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Introduction

Following the discovery of T helper 17 (Th17) cells in 2005,

considerable research efforts identified interleukin 17 (IL-17) and

Th17 responses as essential components of immunity to the

commensal fungus Candida albicans. Much less is understood

about regulatory T cells (Tregs) in candidiasis. However, emerging

data point towards a surprisingly complex relationship between

IL-17/Th17 and Treg responses during C. albicans infections,

wherein Tregs both suppress and enhance immunity. This review

will discuss the role of these responses during candidiasis and the

consequences for disease outcome and therapy.

IL-17/Th17 Responses Are Key Mediators of C.
albicans Antifungal Immunity

IL-17-mediated immunity is crucial for protection against C.
albicans infections, especially mucocutaneous infections, including

oral and dermal candidiasis (reviewed in [1]). ‘‘Experiments of

nature’’ have revealed mutations in humans that cause suscepti-

bility to chronic mucocutaneous candidiasis (CMC), nearly all of

which impact the IL-17/Th17 pathway (Table 1, reviewed in [2]).

For example, individuals with mutations in IL17RA, IL17RC, IL-
17F, or the IL-17 family–specific signaling molecule ACT1 suffer

from CMC [3,4] (Casanova and Puel, personal communication;

see Acknowledgments). CMC can be defined as a heterogeneous

group of disorders characterized by persistent or recurrent

Candida infection of mucosal membranes, skin, and nails. To

date, there is no animal model that fully recapitulates the complex

phenotype of CMC. However, models of oral and dermal

candidiasis are in agreement with human data. IL-23-/-, IL-

17RA-/-, IL-17RC-/-, and Act1-/- mice are susceptible to

oropharyngeal candidiasis (OPC) [5–7]. Similarly, IL-23-/- and

IL-17A-/- mice display susceptibility to dermal candidiasis [8].

Somewhat surprisingly, IL-17RA-/- and IL-23-/- mice are not

susceptible to vaginal candidiasis [9]. Although one study

demonstrated that pharmacological blockade of Th17 responses

increased vaginal fungal burdens, that study did not measure

markers of symptomatic infection [10]. Therefore, IL-17-mediated

immunity in candidiasis appears to be site dependent, though the

underlying basis for this tissue specificity is enigmatic.

C. albicans also causes disseminated infections, associated with

mortality rates of 50% or higher [11]. IL-17RA-/- and IL-17A-/-

mice show elevated susceptibility to disseminated candidiasis [12–

14]. However, humans with mutations in the IL-17 pathway

typically do not develop disseminated disease. One exception is

patients with CARD9 mutations, who display susceptibility to both

CMC and disseminated infection [15]. Why other IL-17 pathway

gene mutations do not predispose patients to heightened

susceptibility to disseminated candidiasis is unknown, although

the number of patients identified with such mutations is limited. It

is possible that under predisposing conditions (antibiotic treatment,

intravenous catheter use, or abdominal surgery), individuals with

impairments in the IL-17 pathway may be at increased risk for

disseminated candidiasis, an issue that will need to be monitored,

particularly considering the impending use of anti-IL-17 biologic

therapy for autoimmunity [16].

IL-17 Function and Sources

IL-17 exerts protective effects principally through the recruit-

ment and activation of neutrophils. IL-17 primarily acts upon

nonhematopoietic cells by stimulating the production of cytokines

and chemokines, such as granulocyte-colony stimulating factor (G-

CSF), interleukin 8 (IL-8) (humans), CXCL1, and CXCL5, which

serve to expand and recruit neutrophils [1]. Depletion of

neutrophils renders mice susceptible to OPC [17] and dissemi-

nated candidiasis [18]. Additionally, IL-17 signaling promotes

anti-Candida killing mechanisms such as production of antimi-

crobial peptides (e.g., salivary histatins, b-defensins, and S100A8/

9) [5,9,19].

CD4+ T cells are traditionally considered to be the primary

cellular source of IL-17 during mucosal C. albicans infections

[5,20]. This assumption is based on the observation that patients

with HIV/AIDS exhibit dramatically heightened susceptibility to

OPC [21]. Moreover, most Candida-specific memory T cells in

humans are Th17 cells. Similarly, in models of adaptive immunity,

Th17 and not Th1 cells are induced by Candida and are

protective against oral infections [20,22].

IL-17 is produced by both conventional Th17 cells and by

innate cells [23]. One recent report proposed a role for innate

lymphoid cell (ILC) production of IL-17 in host defense against

OPC [24]. However, IL-17 production by ILCs was not directly

demonstrated. Notably, Rag1-/- mice, which lack T cells but have

enriched numbers of ILCs, are highly susceptible to OPC [20,25],

raising questions about the relevance of ILCs in oral candidiasis.

Our recent data show that following immediate exposure to C.
albicans, oral IL-17 is produced not by ILCs but by cd-T cells and
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a subset of CD4+TCRb+ innate-like cells known as ‘‘natural’’

Th17 cells [26]. Whether one or all of these IL-17+ subsets are

necessary for host defense in humans remains to be determined.

Treg Cells: Regulators of Infectious Disease

Tregs are a distinct subset of CD4+ T cell whose primary

function is to restrict potentially pathogenic inflammatory immune

responses. Tregs possess an extensive armory of suppressive

mechanisms that can be cell contact dependent (acting through

inhibitory receptors such as cytotoxic T-lymphocyte-associated

protein 4 [CTLA-4]) or cell contact independent (acting via

inhibitory cytokines and generation of suppressive metabolites)

(reviewed in [27]). This suppressive tool kit makes Tregs adept at

controlling cell types from both the innate and adaptive arms of

the immune system. Several Treg subsets exist, including Tregs

expressing CD25 and the canonical Treg transcription factor

Foxp3 that will be the focus of this review. Foxp3+ Tregs can be

further divided into thymus-derived Tregs, which are fully

differentiated in the thymus, and peripherally derived (p)Tregs,

which differentiate from naı̈ve CD4+ T cells in the periphery

following antigen stimulation. Although a detailed description of

Treg biology is beyond the scope of this review, we refer the reader

to several excellent reviews for further information on this subject

[27,28].

It is now appreciated that Tregs contribute to immunity against

infectious pathogens. Inflammatory effector responses are critical

in host defense against pathogens. However, excessive inflamma-

tory responses can be damaging and therefore must be tightly

regulated. A beneficial role for Treg-mediated restraint of

immunopathology has been demonstrated in several viral and

parasitic infections [29,30]. In some settings, Tregs are also

required for long-term maintenance of protective immunity, for

example, in the context of Leishmania major infection [31].

Conversely, overly potent Treg suppression can inhibit protective

immunity, favoring the pathogen. A detrimental role for Treg

suppression has been demonstrated during Mycobacterium tuber-
culosis infection, in which depletion of Tregs resulted in enhanced

protective responses [32]. Tregs can also promote, rather than

prevent, inflammation. During mucosal herpes simplex virus

infections, Tregs promoted protective effector responses via

immune cell recruitment to sites of infection [33]. Therefore,

Tregs can have diverse impacts, depending on the infection.

IL-17/Th17 and Treg Responses Are Intricately
Linked during Candidiasis

Treg responses are elevated during C. albicans infections,

suggesting a functional role. An increase in the proportion of

CD4+CD25+ cells and expression of Foxp3 was detected in the

mesenteric lymph nodes (LNs) and stomachs of mice intragastri-

cally inoculated with C. albicans [34,35]. Similarly,

CD4+CD25+Foxp3+ cells expanded in mice systemically infected

with C. albicans [36]. However, Treg-mediated responses to C.
albicans, and indeed to other fungi, remain poorly understood.

Th17 and Treg subsets are reciprocally regulated during naı̈ve

T cell differentiation [37]. Reciprocal regulation of such responses

was observed in a model of gastrointestinal candidiasis, in which

increased Treg responses were associated with reduced Th17

responses and vice versa [34,35]. Conversely, Tregs can also

promote Th17 responses [37]. Accordingly, IL-17/Th17 and Treg

responses are positively associated during OPC and disseminated

candidiasis (Fig. 1). Treg depletion by anti-CD25 treatment results

in concurrent depletion of Th17 cells during OPC. In the same

model, co-transfer of CD4+CD25+ and CD4+CD25- cells into

Rag1-/- mice enhanced protective Th17 responses [25]. In

disseminated candidiasis, Tregs suppressed Th1 and Th2

responses while promoting Th17 responses in vitro [36].

Furthermore, Foxp3+ cell depletion in vivo was associated with

reduced IL-17/Th17 responses [36]. Notably, both studies

provide evidence that the mechanism of action is, at least in part,

through consumption of IL-2 by Tregs through the high affinity

IL-2R [25,36]. IL-2 is essential for Treg survival but limits Th17

differentiation [38]. Therefore, Treg consumption of IL-2 reduces

its local concentration, favoring Th17 development [25,36,39].

Whether IL-2 consumption by Tregs is a dominant mechanism for

driving IL-17 responses during candidiasis remains an open

question.

Plasticity is a phenomenon whereby CD4+ T cell subsets acquire

characteristics of other populations (reviewed in [40]). For

Table 1. Human genetic defects associated with susceptibility to Candida infections.

Gene Mutation Disease Phenotype Reference

DECTIN1 Autosomal recessive CMC [51]

CARD9 Autosomal recessive CMC and disseminated infection [15]

STAT3 Autosomal dominant Hyper IgE Syndrome [52,53]

TYK2 Autosomal recessive Hyper IgE Syndrome [54]

DOCK8 Autosomal recessive Hyper IgE Syndrome [55]

IL17RA Autosomal recessive CMC [3]

IL17F Autosomal dominant CMC [3]

ACT1 Autosomal recessive CMC [4]

STAT1 Autosomal dominant CMC [56,57]

IL12RB1 Autosomal recessive CMC [58]

AIRE Autosomal recessive APECED/APS1 [59,60]

CD25 Autosomal recessive Oral and esophageal candidiasis [45]

IL17RC Autosomal recessive CMC Casanova and Puel, personal communication

Adapted from references [1,2] and Casanova and Puel (personal communication). Abbreviations: APECED, autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy; APS1, autoimmune polyendocrine syndrome type 1; IgE, immunoglobulin E.
doi:10.1371/journal.ppat.1004456.t001
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example, in some settings Tregs can express RORct and produce

IL-17A. Indeed, pTregs and Th17 cells possess an especially high

degree of phenotypic flexibility [40], which has been observed in

antifungal immunity. Specifically, dendritic cell recognition of b-

glucans in the Candida cell wall by dectin-1 promotes conversion

of Tregs to a RORct+IL-17A+ phenotype [41]. Moreover,

CD4+CD25+Foxp3+ cells isolated from systemically infected mice

expressed RORct and produced IL-17A, with the majority also

expressing pTreg markers [36]. Collectively, these studies indicate

that Tregs can promote IL-17/Th17 responses and acquire

characteristics of Th17 cells in response to C. albicans.

Final Outcome: Location, Location, Location

Although IL-17/Th17 and Treg responses can act cooperatively

during candidiasis, disease outcome is strikingly different depend-

ing on infection site. In OPC, Th17 enhancement by Tregs

increased resistance to infection [25]. In contrast, Treg enhance-

ment of Th17 responses in disseminated candidiasis was associated

with reduced resistance [36]. These studies suggest that inflam-

matory Th17 and Treg responses are protective at mucosal

surfaces but pathogenic in systemic candidiasis. Consistent with

this idea, humans with defective Th17 and Treg responses are

susceptible to CMC but not to disseminated candidiasis [42–45].

However, the concept that elevated Th17 and Treg responses are

harmful in disseminated candidiasis seemingly contrasts with the

apparent protective role of IL-17 in mice [12–14,36]. One

explanation is that these studies use knockout animals with

complete genetic ablation of IL-17 components and therefore do

not address the requirement of balanced immune responses. In

support of a pathogenic role for unbalanced Th17 and Treg

responses during candidiasis, cytokines associated with Th17

responses positively correlate with increasing disease severity in

disseminated candidiasis [46]. Similarly, overzealous Th17

responses are associated with immunopathology in gastrointestinal

candidiasis [47]. Furthermore, depletion of Tregs during dissem-

inated candidiasis increases resistance to disease [48]. Ultimately,

the balance between protective versus pathogenic immunity is

crucial in determining disease outcome.

How immune responses are shaped depends on factors in the

microenvironment. Commensal microbes ferment dietary fibers to

short chain fatty acids (SCFAs) that favor tolerogenic Tregs [49].

Additionally, transforming growth factor beta (TGFb) and retinoic

acid, which are enriched at the intestinal mucosa, promote Tregs

Figure 1. Treg/Th17 relationship during candidiasis. Tregs promote Th17 responses as well as acquire Th17 characteristics during disseminated
infection. However, Treg/Th17 responses are associated with pathogenicity in this form of candidiasis. Conversely, Treg enhancement of Th17
responses during OPC is protective. Tregs suppress Th17 responses during gastrointestinal candidiasis, leading to decreased C. albicans colonization.
Whether Tregs impact Th17 responses during vaginal and cutaneous candidiasis and the resulting outcome of disease remains to be determined.
doi:10.1371/journal.ppat.1004456.g001
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over Th17 responses [50]. Since C. albicans is a commensal of

human mucosae, it is likely that these tissues have evolved

tolerogenic mechanisms to live in harmony with this fungus. In

contrast, internal organs are shielded from the external environ-

ment and typically lack high levels of SCFAs and retinoic acid.

Therefore, inflammation induced during disseminated C. albicans
infection is more likely to go unchecked compared to mucosal

surfaces, resulting in collateral tissue damage. Overall, site-specific

factors are pivotal in dictating the balance between protective and

pathogenic Th17 and Treg responses.

Concluding Remarks

It is clear that IL-17/Th17 and Treg cells have a complex

relationship, exemplified during infections with C. albicans.
Although Th17 and Treg responses appear to be reciprocally

regulated in certain situations (e.g., gastrointestinal candidiasis),

Tregs promote Th17 activities and even acquire phenotypic

characteristics of Th17 cells in other settings (e.g., oral and

disseminated candidiasis). Notably, the impact of Th17 and Treg

responses on disease outcome is distinct in different forms of

candidiasis, highlighting the importance of microenvironment in

shaping overall immunity. Elucidating the factors that determine

the balance between protective versus pathogenic Th17 and Treg

responses during candidiasis will be an important future avenue of

research. Ultimately, it may be possible to exploit this information

in order to help tune appropriate responses in the context of

candidiasis.
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