
A. Tiwari, N. Bajpai, V.P.S. Rana, V.K. Pathak: Methods of obtaining smooth surface in 2D/3D surface reconstruction

ENGINEERING MODELLING 24 (2011) 1-4, 29-39 29

SUMMARY
Surface reconstruction is an emergent research area in the field of computer aided design and manufacturing.

There are various methods / algorithms which are working considerably well for surface reconstruction problem
but we cannot say to the best of our knowledge that we got all the solutions. Missing surface can be repaired either
by surface patch or by extending boundary curves. However, in both cases, surface smoothening problem arises in
form of flat surface. The present paper has been tried to offer a solution to above problem which makes the curve
smoother.
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1. INTRODUCTION

Due to recent technological development in
scanning process (laser and optical), it has become easy
to get point cloud data for a given artifact or an object.
The artifacts scanned may be broken and may require
the reconstruction work. Different algorithms are
available for reconstruction of given object from its
point cloud data.

An object surface can be viewed as a family of the
curves. If the surface has a hole in it (Fig. 1(a)), the
curves forming it will also be broken in between (Figures

1(b) and 1(c)). This paper presents an algorithm, which
uses the polar geometry and concept of Polar Radial
Angle Model [1] of curves. Using this geometry, a
relationship for the curvature (k) and arc-length (s) can
be obtained from which the rate of change of curvature
with respect to arc length can be found. The proposed
algorithm first finds out the k-s information of the near
by region of the broken part and then it interpolates the
k-s information’s for the missing region. After estimating
the k-s information for the missing region, intrinsic
LINear Curvature Element (LINCE) Model of a curve is
used to get the x-y values for the missing part [1].

Fig. 1(a)  Original triangulated 3-D data Fig. 1(b)  Cross-sectional view data Fig. 1(c)  Cross-sectional of point cloud data
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2. RELATED PREVIOUS WORK

There exist several techniques to reconstruct
surface from the point cloud data. This section deals
with some of the well-known techniques that can be
used in the field of surface reconstruction.

2.1 Hole filling using triangulation of each
connected component

One technique is to triangulate each connected
components of the surfaces boundary; thereby filling
each hole with a patch that has the topology of a disc.
This technique works well for simple holes in nearly
flat surfaces. But on convoluted holes it is likely to
result in self-intersecting geometry. In such case we
would like mesh-based reconstruction.

2.2 Mesh-based reconstruction with hole
filling

This method creates a surface that bounds the
maximum region of space consistent with the scans,
so it is guaranteed to produce a watertight surface.
However the method may lead to surfaces that are less
plausible than smoothly extending the observed
surfaces. Moreover, the method requires knowledge of
scanner lines of sight, and it performs poorly if these
lines of sight do not adequately cover the volume outside
the object. Additional lines of sight can be obtained by
scanning backdrops placed behind the object but still
within the scanner’s working volume [2, 3], or by
using a separate sensor to detect objects silhouettes
[4]. However these solutions may be difficult to deploy
outside the laboratory. This algorithm does not require
any such information like type of scanner, line of sight,
etc.

2.3 Volumetric diffusion

Volumetric diffusion algorithm is also a method used
for the reconstruction of bad surfaces. It takes the
time and memory proportional to n2 where ‘n’ is the
number of points in the data. This uses the diffusion to
complete a volumetric representation of the surface. It
produces a closed, manifold triangle mesh without self-
intersection. Although the algorithm is robust, it
contains a number of free parameters, like: the distance
at which we clamp source terms, the size of
convolution filter, the distance from a hole boundary,
etc. [5]. This boundary are curve base measure with
the help of Serret Frenet Equations.

3. SERRET FRENET EQUATIONS

Consider a curve AC as shown in Figure 2. Let r be
the position vector of a generic point P and let s, the
arc-length of P from a reference point A, be the
parameter describing the curve as r(s). The unit tangent
vector, the curvature, the torsion, the normal and the
binormal of the curve AC at the point P are given as
follows:

drt
ds

= (1)

dt kn
ds

= (2)

dn kt b
ds

τ= − + (3)

db n
ds

τ= − (4)

It is clear that t, n and b are mutually perpendicular
on each other. If we consider that t, b and n are
vectors quantity there for:

b = t × n (i)
t = n × b (ii)
n = b × t (iii)

This can be proved with the help of the vector cross
product method.

Fig. 2  Intrinsic geometry of 3-D curve AC

Here, t is the unit tangent vector, b is the unit binormal
vector and n is the unit binormal vector, while k is the
curvature and τ  is the torsion. Point P(x, y, z, s, κ, τ)
having six co-ordinates is known as frame of reference.
Equations (2), (3) and (4) are known as Serret Frenet
Equations. If the curve is planar then τ = 0 and the
above equations can be written as follows:

[ ]
[ ]
x( s )

r
y( s )

= (5)

where x(s) and y(s) are the length of arc about the axes
of x and y respectively, with:
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drt
ds

=   and:   n.t=0 (6)

The problem of finding the co-ordinates of x and y
as a function of arc length parameter s can be solved
using Serret Frenet Equations, Eqs. (2) through (4).
Rewriting Eq. (6) follows:

Tdr dx( s ) dy( s )t
ds ds ds

⎡ ⎤= = ⎢ ⎥⎣ ⎦
(7)

where T denotes transformation, and:

dy( s )
dsn

dx( s )
ds

⎡ ⎤−⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(8)

since n.t=0, and:

 2

2

2

2

( )

( )

d x s
dt ds
ds d y s

ds

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

(9)

Substituting Eqs. (8) and (9) in Eq. (2) yields:

2

2

2

2

d x( s ) dy( s )
ds dsk

dx( s )d y( s )
dsds

⎡ ⎤ −⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

(10)

Comparing Eq. (10) both sides as in matrices form
yields:

2

2
d x( s ) dy( s )k

dsds
= −  (11)

2

2
d y( s ) dx( s )k

dsds
= (12)

Now putting in Eq. (11):

( )
dx( s ) cos

ds σψ= ,

and putting in Eq. (12):

( )
dy( s ) sin

ds σψ= ,

where ψ(σ) is the radial angle, yields new equations
which can be written as:

( )( )d dy( s )cos k
ds dsσψ = − (13)

( )( )d dx( s )sin k
ds dsσψ =  (14)

Integrating both sides of Eqs. (13) and (14), where
[s0, s] is interval of given boundary, one obtains:

s

0
s0

x( s ) cos[ ( )]d xΨ σ σ= +∫ (15)

s

0
s0

y( s ) sin[ ( )]d yΨ σ σ= +∫ (16)

0
s0

( ) k( s )ds
σ

Ψ σ Ψ= +∫ (17)

4. LINCE MODEL

Let a curve pass through the points P0 (x0, y0) and
Pn (xn, yn) in a 2-D space (Figure 3). Let the directions
of tangent at P0 and Pn have been specified by ψ0 and
ψn and arc lengths from a reference point O as s0 and
sn respectively. If k is the curvature at any point P,
then it is assumed that the variation of k as a function
of the arc length as the parameter k=k(s) has been
specified. It can be seen that k(s) defines the shape of
the curve.

 

Fig. 3  Plane curve definition using Cartesian coordinates and
tangent angles

The curvature k(s) can be defined as a series of
piecewise continuous linear functions with curvature k0
and kn at the initial and final points. The intrinsic equation
of curve pass through two points and can be written as:

1 0
0 0

1 0

k k
k( s ) ( s s ) k

s s
−

= − +
−

  where 0 1s s s≤ ≤

2 1
1 1

2 1

k kk( s ) ( s s ) k
s s
−

= − +
−

  where 1 2s s s≤ ≤ (18)

n n 1
n 1 n 1

n n 1

k k
k( s ) ( s s ) k

s s
−

− −
−

−
= − +

−
where n 1 ns s s− ≤ ≤

where k(s), k0, k1, s0, s1, kn-1 and sn-1 are intrinsic
coordinates.

The area under the curvature equation represents
the change in the tangent angles of the initial and final
points of the 2D curve. So, from Eq. (17) follows:

0
s0

( ) k( s )ds
σ

Ψ σ Ψ− = ∫ (19)
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Putting the value k(s) in Eq. (19) from Eq. (18) one obtains:

0 1 n 1 n1 2
n 0 1 0 2 1 n n 1

k k k kk k( s s ) ( s s ) ... ( s s )
2 2 2

Ψ Ψ −
−

+ ++
− = − + − + + − (20)

Similarly, from Eqs. (15) and (16) follows:
s

0
s0

x( s ) x cos[ ( )]dΨ σ σ− = ∫ (21)

s

0
s0

y( s ) y sin[ ( )]dΨ σ σ− = ∫ (22)

Substituting the value k(s) from Eq. (18) into Eqs. (21) and (22) one obtains:

1 2

0 1

n

n 1

s s2 2
1 0 2 1

n 0 0 0 1 1 1 2
1 0 2 1s s

s 2
n n 1

n 1 n 1 n
n n 1s

k k k kx x cos[( )( s ) k C ]d cos[( )( s ) k C ]d ...
s s 2 s s 2

k k
... cos[( )( s ) k C ]d

s s 2

σ σσ σ σ σ σ σ

σ σ σ σ
−

−
− −

−

− −
− = − + + + − + + +

− −

−
+ − + +

−

∫ ∫

∫

1 2

0 1

n

n 1

s s2 2
1 0 2 1

n 0 0 0 1 1 1 2
1 0 2 1s s

s 2
n n 1

n 1 n 1 n
n n 1s

k k k ky y sin[( )( s ) k C ]d sin[( )( s ) k C ]d ...
s s 2 s s 2

k k
... sin[( )( s ) k C ]d

s s 2

σ σσ σ σ σ σ σ

σ σ σ σ
−

−
− −

−

− −
− = − + + + − + + +

− −

−
+ − + +

−

∫ ∫

∫

where C1, C2, …. Cn are constants. Note C1 = Ψ0. The other constants can be expressed in terms of ki, si, i=0,…,n
and Ψ0 using following relation:

* *j 1 j 2 j 1 j 1 j j 1 j 1 j 1
* * *j j 1 j 1 j 2 j 2 j 1 j 1 j 1

j 1 j 2 j j 1

k k s s k k s s
C C ( s s ) k s ( ) k s

s s 2 s s 2
− − − − − − −

− − − − − − −
− − −

− −
= + − + + −

− −
(23)

where j 2,3, ... n.=

Table 1  k-s data (see plot in Figure 4)

s 0.00 2.80 5.10 6.92 8.27 9.17 9.75 10.32 11.23 12.57 14.39 16.70 19.49 

k 0.009 0.015  0.029 0.063 0.179 0.710 2.000 0.707 0.179 0.063 0.029 0.015 0.009 

 
Table 2  x-y data obtained using LINCE model for k-s values in Table 1 (see plot in Figure 5)

x 2.00 3.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 7.00 7.50 8.00 

y 0.00 -2.75  -5.00 -6.75 -8.00 -8.75 -9.00 -8.75 -8.00 -6.75 -5.00  -2.75 0.00 

 
Table 3  Characteristic data of the problem solved in Figures 4 and 5
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( )2 2 2

CN
A B C

=
+ +

(29)

Therefore, the relation between direction cosines is
L2 + M2 + N2 = 1.

Distance of point pi from the plane P can be
achieved as:

i i i
i i 2 2 2

A* x B* y C* z D
D ( P, p ) i [0,n]

A B C

++ +
= ∈

+ +
(30)

where points (xi, yi, zi), i∈ [0,n] for which Di ≈ 0 are
the cross-sectional points and A, B and C are
coefficients of (xi, yi, zi). To get more cross-sections
other parallel planes are taken. Number of cross
sections taken for a hole depends on the size of the
hole. Figure 6 shows a triangulated point cloud data
with a hole and some cross sectional planes for the
hole while Figure 7 shows the cross sectional data
obtained from one cross sectional plane.

Fig. 5  Plot for x-y data obtained using LINCE model for k-s
values shown in Table 2

4.1 Computation of cross-section

The step of computation of cross-sections of each hole
consists of taking cross-sectional planes perpendicular to
the hole. Let ‘p’ be a set of 3D points defined as:

i i ip { x , y ,z | i [0,n ],n N }= ∈ ∈
and a 3D cross-sectional plane P with the equation
Ax + By + Cz + D = 0 where A, B and C are the
direction ratios of a cross-sectional plane.

If L, M and N are the direction cosines of cross-
section plane there for:

L = cos α (24)
M = cos β (25)
N = cos χ (26)

Relation between direction cosine and direction
ratios are:

( )2 2 2

AL
A B C

=
+ +

(27)

( )2 2 2

BM
A B C

=
+ +

(28)

Fig. 4  Plot for k-s data shown in Table 1

Fig. 6  Triangulated point cloud data with a hole and some
cross sectional planes for the hole

Fig. 7  Cross-sectional data with hole obtained from one cross
sectional plane

4.2 Projection of 3D cross-sectional data on
2D plane

This step is to project cross sectional 3D point
cloud data on 2D plane. Let (x1, y1, z1) be a point on

plane or-A -B D z= x+ y+   z=ax+by+c
C C C

 and after
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projecting it on X-Y plane ' '
1 1(x , y )  is obtained. Normal

vector to the plane is $ $
1N = -ai - b j  + ck

uur
$ . By inspection

a vector perpendicular to the plane $
2N  = -bi + a j 

uuur
$

can be obtained. Cross product of these two vectors
gives another vector on the plane and is given by:

$ $2 2
1 2N N aci bc j ( a b )k× = − + − +

uuuuuuuur
$

$
1 2 2

1e ( bi a j )
a b

= − +
+

uur
$

and:

$ $2 2

2 2 2 2 2 2

( aci bc j ( a b )k )e
( ac ) ( bc ) ( a b )

− + − +
=

+ + +

$uur

where and1 2e   e  
uur uur

are two orthogonal vectors in the

fitted plane. Let the origin (o_i,o_j,o_k)  be (0,0,C) on

the plane. So a vector from origin to point 1 1 1(x ,y ,z )
is given by:

$ $
1 1 1(x o _ i )i+(y o _ j ) j+(z -o_k)k− −$ .

This vector lies in the plane of unit vectors

and1 2e   e
uur uur

. So it can be written as linear combination

of vectors and1 2e   e  
uur uur

 as follows:

$ $ ' '
1 1 1 1 1 1 2(x o _ i )i+(y o _ j ) j+(z -o_k)k  = x e  + y e− −

uur uur
$

(31)
By equating the i, j and k component of the Eq.

(31), three linear equations are obtained. Solving these
linear equations ' '

1 1(x , y ) can be found.

5. DETECTION OF HOLE BOUNDARY

Our algorithm (which is partly based on the
research presented in Refs. [6-15]) takes the
triangulated point cloud data in stl formatψ. In a .stl
file, triangles can be divided into two categories. First
category can be named as boundary triangles and
second one as inner triangles. In Figure 8, triangles
with shaded colour are boundary triangles and others
are inner triangles. In a correct .stl file, the sides of
each inner triangle are shared by two triangles and in
boundary triangles, there is at least one side, which is
not shared by more than one triangle. These edges of
the boundary triangles may be called the boundary
edges. The property of boundary edges (i.e. it is shared
by only one triangle) can be used to identify the holes
in the triangulated 3D data. We can claim, the boundary
edges are the edges, which form the hole boundary. In
brief, all the edges in a triangulated file, which are
shared by only one triangle form the hole boundary.

Fig. 8  Boundary triangles and inner triangles: thick line
shows the boundary of the triangulated cloud and boundary

triangles; inner triangles are shown with shaded colour

The algorithm is as follows:

with plane colour
Void GetHoleBoundry ()
   {
While (triangles left)
      {
SelectOne Triangle;
For (I=0; I<3; I++)
         {
If (Is BoundaryEdge (Edge))
Write To BoundaryEdge (Edge))
Edge = Edge -->next;
                        /*Select next edge of boundary*/
         }
      }
   }

5.1 Healing of cross sections

After getting the cross-sections projected on the
2D plane, these broken cross-sections are healed. Here
we have presented the steps to heal a cross-section.
These are repeated to heal all cross-sections.

Step1: First step takes a cross-section and separates it
into two parts. Separation is done as follows. By
looking into the point cloud data, maximum distance
between two neighboring points can be found. So if in
a cross-sectional point cloud data, distance between
two consecutive points is found more than the
maximum allowed distance between two data points,
this is considered as a break in the cross sectional point
cloud data (Figure 9). The data points before break are
considered as Part 1 and remaining as Part 2.
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Fig. 9  Broken cross data - green color

Step 2: This step takes data points of the two parts of
the cross-section and fits quadratic curve separately
to these data sets using least square method. Let us
say y=f1(x) and y=f2(x) are the two quadratic curves
for the data sets of Part 1 and Part 2. Step 3 to step 9
heals the cross-section from left side taking point A as
starting point.

Step 3: The curvature and arc-length (k-s) values are
calculated for the two parts using equations:

2

2

23

d y
dxk

dy1 ( )
dx

=
+

(32)

where k is reciprocal radius of curvature, and:
x b

2

x a

dys 1 ( ) dx
dx

=

=

= +∫ (33)

where x=a is starting point and x=b is last point, taking
point A as starting point for Part 1 and Q as starting
point for Part 2 (Figure 9). Plot of the k-s data for the
above said two parts of the cross-sectional data is
shown in Figure 10(a).

Since the arc-length (s) for both the parts are
calculated separately taking A and Q as starting points
(points where s=0) for Part 1 and Part 2 respectively,
k-s plot of the Part 1 and Part 2 is found overlapping.

Step 4: To compute arc-length for both parts taking A
as reference point, a constant have to be added to each
value of arc-length for Part 2. Let us say this constant
is ∆s (in further discussion ∆s will be referred as the
shift for Part 2). It includes the length of the curve
Part 1 and the length of the missing part from P to Q
(see Figure 10(b)).

Fig. 10(b)  k-s plot after shift for the data of Figure 9

Step 5: To calculate the shift ∆s, a quadratic curve is
fitted to both data sets of Part 1 and Part 2 (Figure 9)
using least square method. The required shift is the arc
length of the curve fitted between x=x1 to x=x2. Let
this curve be y=f3(x). Now by integrating Eq. (33)
from x=x1 to x=x2 for y=f3(x), the shift ∆s can be
found. After adding ∆s to the s values of the Part 2
obtained in Step 3, new k-s values are obtained. Plot of
these new k-s values are shown in Figure 10(c).

Fig. 10(c)  New k-s values

Step 6: This step computes the values of k and s for the
missing part of the cross-section shown in Figure 9 using
the k-s estimated in step 5 (Figure 10(c)). Once the
correct values of the k and s are known for missing part,
using LINCE model missing x-y values can be estimated.

Fig. 10(a)  k-s plot for sectional point cloud data .
Part 1 (in blue color) and Part 2 (in green color)
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The steps involved in the process are as follows:
(a) Join the points A and B as shown in Figure 10(c)

by a line and then find out a line (Line 1)
perpendicular to line AB. Assume that there exist
point C on the Line 1 for which line segments AC
and BC give the required values of k-s for the
missing part of the curve.

(b) To search correct point C on Line1, binary search
method is used which takes intersection of Line 1,
Line 2 and intersection of Line1 and the tangent of
part 1 at point A as boundary of the binary search.
So the point C is searched between these boundary
points and to check whether the obtained point is
correct or not, each time x and y values from the
k-s values are find out using the LINCE model
(Figure 10(d)).

(c) The values of x and y obtained in step 6(b) for
point B are compared to the corresponding value
of x and y for the original data of x-y.

(d) If the distance between these two points is nearly
zero the algorithm terminates giving the final x-y
for the missing part (Figure 11).

right side. Also find out the change in angle from point
P to Q (Figure 9).

Step 9: The data sets (estimated from left and right)
for which the area under curve is close to the change
in the angle is used as the final missing data of the
curve (area under is equal to the change in angle).

5.2 Projection of healed 2D data points back
to 3D

In this step 2D healed data obtained in the previous
section are projected back to 3D. Consider the Eq. (31):

$ $ ' '
1 1 1 1 1 1 2(x o _ i )i+(y o _ j ) j+(z o_k)k  = x e  + y e− − −

uur uur
$

where (x1, y1, z1) is the point on 3D and (x1’, y1’) is
it’s projection on 2D plane taking origin at
( o _ i,o _ j,o _ k ) .

If and1 1 1 2 2 2( e _ i,e _ j,e _ k ) ( e _ i,e _ j,e _ k ) are
the i, j and k components of the vectors

and1 2e   e  
uur uur

then (x1, y1, z1) can be find as follows:

1 1 2x o _ i x* e _ i y* e _ i= + +  ,

1 1_ j 2y o _ j x* e y* e _ j= + + ,

1 1 2 _z o _ k x* e k y* e k= + + .

5.3 Getting the missed data in cross-sections

Fig. 10(d)  Final k-s values

Fig. 11  Cross-section of Figure 9 after reconstruction from left
(shown red) and right side (shown green)

Step 7: Repeat step 3 to 6 by taking point B (Figure 9)
as starting point and estimate the missing point from
the right side (Figure 10(d)).

Step 8: Calculate the area under the part PQ (Figure 9)
using the missing data estimated from both left and

FindMissed_xy( )
{
while (there is cross section left)

{
ProjectTo2D (CrossSection ( );
ReadXYDataOfBrokenCrossSectionalCurve( ); / *  * /
SeparateTwoParts (CrossSection( ) ); / * * /
/ *

1 1 2 2

1 1 2

i
i x, y

i x , y ,x , y
x , y , x , are known * /

Get_ksForParts (CrossSection(i)); / * * /
FindShift & New_ksFor2ndPart( ); / * * /
/ *  are known.

get xy_for_missed_part 

2
' '

1 1 1 2

2 2

mid mid low low high high

1 1 2 2 mid

 y  

k ,s ,k ,s
 k ,s

S , K , S , K , S , K

(k , s , k , s ,K ,S
while 
{ f

mid

2 2

2 2

mid low

mid low

high mid

high mid

mid

mid

);
( y_f(x (1))  y )

   i  (y_f(x (1)) > y  ) 
K      = (K +K )/2;
S       = (S +S )/2;
K =  K ;

S  =  S ;

K  =  k;
S   =  s;

≠

Algorithm for obtaining missed data in cross-sections:
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Let k and s values for the two parts are k1, s1, k2
and s2 and the calculated values for the missed part are
k’ and s’.

For a given curve in x-y, its arc length (s) and
curvature (k) (i.e. k-s) plot can be obtained and vice-
versa. In our approach the k-s values for a given broken
curve are calculated and using these k-s values the k-s
values for the missing part are calculated. Finally, the
missing x-y is calculated using the obtained k-s values
of the missing portion (Figure 12).

Step2: After identifying the hole, each hole is processed
separately for computing the cross-sections.
Step3: In this step 3D cross-sections are projected on
the 2D plane. Figure 14(a) shows the projection of 3D
cross-sections on x-y plane.

Fig. 12 Proposed curve after reconstruction

6. CASE STUDY

Step1: Step 1 takes the triangulated point cloud data file
of an object and processes it for finding the holes. After
finishing this step, all holes in the data are identified.
Figure 13 shows an object and detected hole in it.

Fig. 15(a)  Triangulated point cloud data of the hole

Fig. 14(a)  x-y projected view of cross-sections

}
get_xy_f

mid high

mid high

low mid

low mid

mid

mid

else 
          k       = (K +K )/2;

          s       = (S +S )/2;

          K  = K ;
          S  = S ;
          K  = k;
          S  = s;
        end;
      /*end-while*/  

or_missed_part 

}
}

1 1 2 2 mid mid(k , s , k , s ,K ,S );
i++;

Fig. 15(b)  Triangulated object surfaces

Fig. 13 Detected hole in the object (left) and the magnified view
of the hole and neighboring data of the hole taken into

consideration (right)

Fig. 14(b)  Cross-sections after healing

Step4: Step 4 heals the individual 2D cross sections.
The healed view of the cross-sections of Figure 14(a)
is shown in Figure 14(b).
Step5: Healed data is projected back to 3D and then it
is triangulated using Delaunay triangulation. Figure 15
shows triangulated point data of the hole (Figure 15(a))
and of the object surface (Figure 15(b)).
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7. RESULTS

Figure 16 shows the result obtained using our
algorithm. In Figure 16(a) a problem point cloud is
shown, i.e. the object with a hole, and Figure 16(b)
shows the point cloud after repairing it, i.e. after
reconstruction.

Fig. 16(a)  Object with a hole (before reconstruction)

Fig. 16(b)  After reconstruction
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METODE ZA DOBIVANJE GLATKIH POVRŠINA U 2D/3D REKONSTRUKCIJI
POVRŠINA

SA@ETAK

Rekonstrukcija površina proizlazi iz istra`ivanja površina iz podru~ja ra~unalno potpomognutog projektiranja
i proizvodnje. Postoje razli~ite metode / algoritmi koje sasvim dobro razmatraju ovaj problem, ali se ne mo`e re}i da
daju rješenje u svim situacijama. Nedostajaju}a površina se mo`e popraviti ili krpanjem površine ili pak produljenjem
rubne krivulje. Me|utim, u oba slu~aja name}e se problem zagla|ivanja tih površina. Ovaj ~lanak }e pokušati
ponuditi rješenje gornjeg problema odnosno kako zagladiti krivulju / plohu.

Klju~ne rije~i: razvla~enje, glatka površina, produljenje krivulje, kut zakrivljenosti, LINCE model, stl format1.


