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Abstract

Although common APOE genetic variation has a major influence on plasma LDL-

cholesterol, its role in affecting HDL-cholesterol and triglycerides is not well established.

Recent genome-wide association studies suggest that APOE also affects plasma

variation in HDL-cholesterol and triglycerides. It is thus important to resequence the

APOE gene to identify both common and uncommon variants that affect plasma lipid

profile. Here, we have sequenced the APOE gene in 190 subjects with extreme HDL-

cholesterol levels selected from two well-defined epidemiological samples of U.S. non-

HispanicWhites (NHWs) andAfrican Blacks followed by genotyping of identified variants

in the entire datasets (623 NHWs, 788 African Blacks) and association analyses with

major lipid traits. We identified a total of 40 sequence variants, of which 10 are novel. A

total of 32 variants, including common tagSNPs ($5% frequency) and all uncommon

variants (,5% frequency) were successfully genotyped and considered for genotype-

phenotype associations. Other than the established associations of APOE*2 and

APOE*4 with LDL-cholesterol, we have identified additional independent associations

with LDL-cholesterol. We have also identified multiple associations of uncommon and

common APOE variants with HDL-cholesterol and triglycerides. Our comprehensive

sequencing and genotype-phenotype analyses indicate that APOE genetic variation

impacts HDL-cholesterol and triglycerides in addition to affecting LDL-cholesterol.
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Introduction

Coronary heart disease (CHD), a multifactorial disease modulated by multiple

genetic and environmental factors, continues to be a leading cause of morbidity

and mortality worldwide [1]. Dyslipidemia with high low-density lipoprotein

cholesterol (LDL-C) and low high-density lipoprotein cholesterol (HDL-C) is

associated with high risk of CHD [1]. Genes involved in lipid metabolism are

considered to be candidate genes for CHD risk, and their genetic variation could

contribute, in part, to the inter-individual variation in plasma lipoprotein-lipid

levels.

Apolipoprotein E (ApoE, protein; APOE, gene) is a major constituent of very

low-density lipoproteins (VLDL) and high-density lipoproteins (HDL) [2, 3] and

plays a crucial role in lipid metabolism through enhancing hepatic uptake of

triglyceride-rich lipoproteins (TGRL) and participating in reverse cholesterol

transport mechanism (RCT) [4]. Besides its significant contribution in lipid

metabolism, ApoE is involved in multiple functions in the human body, including

nerve growth and regeneration [5–8], cognitive function [9, 10], immunoregula-

tion and influencing susceptibility to infectious diseases [11–13]. The APOE gene

is located on chromosome 19q13.32 as part of the APOE-C1-C4-C2 gene cluster,

and is composed of 4 exons and 3 introns that span 3.6 kb [14] and encodes for

299 amino acids [3].

APOE is one of the most extensively studied candidate genes and the influence

of its genetic variation on plasma lipid levels and CHD risk has been well

investigated [15–16]. The epsilon polymorphism of APOE is defined by the rs7412

and rs429358 SNPs which leads to the generation of ApoE2, ApoE3 and Apo E4

isoforms and are coded by three codominant alleles (designated as E*2 E*3 and

E*4). The three isoforms differ by an amino acid substitution at position 112 or

position 158 in the 299-amino-acid peptide chain. Although the major effect of

APOE genetic variation has been reported to be on LDL-C levels, recent genome-

wide association studies (GWAS) on lipid traits also identified statistically

significant associations of APOE common variants with HDL-C and triglyceride

(TG) levels [17–18]. Thus, deep resequencing of the APOE gene in selected

individuals with high/low lipid levels is warranted in order to characterize both

rare and common variants that might affect plasma lipid profile.

In this study, we resequenced the entire APOE gene region (total 5.5 kb),

including all four exons (1,180 bp), three introns (2,432 bp), and ,1 kb of each

of the flanking regions in selected individuals with extreme HDL-C levels (falling

within the upper and lower 10th percentiles) from two ethnically-distinct

populations (95 US non-Hispanic Whites (NHWs) and 95 African Blacks).

Following the sequencing-based discovery step, we genotyped all identified

common tagSNPs (r2$0.9) with minor allele frequency (MAF) $5%, and relevant

uncommon and rare variants with MAF,5% in the entire sample sets (623

NHWs and 788 African Blacks) to evaluate their associations with lipid traits. The

association of APOE genetic variation was examined with three lipid traits (LDL-

C, HDL-C and TG) and apolipoprotein B (ApoB) using single-site association
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analysis for variants with MAF$1%, gene–based and haplotype-based association

analyses for all variants, and SKAT-O (sequencing Kernel association optimal test)

for uncommon and rare variants (MAF,5%).

Materials and Methods

Study Samples

The study was conducted on two epidemiologically well-characterized population

samples comprising 623 US non-Hispanic Whites (NHWs) and 788 African

Blacks. NHW samples were collected as part of the San Luis valley Diabetes Study

that was designed as geographical case-control study of non-insulin dependent

diabetes mellitus and cardiovascular disease in Alamosa and Conejos counties of

South Colorado [19). All NHWs used in this study were non-diabetic controls and

the basic characteristics of this study are described elsewhere [19–20]. African

Blacks were recruited from Benin City, Nigeria as part of a study on CHD risk

factors in Blacks and the study details have been described in Bunker et al. [21–

22]. While LDL-C, HDL-C and TG were measured in all subjects, ApoB was

measured only in a subset of NHW individuals [23–24]. The demographic and

lipid characteristics of these study samples can be found in our previous

publications [24–26]. The study was approved by the University of Pittsburgh and

University of Colorado Denver Institutional Review Boards and all study

participants provided written informed consent.

DNA Extraction

The genomic DNA used for sequencing and genotyping was extracted from blood

clots in Blacks and from buffy coats in NHWs using standard procedures.

DNA Sequencing

Ninety-five individuals with high HDL-C levels falling within the upper 10th

percentile (47 NHWs, and 48 African Blacks) and 95 individuals with low HDL-C

levels falling in the lower 10th percentile (48 NHWs, and 47 African Blacks) were

selected for Sanger sequencing. The characteristics of the selected samples in both

ethnic groups are summarized in Table S1 in S1 File.

A total of ,5.5 kb of the APOE gene region, including all 4 exons and 3 introns,

1,034 bp in 59 flanking region, and 845 bp in 39 flanking region were PCR-

amplified using M13 tagged forward and reverse primers. Publicly available

information at SeattleSNPs database (http://pga.mbt.washington.edu/) was used

to order M13 tagged primers, which generated nine overlapping PCR amplicons.

PCR reaction and cycling conditions are available upon request. The PCR-

amplified samples were sent to a commercial lab (Beckman Coulter Genomics,

Danvers, MA) for automated fluorescence-based cycle sequencing and capillary

electrophoresis on ABI 3730x1DNA Analyzers. Variant Reporter version 1.0

(Applied Biosystems, Foster City, CA) and Sequencher version 4.8 (Gene Codes
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Corporation, Ann Arbor, MI) were used for sequencing analysis and variant

detection.

DNA Genotyping

Common tagSNPs (MAF$5%) were determined by Tagger analysis of the

sequencing data in each ethnic group using Haploview software and an r2 cut-off

of 0.9. All common tagSNPs and uncommon/rare variants (MAF,5%) identified

in each ethnic group by our sequencing, as well as the suspicious variants with low

sequencing quality and/or low coverage that warrant validation and the previously

reported common variants not detected in our sequencing, were selected for

follow-up genotyping.

TaqMan (Applied Biosystems) or iPLEX Gold (Sequenom, San Diego, CA)

genotyping methods were used for genotyping following manufacturer’s protocols

and recommendations. Whole genome amplified DNAs dried in 384-well plates

were used for genotyping. Endpoint fluorescence reading of custom or pre-made

TaqMan assays was done using the ABI Prism 7900HT Sequence Detection

System. The iPLEX Gold genotyping was performed in the Core laboratories of

the University of Pittsburgh. Sequences of primers and probes used for

genotyping are available upon request. All the samples used in sequencing were

also included in genotyping as a quality control measure. The comparison of

sequencing and genotyping calls was conducted to check the concordance as well

as to increase the call rate in both sequencing and genotyping sets.

Statistical Analysis

Analyses for NHWs and African Blacks were performed separately. For sequencing

subsets, the Haploview software (www.broadinstitute.org/haploview) was used to

analyze allele frequencies, their distributions in the two extreme HDL-C groups,

their concordance with Hardy-Weinberg Equilibrium (HWE), and their linkage

disequilibrium (LD) patterns.

SNPs with extensive missing data (.20%) and/or deviating highly from HWE

(P,0.01) were excluded from association analyses. A total of 15 variants in

NHWs and 23 variants in Blacks remained for downstream analysis. The

associations between SNPs and lipid traits were analyzed using additive linear

regression model. We took the best power Box-Cox transformation such that the

transformed lipid traits achieved normality. Stepwise regression in both directions

was performed to identify significant covariates for each lipid trait. The covariates

included were gender, age, BMI and smoking in NHWs and gender, age, BMI,

waist measurement, smoking, exercise (minutes walking or bicycling to work each

day), and staff level (junior or senior) in Blacks. Detailed information on those

covariates and their effects can be found elsewhere [24]. Since the epsilon APOE

E2/E3/E4 polymorphism has an established effect on cholesterol levels, we also

adjusted the effects of novel associations for the epsilon APOE polymorphism.

Single-site, haplotype-based and rare variants analyses were implemented in R and
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the versatile gene-based associations (VEGAS) [27] were also performed. For

single-site analysis, we applied Benjamini-Hochberg procedure [28] to control for

false discovery rate (FDR) and considered an FDR (q-value) of ,0.20 as

statistically significant.

For haplotype association analysis, the generalized linear model (GLM) was used

[29]. Including too many haplotypes can make above model inefficient and impractical.

To reduce the number of haplotypes considered in association analysis, we used the

sliding window, 4 SNPs per window, and assessed evidence for association within each

window. Specifically, a global p-value for testing overall effects of the haplotypes with

frequency greater than 0.01 was used to assess the associations between the traits and

haplotypes in each window. Sliding-window haplotype analysis was performed using

the haplo.glm function in the Haplo.Stats R package (version 1.5.0).

We analyzed the cumulative effects of uncommon/rare variants by using the SKAT-

O method [30], which has been proposed to be the optimal test for rare variant analysis

and outperformed the SKAT and burden tests in several ways. The analysis was

performed by using three different minor allele frequency bin thresholds (#1%, #2%

and ,5%). The SKAT method was implemented using the ‘‘SKAT’’ R package.

Results

APOE Sequencing Results

Sequencing of ,5.5 kb genomic region of APOE (including all 4 exons, 3 introns,

1,034 bp in the 59 and 845 bp in the 39 flanking regions), in 190 selected

individuals (95 NHWs and 95 African Blacks) with extreme HDL-C levels revealed

a total of 40 variants in both population groups, including 30 known and 10 novel

variants (as compared to NCBI dbSNP human Build 141) (Table S2 in S1 File).

All novel variants identified in this study have been submitted to dbSNP database:

(http://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?handle5KAMBOH).

The codon position used for specifying the coding variants corresponds to the

premature protein that also includes the first 18 amino acids of signal peptide. The

distribution of the 40 variants is as follows: 10 in 59 flanking region, 7 in exons

(including 2 in 39 UTR), 16 in introns (including 1 in splice site), and 7 in the 39

flanking region. Four of the 5 coding variants (80%) were non-synonymous. Ten of the

40 variants were present in both groups, while 9 variants were unique to NHWs and 21

variants were specific to African Blacks. Four of the ten shared-variants showed

statistically significant allele frequency differences between the two ethnic groups (see

Table S2 in S1 File for variants at positions 560, 624, 832, and 1163).

Distribution of APOE sequence variants in two extreme HDL-C

groups

Comparison of sequencing variants distribution between the two extreme HDL-C

groups in NHWs and African Blacks is presented in Table S3 in S1 File and Table

S4 in S1 File, respectively.
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Among the 8 rare/uncommon variants (overall MAF,5%) in NHWs, 6 were

unique to the high HDL-C group, 1 was unique to the low HDL-C group, and 1

was present in both lipid groups. In parallel with observing more unique rare

variants in the high HDL-C group, 21% (10/47 subjects) of this group had at least

one unique rare variant as compared to 2% (1/48 subjects) of the other lipid

group (Fisher exact test p-value50.0037). Furthermore, the two rare coding

variants observed in this study (Ala23Ala; Val254Glu) were present only in the

high HDL-C group.

Among the 21 rare/uncommon variants (overall MAF,5%) observed in

African Blacks, 6 were unique to the high HDL-C group, 5 were unique to the low

HDL-C group, and the remaining 10 were equally distributed among the two

extreme HDL-C groups. Unlike NHWs, the distribution of the unique rare

variants was similar in the two extreme lipid groups among African Blacks. Fifteen

percent (7/48 subjects) of the high HDL-C group had at least one unique rare

variant as compared to 6% (3/47 subjects) of the low HDL-C group (Fisher exact

test p-value50.316).

Single-site association analysis of the SNPs in the entire NHW and

Black samples

Following the identification of genetic variation in the sequencing step, common

tagSNPs covering the entire APOE gene and rare variants were genotyped in the total

sample of NHWs (n5623) and African Blacks (n5788) for genotype-phenotype

association analyses. Initially, 20 variants in NHWs (9 tagSNPs, 8 rare variants, 2

suspicious SNPs, and 1 database SNP) and 32 variants in African Blacks (9 tagSNPs, 21

rare variants, 1 suspicious SNP, and 1 database SNP) were selected for genotyping. In

NHWs, 2 of the 20 variants (APOE2294; MAF50.005, and APOE4951/

rs1081105;MAF50.042) failed in both Sequenom and TaqMan designs or runs, 2

suspicious variants (APOE4489, and APOE4490) were confirmed as not being genuine

and one variant (APOE624/rs769446) with low call rate was excluded from the

association analyses. So, a total of 15 variants (14 sequencing variants and 1 database

SNP APOE3106/rs769452) were successfully genotyped in the entire NHW sample. In

African Blacks, 6 of 32 variants (APOE471/rs439382;MAF50.132,

APOE494;MAF50.005, APOE526;MAF50.005, APOE2576;MAF50.005, APOE4951/

rs1081105; MAF50.042, and APOE5229/rs80125357; MAF50.059) failed in both

Sequenom and TaqMan designs or runs, the database SNP (APOE1586/rs74625294)

and the suspicious variant (APOE91) were excluded because they turned out to be non-

polymorphic in our population and an additional variant (APOE1591/rs147236548)

was excluded from the statistical analyses because it was out of HWE. Thus, a total of 23

variants were successfully genotyped in the entire African Black sample.

The LD plot of the genotyped variants with MAF.1% in NHWs is shown in

Fig. 1, the association results for all genotyped variants with the three lipid traits

(LDL-C, TG, and HDL-C) and ApoB are presented in Table 1 and the adjusted

mean distributions of all the evaluated lipid traits among the genotype groups are

given in Table S5 in S1 File. As expected, the two known and well-established

APOE Genetic Variation and Plasma Lipoproteins
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Fig. 2. LD Plot of the genotyped variants with MAF.1% in African Blacks. The values in the cells are the
pairwise degree of LD indicated by r26100. r250 is shown as white, 0,r2,1 is shown in gray and r251 is
shown in black.

doi:10.1371/journal.pone.0114618.g002

Table 3. Gene-based association analysis with lipid traits in NHWs.

Gene-based test based on all genotyped SNPs

Chr Gene nSNPs Test P-value Best SNP SNP p-value

HDL-C 19 APOE 13 19.99758 0.131 APOE1575/rs769448 0.019741

LDL-C 19 APOE 13 51.24064 0.000391 APOE4075/rs7412 1.84E-07

TG 19 APOE 13 28.89721 0.02451 APOE1163/rs440446 0.001807

ApoB 19 APOE 13 94.0465 ,1.00E-06 APOE4075/rs7412 9.65E-13

Gene-based test based on genotyped SNPs with MAF $0.05

Chr Gene nSNPs Test P-value Best SNP SNP p-value

HDL-C 19 APOE 8 7.985102 0.417 APOE5361rs1081106 0.091454

LDL-C 19 APOE 8 48.96342 0.000164 APOE4075/rs7412 1.84E-07

TG 19 APOE 8 26.17339 0.01205 APOE1163/rs440446 0.001807

ApoB 19 APOE 8 86.75186 1.00E-06 APOE4075/rs7412 9.65E-13

nSNPs: represents the number of SNPs included in the analysis; two rare variants were excluded from the gene-based association analysis because of the
missing phenotype data (ApoB data was available in a subset of the NHW sample); Test: represent the overall test statistic; P-value: the overall p-value;
SNP p-value: p-value of the best SNPs contributed to the significance.

doi:10.1371/journal.pone.0114618.t003
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SNPs as part of the APOE epsilon polymorphism, E*4 (rs429358) and E*2

(rs7412) were significantly associated with plasma levels of LDL-C (b58.10;

p50.0103, and b5221.84; p51.84E-07, respectively) and ApoB (b52.14;

p50.0005, and b525.60; p59.65E-13, respectively). Four additional LDL-C

associations were observed independent of E*2/E*4: APOE832/rs405509 in 59

flanking (b525.17; p50.0345; FDR50.139), APOE1163/rs440446 in intron 1

(b56.11; p50.018; FDR50.139), APOE2440/rs769450 in intron2 (b55.52;

p50.0275; FDR50.139), and APOE4310/rs199768005 (Val254Glu) in exon4

(b5235.36; p50.043; FDR50.139). These same four SNPs were also associated

with TG (p50.0019 and FDR50.01, p50.0012 and FDR50.01, p50.002 and

FDR50.01, and p50.028 and FDR50.074, respectively). An additional SNP,

APOE4528/rs374329439 in 39UTR, was also associated with TG (p50.022;

FDR50.071).

In African Blacks, 23 variants with high call rate and in compliance with HWE

were included in the association analyses and their single-site association results

are shown in Table 2. The LD plot of the genotyped variants with MAF.1% is

shown in Fig. 2 and the adjusted mean of the evaluated lipid traits among the

genotype groups are presented in Table S6 in S1 File. As expected, the E*4

(rs429358) and E*2 (rs7412) SNPs were associated with LDL-C (b50.46;

p50.0317 and b522.05; p55.35E-07, respectively). Four additional variants also

showed association with LDL-C independent of E*2/E*4: APOE2269/rs61357706

in intron 2 (b522.23; p50.0034; FDR50.02), APOE2544/rs115299243 in intron

2 (b522.54; p50.0008; FDR50.008), APOE4036/rs769455(Arg163Cys) in exon 4

(b522.41; p50.0004; FDR50.008) and a novel association in 39UTR, APOE4569

(b58.35; p50.024; FDR50.124). Two of these variants were also associated with

TG APOE4036/rs769455 (Arg163Cys) (p50.0343; FDR50.199) and APOE2544/

rs115299243 (p50.0378; FDR50.199). Two additional variants were also found to

Table 4. Gene-based association analysis with lipid traits in African Blacks.

Gene-based test based on all genotyped SNPs

Chr Gene nSNPs Test P-value Best SNP SNP p-value

HDL-C 19 APOE 23 33.35805 0.122 APOE618 0.00079

LDL-C 19 APOE 23 97.16241 8.00E-06 APOE4075/rs7412 5.35E-07

TG 19 APOE 23 33.95383 0.124 APOE73/rs1081101 0.009268

APOB 19 APOE 23 32.04047 0.162 APOE1163/rs440446 0.010931

Gene-based test based on genotyped SNPs with MAF $0.05

Chr Gene nSNPs Test P-value Best SNP SNP p-value

HDL-C 19 APOE 8 10.58566 0.238 APOE4075/rs7412 0.066145

LDL-C 19 APOE 8 52.01841 3.20E-05 APOE4075/rs7412 5.35E-07

TG 19 APOE 8 16.97919 0.0552 APOE73/rs1081101 0.009268

APOB 19 APOE 8 16.2653 0.06542 APOE1163/rs440446 0.010931

nSNPs: represents the number of SNPs included in the analysis; Test: represent the overall test statistic; P-value: the overall p-value; SNP p-value: p-value
of the best SNPs contributed to the significance.

doi:10.1371/journal.pone.0114618.t004
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be associated with TG: APOE73/rs1081101 (p50.0115; FDR50.145), and

APOE1279/rs877973 (p50.014; FDR50.145). One novel rare variant (APOE618)

located in 59 flanking region and observed in one individual was associated with

extremely low HDL-C (13.5 mg/dl vs. 47.8 mg/dl; (b5212.18; p5 0.001;

FDR50.020); Table S6 in S1 File).

Fig. 3. Haplotype analysis with lipid traits in NHWs. Haplotype windows for LDL-C (a), for ApoB (b), for HDL-C (c), and for TG (d). X-axis has the
genotyped markers names and the Y-axis has the –log (global p-value), horizontal lines represent the 4-SNP windows, red-line represents the p-value
threshold (p50.05) and everything below the threshold is considered non-significant and vice versa.

doi:10.1371/journal.pone.0114618.g003
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Gene-based association analysis

Gene-based tests including all APOE common and rare variants simultaneously

within each ethnic group were performed (Table 3 and Table 4). Gene-based

association analysis showed significant associations (p,0.05) with TG, LDL-C

and ApoB in NHWs and with LDL-C in African Blacks.

Fig. 4. Haplotype analysis with lipid traits in African Blacks. Haplotype windows for LDL-C (a), for ApoB (b), for HDL-C (c), and for TG (d). X-axis has the
genotyped markers name and the Y-axis has the –log (global p-value), horizontal lines represent the 4-SNP windows, red-line represents the p-value
threshold (p50.05) and everything below the threshold is considered non-significant and vice versa.

doi:10.1371/journal.pone.0114618.g004
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Haplotype-based association analysis

The adjacent variants were evaluated as a group of four variants instead of relying

on the effect of a single variant. The p-values for 4-SNP haplotype windows for

each evaluated lipid trait are given in Fig. 3, and Fig. 4 for NHWs and Blacks,

respectively. For the haplotype-based association results please see the Tables S7-

S12 in S1 File for NHWs and Tables S13-S16 in S1 File for Blacks.

In NHWs, the strongest haplotype associations were observed with ApoB

followed by LDL-C. The region covered by five consecutive haplotype windows,

including windows 7, 8, 9, 10 and 11 that harbor the variation in exon 4, showed

the most significant global p-value with LDL-C (p-value ranges between 1.12E-07

and 0.0339), most likely due to the effect of E*2 (rs7412) and E*4 (rs429358) SNPs

present in these windows. Additional four windows (1, 3, 4 and 5) showed

nominally significant global p-value with LDL-C confirming the independent

effect of APOE2440/rs769450 (p50.038). Similarly, the consecutive windows 7, 8,

9, and 10 that harbor variation in exon 4 showed significant haplotype global p-

values with ApoB (p50.0027, 4.37E-14, 8.32E-13, and 5.47E-12) more likely due

to the significant contribution of E*2 (rs7412) and E*4 (rs429358) on ApoB

variation. Additionally the first five windows (windows 1, 2, 3, 4, and 5) showed

significant global p-values (p51.57E-05, 0.0004, 8.05E-07, 0.0.0265, and 0.0176)

more likely due to the effects of APOE832/rs405509 and APOE1998/rs769449

variants on ApoB Moreover, four windows (windows 1, 2, 3, and 5) showed

independent evidence of association with TG (p50.0043, 0.0196, 0.0194, and

0.0344) likely to be mediated by the following three variants; APOE832/rs405509

(p50.003), APOE1163/rs440446 (p50.0018), and APOE2440/rs769450

(p50.0082) confirming their single-site effects. Only the last window, window 12

showed significant haplotype association with HDL-C (p50.0301), more likely

due to the effect APOE4737/rs117656888.

In Blacks, the strongest haplotype associations were observed with LDL-C.

Similar to NHWs, the last four windows (17, 18, 19, and 20), which include

common polymorphisms in exon 4 showed the most significant p-values with

LDL-C in African Blacks (p-values range between 8.86E-09 and 8.2E-06).

Additional twelve windows showed significant effect on LDL-C (p-values range

between 0.0022 and 0.036) including windows 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15,

and 16 and confirming the single-site effects of multiple variants

(APOE560rs449647, APOE624/rs769446, APOE832/rs405509, APOE2269/

rs61357706, and APOE2544/rs115299243) on LDL-C Unlike NHWs, only two

windows (18, and 19) showed significant global p-value (0.035, and 0.038) with

ApoB more likely due to the significant effect of E*2. Only the first window

showed significant global p-value with TG (p50.035), most likely due to the effect

of APOE73/rs1081101 as seen in the single-site analysis (p50.0093). Findings

from haplotype-based association analyses confirm the single-site association

results.
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Uncommon/Rare variants association analysis

Uncommon/rare variants association analysis was performed to examine the

cumulative effect of uncommon/rare variants (MAF,5%) on lipid traits (HDL-C,

LDL-C, and TG) using SKAT-O test. We found significant association with HDL-

C in NHWs after including all 7 uncommon/rare variants in the analysis

(p50.0061), and APOE1575/rs769448 with MAF50.021 contributed largely to

this significance (Table 5) as it also showed the most significant association in

single-site analysis (p50.0197). In Blacks, rare variants analysis (Table 6) showed

significant association with LDL-C (p50.00018) and the significant association

was driven by three variants with MAF between 0.017 and 0.020 (APOE2269/

Table 5. Rare/uncommon (MAF,5%) variants analysis with lipid traits in NHWs.

HDL-C

MAF Threshold MAF(#0.01) MAF(#0.02) MAF(#0.05)

Test N.RV P N.RV P N.RV P

SKAT-O 5 0.0922 6 0.1195 7 0.0061

LDL-C

MAF Threshold MAF(#0.01) MAF(#0.02) MAF(#0.05)

Test N.RV P N.RV P N.RV P

SKAT-O 5 0.2785 6 0.5605 7 0.7954

TG

MAF Threshold MAF(#0.01) MAF(#0.02) MAF(#0.05)

Test N.RV P N.RV P N.RV P

SKAT-O 5 0.167 6 0.3648 7 0.3369

SKAT-O: optimal sequencing Kernel association test, N.RV: number of rare variants, P: p-value.

doi:10.1371/journal.pone.0114618.t005

Table 6. Rare/uncommon (MAF,5%) variants analysis with lipid traits in African Blacks.

HDL-C

MAF Threshold MAF(#0.01) MAF(#0.02) MAF(#0.05)

Test N.RV P N.RV P N.RV P

SKAT-O 9 0.5529 13 0.7315 15 0.7483

LDL-C

MAF Threshold MAF(#0.01) MAF(#0.02) MAF(#0.05)

Test N.RV P N.RV P N.RV P

SKAT-O 9 0.1147 13 0.00018 15 0.00047

TG

MAF Threshold MAF(#0.01) MAF(#0.02) MAF(#0.05)

Test N.RV P N.RV P N.RV P

SKAT-O 9 0.4503 13 0.1239 15 0.1323

SKAT-O: optimal sequencing Kernel association test, N.RV: number of rare variants, P: p-value.

doi:10.1371/journal.pone.0114618.t006
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rs61357706, APOE2544/rs115299243, and APOE4036/rs769455), all of which

showed significant association in single-site analysis (p range50.0009–0.0064).

Functional annotation of the sequence variation

We used open-access database RegulomeDB (http://regulome.stanford.edu) to

predict the potential implication of the identified genetic variation on the gene

expression regulation. The RegulomeDB score of 1-5 is based on its strength of

association with the gene regulation process; the lowest score represents the

highest significant impact on regulation process (based on these features;

expression quantitative trait loci (eQTL), transcription binding site or DNase

hypersensitivity) while the highest score represents the least significant

implication in regulation process. The RegulomeDB score for each variant is given

in Tables 1 and 2. According to the RegulomeDB score, three variants in the 59

flanking region (ApE173, ApE624/rs769446, and ApE832/rs405509), one intronic

variant (ApE1231), and three variants in the 39flanking region (ApE5223,

ApE5231, and ApE5361/rs1081106) seem to affect gene expression as they have

small scores (RegulomeDB score51–3). However, only two of these variants

(APOE 624/rs769446 and APOE832/rs405509) had significant effect on LDL-C or

ApoB or TG, and these two variants, APOE5223 and APOE5361/rs1081106,

showed borderline effects on LDL-C and HDL-C, respectively. Although the

remaining variants with strong regulatory effects (APOE173, APOE1231, and

APOE5231) were not associated with lipid variation, they may yet have other

biological consequences.

Discussion

The role of common APOE genetic variation in affecting interindividual variation

in plasma cholesterol, especially LDL-C, in the general population is well

established. Less clear, however, is if APOE genetic variation has also an impact on

other major lipid traits, like plasma HDL-C and TG. Recent lipid GWAS indicate

that in addition to LDL-C, APOE common variants are also associated with HDL-

C and TG levels [17–18]. Since common variants explain only ,25–30% of the

genetic variance of each major lipid trait [18], it has been hypothesized that

uncommon low-frequency and rare variants in candidate genes may explain part

of the missing heritability, as it has already been shown for some lipid genes [30–

36]. Thus, deep resequencing of the APOE gene is warranted to identify both

uncommon and common variants that might affect plasma lipid profile. The

objective of this study was to evaluate the ‘common disease common variants’

(CDCV) and ‘common disease rare variants’ (CDRV) hypotheses by sequencing

the entire APOE gene in selected individuals (n5190) with extreme HDL-C levels

from two ethnic groups in the variant discovery stage and then genotyping

common tagSNPs and relevant uncommon/rare variants in the full datasets

(NHWs5623, and Blacks5788) to evaluate their association with lipid traits. To
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our knowledge, this is the first population-based association study designed to

evaluate the effect of the full spectrum of APOE genetic variation on major plasma

lipid traits and ApoB levels. Previously, sequencing of the APOE gene has been

reported in two different studies [38–39] and by the 1000 Genome project in

order to characterize its genetic variation in unselected individuals without

regards to lipid levels. Furthermore, most of the previous studies have only

evaluated the influence of APOE coding and promoter variants on lipid traits [30–

42].

By sequencing ,5.5 kb of the APOE gene region, including all four exons, three

introns, and ,1 kb in each flanking region in selected individuals with extreme

HDL-C levels in both population groups, we identified a total of 40 variants,

including 10 novel variants not previously reported. As expected African Blacks

tend to have more population-specific variants (21/31568%) as compared to

NHWs (9/19547%). In NHWs, the proportion of common and uncommon

variants was similar (56% vs. 44%), while in African Blacks more uncommon

variants were observed than common ones (70% vs. 30%) (Table S2 in S1 File).

We observed more subjects carrying group-specific uncommon variants in the

high HDL-C group than in the low HDL-C group in NHWs (21% vs. 2%;

p50.0037) and in African Blacks (15% vs. 6%; p50.316), although the difference

in Blacks was not statistically significant. Likewise, the cumulative uncommon/

rare variant analysis using SKAT-O also showed significant association with HDL-

C in NHWs (p50.0061; Table 5).

The established association of the E*2 (rs7412) and E*4 (rs426538) SNPs with LDL-C

and ApoB [15, 43–44] was confirmed in our study in which E*2 was associated with

lowering effect on LDL-C (p51.84E-07 in NHWs, p55.35E-07 in Blacks), and ApoB

(p59.65E-13 in NHWs, p50.0356 in Blacks), while E*4 was associated with elevating

effect on LDL-C in both population groups (p50.0103 in NHWs; p50.0317 in Blacks)

and elevating ApoB in NHWs (p50.0005). Although E*4 did not achieve the nominal

significance with ApoB in Blacks, it showed similar trend of association. Moreover, we

have identified 8 additional variants (4 in NHWs and 4 in Blacks) that were associated

with LDL-C independent of the E*2 and E*4 SNPs. The 4 LDL-significant variants in

NHWs include APOE832/rs405509,APOE1163/rs4405509, APOE4310/rs199768005

(Val254Glu) and APOE2440/rs769450. While the first 3 variants are associated with

lowering effect on LDL-C, the last variant was associated with elevating effect (see

Table 1). Among the 4 LDL-associated variants in Blacks, 3 (APOE2269/rs61357706,

APOE2544/rs115299243, and APOE4036/rs769455 (Arg163Cys) were associated with

low LDL-C and this association is more likely mediated by APOE4036/rs769455

(Arg163Cys) that has previously been associated with type III hyperlipoproteinemia

[50–51]. The fourth variant, APOE4569 (exon4), was associated with high LDL-C (see

Table 2). While the 4 LDL-significant variants observed in Blacks were not detected in

NHWs, 3 of the 4 LDL-significant variants in NHWs were observed in Blacks

(APOE832/rs405509, APOE1163/rs4405509, and APOE2440/rs769450) and they also

showed suggestive associations with LDL-C.

Of the above-mentioned 8 significant variants independent of the E*2 and E*4

SNPs only 3 (APOE832/rs405509, APOE1163/rs440446, and APOE4036/rs769455
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(Arg163Cys)) have been examined previously in relation to lipid traits. APOE832/

rs405509 located in the putative promoter region has previously been shown to be

associated with LDL-related traits (LDL-C, TC, and ApoB) [16–17, 45], APOE

gene expression [46], myocardial infarction risk [47], and premature CHD [48].

Our findings confirm the potentially important role of this variant in LDL

metabolism by observing significant associations with LDL-C. APOE1163/

rs440446 was earlier reported to be associated with CHD risk [49] and our current

finding with its association with LDL-C validates this link given the relation

between LDL-C levels and CHD risk. The non-synonymous variant APOE4036/

rs769455 (Arg163Cys) has previously been reported to be associated with type III

hyperlipoproteinemia [50–51] and is probably the main contributor to the

significance signal of the two other closely linked variants (APOE2269/rs61357706

and APOE2544/rs115299243) with LDL-C.

In addition to the known contribution of APOE to LDL-C, we have found

multiple associations of common and uncommon variants with TG and HDL-C.

One NHW-specific uncommon variant (APOE1575/rs769448) was associated

with elevating effect on HDL-C (p50.0223) and one rare Black-specific variant

(APOE618) was associated with extremely low HDL-C, (p50.001), implying the

significant contribution of APOE uncommon/rare variants on plasma HDL-C

variation. To our knowledge, these are novel associations and need to be

confirmed in independent studies. Based on their locations (intron 1, and 59

flanking region, respectively), and RegulomeDB scores [4], they may be

moderately involved in gene expression regulation. Nine variants showed

significant association with TG, including five in NHWs: APOE832/rs405509

(p50.002), APOE1163/rs440446 (p50.0012), APOE2440/rs769450 (p50.0022),

APOE4310/rs199768005 (p50.028), and APOE4528/rs374329439 (p50.0218) and

four in Blacks: APOE73/rs1081101 (p50.0115), APOE1279/rs877973 (p50.014)

APOE2544/rs115299243 (p50.038), and APOE4036/rs769455 (p50.0343). Four

of these variants are uncommon, including two present only in NHWs

(APOE4310/rs199768005/Val254Glu, and APOE4528/rs374329439) and two

present only in African Blacks (APOE2544/rs115299243, and APOE4036/

rs769455/Arg163Cys). Two of these population-specific variants involving non-

synonymous changes (Arg163Cys, and Val254Glu) have previously been reported

to be associated with type III hyperlipoproteinemia either in E*2-independent

(rs769455/Arg163Cys) [50–51] or E*2-dependent (rs199768005/Val254Glu) [41]

fashion. In our population-based samples while Arg163Cys was associated with

higher TG levels, Val254Glu was associated with lower TG levels. The latter

observation may not be surprising given that this variant was associated with

hypertriglyceridemia only among E*2 carriers [41] and all our 5 subjects with this

mutation in our study were non-E*2 carriers. This also implies that Val254Glu

variant may be protective in the absence of E*2. In accordance with our

observations, APOE832/rs405509 [17] has been found previously to be associated

with VLDL as an indicator of TG variation and APOE1163/rs440446 [49] has

previously been found to be associated with TG variation. To our knowledge, the
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remaining five TG associations observed in this study have not been reported

previously and await confirmation in future studies.

In summary, this is the first comprehensive study that has evaluated the

association of APOE common and rare variation with plasma lipid traits in two

ethnic groups. In addition to the known association of common APOE variation

with LDL-C, we have found that uncommon APOE variants also affect LDL-C

levels. Our data also indicate the contribution of APOE genetic variation in

affecting HDL-C and TG levels in the general population. Strengths of our study

include the use of two extreme lipid groups for resequencing from two ethnic

groups and then genotyping of the entire sample sets for genotype-phenotype

association analyses. Limitations of our study include the use of relatively small

sample sizes for resequencing. Many of our significant findings with uncommon/

rare variants should be considered provisional until replicated in independent and

large data sets.
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