
K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

ENGINEERING MODELLING 24 (2011) 1-4, 21-27 21

SUMMARY
 The main objective of this paper is to construct a location transparent distributed environment through which

the on-line load flow of multi-area power systems can be monitored and controlled. A single-server/multi-client
architecture has been proposed which enables that the neighboring powered system clients can access the remote
relay control server at any time, with their respective data. The location transparency is the key feature of Common
Object Request Broker Architecture (CORBA). Location transparency of the proposed model is the ability to access
and invoke operations on the CORBA server object without needing to know where the power system object resides.
Developed distributed model also provides language transparency that facilitates the implementation of the power
system logic in any programming language. A CORBA based distributed model has been developed in such a way
that for every specific period of time, the remote relay control server obtains the system data simultaneously from the
neighboring relays which are the clients registered with it and the server send back the response to the respective
clients. The relay control server creates a new thread of control for every client request and hence complete distributed
environment has been exploited.

Key words: distributed computing, load flow monitoring, CORBA, client-server model, multi-area power systems.

UDC 621.31:621.316:519.68
Original scientific paper

Received: 04.07.2011.

Location independent distributed model for
on-line load flow monitoring for

multi–area power systems
Kannan Nithiyananthan(1) and Velimuthu Ramachandran(2)

(1)Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science,
Pilani Dubai Campus, International Academic City, Dubai, Post Box No 345055,

UNITED ARAB EMIRATES, e-mail: nithi@bitsdubai.com
(2)Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University,

Chennai 600 025, INDIA, e-mail: rama@annauniv.edu

1. INTRODUCTION

The power system load flow solution obtained
through conventional client-server architecture is
complicated, memory management is difficult, source
code is bulky, and exception-handling mechanism is
not so easy. In the conventional power system
operation and control, it is assumed that the information
required for monitoring and controlling of power
systems is centrally available and all computations are
to be done sequentially at a single location [1]. With
respect to sequential computation, the server has to be
loaded every time for each client’s request and the time
taken to deliver the load flow solution is also
comparatively high [2, 3].

In this present work, a distributed environment has
been set up using RMI [4] to estimate and to monitor

load flow solutions for different sub-systems of an
integrated power system. Each sub-system has been
considered as a power system client and hence multi
power system clients - single load flow server model
is implemented. A client computer basically does the
distributed power system monitoring through an applet
for every specific period of time and frequently
exchanges data with the server. The server does the
load flow computation and then distributes the results.
Chronologically the server process should be started
first, so that it can take the initiative to set up a
connection link. It then starts waiting till it receives a
connection request from the client. A client can register
itself with the remote object (server object), just by
invoking the registration procedure on the server
object, when it needs a service from it. The remote
object obtains the necessary data from the registered

K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

22 ENGINEERING MODELLING 24 (2011) 1-4, 21-27

client objects and responds back to them respectively
with the results. This total process can be automated
by making the server get the input data for every
specific period of time. Transaction of data among
clients and server takes place several times and so the
possibilities of the occurrence of errors may be high.
Hence it must be handled properly.

2. FLOW MODELLING

2.1 Location transparent model for load flow
monitoring

In this proposed model, the power system client
can access the remote load flow server through the
CORBA server using Internet Inter ORB Protocol
(IIOP) as shown in Figure 1. In this model the power
system client is represented as a Java applet and it can
be downloaded in the client machine. The power
system client applet is designed in such a way that it
maintains the previous state until it receives the
converged load flow results from the load flow server
for a given load flow data.

class is to provide code for proxy object on which
power system clients invoke load flow method. The
proxy object method implementations on power system
client side invoke operations on the load flow servant,
which may be located remotely. If the servant is at a
remote location the proxy marshals the power system
data and transmits the invocation request. It takes the
name of the operation and the types and the values of
its arguments from language - dependent data
structures and places them into a linear representation
suitable for transmitting across a network [5].

Fig. 1 CORBA based model for load flow monitoring

Figure 1 illustrates the simplest scenario where a
power system client interacts with the load flow server
through object request brokers (ORB). The power
system client and the load flow server are both
implemented in JVM. The power system client
communicates with the ORB in order to convey a
request for an operation invocation to the load flow
server, which receives the power system data and then
sends the load flow results via the ORB back to the
power system client. The interfaces of these
components are defined by the CORBA standard and
by the application specific IDL.

2.2 CORBA data flow model

This Figure 2 shows a more concrete view of how
the ORB performs the task of conveying an invocation
from power system client to the load flow server. The
IDL compiler generates a number of Java classes
known as stub classes for the client and skeleton
classes for the load flow server. The role of the stub

Fig. 2 CORBA based data flow model

The resulting marshaled form of the request is sent
to the load flow servant using the particular ORB’s
infrastructure. In this proposed work, the
infrastructure involves a network transport mechanism
and additional mechanism to locate the load flow
servant and perhaps to activate the CORBA server
programs that hosts the servant. The server side
skeleton code provides the glue between a load flow
server object implementation, a CORBA server, and the
ORB, in particular the object adapter. The CORBA
specification leaves many of the interfaces between
the ORB core, object adapter, and load flow program
partially or totally unspecified. For this reason different
ORBs have different mechanisms to activate load flow
server and for use by object adapters to inform the
ORB that their objects are ready to receive invocation
requests. After receiving a request, the ORB consults
the object adaptor to find the load flow server that is
going to execute the operation. The skeleton of the
load flow server class implements the mechanism by
which invocation requests coming into a load flow
server can be unmarshaled and directed to the load
flow method of a servant. The steps involved in the
development of CORBA based distributed load flow
monitoring application are detailed as follows:

- Write IDL that describes the LoadFlowInterface
to the load flow server object that will be
implemented. Compile the LoadFlow IDL file.

- This produces the stub and skeleton code that
provides location transparency. That is it will
cooperate with the ORB library to convert an
object reference into a network connection to a
remote load flow server and then marshal the
power system data as arguments to an operation
on the object reference, convey them to the load

K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

ENGINEERING MODELLING 24 (2011) 1-4, 21-27 23

flow method in the server object, execute the
method and return the load flow results. Compile
the .java files, including the stubs and skeletons.

- Identify the IDL compiler generated interfaces
and the classes that need to be used in order to
invoke or implement load flow monitoring in a
distributed environment method.

- The ORB has to be initialized and it has to inform
about the load flow server remote objects
created. Compile all the generated code and run
the distributed load flow monitoring application.

3. IMPLEMENTATION

All CORBA objects support an IDL interface; the
IDL interface defines an object type. An interface can
inherit from one or more other interfaces. The IDL file
functionality is the CORBA language-independent
analog to a C++ header file. IDL is mapped into each
programming language to provide access to object
interfaces from that language. With Java IDL, these
interfaces can be translated to Java using the idltojava
compiler. For each IDL interface, idltojava generates
a Java interface and the other .java files needed,
including a client stub and a server skeleton [6]. The
IDL interface for the load flow estimation is shown in
Figure 3.

Fig. 3 IDL interface for the load flow estimation

The IDL interface is complied and this process generates five files in a LoadflowApp sub-directory:
_LoadflowImplBase.java: is an abstract class providing basic CORBA functionality for the load flow server. It

implements the Loadflow.java interface.
_LoadflowStub.java: is the client stub, providing CORBA functionality for the power system client. Loadflow.java

interface contains the Java version of IDL interface. It contains the method loadflowEstimation().
Loadflow.java: is the interface extends org.omg.CORBA.Object, providing standard CORBA object functionality

as well.
LoadflowHelper.java: class provides auxiliary functionality, notably the narrow() method required to cast CORBA

object references to their proper types.
LoadflowHolder.java: is a class holds a public instance member of type Loadflow interface. It provides operations

for out and inout arguments, which CORBA has but which do not map easily to Java’s semantics.
The Java IDL Transient Name service is an object server provided with Java IDL. The Name server has been

started using tnameserv at the command line prompt. This object server conforms to the standard object
implementation and invocation techniques. The Name Server stores load flow server object references by name in
a tree structure similar to a file directory. A power system client may lookup or resolves object reference by its
name.

The load flow server consists of two classes, the load flow servant and the server. The servant, LoadflowServant,
is the implementation of the Loadflow IDL interface; each Loadflow instance is implemented by a LoadflowServant
instance. The servant is a subclass of _LoadflowImplBase, which is generated by the idltojava compiler. The
servant contains loadflowEstimation() method for each IDL operation. Servant methods are just like ordinary Java
methods; the extra code to deal with the ORB, with marshaling arguments and results, and so on, is provided by the
server and the stubs. The Loadflow server class has the main() method which creates an ORB instance and creates
a servant instance and intimates the ORB about it as shown in Figure 4. Load flow server CORBA object’s reference
is obtained from a naming context to which a new CORBA server object is registered. The new servant object is
registered in the naming context using the name “loadflow”.

K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

24 ENGINEERING MODELLING 24 (2011) 1-4, 21-27

Fig. 4 Implementation of the load flow server

Power system client code is linked with idltojava
generated .java files and the ORB library. It will create
CORBA objects via the published factory interfaces that
the server provides. Since a CORBA object may be
shared by many clients around a network, only the
object server is in a position to know when the object
has become garbage. The client code’s only way of
issuing method requests on a CORBA object is via the
load flow server object’s object reference as shown in
Figure 5.

The object reference is an opaque structure which
identifies a CORBA object’s host machine, the port on
which the host server is listening for requests, and a
pointer to the specific object in the process. Because
Java IDL supports only transient objects, this object
reference becomes invalid if the load flow server
process has stopped and restarted. Power system
clients typically obtain object references from the name
service. Once an object reference is obtained, the power
system client must narrow it to the appropriate type
and can invoke the loadFlowEstimation() method. The
load flow results are monitored at regular intervals.

K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

ENGINEERING MODELLING 24 (2011) 1-4, 21-27 25

Fig. 5 Power system client implementation for location transparency model

4. RESULTS

The above distributed algorithm has been implemented in Windows NT based HP workstations connected in an
Ethernet LAN. The results are shown in a client applet as given in Figure 6.

Fig. 6 Applet with load flow solution

K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

26 ENGINEERING MODELLING 24 (2011) 1-4, 21-27

The applet from Figure 6 shows the load flow
solution for a specific 10-bus power system client.
When each power system client applet is loaded, it
registers with the load flow server, the client sends
the request and receives the output. Using this
approach, different power system clients can monitor
continuous updated load flow solutions at regular time
intervals.

The major factor that influences the performance
of the proposed models is the round trip time (RTT)
that includes the convergence time. The round trip
time measures the time needed from the point when
the power system client initiates a method invocation
to the point when the client receives the results [3].
The round trip time is measured for all the power
system clients that invoked the load flow method
simultaneously without any delay. The performance
analysis of the proposed distributed models has been
carried out with respect to load flow monitoring and
the variations of round trip time with respect to the
number of clients are shown in Figure 7.

5. CONCLUSION

An effective distributed model has been developed
to monitor the load flow of multiple power systems. It
has been tried out in overcoming the overheads
associated with sequential power system load flow
computation through this model. Although, client-
server architecture for load flow solution is very well
established, the value of this study lies in that it
emphasizes a unique methodology based on CORBA to
serve a large number of clients in a distributed power
system environment, across various platforms based
on communication between virtual machines. A
practical implementation of this approach suggested in
this paper was assessed based on 6, 9, 10 and 13 bus
sample systems. Accordingly the proposed model can
be implemented for large power systems network
spread over geographically apart.

6. REFERENCES

[1] G. Bandyopandhyay, I. Senguptha and T.N. Saha,
Use of client-server model in power system load
flow computation, IE(I) Journal-Electrical, Vol.
79, pp. 199-203, 1999.

[2] B. Qiu and H.B. Gooi, Web based SCADA display
systems (WSDS) for access via Internet, IEEE
Transactions on Power Systems, Vol. 15, No. 2,
pp. 681-686, 2000.

[3] A. Mos and J. Murphy, Performance management
in component-oriented systems using a model
driven architecture approach, Proc. of the 6th

IEEE Int. Enterprise Distributed Object
Computing Conference - EDOC, Lausanne, pp.
1656-1667, 2002.

[4] K. Nithiyananthan, V. Ramachandran and S.M.
Peeran, RMI based distributed database model for
multi-area power system load flow monitoring,
Int. J. for Engineering Intelligent Systems, Vol.
12, No. 3, pp.185-190, 2004.

[5] A. Buss and L. Jackson, Distributed simulation
modelling: A comparison of HLA, CORBA and
RMI, Proc. of the 1998 IEEE Winter Simulation
Conference, Vol. 1, pp. 819-825, 1998.

[6] A.Wollrath, J. Waldo and R. Riggs, Java centric
distributed computing, IEEE Micro, Vol. 17, No.
3, pp. 44-53, 1997.

Fig. 7 RTT vs. No of clients (load flow monitoring)

The time taken to invoke the load flow method
and to return the results increases linearly as the
number of clients gets increased in the proposed
model. The graph is plotted between the round trip
time calculated and the number of clients registered
with the server at a specific interval of time. From
the graph shown in Figure 7, it is found that CORBA
model performs better than the conventional client-
server architecture. Apart from that location and
language independence is the key feature of the
distributed model implemented.

K. Nithiyananthan, V. Ramachandran: Location independent distributed model for on-line load flow monitoring for multi-area power systems

ENGINEERING MODELLING 24 (2011) 1-4, 21-27 27

LOKACIJSKI NEOVISAN DISTRIBUIRANI MODEL ZA ON-LINE PRA]ENJE TOKA
OPTERE]ENJA ZA VIŠEPOVRŠINSKI ENERGETSKI SUSTAV

SA@ETAK

Glavni cilj ovog rada je napraviti lokacijski transparentan distribuirani okoliš pomo}u kojeg se mo`e pratiti i
kontrolirati on-line tok optere}enja za višepovršinski energetski sustav. Predla`e se jedan-server/više-klijenata
arhitektura, koja omogu}ava klijentima susjednih energetskih sustava da mogu pristupiti udaljenom serveru kontrole
releja u svako doba sa svojim odre|enim podacima. Lokacijska transparentnost je glavna zna~ajka tzv. Common
Object Request Broker Architecture (CORBA). Lokacijska transparentnost predlo`enog modela je sposobnost pristupu
i tra`enja pomo}i CORBA servera bez potrebe da se zna gdje se nalaze objekti energetskog sustava. Razvijeni
distribuirani model tako|er osigurava jezi~nu transparentnost koja olakšava provedbu logike energetskog sustava u
bilo koji programski jezik. Distribuirani model temeljen na CORBA-i je razvijen na takav na~in da za svaki
specifi~ni vremenski period udaljeni server kontrole releja dobiva istovremeno podatke sustava od svih susjednih
releja gdje su klijenti registrirani te server vra}a odgovor natrag svakom pojedinom klijentu. Server kontrole releja
stvara novi korak kontrole za svaki klijentov zahtjev te je tako cjelokupni distribuirani okoliš iskorišten.

Klju~ne rije~i: distribuirano ra~unanje, pra}enje toka optere}enja, CORBA, model klijent-server, višepovršinski
energetski sustav.

