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Abstract
Genes involved in the same function tend to have similar evolutionary histories, in that their

rates of evolution covary over time. This coevolutionary signature, termed Evolutionary

Rate Covariation (ERC), is calculated using only gene sequences from a set of closely relat-

ed species and has demonstrated potential as a computational tool for inferring functional

relationships between genes. To further define applications of ERC, we first established

that roughly 55% of genetic diseases posses an ERC signature between their contributing

genes. At a false discovery rate of 5% we report 40 such diseases including cancers, devel-

opmental disorders and mitochondrial diseases. Given these coevolutionary signatures

between disease genes, we then assessed ERC's ability to prioritize known disease genes

out of a list of unrelated candidates. We found that in the presence of an ERC signature, the

true disease gene is effectively prioritized to the top 6% of candidates on average. We then

apply this strategy to a melanoma-associated region on chromosome 1 and identifyMCL1
as a potential causative gene. Furthermore, to gain global insight into disease mechanisms,

we used ERC to predict molecular connections between 310 nominally distinct diseases.

The resulting “disease map” network associates several diseases with related pathogenic

mechanisms and unveils many novel relationships between clinically distinct diseases,

such as between Hirschsprung's disease and melanoma. Taken together, these results

demonstrate the utility of molecular evolution as a gene discovery platform and show that

evolutionary signatures can be used to build informative gene-based networks.

Author Summary

Molecular evolution has informed our understanding of gene function; however, classical
methods have largely been static in their implementation, focusing on single genes. Here,
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we present and prove the utility of a dynamic, network-based understanding of molecular
evolution to infer relationships between genes associated with human diseases. We have
shown previously that groups of genes within functional niches tend to share similar evo-
lutionary histories. Exploiting the availability of whole genomes from multiple species,
these histories can be numerically scored and dynamically compared to one another using
a sequence-based signature termed Evolutionary Rate Covariation (ERC). To explore po-
tential applications, we characterized ERC amongst disease genes and found that many
diseases contain significant ERC signatures between their contributing genes. We show
that ERC can also prioritize “true” disease genes amongst unrelated gene candidates. Last-
ly, these signatures can serve as a foundation for creating instructive gene-based networks,
unveiling novel relationships between diseases thought to be clinically distinct. Our hope
is that this study will add to the increasing evidence that advancing our understanding of
molecular evolution can be a crucial asset in large-scale gene discovery pursuits (Link to
our webserver that provides intuitive ERC analysis tools: http://csb.pitt.edu/erc_analysis/).

Introduction
Advances in sequencing technologies and collaborative, large-scale—omics and genome-wide
association projects are providing investigators with overwhelming lists of candidate disease
gene associations. In the past decade, nearly 2,000 genomic regions have been associated with
over 300 complex traits, and open efforts such as The Cancer Genome Atlas have produced
petabytes of genetic data to sift through [1,2]. To more effectively decipher and prove candidate
genes' roles in disease processes, computational tools have been created to both prioritize and
place candidate genes into some functional context for more effective experimental validation.
As these candidate genes are validated and more genes become linked with functional process-
es, there is also an increased ability to generate multivariable genetic networks based on these
observations [3,4]. Here, we show a first-of-its-kind approach to prioritize candidate disease
genes and build instructive gene-based networks based on a signature of molecular co-
evolution.

Proteins do not exert their function in isolation, but rather exist within intricate networks of
molecular relationships that can be revealed through high-throughput analyses of protein-pro-
tein interactions, tissue-specific expressivity and shared regulatory elements to name a few.
The influx of data from these experiments has been utilized to build informative tools that
aggregate and interpret these observations to place input proteins into predicted functionally
related pathways [5–8]. Among many other uses, these tools have served as a catalyst for gene
discovery, successfully giving functional relevance to disease gene candidates from sequencing
studies and helping to validate and enhance mechanistic conclusions from high-output biologi-
cal screens [9,10]. The primary methods used to create these networks rely on sophisticated
algorithms that weigh certain biological features based on the query genes and sometimes user-
dictated parameters. These parameters include Gene Ontology (GO) terms, genomic and
proteomic study results (yeast two-hybrid, ChIP-seq, physical interactome datasets, protein
structure comparisons, subcellular localization, tissue specific expressivity, etc.) and even litera-
ture mining techniques such as co-occurrence in PubMed abstracts [11].

In addition to giving functional insight to query genes, similar methods have been utilized
to prioritize a list of candidate genes for further downstream study. These tools typically imple-
ment “guilt by association” strategies in which a user will have a pair of gene lists–one set of
genes known in the literature to be involved in a particular pathway/disease of interest (referred
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to as a “training set”) and another list of candidate genes that the researcher has identified as
possibly being related to the process in question. Generally, these two lists are entered into an
online resource and then the candidate genes are ranked based on their relationships to the
training set genes using similar databases and algorithms discussed previously [12]. Gene pri-
oritization techniques have been effectively used in accelerating transitions from large datasets
to solid biological insight [13–17].

As more data is acquired and as these tools continue to become more sophisticated and
more widely used, the number of disease gene associations are increasing rapidly, mirrored by
the exponential growth of entries in the Online Mendelian Inheritance in Man (OMIM) Data-
base in the past decade [18]. This permits innovative strategies to not only focus on relation-
ships at the molecular level, but to also implement a more expansive approach and aggregate
these relationships to generate novel links between diseases and disease classes. Groups of dis-
eases that are similar, or perhaps diseases thought to be distinct entities, may share pathogenic
mechanisms between them that can be uncovered by multiscale, computational approaches
[19–22]. These disease-disease relationships may lend themselves to clinically impactful drug
repositioning possibilities [23,24].

Another field that has benefited greatly from this revolution in data acquisition is molecular
evolution. A large number of sequenced genomes from closely related species now allows com-
parative and evolutionary methods to be applied across the genome. One such method, evolu-
tionary rate covariation (ERC), infers interactions between genes using only their branch-
specific rates of sequence evolution in a collection of species [25,26]. Namely, genes with rates
that statistically covary tend to participate in common functions or pathways. This statistical
covariation results mainly from discrete pathways responding to evolutionary pressures as a
single unit, thereby causing the evolutionary rates amongst genes in the pathway to fluctuate in
tandem. This evolutionary signature of co-functionality, ERC, is measured as the correlation
coefficient of gene-specific branch rates between a pair of genes, for which higher values ap-
proaching 1 indicate higher rate covariation. ERC has been demonstrated between functionally
related genes in mammals, Drosophila, fungi, and prokaryotes [1,2,26–29]. In addition, statisti-
cally significant ERC signatures are found for functionally related genes within diverse func-
tional pathways including meiosis and piRNA metabolism [28], fertilization [30], nuclear
transport [29], and more than 60% of annotated protein complexes [26]. Given the ubiquity
of ERC signatures, they have even been used to discover novel genes in established genetic
pathways, such as in reproductive interactions between female and male Drosophila [31].

Here, we introduce ERC signatures to study the genetic basis of human disease, showing
that molecular evolution can serve as an innovative and complementary method for gene pri-
oritization, functional annotation, and disease network generation. We show that, in several
cases, genes associated with a particular disease show significantly elevated ERC values between
them. Furthermore, ERC identifies target disease genes amongst many unrelated candidate
genes based solely on shared ERC values between the candidates and a training set of known
disease genes. Lastly, we demonstrate via a gene-based network approach that ERC values are
elevated between diseases that share related pathogenic mechanisms and that co-evolutionary
signatures can unearth novel relationships between diseases thought to be distinct.

Results

ERC signatures are broadly elevated between genes contributing to
human diseases
To determine the strength of ERC signatures between disease genes we interrogated a set of
310 Disease Gene Groupings (DGG), each containing at least 3 genes known to be associated
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with an OMIM-annotated disease. We then examined the ERC values between each pair of
constituent genes in each DGG, while testing for statistically significant elevations in ERC as a
group. We first provide an example for a single DGG, complement deficiency (Fig. 1), and
then continue with analysis of all DGGs. We measured evolutionary rates for complement defi-
ciency genes C1S and CFI along all branches in a phylogeny of mammalian species. Their rates
varied greatly between branches, but their patterns of variation were remarkably similar
(Fig. 1A). We quantify this similarity with the Evolutionary Rate Covariation (ERC) metric,
which is calculated as the correlation coefficient of their rates. Hence, the ERC value between
C1S and CFI is 0.81 (Fig. 1B). All gene pairs within complement deficiency were compared in
this way (Fig. 1C). Notably, the overwhelming majority of complement deficiency ERC values
are positive (88%), whereas random gene sets of the same size yield positive correlation coeffi-
cients at a much lower rate (mean = 59%, maximum of 1000 nulls = 73%). Second, gene pairs
with very high ERC values were found for those whose protein products form functional

Figure 1. ERC values between complement deficiency genes. A) Complement genesC1S andCFI show variation in their evolutionary rates between
branches of the mammalian phylogeny. Branches are color-coded according to rate. (Red is for rapid evolution, blue for slow, and intermediate shades for
rates in between.) Tree topology and distances between species are the same for each gene. B) The same evolutionary rates for C1S andCFI are plotted
against each other. Their correlation is apparent here in the best-fit line and correlation coefficient of 0.806. C) This matrix contains all pairwise ERC values
between the OMIM genes for complement deficiency. Cells are shaded red according to the intensity of their departure from the null expectation. Blue arrows
indicate the genesC1S andCFI. It is notable that most values are positive, whereas a random collection of genes would contain equal proportions of positive
and negative values. There are also many clusters of functionally related complement proteins that contain very strong signals of ERC. The C1-related
proteins in the upper left corner are a prime example of such an ERC hotspot.

doi:10.1371/journal.pgen.1004967.g001
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complexes, such as those encoding the C1 complement subcomponent: C1Q, C1R, and C1S
(Fig. 1C, upper-left corner). An even higher ERC value was observed between members of the
C8 component, C8A and C8B (ERC = 0.79). Overall, the mean ERC between all complement
deficiency genes was 0.344, which yielded a highly significant p-value (permutation P<

0.00001) (Table 1).

Table 1. Diseases with significant ERC at a 5% false discovery rate.

Mean ERC P-value Q-value Ngenes Disease

0.870 < 0.00001 0.00002 3 Monilethrix

0.655 < 0.00001 0.00002 5 Spherocytosis

0.550 < 0.00001 0.00002 4 Cranioectodermal dysplasia

0.344 < 0.00001 0.00002 17 Complement deficiency

0.210 < 0.00001 0.00002 15 Fanconi anemia

0.188 < 0.00001 0.00002 14 Thrombophilia

0.183 < 0.00001 0.00002 16 Ichthyosis

0.130 < 0.00001 0.00002 24 Cataracts related genes

0.109 0.00002 0.00031 26 Mitochondrial complex deficiency

0.103 0.00024 0.00289 23 Immunodeficiency disorders

0.297 0.00024 0.00289 6 Hemolytic uremic syndrome

0.529 0.00039 0.00406 3 Bronchiectasis

0.273 0.00054 0.00496 6 Diamond-Blackfan anemia

0.507 0.00059 0.00522 3 Cornelia de Lange syndrome

0.503 0.00065 0.00550 3 Elliptocytosis

0.498 0.00070 0.00571 3 Hyperglycinuria

0.498 0.00070 0.00571 3 Iminoglycinuria

0.265 0.00077 0.00599 6 Homocysteine related disorders

0.050 0.00089 0.00656 65 Deafness

0.374 0.00104 0.00721 4 Thalassemia

0.048 0.00114 0.00760 69 Mental retardation

0.114 0.00130 0.00827 16 Leigh syndrome

0.451 0.00163 0.00961 3 Dysfibrinogenemia

0.174 0.00171 0.00991 9 Arrhythmogenic right ventricular dysplasia

0.134 0.00187 0.01047 12 Epidermolysis bullosa

0.145 0.00292 0.01494 10 Usher syndrome

0.160 0.00313 0.01574 9 Melanoma

0.143 0.00320 0.01600 10 Systemic lupus erythematosus

0.117 0.00511 0.02255 12 Ciliary dyskinesia

0.205 0.00531 0.02315 6 Pseudohypoaldosteronism

0.243 0.00561 0.02402 5 Aicardi-Goutieres syndrome

0.159 0.00565 0.02413 8 Muscular dystrophy-dystroglycanopathy

0.297 0.00576 0.02444 4 Paragangliomas

0.288 0.00711 0.02899 4 Asphyxiating thoracic dystrophy

0.124 0.00840 0.03302 10 Renal cell carcinoma

0.120 0.01023 0.03827 10 Malaria Susceptibility/Resistance

0.218 0.01093 0.04014 5 Thyroid dyshormonogenesis

0.265 0.01114 0.04069 4 Pituitary hormone deficiency

0.345 0.01195 0.04276 3 Maple syrup urine disease

0.075 0.01358 0.04666 18 Blood group genes

doi:10.1371/journal.pgen.1004967.t001
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When similarly considering all 310 disease states through this analysis, 255 (82%) had posi-
tive mean ERC values, indicating a shift toward rate covariation between genes in a common
disease. In contrast, random gene sets size-matched to the DGGs had positive mean values in
only 59% of cases on average. The maximum observed proportion of mean positive ERCs in
1000 random sets was 69%, which is far lower than that observed for the true DGGs (82%).
Moreover, there was a strong enrichment of low p-values with 73 DGGs below a nominal p-
value of 0.05—a 4.7-fold excess (Fig. 2). After correction for multiple testing, 40 DGGs were
found to have elevated ERC values at a false discovery rate of 5% (Table 1) [32]. From the false
discovery rate analysis we also estimated that 55% of the 310 DGGs contain elevated ERC val-
ues (proportion without ERC elevation, η0 = 45%). Those diseases with the strongest ERC sig-
natures included cancers, autoimmune conditions, blood cell diseases, and developmental
disorders among others (Table 1). Overall, the observed significant cases indicate that patho-
logically related genes tend to have more positive ERC values, likely due to their analogous
functions in the cell.

ERC effectively prioritizes candidate genes for diseases with co-
evolutionary signatures
We sought to assess the power of ERC co-evolutionary signatures as a gene prioritization meth-
od. Using the 310 DGGs, we asked whether a known disease gene (a “target gene” within an
OMIM DGG) was effectively prioritized among a set of chromosomal neighbors using an ERC
“guilt by association” approach. More specifically, candidate genes were prioritized by their
ERC values with a training set of genes known to influence that disease (the remaining OMIM
DGGmembers). Candidates with higher ERC values were more highly prioritized. To demon-
strate one case, the gene DSC2, which contributes to arrhythmogenic right ventricular dyspla-
sia, was tested as a “target” and its chromosomal neighbors within a 1 Mb window were treated
as additional candidates. The remaining 7 genes in that disease were designated as the training
set. ERC values between the training set and the target DSC2 were 0.16 on average, which
placed it in position 1 out of 31 total candidates (the 96th percentile). This case was a successful
prioritization. To produce a full statistical characterization of this strategy, the same procedure

Figure 2. Disease gene groupings P-value distribution. P-values represent the significance of elevated
mean ERC within a particular disease. There is a notable excess of low p-values, indicating a large number of
diseases with an ERC signature between their genes. False discovery rate analyses show that approximately
55% of disease states interrogated have significantly elevated ERC values.

doi:10.1371/journal.pgen.1004967.g002
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was repeated for all 2,416 OMIM disease genes in all 310 DGGs in our dataset, with a single
training set gene being dropped from the training set and defined as the target gene iteratively.
Of the 2,416 ERC prioritization tests, the 1 MB window surrounding the target gene contained
a mean of 81 genes, a median of 62 genes (lower quartile = 40, upper quartile = 102) and had a
range of 4 to 274 genes.

On average, ERC gene prioritization placed the target gene in the 64th percentile of all candi-
date genes. However, the success of prioritization depended strongly on the strength of ERC
within the training set (Fig. 3). When training set genes showed a significant ERC signature
amongst themselves, the target gene was prioritized to a much higher position among candi-
dates. Training sets with very strong ERC (p-value< 10–4) placed the target gene in the 94th

percentile on average (median), and training sets with ERC p-values between 10–4 and 10–3

prioritized the target gene to the 87th percentile (Fig. 3). Because the strength of ERC in a train-
ing set can be determined before performing prioritization, it is a strong and practical indicator
of confidence in ERC-based gene prioritization. In our scan of OMIM DGGs, small training
sets (N� 20 genes) prioritized target genes better than large training sets (N> 20 genes). Al-
though large sets demonstrated a similar relationship between training set p-value and prioriti-
zation percentile, the relationship was relatively noisy. This difference was likely due to the
smaller number of DGGs in this category, which resulted in higher variance in estimates of dis-
ease gene rank.

We also asked if ERC could prioritize candidate genes scattered throughout the genome in-
stead of from a single chromosomal region. Such cases would be encountered if candidates
were drawn from whole-exome sequencing data for example. ERC successfully prioritized
these candidate lists as well, and almost identically to the chromosomal regions (S1 Fig.). This
prioritization also demonstrated a dependency on training set p-value as observed for chromo-
somal regions. While low training p-values (p< 0.0001) placed the true disease gene in the

Figure 3. ERC disease gene prioritization. The prioritization of the true disease gene relative to its
chromosomal neighbors improves with a stronger ERC signal within the training set. A low p-value (x-axis)
indicates strong ERC within a training set. Prioritization (y-axis) is presented as the proportion of candidate
genes scoring lower than the true disease gene, i.e. higher represents better prioritization. The blue series is
for diseases with training sets with 20 or fewer genes, representing the majority (70%) of OMIM diseases
interrogated. The dotted green line is for those diseases with larger training sets.

doi:10.1371/journal.pgen.1004967.g003
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94th percentile on average (median), that ranking decreased with increasing training set p-
value. Overall, these tests demonstrate that ERC can be used to prioritize candidate genes from
a chromosomal region or throughout the genome, especially if that disease has an ERC signa-
ture between its known genes, i.e. the training set. In the next section, we demonstrate an
example application of this approach.

ERC infersMCL1 as a prime candidate gene within a melanoma-
associated region
To demonstrate ERC gene prioritization, we prioritized candidate genes from a melanoma-
associated region. Melanoma was chosen because its 9 reported causative genes have a strong
ERC signature (mean ERC = 0.16, p-value = 0.00313) (Table 1), thereby providing strong
predictive power as demonstrated in the previous section. A recent genome-wide study by
MacGregor et al. found an association between melanoma susceptibility and a 430 kb region of
chromosome 1q21.3 [33]. Because the region contains 10 protein-coding genes it is not clear
which is causative. We prioritized these 10 candidate genes using their mean ERC signature
with the 9 known melanoma genes (Table 2). One gene, myeloid cell leukemia 1 (MCL1), was
prioritized well above the other candidates with a mean ERC of 0.173; the next highest candi-
date was at 0.037. The mean ERC forMCL1 was even greater than that between the genes in
the training set (0.160). Fittingly,MCL1 encodes a protein that regulates apoptosis and cellular
differentiation, and hence is a strong candidate for involvement in melanoma susceptibility
[34].

Evolution-based Disease Map: ERC signatures reveal genetic
relationships between diseases
Having found robust ERC co-evolutionary signatures between genes within a disease, we next
sought to draw links between diseases using the same signatures. We hypothesized that such
links would cluster diseases with functionally related genes and potentially reveal unforeseen
relationships between diseases. Specifically, we inferred a connection between a pair of diseases
if the mean ERC value between their constituent genes was significantly elevated compared to
random gene sets. To avoid an artificial inflation of the mean ERC value, any genes shared be-
tween DGG's were dropped from the calculation. Of the 48,205 disease-disease pairs 132 had
significantly elevated ERC at a p-value of 5 × 10-4 or lower, which represents a 5.5-fold enrich-
ment. Applying a stringent 5% false discovery rate, there were a total of 81 disease-disease

Table 2. ERC gene prioritization for melanoma-associated region at 1q21.3.

Candidate Gene Mean melanoma ERC Empirical P-value

MCL1 0.173 0.071

CERS2 0.037 0.402

CTSS 0.016 0.458

CTSK -0.071 0.695

ANXA9 -0.093 0.755

HORMAD1 -0.098 0.768

GOLPH3L -0.113 0.800

ENSA -0.187 0.920

ARNT -0.232 0.959

SETDB1 -0.280 0.987

doi:10.1371/journal.pgen.1004967.t002
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connections, which formed 12 clusters of potentially related diseases (Fig. 4). The resulting
“disease map” contained ERC-drawn clusters with strong tendencies to contain diseases with
related pathogenic mechanisms. The largest cluster consisted of 34 diseases and could be
broadly classified as blood-related disorders (Fig. 4; light red network). The second largest clus-
ter of 7 diseases (light blue) consisted of mitochondrial disorders and ciliopathies, and the
third multi-gene cluster was composed of 4 heterogeneous disorders (dark green) that have
some shared symptomology relationships. Finally, the 9 remaining clusters were pairs of dis-
eases consisting of a heterogeneous collection of disorders. The significance of these relation-
ships is fully addressed in the Discussion section.

Discussion
In this study we demonstrate that the relationships between disease-associated genes are often
reflected in evolutionary signatures encoded in their gene sequences. Using our metric, evolu-
tionary rate covariation (ERC), and the Online Mendelian Inheritance in Man (OMIM) data-
base, we report 40 diverse diseases whose genes have elevated co-evolutionary signatures at a
false discovery rate of 5%, with an additional 130 diseases that also contain elevated rates ac-
cording to false discovery rate analysis. We found statistically significant elevations of ERC
both between genes causing rare Mendelian disorders, such as Fanconi anemia, as well as more
common diseases such as Alzheimer's disease, pancreatitis, deafness, colorectal cancer and
renal cell carcinoma (Supplemental S1 Table). The signatures we observe likely reflect the close
functional relationships between the genes involved in a common pathogenic mechanism. We

Figure 4. Evolution-based diseasemap. ERC signatures between diseases were used to draw connections between separate diseases at a false
discovery rate of 5%. The 12 clusters represent diseases that involve common genetic mechanisms as inferred by ERC. The largest cluster (pink network)
contains several blood-related pathologies, while the light blue network contains mitochondrial diseases and ciliopathies. The remaining clusters contain
many novel disease-disease relationships and are addressed fully in the Discussion section.

doi:10.1371/journal.pgen.1004967.g004
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have observed similar signatures between functionally related genes in diverse biological pro-
cesses and across different taxonomic groups ranging from single-celled organisms to mam-
mals [26,28,29]. Ultimately, the signatures arise from shared fluctuations in evolutionary rates
as the genes respond to changing selective pressures. These observations also suggest that these
gene networks have been in tact throughout mammalian evolution and that they evolve togeth-
er in response to shared evolutionary pressures. Overall, the strong signatures in many diseases
led us to test ERC's ability to reveal novel genetic relationships in human diseases.

ERC signatures can be calculated with existing genome sequences and are thus a practical
tool to prioritize candidate genes or to infer the function of novel genes. To demonstrate the
potential of ERC signatures to prioritize candidate genes for a given disease we again used the
OMIM catalog. By treating each OMIM disease gene in turn as a hypothetically unknown dis-
ease gene, we examined its mean ERC value with the remaining known genes for its disease,
i.e. the training set. Compared to its chromosomal neighbors from a 1-Mb window or to a set
of randomly selected genes across the genome, the true disease gene scored higher on average,
yet sometimes not high enough to reliably or efficiently prioritize experimental follow-up.
However, for diseases with an ERC signature in their training set (p-value< 0.05), the disease
gene was prioritized within the top 5 to 15% on average and in many cases was placed in the
top position. To assess our prioritization method, we compared our results to a study that ana-
lyzed nine prioritization tools that largely rely on text mining, large-scale genomics, proteo-
mics, expression and genetic association datasets [35]. For cases with a significant ERC signal
in the training set, ERC performed on par with or exceeded the top methods (Table 3). The fact
that ERC uses data that is completely independent of these methods raises the exciting possibil-
ity that their integration with ERC would further improve prioritization. There is a notable ca-
veat that success in our method depends on significant ERC within the training set, but
fortunately this is a simple calculation that can be performed before any data is gathered, and
we estimate that approximately one-quarter of genetic diseases satisfy this requirement (72 of
310 diseases had ERC p-values< 0.05). The potential for ERC to inform and guide experimen-
tal efforts in human disease research is mirrored by ERC's previous successes in model organ-
isms [28,31].

Based on our results here, there are a number of practical guidelines we can prescribe for
gene prioritization. Each of these steps can be performed on our public ERC webserver using
the 'Gene Prioritization' function, which also provides other ERC-based analysis tools (http://
csb.pitt.edu/erc_analysis/). The first step is to define a training set of genes already known to be
involved in the disease in question. Notably, chances of success should be improved by

Table 3. ERC gene prioritization compared to other methods.

Prioritization Tool Median prioritization rank (%) % cases in top 30%

ERC, P < 0.0001 92.6 78.7

ERC, P < 0.01 82.8 64.3

ERC, P < 0.05 74.3 55.4

Suspects 87.3 63.0

ToppGene 83.2 52.4

GeneWanderer-RW 77.9 61.9

Posmed-KS 68.5 23.8

GeneDistiller 88.9 78.6

Endeavour-CS 88.8 90.5

Pinta-CS 81.1 71.4

doi:10.1371/journal.pgen.1004967.t003
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predicting likely pathogenic mechanisms when possible from clinical data or cellular pheno-
types and choosing the most appropriate genes. The next step is to test for an ERC signature
within the chosen training set considering our results showed drastically improved prioritiza-
tion for diseases with strong signatures—the effect was strong enough that we recommend pro-
ceeding only if the training set shows a significantly elevated mean ERC. Based on our survey
of OMIM-curated diseases, this requirement should be met by approximately a quarter of dis-
eases with a genetic component. However, a potentially larger proportion of diseases could be
interrogated if experts choose discrete pathways with stronger ERC signatures as training sets,
possibly through careful examination of molecular phenotypes and integration of other bioin-
formatics tools. The last step is to calculate the mean ERC value of each candidate with the
training set. In our example, this set of steps identified theMCL1 gene from a melanoma-
associated region as the most likely candidate.

Our between-disease analysis of ERC produced a set of disease-disease associations based
on evolutionary signatures (Fig. 4). Tight clusters within this disease map reproduced accepted
associations between certain diseases; and perhaps more interestingly, ERC associations also
uncovered novel evolutionary relationships between clinically distinct diseases. For example,
ERC was able to cluster four mitochondrial diseases that were all intuitively related, some
being subclasses of the other. Additionally, a triad of clinically related diseases referred to as
skeletal ciliopathies—cranioectodermal dysplasia, asphyxiating thoracic dystrophy and short-
rib polydactyly syndrome—was found to share significant ERC values not only amongst each
other, but ERC also linked these diseases strongly to the mitochondrial disease network
[36,37]. The relationship between mitochondrial disorders and ciliopathies is largely unad-
dressed in the literature, but there are reports that mitochondrial proteins may co-localize with
ciliary proteins [38] and there is evidence of a mitochondrial protein deficiency (XPNPEP3)
that produces a, phenotypically speaking, ciliopathy-like syndrome [39].

Many two-disease clusters also showed compelling, non-intuitive relationships. A link be-
tween surfactant metabolism dysfunction and Bethlem myopathy was deemed significant by
ERC values, despite these two diseases having very little in common with one another clinically.
Bethlem myopathy is caused by a defect in the production of a specialized collagen that leads to
debilitating muscle weakness, while inherited surfactant defects leads to severe respiratory defi-
cits. However, recent evidence has interestingly suggested that surfactant proteins have essen-
tial collagen domains for surfactant homeostasis [40,41].

A rather dramatic pairing is the association between melanoma and Hirschsprung's disease,
an embryologic defect of neural crest cell migration in which a portion of the intestinal nervous
system lacks innervation, becomes immotile and causes gastrointestinal obstruction. Again,
although these two diseases are clinically distinct, the association of the two using ERC suggests
a shared mechanism between them. Digging into this relationship further, strikingly, nearly
all genes associated with Hirschsprung's disease have had some evidence in melanoma patho-
genesis. Variants in EDNRB have been loosely associated with increased melanoma risk in
humans and are hypothesized to play a role in CNS melanoma metastases [42,43]. Additional-
ly, if EDNRB is heterozygously deleted in a mouse transgenically expressing RET—another
Hirschsprung disease gene—mice develop de novomelanoma lesions [44]. Moreover, yet
another Hirschsprung-associated gene, EDN3, has also been linked to melanoma invasiveness
[45]. Lastly, a research group serendipitously produced a Hirschsprung's disease mouse model
while attempting to create a UV-induced melanoma model by knocking out a DNA repair
gene in melanocytes of mice, with that same gene now being proposed as a potential mediator
of melanoma chemoresistance [46,47]. The relationship between these two diseases is largely
unaddressed specifically in the literature, although there is one report of an inherited form of
Hirschsprung's disease that had a suspicious pattern of melanoma and pigment abnormalities
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within the family (Wildin and Eichmeyer, 2008, ASHG, abstract). Melanocytes and enteric
nerve cells are known to be both embryologically derived from neural crest cells, perhaps ex-
plaining at least in part why there may be an evolutionary link between the shared mechanisms
of dysfunction that was uncovered by ERC.

Another connection of interest included one made between Noonan syndrome and Dia-
mond-Blackfan anemia. These two diseases have no obvious pathogenic connection; however,
they were linked by ERC. Interestingly, the two share common features including neck web-
bing, micrognathia, low-set ears, specific cardiac abnormalities and epicanthus among many
others [48,49], suggesting ERC may be able to link diseases with shared symptomatology.

The largest cluster consisted of a network of what could be broadly classified as blood-relat-
ed disorders. With 34 diseases, this group consisted of 63 disease-disease connections. The
more intuitive connections included ERC links between inherited disorders that produced
erythrocyte structure defects—spherocytosis and eliptocytosis—and also statistically strong
links between inherited disorders of hemostasis such as thrombophilia, dysfibrinogenemia
and general coagulation cascade deficits. ERC also linked thyroid dyshormogenesis and
hypertryosinemia, of note since tyrosine molecules are the synthetic precursors of thyroid
hormones. Another particularly interesting connection within this network included a strong
link between complement deficiency and systemic lupus erythematosus. Past research has
shown a strong link between these two diseases, and here, we show shared evolutionary signa-
tures further corroborating this observation [50,51]. Other intriguing observations can be
made, such as a link between atypical uremic syndrome—caused by a loss of inhibitory factors
within the complement cascade—and complement protein deficiencies. In summary, these as-
sociations imply that ERC can generate large-scale, informative gene-based networks. In this
case, we were able to build logical disease networks and uncover potentially novel pathogenic
relationships between disease-causing genes using a molecular evolution signature.

Other recent studies have laid out disease associations into maps or networks using different
approaches. A pioneering map by Goh et al. inferred links between Mendelian diseases based
on shared contributing genes, and was able to form an expansive disease network [52]. While
our evolution-based map explicitly ignored shared disease genes, it still exhibited a number of
disease-disease associations in agreement with the Goh et al. map (Supplemental S3 Table).
Moreover, our map revealed a number of associations not found in theirs, suggesting that ERC
can uniquely uncover linkages between diseases—an example being between melanoma and
Hirschsprung's disease as discussed above. Another promising ERC disease map-specific ex-
ample is a cluster of renal and pulmonary diseases that share solute transport imbalance as a
central characteristic—iminoglycinuria, hyperglycinuria, pseudoaldosteronism, and bronchiec-
tasis [53]. A disease map by Suthram et al. adopted a sophisticated strategy to discover disease
relationships using both protein interaction modules and co-expression profiles [54]. This dual
strategy allowed them to move beyond Mendelian diseases and map associations between
multi-genic disorders. However, we were unable to compare the evolutionary map with theirs
because we examined a different set of diseases. The most recent disease-disease association
study departed from genetic data and used massive databases of patient phenotypes to infer re-
lationships between both common diseases and rare Mendelian ones [4]. Most diseases in this
map were not found in ours, but of those found in both studies, there was concordance. For ex-
ample, both maps inferred an interconnected cluster of skin, blood, and immune-
related diseases.

Lastly, a future aim of ours is to integrate our approach with other tools currently available.
ERC is a unique signature of co-functionality that is entirely derived from comparative se-
quence analysis. As such, it is expected to be independent and complementary to other estab-
lished approaches, such as physical interaction datasets, co-expression analyses and literature
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mining algorithms [5,12,55]. Integrating these methods will allow investigators to capitalize on
the strengths of each, enhancing our ability to prioritize and reveal valuable functional infor-
mation regarding disease genes as well as to further contribute towards the recent trend of net-
work-based studies of genes and diseases [4,56,57].

These efforts broadly begin to demonstrate the profound potential of utilizing a network-
based understanding of molecular evolution to assist in gene prioritization, gene functional
annotation and informative gene-based network generation. Our hope is that ERC will provide
an alternative strategy for biomedical researchers to more efficiently transform gene candidates
into actionable hypotheses.

Materials and Methods

Mammalian ERC value calculation
ERC values were calculated between 17,486 pairs of human genes as described in previous pub-
lications [26,28]. In order to be included in the mammalian ERC analysis, gene ortholog pres-
ence was required in a minimum of 17 of the 33 species in the dataset. Of the 19,733
mammalian gene alignments considered, 17,487 met this threshold. Briefly, branch lengths
based on amino acid divergence were created from protein coding mammalian sequences de-
rived from the following species:Homo sapiens (human), Pongo pygmaeus abelii (orang-utan),
Macaca mulatta (rhesus macaque), Callithrix jacchus (marmoset), Tarsius syrichta (tarsier),
Microcebus murinus (mouse lemur), Otolemur garnettii (bushbaby), Tupaia belangeri (tree
shrew), Cavia porcellus (guinea pig), Dipodomys ordii (kangaroo rat),Mus musculus (mouse),
Rattus norvegicus (rat), Spermophilus tridecemlineatus (squirrel), Oryctolagus cuniculus (rab-
bit), Ochotona princeps (pika), Vicugna pacos (alpaca), Sorex araneus (shrew), Bos taurus
(cow), Tursiops truncatus (dolphin), Pteropus vampyrus (megabat),Myotis lucifugus (micro-
bat), Erinaceus europaeus (hedgehog), Equus caballus (horse), Canis lupus familiaris (dog),
Felis catus (cat), Choloepus hoffmanni (sloth), Echinops telfairi (tenrec), Loxodonta africana
(elephant), Procavia capensis (rock hyrax), Dasypus novemcinctus (armadillo),Monodelphis
domestica (opossum),Macropus eugenii (wallaby), and Ornithorhynchus anatinus (platypus).
Branch lengths were estimated using the aaml program of the PAML package [58]. These
lengths were normalized into relative rates using the projection operator method [59], and cor-
relation coefficients (i.e. ERC values) between these relative rates were calculated between
every pair of genes using custom Perl programs.

OMIM disease gene ERC analysis
Data was downloaded from the OMIM website on June 4, 2013. Using the OMIMMorbid
Map dataset, which is a list of diseases followed by single gene associations from published
studies, a Perl script was written that grouped disease genes by character matching manually
curated disease gene associations into respective disease gene groups. 310 Disease Gene Group-
ings (DGGs) were generated by broadly grouping all genes with matching disease names,
effectively producing a list that consisted of each disease with multiple genes that have been as-
sociated with that particular disease. These groups can be found in Supplemental S2 Table,
which lists all genes within each DGG along with their corresponding gene and phenotype
MIM numbers. From this data, the average ERC value between all combinations of genes with-
in each DGG from the 33 mammalian-species ERC dataset was calculated and then statistically
compared to a null distribution of 100,000 random gene groups of the same size using a cus-
tomized Perl script to determine any significant elevations in the mean ERC value. The analysis
was limited to disease gene pairings that were present in the current ERC database (17,487
human genes & 133,416,393 ERC value pairs) and DGGs that contained greater than 1 gene.
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The data was then sorted by p-value to determine diseases that most significantly harbored
elevated ERC signatures. Lastly, a false discovery rate analysis was performed using the 'fdrtool'
R package on the resulting p-values [60].

ERC disease gene prioritization
We assessed ERC's ability to prioritize genes by creating a benchmarking study that generated
a list of all genes surrounding a “target” disease gene within a 10 MB region and grouped them
into an aggregate “candidate” gene list. Using a “training set” of the remaining OMIM genes
shown to be associated with the disease, the candidate genes were then prioritized based on
ERC values. We attempted to prioritize the genes using two ERC ranking strategies. The first
method (GROUP ERC) calculated the mean ERC value of each candidate gene with all genes
in the training set and then ranked the candidates from highest mean ERC to lowest. The
second method (BEST ERC) scanned ERC values between each gene in the training set with
each candidate gene and used the maximum ERC value between any training set gene to
rank the candidates. Ultimately, the GROUP ERC method was chosen for application in the
prioritization tests.

Inferring relationships between diseases with ERC
Disease-disease comparisons were made by calculating the mean ERC value between the genes
in each of the two diseases and then comparing that value to that of 10,000 resampled pseudo-
disease sets. If two DGG's shared genes, these genes were dropped from the ERC mean calcula-
tion to avoid an artificial enhancement of the value. The number of pseudo-datasets greater
than or equal to the observed mean were tallied to calculate a permutation p-value. There were
a total of 48,205 pairwise comparisons between all 310 Disease Gene Groupings. With the
resulting p-values we performed false discovery rate analysis as before [60] and reported all dis-
ease-disease pairs significant at a false discovery rate of 5% (Fig. 4).

Supporting Information
S1 Fig. ERC disease gene prioritization—scattered gene distributions. The prioritization of
the true disease gene relative to randomly chosen genes throughout the genome improves
with a stronger ERC signal within the training set. A low p-value (x-axis) indicates strong
ERC within a training set. Prioritization (y-axis) is presented as the proportion of candidate
genes scoring lower than the true disease gene, i.e. higher represents better prioritization. The
red series is for diseases with training sets with 20 or fewer genes, representing the majority
(70%) of OMIM diseases interrogated. The dotted orange line is for those diseases with larger
training sets
(TIFF)

S1 Table. ERC in all 310 disease gene groupings. Each disease gene grouping (DGG) is pre-
sented with the mean ERC between all of its constituent genes. The permutation p-value re-
flects how likely it is to achieve the indicated mean ERC or higher in random gene sets of the
same size. Q-values ('qval') reflect the false discovery rate for that given p-value taking into con-
sideration the full distribution of p-values. 'Ngenes' lists the number of genes in that DGG.
(XLSX)

S2 Table. OMIM disease gene groupings. This table provides the Mendelian Inheritance in
Man (MIM) numbers for each phenotype and gene associated with a particular Disease Gene
Grouping (DGG).
(XLSX)

Evolution-Derived Gene Networks

PLOS Genetics | DOI:10.1371/journal.pgen.1004967 February 13, 2015 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1004967.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1004967.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1004967.s003


S3 Table. Comparison of disease maps. This supplemental table lists examples of disease-
disease associations that were concordant and discordant between the evolution-based (ERC)
disease map and the disease map produced by Goh et al. (PNAS 2007). Each line lists 2 or more
diseases that formed an associated cluster. The first list contains disease associations found in
both maps. The second contains associations found in our evolution-based map that were not
observed in the map by Goh et al.
(PDF)
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