missing 1 

Mean 25.5250 

Std. Error of Mean .62500 

Std. Deviation .88388 

Variance .781 

Range 1.25 

Minimum 24.90 

Maximum 26.15 

. N Valid 0 

Missing 73 
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Table B. 3 shows the descriptive statistics for the polymer degradation index of 1000 

ppm PEO solution calculated at 120 minutes of testing in the CentriMag® and Bio-Pump® flow 

systems. 

Table B. 3. Descriptive statistics for the polymer degradation index of 1000 ppm PEO solution calculated at 120 

minutes of testing in the CentriMag and BPX-80 flow systems. 

 

 Statistics 

PDI   
CentriMag N Valid 2 

Missing 1 

Mean .04135 

Std. Error of Mean .000150 

Std. Deviation .000212 

Variance .000 

Range .000 

Minimum .041 

Maximum .042 

BPX-80 N Valid 2 

Missing 1 

Mean .04880 

Std. Error of Mean .001000 

Std. Deviation .001414 

Variance .000 

Range .002 

Minimum .048 

Maximum .050 

. N Valid 0 

Missing 73 
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APPENDIX C 

CHAPTER 4 STATISTICAL ANALYSIS 

Independent t-tests and ANOVA are reliable and robust statistical tests when four assumptions 

are followed (p. 324 of [274]): 

1) Observations are independent 

2) Dependent variable is measured on at least an interval scale 

3) Data is approximately normally distributed 

4) Variances in each experimental condition are fairly similar 

 Table C.1 and Table C.2 show the descriptive statistics and Homogeneity of Variances 

Test, respectively, for male (n=12) and female (n=12) RBC suspension viscosity measured at a 

25 s-1 shear rate at Week 1, 4 and 7 of blood bank storage. Table C.3 and Table C.4 show the 

descriptive statistics and Homogeneity of Variances Test, respectively, for male (n=12) and 

female (n=12) RBC suspension viscosity measured at a 100 s-1 shear rate at Week 1, 4 and 7 of 

blood bank storage. 
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Table C. 1. Descriptive statistics for male and female RBC suspension viscosity measured at a 25 s-1 shear rate at 

Week 1, 4 and 7 of storage. 

 

Table C. 2. Levene’s Test for Homogeneity of Variances for male and female RBC suspension viscosity measured 

at a 25 s-1 shear rate at Week 1, 4 and 7 of storage. 

 

Table C. 3. Descriptive statistics for male and female RBC suspension viscosity measured at a 100 s-1 shear rate at 

Week 1, 4 and 7 of storage. 

 

 Descriptive Statistics 

Dependent Variable:   Viscosity_at_SR_25   
Sex Storage_time Mean Std. Deviation N 

Male Week 1 4.00167 .377075 12 

Week 4 4.39692 .437330 12 

Week 7 4.63292 .465988 12 

Total 4.34383 .492749 36 

Female Week 1 3.83174 .379860 12 

Week 4 4.36950 .423400 12 

Week 7 4.70675 .336749 12 

Total 4.30266 .520462 36 
 

 Levene's Test of Equality of Error Variancesa 

Dependent Variable:   Viscosity_at_SR_25   
Sex F df1 df2 Sig. 

Male .340 2 33 .714 

Female .196 2 33 .823 
Tests the null hypothesis that the error variance of the 

dependent variable is equal across groups. 

     

 

Descriptive Statistics 

Dependent Variable:   Viscosity_at_SR_100   
Sex Storage_time Mean Std. Deviation N 

Male Week 1 3.63875 .232626 12 

Week 4 3.92808 .256499 12 

Week 7 4.09000 .278273 12 

Total 3.88561 .312821 36 

Female Week 1 3.51950 .261177 12 

Week 4 3.92300 .261813 12 

Week 7 4.16475 .218136 12 

Total 3.86908 .361670 36 
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Table C. 4. Levene’s Test for Homogeneity of Variances for male and female RBC suspension viscosity measured 

at a 100 s-1 shear rate at Week 1, 4 and 7 of storage. 

 

Table C.5 and Table C.6 show the descriptive statistics and Homogeneity of Variances 

Test, respectively, for male (n=12) and female (n=12) RBC suspension elasticity measured at a 

25 s-1 shear rate at Week 1, 4 and 7 of blood bank storage. 

Table C. 5. Descriptive statistics for male and female RBC suspension elasticity measured at a 25 s-1 shear rate at 

Week 1, 4 and 7 of storage. 

 

 Levene's Test of Equality of Error Variancesa 

Dependent Variable:   Viscosity_at_SR_100   
Sex F df1 df2 Sig. 

Male .172 2 33 .843 

Female .182 2 33 .835 

Tests the null hypothesis that the error variance of the 

dependent variable is equal across groups. 

     

 

Descriptive Statistics 

Dependent Variable:   Elasticity_at_SR_25   
Sex Storage_time Mean Std. Deviation N 

Male Week 1 .207150 .0820669 12 

Week 4 .284733 .0934068 12 

Week 7 .342317 .1036343 12 

Total .278067 .1067198 36 

Female Week 1 .203983 .0561120 12 

Week 4 .295242 .0606583 12 

Week 7 .348158 .0484446 12 

Total .282461 .0808141 36 
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Table C. 6. Levene’s Test for Homogeneity of Variances for male and female RBC suspension elasticity measured 

at a 25 s-1 shear rate at Week 1, 4 and 7 of storage. 

 

Table C.7 and Table C.8 show the descriptive statistics and Homogeneity of Variances 

Test, respectively, for male (n=12) and female (n=12) RBC suspension elasticity measured at a 

100 s-1 shear rate at Week 1, 4 and 7 of blood bank storage. 

Table C. 7. Descriptive statistics for male and female RBC suspension elasticity measured at a 100 s-1 shear rate at 

Week 1, 4 and 7 of storage. 

 

Table C. 8. Levene’s Test for Homogeneity of Variances for male and female RBC suspension elasticity measured 

at a 100 s-1 shear rate at Week 1, 4 and 7 of storage. 

 

 Levene's Test of Equality of Error Variancesa 

Dependent Variable:   Elasticity_at_SR_25   
Sex F df1 df2 Sig. 

Male .670 2 33 .519 

Female .061 2 33 .941 

Tests the null hypothesis that the error variance of the 

dependent variable is equal across groups. 

     
 

 Descriptive Statistics 

Dependent Variable:   Elasticity_at_SR_100   
Sex Storage_time Mean Std. Deviation N 

Male Week 1 .077167 .0076983 12 

Week 4 .094208 .0105640 12 

Week 7 .104717 .0145642 12 

Total .092031 .0159034 36 

Female Week 1 .083658 .0059724 12 

Week 4 .096383 .0067616 12 

Week 7 .109183 .0087347 12 

Total .096408 .0126984 36 
 

 Levene's Test of Equality of Error Variancesa 

Dependent Variable:   Elasticity_at_SR_100   
Sex F df1 df2 Sig. 

Male .841 2 33 .440 

Female 3.158 2 33 .056 

Tests the null hypothesis that the error variance of the 

dependent variable is equal across groups. 
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APPENDIX D 

CHAPTER 5 STATISTICAL ANALYSIS 

Table D. 1 and Table D. 2 show the descriptive statistics and Homogeneity of Variances Test, 

respectively, for the normalized index of hemolysis calculated for the 30% hematocrit bovine 

blood volumes after 60 minutes of testing in the centrifugal pump flow systems. 

Table D. 1. Descriptive statistics for the normalized index of hemolysis calculated for the 60 ml, 125 ml, 250 ml and 

500 ml blood volumes after 60 minutes of testing in the centrifugal pump flow systems. 

 
 

Table D. 2. Levene’s Test for Homogeneity of Variances for the normalized index of hemolysis calculated for the 

60 ml, 125 ml, 250 ml and 500 ml blood volumes after 60 minutes of testing in the centrifugal pump flow systems. 

 
 

 Table D. 3 and Table D. 4 show multiple regression analysis using the power model of 

the IH (ΔfreeHb/tHb) in 60 ml, 125 ml, 250 ml and 500 ml 30% hematocrit bovine blood 

 Descriptives 

NIH   

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

60 ml 6 1.3524 .49192 .20082 .8361 1.8686 1.06 2.34 

125 ml 8 .6848 .51430 .18183 .2549 1.1148 .11 1.45 

250 ml 6 .1398 .05370 .02192 .0834 .1961 .07 .20 

500 ml 6 .1002 .03372 .01376 .0648 .1355 .06 .13 

Total 26 .5782 .60969 .11957 .3319 .8244 .06 2.34 
 

 Test of Homogeneity of Variances 

NIH   
Levene Statistic df1 df2 Sig. 

7.588 3 22 .001 
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volumes after 60 minutes of testing in the centrifugal pump flow systems. The model summary is 

shown in Table D. 3 and the empirical coefficients of the power law model are shown in Table 

D. 4. 

Table D. 3. Multiple regression of the change in plasma free hemoglobin concentration from baseline divided by the 

total hemoglobin concentration after 60 minutes of testing in the centrifugal pump flow systems. 

 

Table D. 4. Coefficients of the power model applied to the Index of Hemolysis after 60 minutes of testing in the 

centrifugal pump flow systems. 

 

 Model Summary 

R R Square Adjusted R Square 

Std. Error of the 

Estimate 

.814 .662 .633 .653 

The independent variables are Damage_exposure_time and Shear_stress. 

 

 Coefficients 

 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

Damage_exposure_time 

Shear_stress 

1.055 

2.614 

.359 

.537 

.514 

1.748 

2.935 

3.494 

.007 

.04 

(Constant) .0000482 .001  3.250 .003 

The dependent variable is delta_freeHb_divHb. 
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APPENDIX E 

CHAPTER 6 STATISTICAL ANALYSIS 

Table E. 1 and Table E. 2 show the descriptive statistics and Homogeneity of Variances Test, 

respectively, for the Index of Hemolysis calculated for the 40% RBC in PBS, 10% RBC and 

30% GRBC in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% 

RBC in 7% Dextran 40 suspensions after 120 minutes of testing in the capillary flow system. 

Table E. 1. Descriptive statistics of the Index of Hemolysis calculated for the 40% RBC in PBS, 10% RBC and 

30% GRBC in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% Dextran 

40 suspensions after 120 minutes of testing in the capillary flow system. 

 

Descriptives 

Hemolysis_Index   

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

40% RBCs in PBS 12 1.09775 .497771 .143694 .78148 1.41402 .656 2.156 

30% GRBCs and 

10% RBCs in PBS 
6 1.13650 .421060 .171897 .69462 1.57838 .787 1.946 

20% GRBCs and 

20% RBCs in PBS 
6 .88383 .319330 .130366 .54872 1.21895 .358 1.124 

10% RBCs in 7% 

Dextran 40 
6 .17800 .070029 .028589 .10451 .25149 .113 .266 

20% RBCs in 7% 

Dextran 40 
6 .23750 .090276 .045138 .09385 .38115 .152 .365 

Total 36 .80332 .537751 .092223 .61569 .99095 .113 2.156 
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Table E. 2. Levene’s Test for Homogeneity of Variances of the Index of Hemolysis calculated for the 40% RBC in 

PBS, 10% RBC and 30% GRBC in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% 

RBC in 7% Dextran 40 suspensions after 120 minutes of testing in the capillary flow system. 

 

 Table E. 3 and Table E. 4 show the descriptive statistics and Homogeneity of Variances 

Test, respectively, for the MFI calculated for the 40% RBC in PBS, 10% RBC and 30% GRBC 

in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% 

Dextran 40 suspensions after 120 minutes of testing in the capillary flow system. 

Table E. 3. Descriptive statistics of the mechanical fragility index calculated for the 40% RBC in PBS, 10% RBC 

and 30% GRBC in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 and 20% RBC in 7% 

Dextran 40 suspensions after 120 minutes of testing in the capillary flow system. 

 

Table E. 4. Levene’s Test for Homogeneity of Variances for the mechanical fragility index calculated for the 40% 

RBC in PBS, 10% RBC and 30% GRBC in PBS, 20% RBC and 20% GRBC in PBS, 10% RBC in 7% Dextran 40 

and 20% RBC in 7% Dextran 40 suspensions after 120 minutes of testing in the capillary flow system. 

 

Test of Homogeneity of Variances 

Hemolysis_Index   
Levene Statistic df1 df2 Sig. 

2.798 4 29 .044 
 

Descriptives 

MFI   

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

40% RBCs in PBS 12 1.7950 .35367 .10210 1.5703 2.0197 1.22 2.27 

30% GRBCs and 

10% RBCs in PBS 
6 1.5667 .42693 .17429 1.1186 2.0147 1.03 1.97 

20% GRBCs and 

20% RBCs in PBS 
6 1.6783 .22311 .09108 1.4442 1.9125 1.27 1.87 

10% RBCs in 7% 

Dextran 40 
6 .1800 .08485 .03464 .0910 .2690 .09 .27 

20% RBCs in 7% 

Dextran 40 
4 .3375 .11871 .05935 .1486 .5264 .16 .41 

Total 34 1.2776 .73968 .12685 1.0196 1.5357 .09 2.27 

 

Test of Homogeneity of Variances 

MFI   
Levene Statistic df1 df2 Sig. 

8.236 4 29 .000 
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APPENDIX F 

MICROCHANNEL FABRICATION 

The novel microchannel geometries used in the study of trafficking of GRBC and platelet-sized 

particles described in Chapter 7 were examined for fabrication from several commercial sources 

(ibidi LLC, CFD Research Corporation, etc.), but these sources proved to be too costly. 

Consequently, I investigated using 3D printing technology to fabricate the desired microchannels 

due to the availability of a 3D printer in Professor Antaki’s Laboratory.   

F.1      METHODS 

Microchannel designs were created in SolidWorks 2013 (Dassault Systèmes SolidWorks 

Corporation, Waltham, MA). Figure F.1 shows three iterations of the serpentine channel design. 

The designs were uploaded to and fabricated in a 3D printer (Perfactory, EnvisionTEC, 

Gladbeck, Germany).   
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Figure F. 1. Three iterations of the serpentine microchannel design created in SolidWorks. 

Units are shown in millimeters. 

A variety of filtered resins (E-shell 300, E-shell 500, R11), channel printing orientations 

(horizontal or vertical) and numerous revisions of the microchannel designs were investigated in 

our many attempts to fabricate the desired channel geometries with a well-defined flow path and 

smooth walls. A further problem was attaining an effective seal with corona treatment to attach 

the resin to glass coverslips to form the channels (Figure F.2).   

 

Figure F. 2. Serpentine microchannel fabricated in E-shell 500 and sealed on a glass coverslip. 

Unfortunately, I was ultimately unable to make channels with smooth walls or a well-

defined flow path in a reproducible manner using the 3D printer (Figure F.3). Hence, 

microchannel fabrication using 3D printing technology was abandoned. 
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Figure F. 3. Brightfield visualization of a representative serpentine microchannel fabricated in E-shell 500 resin 

using a 3D printer. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

Microchannel fabrication was pursued using PDMS to make the channels. Figure F.4  

shows novel designs of a serpentine microchannel and a microchannel with multiple crevices 

were made in SolidWorks 2013. A mask was created with these designs and purchased from 

Photo Sciences, Inc. Once the mask was received, a 4" D Silicon wafer was created in the CMU 

Nanofabrication Laboratory by Dr. Collin Edington. The wafer was treated with an adhesion 

promoter (HMDS), spin coated with a photo resist, baked to harden the resist and then exposed 

to UV light in an aligner.  
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Figure F. 4. Novel designs of a crevice microchannel [left] and serpentine microchannel [right] used to study the 

trafficking of GRBC and platelet-sized particles under flow conditions that may promote thrombosis in the assisted 

blood circulation. The height of both channels is 75 µm.  

Units are shown in millimeters. The red numbers designate the crevice and bend numbering convention. 

Next, the wafer was submerged in developer to dissolve away the resist that was exposed 

to light, thus leaving the areas that were covered by the dark patterns on the mask. The remaining 

resist serves as a protective layer during etching of the wafer. Etching was performed in cycles, 

where the wafer was first exposed to a thin protective layer of material, followed by an etchant. 

The cycles were very short (8-12 seconds), and repeated back and forth for a few hours. The 

cyclic passivating/etching allowed for anisotropic etching, which kept the sidewalls of the 

pattern vertical and protected them from etching inward during the process. After etching, the 

protective resist layer was removed and the PDMS mold was complete. The PDMS was then 

treated with chlorosilane vapor that created a non-stick surface to more easily remove the PDMS. 
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In a laminar flow hood, the individual channels were cut from the wafer using an X-

ACTO knife with razor blades treated with tape that removes any surface artifacts or debris and 

leaves no surface residue. Holes for the inlet and outlet of the channels were punched using a 

custom fabricated blunt needle and a stereoscope. Individual PDMS channels and coverslips 

(Fisherfinest™ Premium Cover Glasses, Fisher Scientific Inc.) were treated with no-residue tape 

before sealing the channels to coverslips using corona treatment. The sealed channels were 

placed on a glass petri dish and baked overnight in an oven at 60°C. After cooling, tubing (PE-

60, Braintree Scientific, Inc.) was treated with no-residue tape and inserted into the inlet (8 cm 

length) and outlet (11 cm length) of the microchannel to be tested. A 200 µl pipet tip was treated 

with no-residue tape and carefully inserted in the open end of the inlet tubing. A sterile 21 gauge 

1.5” L needle was inserted into the open end of the outlet tubing and the flow path of the 

microchannel was viewed with the microscope to ensure that the channel was suitable for testing 

(smooth walls, no debris in channel, etc). 

F.2      RESULTS 

Representative crevice and serpentine channels after fabrication and prior to sealing on glass 

coverslips are shown in Figures F.5-F.26. The channels were carefully placed on glass 

coverslips and images were acquired using the setup described in Section 7.2. Figure F. 5 shows 

the inlet region to a representative crevice channel. The inlet contraction region is shown in 

Figure F. 6 and the first crevice in the flow path of the crevice microchannel is shown in Figure 

F. 7. 
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Figure F. 5. Left and right walls of the inlet region to the Crevice microchannels prior to sealing. 40x magnification. 

Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 6. Inlet contraction region to the Crevice microchannels prior to sealing. 40x magnification. Field of view 

is 500 µm by 500 µm. 

 

Figure F. 7. First crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. Field of 

view in each image is 500 µm by 500 µm. 

Figure F. 8, Figure F. 9 and Figure F. 10 shows the second, third and fourth crevices in 

the flow path of the crevice microchannels before sealing. Crevices 5, 6 and 7 prior to sealing are 

shown in Figure F. 11, Figure F. 12 and Figure F. 13, respectively. 
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Figure F. 8. Second crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 

 

Figure F. 9. Third crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 

 

Figure F. 10. Fourth crevice in the flow path of the Crevice microchannels prior to sealing. 40x 

magnification. 

 

Figure F. 11. Fifth crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 
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Figure F. 12 Sixth crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. 

 

Figure F. 13. Seventh crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. 

Field of view in the image is 500 µm by 500 µm. 

 Figure F. 14 shows Crevice 8 of the representative crevice microchannel prior to sealing. 

A backward step in the flow path of the crevice microchannels before sealing is shown in Figure 

F. 15. Figure F. 16 shows the left and right walls of the outlet region of the crevice 

microchannels prior to sealing. 

 

Figure F. 14. Eighth crevice in the flow path of the Crevice microchannels prior to sealing. 40x magnification. Field 

of view in the image is 500 µm by 500 µm. 
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Figure F. 15. Backward step in the flow path of the Crevice microchannels prior to sealing. 40x magnification. 

Field of view in the image is 500 µm by 500 µm. 

 

Figure F. 16. Left and right walls of the outlet region of the Crevice microchannels prior to sealing. 40x 

magnification. 

 Figure F. 17 shows the inlet region to a representative serpentine channel prior to 

sealing. The inlet contraction region is shown in Figure F. 18 and the first bend in the flow path 

of the serpentine microchannel before sealing is shown in Figure F. 19. 

 

Figure F. 17. Left and right walls of the inlet region to the serpentine microchannels prior to sealing. 40x 

magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 18. Inlet contraction region to the serpentine microchannels prior to sealing. 40x magnification. Field of 

view is 500 µm by 500 µm. 
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Figure F. 19. First bend in the flow path of the serpentine microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 

Figure F. 20, Figure F. 21 and Figure F. 22 shows the second, third and fourth bends in 

the flow path of the serpentine microchannels before sealing. Bends 5 and 6 prior to sealing are 

shown in Figure F. 23 and Figure F. 24, respectively. 

.  

Figure F. 20. Second bend in the flow path of the serpentine microchannels prior to sealing. 40x magnification. 

Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 21. Third bend in the flow path of the serpentine microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 
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Figure F. 22. Fourth bend in the flow path of the serpentine microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 

 

Figure F. 23. Fifth bend in the flow path of the serpentine microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 

 

Figure F. 24. Sixth bend in the flow path of the serpentine microchannels prior to sealing. 40x magnification. Field 

of view in each image is 500 µm by 500 µm. 

Figure F. 25 shows a backward step in the flow path of the serpentine microchannels 

before sealing. Figure F. 26 shows the left and right walls of the outlet region of the serpentine 

microchannels prior to sealing. 
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Figure F. 25. Backward step in the flow path of the serpentine microchannels prior to sealing. 40x magnification. 

Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 26. Left and right walls of the outlet region to the serpentine microchannels prior to sealing. 40x 

magnification. Field of view in each image is 500 µm by 500 µm. 

 Representative crevice and serpentine channels sealed on glass coverslips and filled with 

1% BSA in PBS are shown in Figures F.27-F.45. The channels were examined under 

Brightfield visualization using the setup described in Section 7.2. Figure F. 27 shows the inlet 

and contraction regions of a representative crevice channel. The first, second and third crevices 

in the flow path of the crevice microchannel are shown in Figure F. 28, Figure F. 29 and Figure 

F. 30, respectively. 

 

Figure F. 27. Inlet and contraction regions of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 
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Figure F. 28. First crevice in the flow path of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

 

Figure F. 29. Second crevice in the flow path of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

 

Figure F. 30. Third crevice in the flow path of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

 The fourth, fifth and sixth crevices in the flow path of a representative crevice 

microchannel filled with 1% BSA in PBS are shown in Figure F. 31, Figure F. 32 and Figure 

F. 33, respectively. The seventh and eighth crevices in the flow path of a crevice microchannel 

filled with 1% BSA in PBS is shown in Figure F. 34. 
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Figure F. 31. Fourth crevice in the flow path of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

 

Figure F. 32. Fifth crevice in the flow path of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

 

Figure F. 33. Sixth crevice in the flow path of a representative crevice microchannel filled with 1% bovine serum 

albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

 

Figure F. 34. Seventh and eighth crevices in the flow path of a representative crevice microchannel filled with 1% 

bovine serum albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 
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Figure F. 35. Eighth crevice, backward step and outlet regions of a representative crevice microchannel filled with 

1% bovine serum albumin. 20x magnification. Field of view in each image is 1000 µm by 1000 µm. 

Figure F. 36 and Figure F. 37 show the inlet and contraction regions of a representative 

serpentine channel filled with 1% BSA in PBS. The first, second and third bends in the flow path 

of a representative serpentine microchannel filled with 1% BSA in PBS are shown in Figure F. 

38, Figure F. 39 and Figure F. 40, respectively. 

 

Figure F. 36. Left and right walls of the inlet region of a representative serpentine microchannel filled with 1% 

bovine serum albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 37. Contraction region of a representative serpentine microchannel filled with 1% bovine serum albumin. 

40x magnification. Field of view in each image is 500 µm by 500 µm. 
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Figure F. 38. First bend in the flow path of a representative serpentine microchannel filled with 1% bovine serum 

albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 39. Second bend in the flow path of a representative serpentine microchannel filled with 1% bovine serum 

albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 40. Third bend in the flow path of a representative serpentine microchannel filled with 1% bovine serum 

albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

The fourth, fifth and sixth bends in the flow path of a representative serpentine 

microchannel filled with 1% BSA in PBS are shown in Figure F. 41, Figure F. 42 and Figure 

F. 43, respectively. A backward step in the flow path of a representative serpentine microchannel 
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filled with 1% BSA is shown in Figure F. 44. Figure F. 45 shows the left and right walls of the 

outlet region of a representative serpentine microchannel filled with 1% BSA in PBS. 

 

Figure F. 41. Fourth bend in the flow path of a representative serpentine microchannel filled with 1% bovine serum 

albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 42. Fifth bend in the flow path of a representative serpentine microchannel filled with 1% bovine serum 

albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 43. Sixth bend in the flow path of a representative serpentine microchannel filled with 1% bovine serum 

albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 
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Figure F. 44. Backward step in the flow path of a representative serpentine microchannel filled with 1% bovine 

serum albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

 

Figure F. 45. Left and right walls of the outlet region of a representative serpentine microchannel filled with 1% 

bovine serum albumin. 40x magnification. Field of view in each image is 500 µm by 500 µm. 

F.3      DISCUSSION 

Experiments conducted in Chapter 7 were performed using a novel multiple crevice 

microchannel fabricated in PDMS. Multiple crevice microchannels were pretreated with no-

residue tape and microscopically examined for any defects. Suitable channels were sealed on 

glass coverslips using corona treatment and incubated overnight at 60°C to irreversibly seal the 

channels. All sealed channels were reexamined under Brightfield visualization to ensure that 

there were no channel defects or artifacts present in the channels prior to testing.  
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APPENDIX G 

TRAFFICKING OF ERYTHROCYTE GHOSTS AND PLATELETS OR PLATELET-

SIZED PARTICLES IN BACKWARD STEP, STRAIGHT AND Y-BIFURCATION 

MICROCHANNEL GEOMETRIES 

G.1 INTRODUCTION 

In the artificial blood circulation, RBC and platelets are exposed to non-physiological forces and 

surfaces that may promote hemolysis and thrombosis. Channel geometries previously used to 

study particle/cell distributions under physiological or supra-physiological shear stresses include 

straight channels (τwall~0.15-30 Pa) [214, 221], sudden expansions [159, 227] and rounded and 

square T-junctions [228, 229]. Platelet margination was first reported by Goldsmith in sudden 

expansion channels using GRBC and particles [159]. The margination of platelet-sized particles 

flowing through a 100 µm height straight channel (τwall~40-200Pa) [230] and a 100 µm:200µm 

height backward step microchannel (similar to the gap sizes in many circulatory-assist devices) 

exposed to τwall~20-100 Pa was recently reported by Zhao et al. using suspensions of bovine 

RBC and fluorescent platelet-sized particles [231]. 
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 The objective of this study was to examine the trafficking of GRBC and fluorescently-

labeled platelets or PSFP under flow in several microchannel geometries. The microscopic 

examination of trafficking of GRBC and platelets or PSFP will provide additional insight into the 

flow conditions and interaction of cells that may lead to the formation of thrombosis in the 

microcirculation, small gaps similar to those within some circulatory-assist devices and in 

conditions resulting in flow separation. 

G.2 TRAFFICKING OF ERYTHROCYTE GHOSTS AND PLATELETS IN A 

BACKWARD STEP MICROCHANNEL  

G.2.1 Methods 

Human O- RBC units were purchased from Valley Biomedical Inc. RBC are sterilely extracted 

from the bag and washed thrice in PBS. GRBC were prepared according to the protocol 

described in Section 6.2. Fixed, fluorescently-labeled PRP was prepared from human blood 

obtained from healthy human donors via venipuncture collection in 3.2% sodium citrate 

vacutainers per Carnegie Mellon University IRB Protocol HS12‐504. PRP was prepared by 

centrifugation of vacutainers at 250xg for 15 minutes at 22°C. PRP was then transferred to a 

polypropylene tube and incubated with 5 µM final concentration of mepacrine, a granular dye, to 

stain platelets [71]. After incubation, stained platelets were fixed in 1% paraformaldehyde (USB 

Corporation, Cleveland, OH) and washed twice in PBS to remove excess dye and 

paraformaldehyde. Gentamicin (0.25 mg/L, Gentamax 100, Nature Vets) was added to fixed 
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dyed PRP to prevent bacterial growth. Fixed dyed platelets were used within seven days of 

preparation. Platelet counts were performed for human PRP before and after the washing 

procedure using the Countess Automated Cell Counter (Life Technologies, Grand Island, NY). 

Additional platelet counts were performed for baseline and post-shear samples collected from the 

microchannel experiments.  

GRBC and fixed dyed PRP were prepared (n=4 each). Suspensions of 20% GRBC and 

~300,000 fixed dyed platelets/µl in 3.5% Dextran 70 solution (n=4), 30% GRBC and ~300,000 

fixed dyed platelets/µl in 3% Dextran 70 solution (n=1), and 40% GRBC and ~300,000 fixed 

dyed platelets/µl in 1% Dextran 70 solution (n=3) were prepared and the viscosity of all tested 

suspensions was measured using a Wells-Brookfield Cone/Plate viscometer (DVIII+, 

Middleboro, MA) at shear rates of 10-500 s-1 and a 25°C temperature. The viscosity of all tested 

suspensions was 4.4 ± 0.5 cP at a 200 s-1 shear rate.  

Microchannel fabrication was performed by Dr. Chen of the Pekkan Laboratory of 

Carnegie Mellon University. The channel design is shown in Figure G. 1. The channel geometry 

had a height of 100 µm and width containing a 100 µm:200 µm backward step. The length of 

each width section was 500 µm. The channels were fabricated in polydimethylsiloxane (PDMS) 

and sealed on glass coverslips using corona treatment.  
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Figure G. 1. Design of a backward step microchannel to study the trafficking of GRBC and fluorescently-dyed 

platelets under flow conditions that may promote thrombosis in the assisted blood circulation. 

Units are shown in centimeters. 

All microchannels were rinsed twice with sterile filtered PBS and incubated with sterile 

filtered 1% BSA for 30 minutes prior to testing to passivate all cell-contacting surfaces. 

Suspensions were driven through the custom fabricated PDMS microchannels at flow rates of 

0.25, 0.5 and 1.0 ml/min. The flow system consisted of a syringe pump (PHD2000, Harvard 

Apparatus), an inlet pressure transducer (R-07356-61, Cole-Parmer Instrument Company), 5 ml 

syringe, and a microchannel on the stage of a microscope. The microchannel was visualized 

through an inverted fluorescent microscope (IX70, Olympus Inc., Melville, NY) with a 40X 

objective (Olympus Inc.). A high speed camera (FastCam SA4, Photron USA Inc., San Diego, 

CA) attached to the side port of the microscope was used to capture magnified images of GRBC 

(Brightfield visualization) and platelets (fluorescent visualization) along the span of the 

microchannel. A personal computer with Photron FASTCAM Viewer software was used to 

record video of flowing GRBC and platelets in several regions of interest (ROI) in the 

microchannel (Figure G. 2).  
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Figure G. 2. Experimental system for the study of trafficking of GRBC and platelets or platelet-sized particles in 

several microchannel geometries. 

G.2.2 Results and Discussion 

20% GRBC and ~300,000 fixed, dyed platelets/µl at flow rates of 0 and 0.5 ml/min flowing 

through the 100µm:200µm sudden expansion are shown in Figure G. 3. Fixed, fluorescent 

platelets were not well visualized using the PDMS sudden expansion microchannels prepared by 

the Pekkan Laboratory at Carnegie Mellon University. It was found that fixed, dyed platelets 

adhered to the surface of PDMS and thus concluded that these microchannels were not suitable 

for additional studies. For continuing microchannel experiments with fixed dyed platelets and 

GRBC, straight microchannels were purchased from a commercial source (ibidi, LLC). 
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Figure G. 3. 20% hematocrit human GRBC and fluorescent platelets flowing through a 100:200 µm sudden 

expansion in microchannel at 0 ml/min (left) and 0.5 ml/min (right).  

40x magnification. Field of view is 500 µm by 500 µm. 

G.3 TRAFFICKING OF ERYTHROCYTE GHOSTS AND PLATELETS IN A 

STRAIGHT MICROCHANNEL 

G.3.1 Methods  

GRBC were prepared according to the protocol described in Section 6.2 and fixed, fluorescently-

labeled platelets were prepared according to the protocol described in Section G.2.1 (n=3 each). 

Suspensions of 20% GRBC and ~300,000 fixed dyed platelets/µl in 3.5% Dextran 70 solution 

(n=14), 30% GRBC and ~300,000 fixed dyed platelets/µl in 3% Dextran 70 solution (n=3), and 

40% GRBC and ~300,000 fixed dyed platelets/µl in 2.5% Dextran 70 solution (n=9) were 

prepared and the viscosity of all tested suspensions was measured using a Wells-Brookfield 

Cone/Plate viscometer (DVIII+, Middleboro, MA) at shear rates of 10-500 s-1 and a 25°C 

temperature. The viscosity of all tested suspensions was 5.0 ± 0.3 cP at a 200 s-1 shear rate. The 

straight microchannels (µ–Slide I 0.1 Luer, ibidi LLC) had a height of 100 µm, width of 5 mm 
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and length of 50 mm. All microchannels were rinsed twice with sterile filtered PBS and 

incubated with sterile filtered 1% BSA for 30 minutes prior to testing to passivate all cell-

contacting surfaces. The flow system described in Section G.2.1 was used to examine test 

suspensions at controlled flow rates of 0.10, 0.25, 0.5 and 1.0 ml/min corresponding to Re ~0.1-

0.7 and wall shear stresses of 6-18 Pa in the straight microchannels.  

G.3.2 Results and Discussion 

Figure G. 4 shows 20% GRBC and ~300,000 fixed, dyed platelets/µl flowing through the 

straight microchannel near the wall at flow rates of 0.1, 0.25 and 0.5 ml/min. Fixed, fluorescent 

platelets were not well visualized using the PDMS microchannels or the ibidi straight 

microchannels. For continuing microchannel experiments, It was chosen to replace platelets with 

platelet-sized fluorescent particles (Duke Scientific Corporation) and use a Y-bifurcation 

microchannel from a commercial source (CFD Research Corporation). 

 

Figure G. 4. 20% hematocrit human GRBC and fluorescent platelets flowing through a 100 µm height straight 

channel near the wall at 0.1 ml/min (left), 0.25 ml/min (middle) and 0.5 ml/min (right).  

40x magnification. Field of view in each image is 500 µm by 500 µm. 
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G.4 TRAFFICKING OF ERYTHROCYTE GHOSTS AND PLATELET-SIZED 

PARTICLES IN A Y-BIFURCATION MICROCHANNEL 

G.4.1 Methods 

GRBC were prepared according to the protocol described in Section 6.2 (n=4). Platelet-sized 

fluorescent polystyrene particles (2 µm diameter, #R0200) were purchased from Duke Scientific 

Corporation. Suspensions of 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 solution 

(n=8), 30% GRBC and ~1,000,000 fixed dyed platelets/µl in 25% Dextran 40 solution (n=8) and 

40% GRBC and ~1,000,000 fixed dyed platelets/µl in 20% Dextran 40 solution (n=7) were 

prepared. The viscosity of all tested suspensions was measured using a Wells-Brookfield 

Cone/Plate viscometer (DVIII+, Middleboro, MA) at shear rates of 10-100 s-1 and a 25°C 

temperature. The viscosity of all tested suspensions was 20 ± 2 cP at a 100 s-1 shear rate. All 

microchannels were rinsed twice with sterile filtered PBS and incubated with sterile filtered 1% 

BSA for 30 minutes prior to testing to passivate all cell-contacting surfaces. Suspensions were 

pulled through SynVivo microvascular network channels (Lot# 2-015, 100 µm height, 100 µm 

width) at withdrawal flow rates of 5, 10, 15, 25, 50 and 100 µl/min corresponding to Re ~5-100 

and wall shear stresses -20--500 Pa. 

The flow system consisted of a syringe pump (PHD2000, Harvard Apparatus), 200 µl 

pipet tip (fluid inlet), small cap over the inlet (prevent debris from entering the channel), an 

outlet pressure transducer (Abbott Laboratories), 5 ml syringe, and a microchannel on the stage 

of a microscope (Figure G. 5). The microchannel was visualized through an inverted fluorescent 

microscope (IX70, Olympus Inc., Melville, NY) with a 20X, 40X or 100X objective (Olympus 
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Inc.). A high speed camera (FastCam SA4, Photron USA Inc., San Diego, CA) attached to the 

side port of the microscope was used to capture magnified images of GRBC (Brightfield 

visualization) and PSFP (fluorescent visualization) and a personal computer with Photron 

FASTCAM Viewer software was used to record video of flowing GRBC and PSFP in several 

ROI in the microchannel.  

 

Figure G. 5. Close up view of the flow system used for the study of trafficking of GRBC and PSFP in several 

microchannel geometries. 

G.4.2 Results  

Figure G. 6 shows 20% GRBC and ~1,000,000 PSFP/µl, 30% GRBC and ~1,000,000 PSFP/µl 

and 40% GRBC and ~1,000,000 PSFP/µl flowing through a straight section of the microchannel 

at flow rates of 5, 25 and 50 µl/min. Figure G. 7 shows the same suspensions flowing through a 

Y-bifurcation section of the microchannel at flow rates of 5, 25 and 50 µl/min. 
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Figure G. 6. 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 solution [top row], 30% GRBC and 

~1,000,000 PSFP/µl in 25% Dextran 40 solution [middle row], and 40% GRBC and ~1,000,000 PSFP/µl in 20% 

Dextran 40 solution [bottom row] flowing through a straight section of the microchannel at 5 µl/min [left column], 

25 µl/min [middle column], and 50 µl/min [right column]. 40x magnification. 

Field of view in each image is 500 µm by 500 µm. 
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Figure G. 7. 20% GRBC and ~1,000,000 PSFP/µl in 30% Dextran 40 solution [top row], 30% GRBC and 

~1,000,000 PSFP/µl in 25% Dextran 40 solution [middle row], and 40% GRBC and ~1,000,000 PSFP/µl in 20% 

Dextran 40 solution [bottom row] flowing through a Y-bifurcation section of the microchannel at 5 µl/min [left 

column], 25 µl/min [middle column], and 50 µl/min [right column]. 

40x magnification. Field of view in each image is 500 µm by 500 µm. 
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G.5 DISCUSSION    

This study showed regions of elevated platelet-sized particle concentrations in straight and Y-

bifurcation microchannel geometries over a range of flow conditions relevant to the operation of 

CAD. Suspensions of 20% and 30% GRBC with the same particle concentration produced 

similar cell/particle distributions and areas of particle adhesion. This study preceded the study  

described in Chapter 7 characterized the trafficking of 20% and 40% GRBC and 1,000,000 

PSFP/µl suspensions in novel, custom-fabricated microchannel geometries.     
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