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SUMMARY
 A multi-item finite production rate (FPR) model with rework and an improved delivery policy is examined in

this paper. Unlike the classic FPR model whose purpose is to derive the most economic lot size for a single-product
production system with perfect quality and a continuous issuing policy, this paper considers a production of multiple
products on a single machine, rework of all nonconforming items produced, and a cost-reduction, multi-delivery
policy. We extend the work of Chiu et al. [1] by incorporating an improved n+1 shipment policy into their model.
According to such a policy, one extra delivery of finished items is made during vendor’s production uptime to satisfy
product demands during the period of vendor’s uptime and rework time. When the rest of the production lot is quality
assured and the rework has been finished as well, n fixed-quantity installments of finished items are delivered to
customers. The objectives are to determine an optimal, common-production cycle time that minimizes the long-run
average system cost per time unit, study the effects of rework and the improved delivery policy on the optimal
production. Mathematical modelling and analysis is used to derive a closed-form, optimal, common-cycle time.
Finally, practical usages of the obtained results are demonstrated by a numerical example.

Key words: finite production rate model, multi-item system, common cycle time, rework, optimization, multi-
delivery.
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1. INTRODUCTION

The classic finite production rate (FPR) model aims
at deriving the most economic production lot size for a
single-product production system with no
nonconforming items produced and a continuous
issuing policy of its finished items [2-3]. In real-life
vendor-buyer integrated systems, however, for the
purpose of maximizing machine utilization vendors
often make plan to produce multiple products in turn
on a single machine. Gordon and Surkis [4] have
presented a simple and practical approach to determine
control policies for a multi-item inventory environment
where the items are ordered from a single supplier and
the demand for items are subject to severe fluctuations.
The time between orders can either be fixed or based
on the accumulation of a fixed-order quantity for all

products. Their model balances carrying and stock-
out costs. An operational system structure has been
developed and a simulation procedure used to determine
an appropriate value of the inventory factor in the
model. Rosenblatt and Finger [5] have studied the
problem of multi-item production in a single facility.
The proposed facility was an electrochemical
machining system and the products examined were
impact sockets of various sizes for power wrenches.
A grouping procedure of the various items was
adopted. A modified version of an existing algorithm
was applied to ensure production cycle times which
are multiples of the shortest production cycle time.
Tamura [6] has proposed an approximation procedure
to solve the production planning problem for a
multistage production system which produces many
different components and assembles them into finished
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products under capacity limitations. A generalized
production planning model was built using mixed-
integer programming. The solution procedure was
approximated by a linear programming method.
Different algorithms were developed in detail for a
two-stage production problem. Numerical example
was provided to examine the validity and efficiency of
the proposed algorithms. Zipkin [7] explored the
performance of a multi-item production-inventory
system. He compared two alternative policies,
representing different modes of collecting and utilizing
information, then derived a closed-form measure of
performance for one of them, the familiar first-come-
first-served (FCFS) policy, and proposed a comparable
approximation for the other, the longest-queue (LQ)
policy. These results were illustrated, tested through
simulations, and used to address several basic
managerial issues. Moon and Silver [8] studied a multi-
item newsvendor problem subject to a budget
constraint on the total value of replenishment quantities.
Dynamic programming procedures were presented for
two situations: (1) where the end item demand
distributions are assumed known as the normally
distributed demand; and (2) a distribution free approach
where only the first two moments of distributions are
assumed known. In addition, simple and efficient
heuristic algorithms were developed. Computational
experiments based on a set of test problems showed
that the performance of the heuristics was excellent.
Studies related to various aspects of multi-item
production planning and optimization issues can also
be found in Refs. [9-12].

Also, in real-production environments due to
various unpredictable factors, generation of defective
items in any given production run is inevitable. Mak
[13] used mathematical modelling to study an inventory
system where the number of units of acceptable quality
in a replenishment lot is uncertain and the demand is
partially captive. He assumed that the fraction of the
demand during the stock-out period which can be
backordered is a random variable whose probability
distribution is known. The optimal replenishment
policy was synthesized for such a system. A numerical
example was given to illustrate the theory. The results
indicated that the optimal replenishment policy is
sensitive to the nature of the demand during the stock-
out period. Gopalan and Kannan [14] considered the
manufacturing, inspections and rework activities as a
two-stage, transfer-line production system. They
analyzed some transient state characteristics of such a
system subject to an initial buffer of infinite capacity,
inspection at both inter- and end-stages, and rework. A
stochastic model was developed to investigate their
system. Explicit analytical expressions for some of the
system characteristics were obtained using the state-
space method and regeneration point technique.
Inderfurth et al. [15] studied a deterministic problem
of planning the production of new and recovering of

defective items of the same product manufactured on
the same facility. The processing of a batch includes
two stages: the regular production and the rework
process. While waiting for rework, defective items
deteriorate and there is a given deterioration time limit.
Deterioration results in an increase in time and cost
for performing rework processes. The objective of their
study was to find batch sizes and positions of items to
be reworked such that overall production-inventory
costs are minimized. A polynomial, dynamic
programming algorithm was presented to solve this
problem. Many studies have since been conducted to
address different aspects of imperfect production
systems as well as quality assurance issues in
production [16-20].

Assumption of the continuous inventory issuing
policy is another unrealistic assumption in the classic
FPR model. In real production-shipment systems, it is
common for vendors to adopt multiple or periodic
delivery policy for transporting finished goods to
customers. Schwarz et al. [21] studied the fill-rate of a
one-warehouse, N-identical retailer distribution system.
An approximation model was adopted from a prior study
to maximize system fill-rate subject to a constraint on
system safety stock. As a result, properties of fill-rate
policy were suggested to provide management when
looking into system optimization. Hahm and Yano [22]
determined the frequency of production and delivery of
a single component with the objective of minimizing the
long-run average cost per unit time. They considered
the following costs: production setup costs, inventory-
holding costs for both the supplier and customer, and
transportation costs. They proved that the ratio between
the production interval and delivery interval must be an
integer in an optimal solution. They used these results to
describe situations in which it is optimal to have
synchronized production and delivery, and discussed the
ramifications of these conditions on strategies for setup
cost and time reductions. Sarker and Khan [23]
considered a manufacturing system that procures raw
materials from suppliers in a lot and processes them into
finished products which are then delivered to outside
buyers at fixed points in time. A general cost model was
formulated considering both raw materials and finished
products. Using this model, a simple procedure was
developed to determine an optimal ordering policy for
procurement of raw materials as well as manufacturing
batch size, to minimize the total cost of meeting
customers' demands in time. Sucky [24] focused on
supply chain management from the perspective of
inventory management. The coordination of order and
production policies between customers and suppliers in
supply chains was of his particular interest. The study
provided several bargaining models, depending on
alternative production policies of the supplier. With the
bargaining models, offered cooperative policy and
offered side payment can be derived. Chiu et al. [1]
derived an optimal common-production cycle time for a
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multi-item finite production rate (FPR) model with
rework and multi-shipment policy. They focused on a
multi-item, production-delivery integrated system under
a common-cycle time policy, a rework process of all
nonconforming items, and deliveries of n fixed-quantity
installments of the finished lots upon completion of
reworks. As a result, a closed-form optimal cycle time
that minimizes the long-run average system cost is
obtained. Additional studies that addressed various
aspects of periodic or multiple deliveries issues in
vendor-buyer integrated systems can also be found in
Refs. [25-28].

For the purpose of reducing inventory-holding cost,
this paper extends the specific multi-item FPR model
of Chiu et al. [1] by incorporating an improved n+1
shipment policy into their model. According to such a
policy, one extra delivery of finished items is made
during vendor’s production uptime to satisfy product
demands for the periods of vendor’s uptime and
rework time. At the end of rework and when the rest
of the production lot is quality assured, n fixed-quantity
installments of finished items are delivered to
customers. The objectives are to determine the optimal-
common production cycle time that minimizes the
long-run average system cost per time unit, and study
the effects of rework and the improved delivery policy
on the optimal cycle time and system costs.

2. MODEL DESCRIPTION AND
FORMULATIONS

A multi-item finite production rate (FPR) model
with rework and an improved delivery policy is
studied in this paper. Description of the model is as
follows: suppose a producer plans L products to be
made in turn on a single machine and during the
production process for each product i (where i = 1,
2,…, L), there is a xi portion of nonconforming items
being randomly produced at a rate d1i. All items are
screened and the inspection cost is included in
production cost unit Ci. It is assumed that all
nonconforming items are repairable at a rate of P2i at
the end of regular production, in each cycle with
reworking cost unit CRi. Shortages are not allowed in
the proposed model, so the constant production rate
for product i, P1i must satisfiy (P1i – d1i – λi) > 0,
where λi is the annual demand rate for product i, and
d1i can be expressed as d1i = xi P1i.

Aiming at reducing inventory holding cost, unlike
prior work of Chiu et al. [1] and assuming a multi-
shipment policy wherein the delivery of finished items
starts right after the end of rework, this research
adopts an improved n+1 multi-shipment policy.
According to the proposed n+1 delivery policy, an
initial shipment of finished goods is delivered to meet
customers’ product demands during producer’s uptime
and reworking time. Upon the completion of the
rework, n fixed-quantity installments of the finished

products are transported to customers, at a fixed time
interval tn (see Figure 1).

Fig. 1  On-hand inventory of perfect quality items for product i
in the proposed model

Other cost parameters used in this study include:
the production setup cost Ki, unit holding cost hi,
holding cost h1i per reworked item, the fixed delivery
cost K1i for product i per delivery, and unit shipping
cost CTi for each product i. In addition, the following
notation is used in modeling and analysis:
T = common-production cycle length - the decision

variable,
ti = time required for producing items to meet

demand of product i during producer’s uptime
t1i and reworking time t2i,

t1i = the production uptime for product i,
t2i = the reworking time for product i,
t3i = the delivery time for product i,
H1i = level of on-hand inventory in units for meeting

demand of product i during producer’s uptime
t1i and reworking time t2i,

H2i = maximum level of on-hand inventory for
product i when the regular production ends,

Hi = maximum level of on-hand inventory in units
for product i when the rework process ends,

n = number of fixed-quantity installments of the
finished batch to be delivered to customers in
each cycle, it is assumed to be a constant for all
products,

Qi = production lot size per cycle for product i,
tni = fixed interval of time between each installment

of finished product i being delivered during t3i,
I(t) = on-hand inventory of perfect quality items at

time t,
ID(t)i= on-hand inventory of defective items for

product i at time t,
TC(Qi) = total production-inventory-delivery costs per

cycle for product i,
E[TCU(Qi)] = total expected production-inventory-

delivery costs per unit time for L products in the
proposed system,

E[TCU(T)] = total expected production-inventory-
delivery costs per unit time for L products in the
proposed system using common-production
cycle time T as decision variable.
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From Figure 1, for any i=1, 2,…, L, the following
formulas can be obtained directly:
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From Figure 2, for any i=1,2,…,L, the following
formulas can be directly obtained:

1i 1i i id t x Q⋅ = ⋅ (10)
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t1i and rework time t2i, and holding cost for finished
goods kept during the delivery time t3i. Therefore, total
TC(Qi) for L products is:
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In this study, the defective rate x is assumed to be a
random variable with a known probability density
function. In order to take the randomness of x into
account, the expected value of x is used. Substituting
all parameters from Eqs. (1) to (13) in Eq. (14), and
with further derivations expected E[TCU(Qi )] can be
obtained as follows:
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Fig. 2  On-hand inventory of defective items for product i in the
proposed model

Total delivery costs for product i (i.e., n+1
shipments) in a production cycle are:

( ) 1i Ti in 1 K C Q+ + (12)
The variable holding costs for finished items of

product i during delivery time t3i are as follows [25]:

i i 3i
n 1

h H t
2n
−

⋅⎛ ⎞
⎜ ⎟
⎝ ⎠ (13)

Total production-inventory-delivery cost per cycle
for L products consists of the setup cost, variable
production cost, rework cost, fixed and variable
delivery cost, holding cost during production uptime
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Then Eq. (15) becomes:
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3. OPTIMAL PRODUCTION CYCLE
TIME

In order to obtain an optimal common-cycle time
T*, one must first prove the existence of minimum of
the expected cost function E[TCU(T)]. By
differentiating E[TCU(T)] with respect to T, first and
second derivative are obtained as:
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It can be seen that Eq. (19) turns out positive
because Ki, n, K1i and T are all positive. The second
derivative of E[TCU(T)] with respect to T is greater
than zero. Thus, E[TCU(T)] is a convex function for
all T different from zero.

The optimal common-production cycle time T* can
be obtained by setting the first derivative of E[TCU(T)]
equal to zero:
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With further derivations, one obtains:
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4. NUMERICAL EXAMPLE

In order to show a direct comparison with the
results obtained by Chiu et al.’s model [1], the same
example has been taken as the one examined in their
study. Reconsider that a producer plans a routine
production schedule to produce five products in turn
on a single machine under a common-production cycle
policy. The production rates P1i for each product are
58000, 59000, 60000, 61000 and 62000, respectively.
Demand rates λi for five different products are 3000,
3200, 3400, 3600 and 3800 per year, respectively.
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During the production, there are random defective rates
xi for each product which follow the uniform
distribution over the intervals of [0, 0.05], [0, 010],
[0, 0.15], [0, 020] and [0, 0.25], respectively. All
defective items are considered to be repairable at the
rates P2i of 1800, 2000, 2200, 2400 and 2600 items
per year, respectively, with additional reworking costs
of $50, $55, $60, $65 and $70 per item.

For the purpose of reducing inventory-holding
costs, this paper incorporates an n+1 delivery policy,
according to which, one extra delivery of finished items
is made during producer’s uptime to satisfy product
demands for the period of producer’s uptime and
reworking time (see Fig 1). Once the rest of the
production lot is quality assured at the end of the
rework process, n fixed-quantity installments of
finished items are delivered to customers at fixed time
intervals during t3. Additional values of system
parameters are given as follows:
Ci = unit production costs are $80, $90, $100, $110

and $120,
hi = unit holding costs are $10, $15, $20, $25 and

$30,
h1i = unit holding costs per reworked are $30, $35,

$40, $45 and $50,
Ki = the production setup costs are $3800, $3900,

$4000, $4100 and $4200,
CTi = unit transportation costs are $0.1, $0.2, $0.3,

$0.4 and $0.5,
K1i = fixed costs per delivery are $1800, $1900,

$2000, $2100 and $2200,
n = number of shipments per cycle, in this study it is

assumed to be 3 (i.e. n+1=4),
To compute an optimal common production cycle

time T*, one can apply Eq. (22) and find T*=0.7238
(years), and the total expected production-inventory-
delivery costs per time unit for L products for the
proposed system is E[TCU(T*=0.7238)]=$1,975,584.
Effects of the variation of the common-production
cycle time T on the system cost E[TCU(T)] are
illustrated in Figure 3.

Fig. 4  Expected reduction in producer’s inventory-holding
costs (light blue-shaded area) for each product i in the

proposed model, in comparison with [1]

Percentage of reduction in producer’s inventory-
holding costs for 5 different products is illustrated in
the numerical example in Figure 5. The same common
cycle time T=0.6026 and the same number of deliveries
n=4 (i.e. (n+1)=4 in our model) have been used as in
the previous study [1]. In summary, this study realizes
a significant total savings of $33,342 (i.e. $2,008,926
[1] – $1,975,584) or 11.54% of total other related costs
(i.e. E[TCU(T)]–(λC): the system cost excludes
variable production cost).

Fig. 3  Variation of common-cycle time T effects on the system
cost E[TCU(T)]

The purpose of this study aims at reducing
producer’s holding cost in each product made during
the production uptime, reworking time, and the
delivery time (see Figure 4 for details).

Fig. 5  Percentage of reduction in producer’s inventory-holding
costs for 5 different products in the numerical example

5. CONCLUDING REMARKS

This study integrates a cost-reduction delivery policy
into a multi-item finite production rate (FPR) model with
rework [1] for the purpose of lowering producer’s
inventory-holding costs. Mathematical modelling along
with the differential calculus is employed to deal with
the problem. First, the expected integrated production-
inventory-delivery cost per unit time is derived and it is
proved to be convex. Second, the closed-form optimal
common-cycle time that minimizes the long-run
expected system cost is obtained. Finally, a numerical
example is provided to show practical usage of our
research results and to demonstrate significant savings
in producer’s inventory-holding costs in comparison
with the previous study [1].
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MODEL OGRANI^ENE PROIZVODNJE RAZNOVRSNIH PROIZVODA S PROCESOM
OBRADE ROBE S GREŠKOM TE POBOLJŠANIM SUSTAVOM ISPORUKE

SA@ETAK

U ovome se radu razmatra model ograni~ene proizvodnje raznovrsnih proizvoda s procesom obrade robe s greškom
te poboljšanim sustavom isporuke. Za razliku od konvencionalnog modela ograni~ene proizvodnje koji obuhva}a
neprekidnu, serijsku proizvodnju jednog proizvoda iznimno visoke kvalitete, u ovome se radu razmatra mogu}nost
proivodnje više razli~itih proizvoda pomo}u istog stroja, obrada svih proizvoda s greškom te ekonomi~niji sustav
višestruke isporuke robe. Proširujemo rad Chiua i suradnika integriraju}i u njihov model poboljšan sustav isporuke,
n+1, prema kojemu se jedna dodatna pošiljka gotovih proizvoda isporu~uje tijekom proizvo|a~eva rada kako bi se
zadovoljila potra`nja za proizvodima za vrijeme kada proizvo|a~ obra|uje proizvode s greškom. Jednom kada ostatak
proizvoda posjeduje garantiranu kvalitetu te je proces obrade nevaljale robe dovršen, n obroka fiksne koli~ine
gotovih proizvoda se isporu~uje kupcima. Cilj ovoga rada je definirati optimalan zajedni~ki proizvodni ciklus koji bi
smanjio dugoro~ni prosje~ni trošak sustava po jedinici vremena te analizirati utjecaj obrade ošte}enih proizvoda i
poboljšanog sustava isporuke robe na optimalan proces proizvodnje. U tu svrhu korišteno je matemati~ko modeliranje
i analiza ~ime je dobiven zatvoren oblik optimalnog, zajedni~kog vremenskog ciklusa. Naposlijetku, numeri~kim
primjerom je prikazana prakti~na primjena dobivenih rezultata.

Klju~ne rije~i: model ograni~ene proizvodnje robe, sustav proizvodnje raznovrsnih proizvoda, zajedni~ki vremenski
ciklus, proces obrade proizvoda s greškom, optimizacija, višestruka isporuka.
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