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SUMMARY
The time varying Hartmann flow of an electrically conducting viscous incompressible non-Newtonian power-

law fluid between two parallel horizontal non-conducting porous plates is studied with heat transfer under
exponential decaying pressure gradient. An external uniform magnetic field that is perpendicular to the plates and
uniform suction and injection through the surface of the plates are applied. The two plates are kept at different but
constant temperatures while the Joule and viscous dissipations are taken into consideration. Numerical solutions
for the governing nonlinear momentum and energy equations are obtained using finite difference approximations.
The effect of the magnetic field, the parameter describing the non-Newtonian behavior, and the velocity of suction
and injection on both the velocity and temperature distributions as well as the dissipation terms are examined.
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1. INTRODUCTION

The study of the rectangular channel flow of an
electrically conducting viscous fluid under the action
of a transversely applied magnetic field, known as
Hartmann flow, has immediate applications in many
devices such as magnetohydrodynamic (MHD) power
generators, MHD pumps, accelarators, aerodynamics
heating, electrostatic precipitation, polymer-
technology, petroleum-industry, purification of crude
oil and fluid droplets-sprays. Channel flows of a
Newtonian fluid with heat transfer have been studied,
with or without Hall currents, by many authors [1-9].
These results are important for the design of the duct
wall and the cooling arrangements.

A number of industrially important fluids such as
multon plastics, polymers, pulps and foods exhibits
non-Newtonian fluid behavior [10]. Due to the
growing use of these non-Newtonian materials, in
various manufacturing and processing industries,
considerable efforts have been directed towards
understanding their flow and heat transfer
characteristics. Many of the inelastic non-Newtonian
fluids, encountered in chemical engineering
processes, are known to follow the so-called “power-
law model” in which the shear stress varies according
to a power function of the strain rate [11]. The power-
law fluid flows, within parallel plate ducts and
rectangular ducts, have been considered by many
authors [12-15].
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In the present study, the unsteady Hartmann flow
of a conducting non-Newtonian power-law fully
developed fluid between two infinite non-conducting
horizontal parallel and porous plates is studied. The
flow starts from rest through the application of a
uniform and exponential decaying pressure gradient
with a uniform suction from above and a uniform
injection from below. The flow is subjected to a uniform
magnetic field perpendicular to the plates. The induced
magnetic field is neglected by assuming a very small
magnetic Reynolds number [5]. The two plates are
kept at two different but constant temperatures. The
Joule and viscous dissipations are taken into
consideration in the energy equation. The governing
nonlinear momentum and energy equations are solved
numerically using the finite difference approximations.
The inclusion of the magnetic field, the suction and
injection, and the non-Newtonian fluid characteristics
leads to some interesting effects, on both the velocity
and temperature fields.

2. FORMULATION OF THE PROBLEM

The fluid is assumed to be laminar viscous
incompressible and obeying the power-law model and
flows between two infinite horizontal parallel non-
conducting plates located at the y=±h planes and
extend from x =-∞ to ∞ and from z =-∞ to ∞ (Figure
1). The upper and lower plates are kept at two constant
temperatures T2 and T1 respectively, with T2 > T1. The
flow is driven by a uniform and constant pressure
gradient dp/dx in the x-direction, and a uniform suction
from the above and injection from below which are
applied at t=0. A uniform magnetic field with magnetic
flux density vector B0 is applied in the positive y-
direction. The uniform suction implies that the y-
component of the velocity is constant and is taken
equal to v0. Thus, the velocity vector of the fluid is
given by:

v(y,t) = u(y,t)i + v0 j

The fluid motion starts from rest at t=0, and the
no-slip condition at the plates implies that the fluid
velocity has neither z nor an x-component at y=±h.
The initial temperature of the fluid is assumed to be
equal to T1.

The flow of the fluid is governed by the Navier-
Stokes equation [16, 17]:

( ) o
D p
Dt

ρ µ= ∇ ⋅ ∇ − ∇ + ×
v v J B (1)

where ρ is the density of the fluid and µ is the apparent
viscosity of the model and is given by:
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where K is the consistency index, n is the flow behavior
index which corresponds to the type of the fluid (n less
than, equal to, and greater than 1 gives pseudoplastic,
Newtonian and dilatant fluids respectively), B0 is the
magnetic field, which is assumed to be also the total
magnetic field, as the induced magnetic field is
neglected by assuming a very small magnetic Reynolds
number [5]. Using Ohm’s law [5] the Navier-Stokes
Eq. (1) read:
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The energy equation with viscous and Joule
dissipations is given by:
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where σ, cp and k are, respectively, the electrical
conductivity, specific heat capacity at constant volume
and the thermal conductivity of the fluid. The second
and the third terms on the right-hand side represent the
viscous and Joule dissipations respectively. The
viscous dissipation term may often be neglected for
Newtonian fluids, however, depending on the duct
geometry and relative volumetric flow rate, viscous
dissipation may have a dramatic effect on the thermal
flow field in non-Newtonian fluids [18].

The initial and boundary conditions of the problem
are given by:

u=0  at  t≤0  and  u=0  at  y=±h  for  t>0 (5)

T=T1 at t≤0, T=T1 at y=−h, T=T2 at y=−h for t>0 (6)

It is expedient to write the above equations in the
non-dimensional form. To do this, we introduce the
following non-dimensional quantities:

o
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Fig. 1 The geometry of the problem
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o rRe u h /ρ µ=  is the Reynolds number,

o rS v h /ρ µ=  is the suction parameter,

p oPr c u h / kρ=  is the Prandtl number,

o r p 2 1Ec u /( c h(T T ))µ ρ= −  is the Eckert number,

2 2 2
o rHa B h /σ µ= is the Hartmann number

squared,
1 n 1 n

r oKu / hµ − −= is the generalized reference
viscosity,

where tdp / dx Ceα= . The generalized reference
viscosity is chosen so that when n=1 (Newtonian
fluid), the viscosity becomes constant [9, 17]. Here u0
is the characteristic velocity which is arbitrarily chosen
such that Re=1. Also, in terms of the above non-
dimensional variables and parameters Eqs. (3) and (4)
are written as (where the bars are dropped for
convenience):

2 u  u dp   uS Ha u
 t  y dx  y  y

∂ ∂ ∂ ∂µ
∂ ∂ ∂ ∂

⎛ ⎞
+ = − + −⎜ ⎟

⎝ ⎠
(7)

22
2 2

2
 T  T 1 T  uS Ec Ha Ecu
 t  y Pr  y y

∂ ∂ ∂ ∂µ
∂ ∂ ∂∂

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
(8)

where:
( n 1 ) u

 y
∂µ
∂

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

(9)

The initial and boundary conditions for the
velocity and temperature in the dimensionless form
are written as:
u=0  at  t≤0  and  u=0  at  y=±1  for  t>0 (10)

T=0 at t≤0,  T=0 at y=−1,  T=1 at y=1  for  t>0 (11)

3. NUMERICAL SOLUTION

Equations (7) and (9) represent a coupled system
of non-linear partial differential equations which can
not be solved analytically. Therefore, they are integrated
numerically under the initial and boundary conditions,
Eq. (10), using central differences for the derivatives
and Thomas algorithm for the solution of the set of
discretized equations. A linearization technique is first
applied to replace the nonlinear terms at a linear stage,
with the corrections incorporated in subsequent
iterative steps until convergence is reached. Then the
Crank-Nicolson implicit method [19] is used at two
successive time levels. An iterative scheme is used to
solve the linearized system of difference equations.
The solution at a certain time step is chosen as an initial
guess for next time step and the iterations are continued
till convergence, within a prescribed accuracy. Finally,
the resulting block tridiagonal system is solved using
the generalized Thomas-algorithm [19]. The energy Eq.
(8) is a linear inhomogeneous second-order ordinary
differential equation whose right-hand side is known
from the solutions of the flow Eqs. (7), (9) and (10).
The values of the velocity u and its gradient are
substituted in the right-hand side of Eq. (8) which is
solved numerically with the initial and boundary
conditions, Eq. (11), using central differences for the
derivatives and Thomas-algorithm for the solution of
the set of discritized equations. Finite difference
equations relating the variables are obtained by
writing the equations at the mid point of the
computational cell and then replacing the different
terms by their second order central difference
approximations in the y-direction. The diffusion terms
are replaced by the average of the central differences
at two successive time-levels. The computational
domain is divided into meshes each of dimension ∆t
and ∆y in time and space, respectively. We define the
variables v u / y= ∂ ∂ and H T / y= ∂ ∂  to reduce the
second order differential Eqs. (7) and (8) to the first
order differential equations. The finite difference
representations for the resulting first order differential
take the form:
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(12)

The variables with bars are given initial guesses from the previous time steps and an iterative scheme is used at
every time to solve the linearized system of difference equations. Then the finite difference form for the first-order
form of the energy Eq. (8) can be written as:
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steady state monotonically. It is clear from Figure 3 that
the effect of the flow index n on u depends on t and y.
For small t, increasing n decreases u for all y apart from
the central region due to the decrease in viscosity
resulting from the large velocity gradient in this area.
However, near the center u increases with increasing n
since the velocity gradient is small and therefore the
viscosity decreases with increasing n. As time develops,
increasing n increases u for all y due to the overall
decrease in velocity and its gradient which decreases
viscosity. Figure 3a indicates that small values of n affect
the parabolic shape of the velocity profile and lead to the
suppression of the peaks.

where DISP represents the Joule and viscous
dissipation terms which are known from the solution
of the momentum equations and can be evaluated at
the mid point (i, j) of the computational cell.
Computations have been made for C=−5, α=1, Pr=1,
and Ec=0.2. Grid-independence studies show that the
computational domain 0<t<∞ and –1<y<1 can be
divided into intervals with step sizes ∆t=0.0001 and
∆y=0.005 for time and space, respectively as shown
in Figure 2. Smaller step sizes do not show any
significant change in the results. Convergence of the
scheme is assumed when every one of u, v, T and H for
the last two approximations differ from unity by less
than 10-6 for all values of y in –1<y<1 at every time
step. Less than 7 approximations are required to satisfy
this convergence criteria for all ranges of the
parameters studied here. In order to examine the
accuracy and correctness of the solutions, the results
obtained here are tested and compared with the results
for the Newtonian case reported by Attia in Ref. [9]
(n=1). The comparison shows a complete agreement
between the results of both solutions. While
comparisons with previously published theoretical
work on this problem were performed, no
comparisons with experimental data were done
because, as far as the author is aware, such data are
lacking at the present time.

Fig. 2 Mesh network

4. RESULTS AND DISCUSSION

Figures 3 and 4 show the time development of the
profile of the velocity u and the temperature T,
respectively, for various values of time t and for n=0.5,
1, and 1.5. The figures are evaluated for Ha=3 and S=1.
As shown in Figure 3, the profiles are asymmetric about
the y=0 plane because of the suction. Figure 3 shows
that the velocity u decreases with time and reaches its

Fig. 3 Time variation of the profile of u for various values of n
(Ha=3, S=1)
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Figure 4 shows that the temperature profile does
not reach its steady state monotonically. The
temperature increases with time up to a maximum
value and then decreases up to the steady state. Figure
4 shows also, that the effect of n on the temperature
depends on t. For small t, increasing n decreases T,
but as time develops increasing n increases T. This is
due to the effect of n in increasing or decreasing u
which affects the dissipations.

Figures 5 and 6 show the effect of the Hartmann
number Ha on the time development of u and T at
y=0 with time, respectively, for various values of
Hartmann number Ha and for n=0.5, 1, and 1.5. In
these figures S=0. Figure 5 shows that increasing Ha
decreases u as it increases the damping force on u. It
is also clear from Figure 5 that the effect of n on u
depends on Ha and t. For small values of Ha,
increasing n decreases u for small and moderate time,
but increases u for large time. For large values of Ha,
increasing n increases u for all t. This is due to the
decrease in u and its gradient with increasing Ha or
with time progression and both results in decreasing
the viscosity with increasing n.
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Fig. 4 Time variation of the profile of T for various values of n
(Ha=3, S=1)
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Figure 6 shows that the effect of Ha on the
temperature T depends on t. For small values of t,
increasing Ha increases T since the velocity u is small
and increasing Ha, although it decreases u and its
gradient, increases the Joule dissipation and then
increases T. However, for large values of t increasing
Ha decreases T due to the corresponding reduction in
the Joule and viscous dissipations. It is also observed
from Figure 6 that the effect of n on T depends on Ha
and t. For small values of Ha, increasing n increases
T for small and moderate time, but decreases T for
large time. Increasing n more decreases T for small
and moderate time, but increases it for large time. For
large values of Ha, increasing n always increases T
due to the increase in Joule dissipations.

Figures 7 and 8 show the effect of the suction
parameter S on the time development of u and T at y=0
with time respectively for various values of the suction
parameter S and for n=0.5, 1, and 1.5. In these figures
Ha=2. Figure 7 shows that u at the centre decreases
with increasing S for all values of n due to the
convection of the fluid from regions in the lower half
to the centre, which has a higher fluid speed. It is clear
from Figure 7 that the influence of S on u is more
pronounced for the case of large n.

Fig. 7 Effect of S on u at y=0 for various values of n (Ha=2)

Figure 8 indicates that increasing S decreases the
temperature at the centre of the channel for all values
of n. This is due to the influence of the convection in
pumping the fluid from the cold lower half towards
the centre of the channel. The parameter S has a
marked effect of the temperature for all values of n.
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5. CONCLUSIONS

The transient Hartmann flow of a power-law non-
Newtonian fluid under the influence of an applied
uniform magnetic field is studied with heat transfer.
The effects of the non-Newtonian fluid behavior (flow
index n), the magnetic field (Hartmann number Ha),
and the suction or injection velocity (suction parameter
S) are studied. It was found that the effect of the flow
index on the velocity depends on the magnetic field,
time and the coordinate y. Also, the effect of the flow
index on the temperature T depends on the magnetic
field and time. The effect of the suction velocity on u
is more pronounced for large values of the flow index,
while it has a marked effect on the temperature for all
values of the flow index.
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VREMENSKI OVISAN HARTMANNOV TOK S EKSPONENCIJALNIM PRIJENOSOM
TOPLINE FLUIDA PRI JEDNOLIKOM USISAVANJU I UBRIZGAVANJU POD

EKSPONENCIJALNO OPADAJU]IM GRADIJENTOM PRITISKA

SA@ETAK

U ovom se radu pruo~ava vremenski ovisan Hartmannov tok elektri~no sprovodljive viskozne nestla~ive ne-
Newtonove power-law teku}ine izme|u dvije paralelne horizontalne neprovodljive porozne plo~e s prijenosom topline
pod gradijentom eksponencijalno opadaju}eg pritiska. Primijenjeni rubni uvjeti su vanjsko jednoliko magnetsko
polje okomito na plo~e, jednoliko usisavanje i ubrizgavanje kroz površinu plo~a. Uzimaju}i u obzir Youleove i
viskozne disipacije, na ovim dvjema plo~ama odr`avala se razli~ita, ali konstantna temperatura. Koriste}i
aproksimacije kona~ne razlike dobila su se numeri~ka rješenja za glavni nelinearni moment sile kao i jednad`be
energije. Ispitali su se djelovanje magnetskog polja, parametar koji opisuje to ne-Newtonsko ponašanje, brzina
usisavanja i ubrizgavanja na raspodjelu brzine i temperature te uvjeti disipacije.

Klju~ne rije~i: MHD-tok, prijenos topline, ne-Newtonove teku}ine, numeri~ka analiza.

[16] H. Schlichting, Boundary Layer Theory,
McGraw-Hill, New York, 1968.

[17] S. Kakac, R.K. Shah and W. Aung (Eds.),
Handbook of Single-Phase Convective Heat
Transfer, John Wiley, New York, 1987.

[18] W.K. Gingrich, Y.I. Cho and W. Shyy, Effects of
shear thinning on laminar heat transfer behavior
in a rectangular duct, Int. J. Heat Mass Transfer,
Vol. 35, No. 11, p. 2823-2836, 1992.

[19] A.R. Mitchell and D.F. Griffiths, The Finite
Difference Method in Partial Differential
Equations, John Wiley, New York, 1980.


