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Aim To assess the in vitro effect of hydrogen peroxide 
(H2O2) on uterine contractions in pregnant and non-preg-
nant rats.

Methods The study was performed at the Department of 
Physiology, College of Medicine, King Saud University from 
December 2016 to October 2017. Intact uterine samples 
were obtained from non-pregnant (n = 7-8) and term-
pregnant (n = 6-7) rats. Small longitudinal uterine strips 
were dissected and mounted in an organ bath. Isometric 
force measurements were used to assess the effect of 400, 
800, and 1000 μM H2O2 on spontaneous uterine contrac-
tions and contractions induced by oxytocin (5 nM), high 
calcium (Ca+2) solution (6 mmol/L), and high potassium 
chloride (KCl) solution (60 mmol/L).

Results In both term-pregnant and non-pregnant uter-
ine strips, H2O2 elicited a biphasic response, consisting of 
a transient contraction followed by a persistent decrease 
in spontaneously generated contractions, contractions in-
duced by oxytocin, and contractions induced by high Ca+2 
(all P < 0.01, compared with controls) in a concentration-de-
pendent manner. The effect of H2O2 was more pronounced 
in non-pregnant than in pregnant rats (P < 0.05). In both 
groups, H2O2 failed to relax uterine strips pre-contracted 
with high-KCl solution (P > 0.05 compared with controls).

Conclusion H2O2 was shown to be a potent uterine relax-
ant in pregnant and non-pregnant states. The pregnant 
uterus better withstood the inhibitory effect of H2O2 than 
non-pregnant uterus. Received: July 27, 2018
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Uterine smooth muscles in pregnancy undergo extensive 
metabolic changes to support the physiological process of 
labor. At the onset of labor, the relatively quiescent myo-
metria change suddenly to a very excitable tissue produc-
ing strong intermittent contractions. These contractions 
briefly compress the uterine blood vessels, resulting in re-
petitive ischemia and hypoxia (1,2), which generate reac-
tive oxygen species (ROS), such as superoxide (O2

-), hydro-
gen peroxide (H2O2), and peroxynitrite (NO3

-) (3-5). At the 
same time, uterine smooth muscles produce antioxidant 
enzymes that minimize the destructive effect of ROS (6). 
H2O2 is an important signaling molecule with long half-life 
in biological systems and the ability to diffuse easily across 
the plasma membranes (7).

Hypoxia and ischemia have deleterious effects on pH and 
uterine metabolites, including adenosine 5’-triphosphate 
and phosphocreatine (1). Our previous study showed 
that hypoxia significantly decreased or inhibited the force 
of uterine contraction in rats from different gestation 
stages (8). At the molecular and cellular level, a uterine 
contraction is initiated by calcium (Ca2+) influx from the 
extracellular milieu via the voltage-gated calcium chan-
nels (VGCCs) or Ca2+ release from the sarcoplasmic reticu-
lum (SR). The uterine contraction force during labor can 
be augmented by oxytocin, which further increases Ca2+ 
influx and release (9).

The contraction force induced by oxytocin was de-
creased in non-laboring pregnant women by O2

- and 
H2O2 (10). However, different types of smooth mus-
cles have different contractile response to H2O2. Aortic 
and airway smooth muscles contract (11,12), whereas 
smooth muscles of the mesenteric arteries and intes-
tine relax (13,14). Because the contractile responses to 
H2O2 differ depending on the species, tissue type, experi-
mental design, and contractile state (quiescent or pre-
contracted), no consensus has been reached on the ex-
act effect of H2O2 on a specific type of smooth muscle. 
Given that ROS generation within the uterine compart-
ments is a part of the normal muscle contraction and 
labor process, we hypothesize that excessive ROS pro-
duction could decrease the force of uterine contractions, 
which may be pronounced in non-pregnant uterus. The 
aim of this study was to determine the effects of H2O2 on 
spontaneously generated uterine contraction and con-
tractions induced by oxytocin, high extracellular calci-
um (high-Ca2+) solution, and high potassium chloride 

(KCl) solution, and to examine if the response to H2O2 
is gestationally different.

Material and methods

Experimental animals

The experiments included virgin non-pregnant (200 g, 
n = 7-8) and term-pregnant female Wistar rats (22 days of 
gestation, n = 6-7). The sample size was determined based 
on our experience and previous studies (8), which sug-
gested that clear and consistent drug effects on uterine 
contraction are observed in sample sizes of 6-7. It was also 
based on the recommendations for the use of minimum 
number of animals by the UK Animals (Scientific Proce-
dures) Act 1986. The experimental protocol was approved 
by and carried out according to the Institutional Animal 
Care Committee (IACC) of King Saud University recom-
mendations (September 2016). The study was performed 
at the Department of Physiology, College of Medicine, King 
Saud University from December 2016 to October 2017. The 
animals were sacrificed by cervical dislocation under CO2 
anesthesia in accordance with the UK Home Office guide-
lines (https://www.legislation.gov.uk/ukpga/1986/14/
schedule/1). The uterus was removed and immediately 
placed into physiological Krebs saline solution. A longi-
tudinal uterine strip (2 mm ×10 mm) was dissected from 
each uterus, followed by mechanical removal of the endo-
metrial layer.

Solutions and chemicals

Krebs solution was composed of the following (in mmol/L): 
115 NaCl, 4.7 KCl, 2 CaCl2, 1.16 MgSO4, 1.18 KH2PO4, 22 
NaHCO3, and 7.88 dextrose, pH 7.4. High-KCl solution (60 
mmol/L) was prepared by isosmotic substitution of KCl 
for NaCl. Oxytocin was used at a final concentration of 5 
nM and added directly to Krebs solution. High-Ca2+ solu-
tion was prepared by increasing the extracellular CaCl2 
concentration in Krebs solution from 2 to 6 mmol/L. H2O2 
was added directly to the Krebs solution. All chemicals and 
drugs were of analytical grade and purchased from Sigma 
(St. Louis, MO, USA).

Isolated tissue bath protocols

The uterine strips for isometric force recordings were pre-
pared as described in our previous study (8). Briefly, isolated 
uterine strips were tied up from both ends using surgical 
silk and mounted vertically in a tissue organ bath (Panlab, 
ADInstruments Ltd, Sydney, Australia). The bath was con-
tinuously perfused with a warmed Krebs solution at a rate 
of 4 mL/min and bubbled with 95% O2 and 5% CO2 at 37°C. 

https://www.legislation.gov.uk/ukpga/1986/14/schedule/1
https://www.legislation.gov.uk/ukpga/1986/14/schedule/1
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The uterine strips were attached to an isometric force trans-
ducer (ADInstruments Ltd) under 1 g resting tension, and 
the force of contraction was measured in millinewtons. Cu-
mulative concentrations of H2O2 (400, 800, and 1000 μM) 
were applied to the intact uterine strips as follows: 1) dur-
ing spontaneous contraction; 2) during stimulation by oxy-
tocin; 3) during stimulation by high-Ca2+ solution; and 4) 
during stimulation by high-KCl solution. In all experiments, 
H2O2 was applied for 20 minutes, after which the tissue was 
washed out to allow recovery. Each H2O2 dose was tested 
on new uterine strips as some uterine strips died or did not 
recover from the toxic effect of the drug.

Statistical analysis

Data are expressed as means ± standard deviation (SD), 
with “n” representing the number of uterine strips, one 
from each rat. The normality of data distribution was test-
ed using Shapiro-Wilk test and by visual inspection of the 
histogram and normal Q-Q plots for each H2O2 concentra-
tion. Regular contractile activity in the last 10 minutes in 
the control Krebs solution (before adding any H2O2 con-
centration) was calculated as 100% control. The contrac-
tile activity in the last 10 minutes during H2O2 application 
was measured and expressed as a percentage of the pre-
ceding control period. Force amplitude, frequency (num-
ber of contractions in 10 min), and force integral (entire 

area under the curve, AUC) were compared between two 
groups using t test and between three groups using one-
way ANOVA with Bonferroni correction. The level of sig-
nificance was set at P < 0.05. The analysis was performed 
using OriginLab software (OriginLab, Northampton, MA, 
USA).

Results

Application of 400 μM, 800 μM, and 1000 μM of H2O2 
caused a transient uterine contraction followed by a 
marked persistent relaxation in both term-pregnant and 
non-pregnant rat uteri (Figure 1). Pregnant tissues tolerat-
ed the effect significantly better than non-pregnant tissues 
(Table 1). The same effect of all H2O2 concentrations was 
observed on oxytocin-induced (Figure 2, Table 2) and high 
calcium-induced uterine contractions (Figure 3, Table 3). In 
the case of high KCl-induced contractions, application of 
400 μM, 800 μM, and 1000 μM of H2O2 also caused a tran-
sient contraction, but the force decrease was not signifi-
cant compared with 100% control (Figure 4, Table 4).

Discussion

H2O2 decreased uterine contractions induced by differ-
ent mechanisms in a concentration-dependent manner in 
both pregnant and non-pregnant rats. However, in com-

Table 2. Effects of different concentrations of hydrogen peroxide (H2O2) in vitro on oxytocin-induced contractions in term-pregnant 
and non-pregnant rat uteri

H2O2 concentrations

before adding H2O2 400 μM 800 μM 1000 μM 400 μM 800 μM 1000 μM

Contraction parameter (mean ± standard deviation, %) control term-pregnant (n = 6) non-pregnant (n = 7)

Amplitude 100 82 ± 6* 75 ± 3* 60 ± 3* 78 ± 3* 67 ± 3*† 52 ± 3*‡

Frequency 100 85 ± 6* 69 ± 3* 64 ± 3* 82 ± 6* 67 ± 3* 56 ± 3*‡

Area under the curve 100 73 ± 6* 64 ± 3* 57 ± 3* 72 ± 3* 64 ± 3* 53 ± 3*†

*P < 0.01 compared with control (ANOVA/Bonferroni).
†P < 0.05 compared with term-pregnant (t-test).
‡P < 0.01 compared with term-pregnant (t-test).

Table 1. Effects of different concentrations of hydrogen peroxide (H2O2) in vitro on spontaneous contractions of term-pregnant and 
non-pregnant rat uteri

H2O2 concentrations

before adding H2O2 400 μM 800 μM 1000 μM 400 μM 800 μM 1000 μM

Contraction parameters (mean ± standard deviation, %) control term-pregnant (n = 7) non-pregnant (n = 8)
Amplitude 100 90 ± 3* 70 ± 6* 56 ± 5* 82 ± 3*† 63 ± 3*† 51 ± 2*†

Frequency 100 87 ± 8* 75 ± 3* 56 ± 6* 82 ± 8* 63 ± 8*† 53 ± 3*
Area under the curve 100 84 ± 5* 73 ± 3* 63 ± 3* 75 ± 3*† 65 ± 3*† 57 ± 3*†

*P < 0.01 compared with control (ANOVA/Bonferroni).
†P < 0.05 compared with term-pregnant (t-test).
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parison with non-pregnant tissue, pregnant tissue tolerat-
ed the relaxant effect of H2O2 better.

H2O2 has been extensively used to induce experimen-
tal oxidative stress in isolated vascular and non-vascular 
smooth muscles. Our results are in agreement with previ-
ous findings on the ability of H2O2 to significantly decrease 

oxytocin-induced uterine contraction in pregnant women 
(10) and uterine contractions generated spontaneously or 
induced by 6 mmol/L Ca2+ in non-pregnant rats (15). H2O2 
exerts its effects through cell membrane ion channels (16), 
potassium channels (16-19), calcium channels (20), and 
Ca2+-activated Cl– or Na+ currents (17).

Table 4. Effects of different concentrations of hydrogen peroxide (H2O2) in vitro on uterine contractions induced by high potassium 
chloride solution in term-pregnant and non-pregnant rat uteri*

H2O2 concentrations

before adding H2O2 400 μM 800 μM 1000 μM 400 μM 800 μM 1000 μM

Contraction parameters (mean ± standard deviation, %) control term-pregnant (n = 6) non-pregnant (n = 7)

Area under the curve 100 97 ± 3 98 ± 3 96 ± 6 96 ± 6 98 ± 3 96 ± 8
*There were no significant differences among the three doses of H2O2 concentrations between the two groups.

Table 3. Effects of different concentrations of hydrogen peroxide (H2O2) in vitro on uterine contractions induced by high-Ca2+ solu-
tion in term-pregnant and non-pregnant rat uteri

H2O2 concentrations

before adding H2O2 400 μM 800 μM 1000 μM 400 μM 800 μM 1000 μM

Contraction parameters (mean ± standard deviation, %) control term-pregnant (n = 6) non-pregnant (n = 7)

Amplitude 100 83 ± 3* 67 ± 5* 60 ± 3* 82 ± 3* 61 ± 3*† 53 ± 3*†

Frequency 100 82 ± 6* 67 ± 3* 62 ± 3* 80 ± 3* 62 ± 3*† 55 ± 3*†

Area under the curve 100 83 ± 3* 65 ± 3* 64 ± 3* 83 ± 3* 60 ± 3*† 58 ± 3*†

*P < 0.01 compared with control (ANOVA/Bonferroni).
†P < 0.05 compared with term-pregnant (t-test).

Figure 1. Original recordings showing the contractile re-
sponses of uterine strips to 400 μM, 800 μM, and 1000 μM of 
hydrogen peroxide (H2O2) during spontaneous activity in (A) 
term-pregnant and (B) non-pregnant rats. mN – millinewton.

Figure 2. Original recordings showing the contractile 
responses of uterine strips in the presence of 5 nM oxytocin 
(OT) to 400 μM, 800 μM, and 1000 μM of hydrogen peroxide 
(H2O2) in (A) term-pregnant and (B) non-pregnant rats. mN – 
millinewton.



331Alanazi et al: Effects of hydrogen peroxide on rat uterine contraction

www.cmj.hr

The observed biphasic response to H2O2 consisting of an 
initial transient contraction followed by a persistent relax-
ation may be explained by Ca2+ influx or release by H2O2. 
These findings are supported by previous studies in oth-
er types of smooth muscles, where H2O2 application in-
creased intracellular calcium [Ca2+]i via either calcium influx 
from the extracellular space (20) or calcium release from 
the SR (18). In other studies, blocking Ca2+ entry through 
VGCCs partially blocked H2O2-induced muscle contraction 
(11,19). In addition, blocking other Ca2+-permeable action 
channels, such as receptor- and store-operated channels, 
with a non-selective Ca2+ inhibitor markedly decreased 
[Ca2+]i and the contractile response to H2O2 (11).

Another proposed mechanism of H2O2-induced transient 
contraction is the stimulation of prostanoids biosynthesis. 
Transient contraction induced by H2O2 is strongly inhibited 
by blocking prostanoid enzymes, including cyclooxyge-
nases and thromboxane A2 (TXA2) synthase (21,22), which 
are expressed by uterine smooth muscles (23,24). There-
fore, we cannot exclude the possibility of prostanoids pro-
duction by H2O2, which plays an essential role in the uter-
ine activity regulation (25).

The delayed relaxation response to H2O2 may suggest other 
molecular mechanisms beyond the membrane channels. 
H2O2 could mediate myosin light chain phosphorylation, 

whose decrease or inhibition causes relaxation response 
to H2O2 (26).

High-KCl solution changes the reversal K+ potential, depo-
larizing the membrane, opening the VGCCs, and increas-
ing [Ca2+]i. In addition, increasing external (K+) impairs K+ 
channel function by reducing the driving force for K+ efflux, 
thereby functionally limiting the influence of K+ channels 
on muscle activity (27). In our study, H2O2 failed to decrease 
uterine contraction induced by high-KCl, which suggests 
that H2O2 may not directly block VGCCs. This is consistent 
with the results of another study on arterial smooth mus-
cles (28). Therefore, the relaxation response to H2O2 could 
be partly mediated by the activation of potassium con-
ductance (hyperpolarization) (27), a mechanism support-
ed by pharmacological studies on arterial smooth muscles 
(29,30) and electrophysiological studies on other cell types 
(31,32). Lucchesi et al (33) demonstrated that H2O2 elicited 
contraction in smooth muscle of the mesenteric arteries 
in compromised K+ channels (ie, in the presence of high-
KCl solution), but that it elicited relaxation in uncompro-
mised K+ channels. In the smooth muscle of blood vessels 
pre-contracted with high-KCl, H2O2 caused transient con-
traction dependent on Ca2+ influx from the extracellular 
space (12). We suggest that the relaxation response 
to H2O2 in the rat uterus may directly or indirectly 

Figure 3. Original recordings showing the contractile 
responses of uterine strips in the presence of 6 mmol/L 
extracellular high-calcium (Ca2+) to 400 μM, 800 μM, and 1000 
μM of hydrogen peroxide (H2O2) in (A) term-pregnant and (B) 
non-pregnant rats. mN – millinewton.

Figure 4. Original recordings showing the contractile 
responses of uterine strips in the presence of 60 mmol/L 
potassium chloride (KCl) to 400 μM, 800 μM, and 1000 μM of 
hydrogen peroxide (H2O2) in (A) term-pregnant and (B) non-
pregnant rats. mN – millinewton.
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involve K+ channels activation, as supported by previous 
reports (10,15). Although H2O2 transiently increases [Ca2+]

i via Ca2+ influx pathway, high-KCl solution compromises 
K+ equilibrium and prevents repolarization. The existence 
of different types of K+ channels in the myometrium is well 
documented, and their stimulation is reported to cause 
myometrial relaxation (34). In smooth muscles of canine 
trachealis, increased [Ca2+]i by H2O2 activated the large 
conductance calcium-activated potassium channels (BKCa) 
and promoted muscle relaxation (35). There are also sever-
al studies reporting that H2O2induces muscle relaxation by 
activating the voltage-gated K+ channels (15,36).

Normal uterine contractions are linked to ischemia and hy-
poxia within the myometrium along with the decrease in 
energy metabolites (37). In labor, however, uterine contrac-
tions increase in intensity, duration, and frequency, causing 
local hypoxic cycles and increasing the energy demand 
of the uterus to support the labor process. In this study, 
pregnant uterine tissues tolerated the effects of H2O2 bet-
ter than non-pregnant tissues. This supports our pervious 
results, which showed that hypoxia decreased rat uterine 
contraction in different gestational stages, but that the 
term-pregnant uterus was more resistant to the deleteri-
ous effect of hypoxia than non-pregnant uterus (8) owing 
to pregnancy-related changes in myometrial metabolites 
and ion channels.

The primary limitation of our study is the death of some 
uterine tissues caused by the toxic effect of the high H2O2 
dose (1000 μM). In addition, due to financial restrictions, we 
did not test whether antioxidant agents counteracted the 
deleterious effects of H2O2. Another limitation is the small 
sample size as we had to adhere to the strict IACC guide-
lines and use the minimum number of animals. However, 
the sample size was not smaller than those used in oth-
er similar studies (10,15). Post-hoc power analysis showed 
that comparison of AUC (1000 μM) between pregnant 
and non-pregnant animals during spontaneous contrac-
tion had an adequate power (0.95 at 5% significance lev-
el, G*Power 3.1.9.3, Heinrich-Heine- Universität Düsseldorf, 
Düsseldorf, Germany) (38), confirming that the number of 
animals per group was sufficient.

In conclusion, our results show that exogenous H2O2 
causes transient uterine contraction followed by persistent 
relaxation in both pregnant and non-pregnant rats. The 
decrease in contraction force was observed in all uterine 

strips independent of the type of stimulation (sponta-
neous, oxytocin, high-Ca2+). However, when K+ chan-

nels were blocked by high-KCl, the relaxation response to 
H2O2 was inhibited. Further studies are required to unravel 
the cellular and molecular mechanisms of H2O2-induced 
relaxation before, during, and after pregnancy.
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