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SUMMARY
The application of the finite-discrete element method (FEM/DEM) in the analysis of reinforced concrete (RC)

structures is still in its early stages. Therefore, in this paper, sensitivity of the numerical model for analysis of RC
structures based on the FEM/DEM method to the numerical parameters is presented. The accuracy of the solution,
depending on the mesh refinement, crack spacing and penalty term, was analysed. The performed numerical analyses
are useful in predicting the penalty parameter and mesh density in order to minimize numerical errors in analysis of
RC structures with the FEM/DEM method. Validation of the numerical model for adopted numerical parameters
was also shown by comparing numerical and experimental results.

Key words: finite-discrete element method, reinforced concrete structures, mesh refinement, crack spacing, penalty
term.
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1. INTRODUCTION

Most of the models for simulation of the behaviour
of reinforced concrete (RC) structures, described in
literature, are based on the finite element method
(FEM), where the effect of cracking is modelled with
the smeared or discrete crack approach. In the smeared
crack approach [1-4], cracked concrete is represented
as an elastic orthotropic material with reduced elastic
modulus in the direction normal to the crack plane.
With this continuum approach the local displacement
discontinuities at cracks are distributed over some
tributary area within the finite element, and the
behaviour of cracked concrete can be represented by
average stress-strain relations. In the discrete crack
approach, cracks are formed as geometrical
discontinuities by the separation of structural nodes [5]
or by enriching the finite element shape function to
enable capturing the discontinuity in the displacement
field [6, 7]. However, the reported models are incapable
of simulating the entire loading and failure process,
particularly, the transition from continuum to

discontinuum, and the interaction of the generated
fragments that are typical of fracturing and
fragmentation processes in reinforced concrete
structures. Of late, the discrete element method based
on modelling of the heterogeneous material by
elementary particles held together by cohesive forces
[8], which is firstly developed for granular soils, is
extended to other heterogeneous brittle materials like
concrete [9-11]. Recently, a discrete model based on
Voronoi cell representation with the beam lattice
network is used for modelling of brittle fracture
phenomena for dynamic loading [12]. The damage
phenomena in concrete can also be modelled with a
continuum-discrete damage model [13, 14] which is
capable of representing localized failure of massive
structures. The improved deformability model within
a discontinous deformation analysis was achieved
either by introducing higher order strain fields by sub-
block model [15].

Recently, the model for analysis and predicting the
collapse of reinforced concrete structures based on
the finite-discrete element method (FEM/DEM) was
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developed [16]. This model is able to include effects
of the behaviour of reinforced concrete structures
under dynamic loading conditions in the linear-elastic
stage, crack initiation and propagation, energy
dissipation by non-linear effects, inertial effects due to
motion, contact impact [17], and state of rest, which
is a consequence of energy dissipation in the system
[18].

Several numerical algorithms were developed and
implemented in combined finite-discrete element code
to realistically describe interactions between concrete
and reinforcement, as well as general behaviour of RC
structures. The model includes the cyclic behaviour of
concrete and steel, an embedded model of reinforcing
bars, the interaction between the reinforcement and
concrete, the influence of adjacent cracks to the slip of
reinforcing bar, local slip of reinforcing bar near the
crack plane and the influence of the curvature of
reinforcing bar to yield stress reduction of the steel.
All developed algorithms are based on an approximation
of the experimental curves for behaviour of the
concrete and steel at a crack.

Numerical analyses of real RC structures based on
the FEM/DEM method have shown that various
parameters influence the accuracy of the results [16].
In this paper, the main characteristics of the developed
numerical model were firstly presented. After that the
influence of the numerical parameters to the accuracy
of the solution was analyzed. At the end validation of
the presented numerical model for a simply supported
reinforced concrete beam exposed to monotonically
increasing load up to failure is shown.

2. CONCRETE MATERIAL MODEL

Fracture and fragmentation processes are in
essence processes of transition from continua to
discontinua. In the FEM/DEM method, it is realized by
a combined single and a smeared crack model.

In the model presented in this paper the behaviour
of the concrete in compression is linear elastic while a
stress–strain curve for concrete in tension is divided
into two sections (Figure 1): strain-hardening prior to
reaching the peak stress ft, which is implemented
through the constitutive law [19]; and strain-softening,
which is based on an approximation of the experimental
stress-displacement curves taken according to Hordijk
[20].

The cracks are assumed to coincide with the finite
element edges, which are achieved in advance through
the topology of adjacent elements being described by
different nodes. Separation of these edges induces a
bonding stress which is taken to be a function of the
size of separation δ  (Figure 2). The area under stress-
displacement curve represents the energy release rate
Gf  = 2γ, where γ  is the surface energy, i.e. the energy
needed to extend the crack surface by unit area.

Fig. 2  Single crack model for the softening part of the
stress-strain diagram

In theory the separation, δ = δt = 0 coincides with
the bonding stress being equal to the tensile strength ft,
i.e., no separation occurs before the tensile strength is
reached. In the actual implementation, it is enforced
through the penalty function method [19].

For separation δ ≤ δt the bonding stress is given by:

2
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t t

2 fδ δσ
δ δ
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where δt = 2hft / p0 is the separation corresponding to
the bonding stress being equal to the tensile strength ft,
h is the size of particular element and p0 is penalty
term at separation δ = 0. In that way the separation of
adjacent elements is normalized by the element size
before reaching a tensile strength.

After reaching a tensile strength ft stress decreases
with an increasing separation δ and at δ = δc bonding
stress tends to zero. For separation δt < δ < δc bonding
stress is given by:

c tz fσ = (2)
where z is a heuristic scaling function representing an
approximation of the experimental stress-displacement
curves taken according to Hordijk [20]:
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where c1 = 3 and c2 = 6.93, while the damage parameter
Dt is determined according to following expression:
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The edges of two adjacent elements are held
together by shear stress calculated by using the penalty
function method [21]. After reaching shear strength
fs, which coincides with sliding t = ts, the stress

Fig. 1  (a) Strain hardening and strain softening curves
defined in terms of strains; (b) Strain softening curve

defined in terms of displacements
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decreases with an increasing sliding t and at t=tc shear
stress tends to zero. For sliding ts < |t| < tc shear stress
is given by:

c s s( 1 D ) fτ = − (5)
where Ds is the damage parameter given by:

s c s s c
s

c

( t t ) /( t t ),   if   t t t ;
D

1,   if   t t
− − < <⎧

= ⎨ >⎩
(6)

3. REINFORCEMENT MODEL

In this model the concrete structure was discretized
with triangular finite elements, and the reinforcing bars
were modelled with one-dimensional elements, which
can be placed in arbitrary positions inside the concrete
finite elements. The model of the reinforced concrete
structure with an embedded reinforcing bar is shown
in Figure 3.

The reinforcing bar was defined by its first and end
points. Intersection between the sides of triangular
concrete finite elements and reinforcing bars gives the
reinforcement finite elements and reinforcement joint
elements (Figure 3).

The structure behaves as a continuum until
opening of the crack. In that phase the triangular
concrete element and line element of the reinforcing
bar behave as one body. The deformation of the
triangular element influences the deformation of the
reinforcing bar. It is assumed that the relationship
between stress and strain in a finite element of the
reinforcing bar is linear-elastic.

Appearance of a crack in the concrete, also leads
to occurrence of a crack in the joint element in the
concrete as well as a non-linear deformation in the joint
element of a reinforcing bar.

Fig. 4  Reinforcing bar joint element

After the occurrence of a crack in the concrete the
numerical model of reinforcing bar joint element is
based on a mechanical model for deformed reinforcing
bars at reinforced concrete interface, developed by
Soltani and Maekawa [22]. This model takes into
account [16, 21]:
- the interaction between the reinforcement and

concrete which was taken into consideration by
steel strain-slip relation,

- local slip of reinforcing bar near the crack plane
when the bar undergoes a high plastic deformation
under reversed cyclic loading,

- the influence of the curvature of reinforcing bar to
yield stress reduction of the steel,

- the cyclic behaviour of concrete and steel added to
an existing combined single and smeared crack
model, which is an essential mechanism for energy
loss in the post-cracking response of the structure.
If the distance from an adjacent crack is small, the

influence of adjacent cracks cannot be ignored. The
influence of adjacent cracks is approximately taken
into account through a reduction factor α [23], which
depends on distance lcr (Figure 5). The steel slip scr,
which considers the influence of adjacent cracks, is
expressed for monotonic loading as:

crs sα= (7)
where s is non-dimensional slip while reduction factor
α  is shown in Figure 5. Non-dimensional slip s is given
by:

fc
Ss K
D
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where D is the diameter of the bar,  fc is the
compressive strength of concrete (MPa) and S is slip
shown in Figure 4.

Fig. 3  Discretization of the reinforced concrete structure

The model of reinforcing bar in the joint element is
divided into parts before and after the occurrence of a
crack in the concrete. In theory, the separation d = 0
(Figure 4) coincides when the bonding stress is equal

to the tensile strength of the concrete, i.e., no separation
occurs before the tensile strength of concrete is
reached. In this model, the continuity between the
reinforcing bar finite elements is ensured through the
penalty function method [21].
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Fig. 5  Relation of reduction factor α  and crack spacing lcr  in tension

4. ANALYSIS OF NUMERICAL PARAMETERS

In this section the influence of penalty parameter p0, mesh refinement and crack spacing lcr on the accuracy of
the numerical results were analyzed.

4.1 Sensitivity of the model to the mesh refinement for tension

This example was chosen to analyze the sensitivity of the numerical model of the reinforcing bar to the mesh refinement
and crack spacing lcr. Analysis was performed on a reinforced concrete beam exposed to a monotonic increasing tension
load as shown in Figure 6.

    
(a)  

(b) 

 
(c) 

 
(d) 

 

Fig. 6  Geometry and load of structure

Tension load was realized with constant velocity v=0.1 m/s in end points of beam. Material characteristics are
shown in Table 1.
Table 1 Material characteristics of the beam 

Concrete Steel 
Modulus of elasticity , Ec (MPa) 30 500 Modulus of elasticity , Es (MPa) 190 000 

Poisson ratio , ν 0.2 Yield stress , fy ( MPa) 610 

Tensile strength , ft (MPa) 3.15 Ultimate stress , fu ( MPa)  750 

Compressive strength , fc (MPa) 40.0 Cross-section area , As (m2) 0.0006 

  Bar diameter , D (m) 0.008 

The beam was discretized with four different finite element meshes (A, B, C and D) shown in Figure 7. Mesh A
is characterized by an element size of h=15 cm. Mesh B is comprised of finite elements of size h=7.5 cm, while
meshes C and D are comprised of finite elements of size h=5.0 cm, and h=3.75 cm respectively.

Fig. 7  Finite element meshes used in the analysis: (a) mesh A, (b) mesh B, (c) mesh C, (d) mesh D
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Fig. 8  The average stress – average strain relation for
different mesh patterns

Influence of adjacent cracks is considered with the
parameter α which depends on crack spacing lcr. In
this example crack spacing is adopted as lcr = h / 2.

Table 2 Value of parameter α  for different mesh patterns

Mesh type / h Parameter  α 

mesh A / h = 15 cm 0.745 

mesh B / h = 7.5  cm 0.406 

mesh C / h = 5.0 cm 0.294 

mesh D / h = 3.75 cm 0.242 

In Figure 8 relation between average stress defined as
σ = F / A and average deformation defined as ε = ∆l / l is
shown.

 
(a)  

(b) 

 
(c) 

 
(d) 

 Fig. 9  Failure patterns for: (a) mesh A, (b) mesh B, (c) mesh C, (d) mesh D

The performed analysis indicates that the presented numerical model for reinforced bar is not significantly
sensitive to mesh refinement or finite element size. Thus, the average stress and average strain relation in structure
can be well described independent of crack spacing.

4.2. Sensitivity of the model to the penalty parameter for tension

This example was chosen to analyse the sensitivity of the numerical model of the reinforcing bar in the linear
elastic stage to the penalty parameter p0. Analysis was performed on a reinforced concrete cantilever exposed to a
monotonic increasing tension load. Geometry and cross section of the structure are shown in Figure 10.

Material characteristics are shown in Table 3.

Fig. 10  Geometry and load of structure

Table 3 Material characteristics

Concrete Steel 

Modulus of elasticity , Ec (MPa) 30 500 Modulus of elasticity , Es (MPa) 183 000 

Poisson ratio , ν  0.2 Yield stress , fy ( MPa) 420 
Tensile strength , ft (MPa) 3.15 Ultimate stress , fu ( MPa) 630 

  Cross-section area , As (m2) 0.00045 

  Bar diameter , D (m) 0 .012 

Failure patterns for different mesh type are shown in Figure 9.
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Fig. 12  Force-displacement relations

Relative errors in dependence on penalty parameters
p0 are shown in Table 4, where Ec is modulus of
elasticity for concrete.
Table 4 Relative errors in dependence on penalty parameters

Discretization of structure is shown in Figure 11.

Fig. 11  Discretization of structure

Figure 12 shows the comparison of the analytical
and numerical results obtained by the presented model
for different penalty parameters.

Penalty parameter  Relative error (%) 

A 20Ec 11.5 

B 60Ec 3.50 

C 100Ec 2.30 

The analysis shows that numerical results obtained
without joint elements are identical to the analytical
results. Numerical results obtained with joint elements
have relative error which depends on the penalty
parameter value. For higher penalty parameters,
numerical results are closer to analytical results, but
due to the numerical stability, it causes smaller time
steps [24] and longer calculation time.

4.3. Sensitivity of the model to the mesh
refinement for bending

This example was chosen to analyse the sensitivity
of the finite-discrete element method to the mesh
refinement in cases where influence of bending is
dominant.

The analysis was performed on concrete cantilever
subjected to monotonically increasing concentrated
force at the end of the beam (Figure 13).

Material characteristics of the beam are shown in
Table 5.
Table 5 Material characteristics of concrete

Concrete 

Modulus of elasticity , Ec (MPa) 30 500 

Poisson ratio , ν 0.2 

Tensile strength , ft (MPa) 3.15 

The beam was discretized with three different finite
element meshes (A, B and C) shown in Figure 14.
Mesh A is characterized with four elements per beam
high. Mesh B is comprised of six finite elements while
mesh C comprised of eight finite elements per beam
high.

Fig. 13  Geometry and load of structure

Fig. 14  Finite element meshes used in the analysis: (a) mesh A, (b) mesh B, (c) mesh C

(a) (b)

(c)
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The analysis shows that the minimum of eight finite
elements per beam high are necessary to obtain an
acceptable numerical error for cases where influence
of bending is dominant. This finite element mesh pattern
is adopted as basic in further analyses.

4.4. Sensitivity of the model to the penalty
parameter for bending

This example was chosen to analyse the sensitivity
of the numerical model of reinforcing bar to the
penalty parameter p0 for reinforced concrete
structures where influence of bending is dominant.
The cantilever reinforced concrete beam shown in
Figure 16 was analysed. The beam was reinforced
with two bars 2φ12 mm in the upper zone and
subjected to monotonically increasing concentrated
force at the end of the beam.

Material characteristics and discretization of
structure are shown in Table 7 and Figure 17,
respectively.

Figure 15 shows comparison of the analytical and
numerical (FEM/DEM) deflection of cantilever end for
three different finite element mesh patterns.
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Fig. 15  Force-displacement relations for different mesh
patterns

Relative errors in dependence on mesh patterns are
shown in Table 6.
Table 6 Relative errors in dependence on mesh patterns

Mesh type Relative error (%) 

Mesh A 20Ec 15.9 

Mesh B 60Ec 7.40 

Mesh C 100Ec 0.89 

 

Concrete Steel 

Modulus of elasticity , Ec (MPa) 30 500 Modulus of elasticity , Es (MPa) 210 000 

Poisson ratio , ν 0.2 Cross-section area , As (m2) 0.00023 

Damping coefficient , ξ 0.0 Bar diameter , D (m) 0.012 

Fig. 16  Geometry and load of structure

Table 7 Material characteristics of the reinforced beam

Fig. 17  Finite element mesh
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Figure 18 shows the comparison of the numerical
results obtained by programme ABAQUS [25] and
numerical results obtained by using the presented
model for different penalty parameters.
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Fig. 18  Force-displacement relations

Relative errors in dependence on penalty parameters
p0 are shown in Table 8, where Ec is modulus of
elasticity for concrete.
Table 8 Relative errors in dependence on penalty parameters

Penalty parameter  Relative error (%) 

A 20Ec 6.42 

B 60Ec 1.50 

C 100Ec 0.65 

The performed analysis shows that the error in the
displacements is controlled through setting penalty p0
as a function of the modulus of elasticity Ec. The
analysis of influence of penalty to the error in
displacement show that the relative error for p0 = 100 Ec
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Fig. 19  Time-displacement curve at the end of the beam

5. VALIDATION OF THE MODEL

Validation of the presented numerical model is
shown for a simply supported reinforced concrete
beam exposed to a monotonically increasing load up to
failure.

The characteristics of the beam are shown in
Figure 20. This example was tested by Majewski and
Krzowyon [26], both experimentally and numerically
by the model based on the finite element method [27].

is less than 1%. With the additional increasing of
penalty, the displacement error is reduced.

In this example dynamic validation of
presented model was performed with penalty
parameter p0 = 100 Ec. After the force had reached
the value of 80 kN, it was momentarily removed and
free oscillations of the beam appeared. The vertical
displacement of the right-hand end of the cantilever
beam was compared with the displacement obtained
by the ABAQUS package (Figure 19) and shows
excellent agreement of the results.

Fig. 20  Simply supported reinforced concrete beam

Material characteristics are taken from the literature and are shown in Table 9.
Table 9 Material characteristics of the beam

Concrete Steel 

Modulus of elasticity, Ec / MPa 29 730 Modulus of elasticity, Es / MPa 210 000 

Poisson ratio, ν 0.2 Yield stress, fy / MPa 420 

Tensile strength, ft / MPa 3.15 Cross-section area, As1 / cm2 1.02 
Compressive strength,  fc / MPa 40.0 Cross-section area, As2 / cm2 4.52 

 
The concrete structure was discretized into 1152 triangular elements while each reinforcing steel bar was modelled

with 144 two-node elements. The load was increased until failure of the structure. The finite element mesh of the
beam with reinforcement bars is shown in Figure 21.
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Results of this model based on the FEM/DEM
method were compared with the: (i) experimental
results, (ii) numerical results obtained by the MAFEM
programme for 2D non-linear finite element analysis
[26], and (iii) numerical results obtained by the
programme PRECON3D [27]. Comparisons of the
displacements for the mid-span d of the beam until
failure are shown in Figure 22.

The increase of stress in reinforcement steel which
depends on the applied load is shown in Figure 23. The
selected section is below the force F in the tensile
reinforcing bar. The stress in reinforcement reached
the yield stress at the moment of failure while the stress
in the concrete was under the compressive strength of
the concrete.

In this example, the failure of the structure occurs
due to the yield of steel in tension which is an
indication that the developed model for the
reinforcement steel embedded in the FEM/DEM code
is suitable for modelling the behaviour of RC structures
until collapse.

Fig. 21  Finite element mesh with reinforcement bars
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Fig. 22  Load-displacement curves for the mid-span
of the beam

The load-displacement curve shows that the biggest
deviation of the results obtained by FEM/DEM model
in comparison with the experiment is 2.8%. The failure
load obtained by the code is 1.0% lower than the
experiment result. It can be noted that the FEM/DEM
model gives better results with respect to the numerical
results obtained by the MAFEM and the PRECON3D
programmes which are based on non-linear finite
element analysis.

Fig. 23  Increase of stress in tensile reinforcing bar with
applied load

The first crack that appeared for the force
f=56.6 kN, is shown in Figure 24a. Cracks of the
beam for different loads are shown in Figure 24.

Fig. 24  The cracks of the beam for loads: (a) f=56.6 kN; (b) f=60.3 kN; (c) f=63.0 kN; (d) ) f=64.0 kN
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5. CONCLUSION

The application of the finite-discrete element method
(FEM/DEM) in the analysis of reinforced concrete
structures is in its early stages. In this paper the
influence of the numerical parameters to the accuracy
of the solution obtained by presented model was
analysed.

Numerical analyses performed in this paper are
useful in predicting the penalty parameter and mesh
density in order to obtain a reasonable numerical error
in analysis of reinforced concrete structures with the
FEM/DEM method.

The presented numerical example with adopted
finite element mesh density and penalty term shows
good agreement with experimental results and
demonstrates the possibility of using the presented
numerical model in the analysis of reinforced concrete
structures.
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Fig. 25  The cracks of the beam at failure
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ANALIZA UTJECAJA NUMERI^KIH PARAMETARA U FEM/DEM MODELU
ZA AB KONSTRUKCIJE

SA@ETAK

Primjena metode kona~no-diskretnih elemenata (FEM/DEM) u analizi armirano-betonskih konstrukcija je u
samom za~etku. Stoga je u ovom radu analiziran utjecaj numeri~kih parametara na osjetljivost numeri~kog modela
za analizu AB konstrukcija zasnovanog na FEM/DEM metodi. Analiziran je utjecaj gusto}e mre`e, udaljenosti
pukotina i penalty parametra na to~nost rješenja. Provedene numeri~ke analize omogu}uju pravilan odabir penalty
parametra i gusto}e mre`e s ciljem minimiziranja numeri~ke pogreške u analizi AB konstrukcija FEM/DEM
metodom. Validacija numeri~kog modela za usvojene numeri~ke parametre tako|er je pokazana usporedbom
numeri~kih i eksperimentalnih rezultata.

Klju~ne rije~i: metoda kona~no-diskretnih elemenata, armirano-betonske konstrukcije, gusto}a mre`e, udaljenost
pukotina, penalty parametar.
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