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Abstract

In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study,
we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of
two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations
of some of the objects were changed, and object location recall performance was assessed and found to vary across
subjects. As prior work had shown that functional magnetic resonance imaging (fMRI) measures of resting-state brain
activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI
measures could be used to predict object location recall performance. We found a significant correlation between
performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus,
insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and
decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left
caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia’s role in
exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial
processing may be critical for learning in a complex environment.
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Introduction

Across a range of learning and memory tasks, the level of

performance has been found to vary greatly across individuals [1–

5]. Prior studies have shown that various measures of brain

anatomy and physiology can be used to predict individual

variations in performance. For instance, Erickson et al. [2] have

shown that individual variations in striatal volume strongly

correlate with individual differences in learning a complex video

game. Similarly, Vo et al. [1] found that the spatial pattern of T2*

weighted magnetic resonance (MR) images in the dorsal striatum

at the initial stage of learning can be used to predict subsequent

learning performance in a video game.

A growing number of studies are finding that resting-state

functional magnetic resonance imaging (fMRI) measures of brain

activity, which are based on intrinsic fluctuations in the blood

oxygenation level dependent (BOLD) signal, can also be used to

predict performance across individuals [1,3,6–12]. In resting-state

fMRI, the correlation between BOLD signals between different

brain regions serves as a measure of functional brain connectivity

[11]. Functional networks can then be identified by examining the

spatial pattern of connectivity. For example, Seeley et al.

demonstrated that functional connectivity in the lateral parietal

areas of the executive control network was correlated with

executive task performance measured outside the scanner [12].

Hampson et al. [9] found that connectivity between the default

mode network (DMN) and the task positive network (TPN) can be

used to predict working memory performance, while Cole et al. [7]

found that whole brain connectivity with the lateral prefrontal

cortex can predict fluid intelligence.

In addition to functional connectivity, an increasing number of

studies are finding that measures of the variability of the BOLD

signal can reflect differences in cognitive performance, as well as

changes in brain state associated with disease and aging

[4,8,10,11,13–21]. For instance, Zou et al. [10] reported that the

amplitude of low-frequency fluctuations (ALFF) of the resting-state
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BOLD signal can predict working memory performance. Yang et

al. [17] have shown that the variability of the resting-state global

brain signal is greater in patients with schizophrenia as compared to

matched controls. In a study comparing younger and older adults,

Garrett et al. [8,13,14,20,21] found an age-related decrease in

BOLD signal variability (defined as the standard deviation of the

BOLD signal). Furthermore, an increase in BOLD signal variability

was found to be associated with better performance in cognitive

tasks. From their studies, Garrett et al. concluded that BOLD signal

variability can represent aspects of dynamic brain function that are

not reflected in task-related mean BOLD signal changes, with the

level of variability potentially serving as a reflection of the

robustness, efficiency, and adaptability of underlying neural

networks. In addition, variability may be linked to the level of

dopamine, which is thought to be a key agent in determining the

dynamic capacity of neuronal systems [20]. Overall, the various

findings suggest that BOLD signal variability can serve as an

important indicator of brain function, with further work needed to

better understand the mechanisms that give rise to differences in

variability.

In this work, we build upon the prior findings to determine

whether resting-state fMRI measures (BOLD signal variability and

functional connectivity) can be used to predict performance in an

experimental paradigm that involves unsupervised learning in a

large-scale immersive virtual reality (VR) environment. Unsuper-

vised learning refers to learning that is self-supervised without

explicit teaching [22], and is the type of learning that is often

employed in real-world environments. The use an immersive VR

environment (in which subjects can move around) enables the

study of unsupervised learning in an experimental setting that

allows for the interactions and movement that occur in a real-

world environment. In a recent study, Snider et al. [23] tested the

ability to recall object locations on the second day of an immersive

VR experiment in which unsupervised learning of the environ-

ment and object locations occurred on the first day. They found

that object location recall success varied across individuals and

that the degree of success was predicted by the strength of spatial

maps formed during the unsupervised learning phase. For this

study, we hypothesized that resting-state fMRI measures in brain

regions associated with learning and memory (such as the basal

ganglia and hippocampus) would also be predictive of individual

performance and tested this hypothesis using subjects from the

study [23].

Methods

Experimental protocol
The University of California San Diego Institutional Review

Board approved this study, and thirteen right-handed healthy

volunteers participated in the virtual reality portion of this study

after signing informed consent documents (3 females, age [mean 6

std] = 2564 years). The participants did not suffer from acute

physical illness, substance abuse or dependence, did not exhibit a

history head injury leading to a loss of consciousness, and did not

have a history of major psychiatric or neurological illness.

Participants abstained from the usage of caffeine, nicotine, and

alcohol prior to the scan sessions. Each subject participated in large-

scale immersive virtual reality environment exploration (Fig. 1) over

two consecutive days (one visit per day, each visit lasting around two

hours). In each visit, subjects wore a panoramic high resolution

head-mounted display (Sensics xSight 6123, Sensics Inc.) and

walked around a virtual reality environment that was a richly

textured room (approximately 4 m65 m, same size as the real

world space that the subjects walked in) containing 39 objects placed

on shelves, tables, and the floor [24]. Movements of the limb, torso,

and head were tracked with a 24-camera 3D tracking system

(PhaseSpace Inc.). The 24 cameras were positioned on the ceiling,

walls and floor of a 7.5 m67.5 m62.9 m room for even coverage

and accurate motion tracking over the 4 m65 m space used in the

experiment.

The first visit was dedicated to exploration, and the second visit

was used to test the subject’s memory of the environment. The

subject’s naiveté about the memory aspect of the experiment was

maintained during the first visit such that recall of the environment

during the second visit relied on unsupervised learning. During the

first visit, each subject was asked to freely explore the virtual room

for 10 minutes. After this initial free exploration was completed,

five blocks of tasks were performed. In each block, the 39 objects

were covered with an opaque bubble. At a pre-specified time, one

of the bubbles would turn green. Subjects were instructed to walk

over to the green bubble and touch it. The bubble would then

disappear and reveal the object underneath. As a cover task, the

subject was told to briefly observe the object and rate how

interesting they felt the object was using a virtual sliding scale that

appeared in front of them. After each block, the subject would

have walked to and rated all 39 objects. For each of these five

blocks, the order of bubbles turning green was randomly varied,

but each object remained in the same location.

During the second visit, each subject participated in five blocks

of tasks with each block lasting for 5 - 8 minutes. The virtual

reality environment was identical to the one in the first visit. Before

each block, one third of the objects (chosen at random) were

shuffled to a new location. Upon revealing an object (by touching

the green opaque bubble), the subject was asked to determine

whether or not the object had been in that location during the first

visit. For each subject, the performance score of the unsupervised

learning task was defined as the percentage of correct judgments

across all blocks in the second visit. The performance scores of the

individual subjects are listed in Table 1.

Ten out of the thirteen subjects were able to return and

participate in an MRI scan session six to twelve months after the

virtual reality visits (two subjects moved out of town and one

subject did not respond to our follow up contacts). Each scan

session consisted of: (1) a high-resolution anatomical scan, (2) two

8 minute eyes-open resting-state scans and (3) a field map to

measure magnetic field inhomogeneities. For the resting-state

Figure 1. Full immersion VR experiment. The virtual environ-
ment (A1, bird’s-eye view) is rendered in real time (A3, ego
view) and shown to the subject via a high resolution head-
mounted display (A2, physical environment).
doi:10.1371/journal.pone.0109622.g001
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scans, subjects were instructed to lie still in the scanner and to

maintain attention on a yellow fixation cross located at the center

of a blue background.

MR data acquisition
Imaging data were acquired on a 3 Tesla GE Discovery MR750

whole body system using a 32 channel receiver coil (Nova Medical).

High resolution anatomical data were collected using a magneti-

zation prepared 3D fast spoiled gradient (FSPGR) sequence

(TI = 600 ms, TE = 3.1 ms, flip angle = 8 degrees, slice thickness

= 1 mm, FOV = 25.6 cm, matrix size = 25662566176).

Whole brain BOLD resting-state data were acquired using

multiecho simultaneous multislice (MESMS) echoplanar imaging

(EPI). The acquisition used a 2.5-fold phase encode acceleration

factor and a blipped-CAIPI EPI k-space trajectory [25]. Three

sagittal slices and three echoes were collected per RF excitation to

achieve 2 mm3 isotropic resolution with whole brain coverage

(FOV = 20 cm, 1006100 matrix, 72 slices). Other acquisition

parameters were: TR = 2 s, TEs = 15.5 ms, 36.7 ms, 57.9 ms and

FA = 30u. During each eight minute resting-state scan, 240

functional volumes were acquired. To reconstruct the images,

we used SENSE reconstruction with a fast Conjugate Gradient

Toeplitz-based iterative algorithm [26]. It was regularized with an

in-plane spatial roughness penalty to achieve an effective FWHM

of 1.25 voxels. In this paper, only the second echo BOLD data

(36.7 ms) were considered.

A field map was acquired using a gradient recalled acquisition

in steady state (GRASS) sequence (TE1 = 6.9 ms, TE2 = 8.9 ms),

with the same in-plane parameters and slice locations as the

BOLD resting-state data. The phase difference between the two

echoes was then used to estimate a field map for magnetic field

inhomogeneity correction. The field map was used to warp the coil

sensitivities, used in the SENSE reconstruction, to the same spatial

coordinate system as the MESMS BOLD data. This was needed

due to the phase encode acceleration difference between the coil

sensitivity and BOLD data acquisitions.

MR data processing
AFNI and FSL were used for MRI data pre-processing [27–29].

The high resolution anatomical data were skull stripped and

segmentation was applied to estimate white matter (WM), gray

matter (GM) and cerebral spinal fluid (CSF) partial volume

fractions. In each scan session, the anatomical volume was aligned

to the functional volume using AFNI. Each functional volume was

spatially smoothed using a Gaussian filter with 3 mm FWHM.

The images from the first 5 timepoints (10 s) of the BOLD data

were discarded to allow magnetization to reach a steady state. A

binary brain mask was created using the skull-stripped anatomical

data. For each slice, the mask was eroded by two voxels along the

border to eliminate voxels at the edge of the brain [19]. For each

run, nuisance terms were removed from the resting-state BOLD

time series through multiple linear regression, with the following

nuisance regressors [15]: i) mean, linear and quadratic trends, ii)

six motion parameters estimated during image co-registration and

their first derivatives, and iii) the mean BOLD signal calculated

from WM and CSF regions and their first derivatives, where these

regions were defined using partial volume thresholds of 0.99 for

each tissue type and morphological erosion of two voxels in each

direction to minimize partial voluming with gray matter. It is

important to note that after the regression, the mean was added

back to the BOLD time series. In processing resting-state data, it is

a common practice to apply low pass filtering (typically with a

0.08 Hz cut-off frequency) [11]. However, as recent studies

suggest that high frequency components in the BOLD signal

contain useful information [30], we did not apply low pass filtering

to the data for our default processing. We assessed the amount of

head motion of each subject by first calculating the framewise

displacement (FD) as defined by Power et al. [31] using the 6

motion parameter time courses. The overall amount of head

motion was then obtained by averaging the FD across time and

the values are listed in Table 1. There was not a significant

correlation (r = 0.09; p = 0.80) between the motion metrics and the

performance scores.

For each voxel, a percent change time series was then calculated

[15,19,32,33]. The mean value was first subtracted from the time

series. Next, the resulting difference was divided by the mean

value. The percentage change time series from the two resting-

state runs were concatenated. We then converted the whole brain

BOLD data for each subject to Talairach space. In the coarse

registration step, a 12-parameter affine transformation matrix was

estimated by registering the anatomical volume to the T1 template

(TT_avg152T1+tlrc) using 3dAllineate in AFNI. In the refinement

step, a non-linear warping transformation was calculated using

3dQWarp. The linear matrix and the non-linear warping

transformation were then sequentially applied to warp the BOLD

data into Talairach space, resulting in standardized data with

2 mm isotropic resolution.

Table 1. Performance scores and head motion of the individual subjects.

Subject index Performance score (%) Average Frame Displacement (mm)

1 95.9 0.081

2 85.64 0.058

3 78.75 0.062

4 76.6 0.102

5 90.06 0.105

6 83.59 0.085

7 80.13 0.100

8 88.46 0.108

9 92.27 0.088

10 90.48 0.097

doi:10.1371/journal.pone.0109622.t001

Resting-State fMRI Activity Predicts Unsupervised Learning and Memory

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109622



We then computed the BOLD signal variability for each voxel,

defined as the standard deviation of the percent change time series.

For the assessment of connectivity, we adopted the anatomical

parcellation in AFNI ‘‘TT_desai_dk_mpm+tlrc’’. We selected

ROIs within the parcellation for which the BOLD signal

variability was found to be significantly correlated with the

performance score (Table 2). Within each of these ROIs, the

BOLD time courses were averaged. The averaged BOLD time

courses were then correlated with every voxel within the brain.

The relation between the fMRI metrics (BOLD signal variability

and correlation) and the performance scores across subjects was

assessed using linear regression.

Results

Fig. 2 displays brain maps showing clusters that exhibited

significant correlation between the voxel-wise BOLD signal

variability and the performance scores across subjects. Significant

correlations (p,0.05, corrected for multiple comparisons using a

family-wise approach called AlphaSim [34,35] in AFNI, minimum

cluster size = 258 voxels) were observed within the basal ganglia,

left anterior hippocampus, amygdala, thalamus, right superior

frontal gyrus, lateral orbito frontal cortex, pars opercularis of the

right inferior frontal gyrus, right middle temporal gyrus, superior

temporal gyrus, and insula cortex. In each of these regions, the

BOLD signal variability was higher for the better performers.

Table 2 lists the brain regions associated with each cluster. The

whole brain map in Fig. S1 shows the correlation values between

the BOLD signal variability and performance scores across

subjects. To provide a qualitative view of the relation between

BOLD signal variability and performance scores across subjects,

we averaged the BOLD time courses within each cluster, and then

calculated the BOLD signal variability of this average signal. Fig.

S2 plots the BOLD signal variability from each cluster versus the

performance score.

To examine the relation between brain functional connectivity

and performance scores, we used the ROIs listed in Table 2 and

then extracted the associated anatomical ROIs from the AFNI

‘‘TT_desai_dk_mpm+tlrc’’ template [36] as seed regions (23

ROIs, mean size = 971 voxels, range = 93 to 4088 voxels) and

computed the correlation between the average signal in each seed

region and all other voxels in the brain. We converted the

correlation values to z-scores using the Fisher z-transformation

[37] and then correlated the z-scores with the performance scores.

Fig. 3 displays whole brain maps showing regions for which the

functional connectivity with the left caudate was significantly

correlated with the performance scores across subjects. Significant

relations (p,0.05, corrected for multiple comparisons using

AlphaSim, minimum cluster size = 258 voxels) were observed

for the fusiform gyrus, lateral occipital complex and superior

temporal sulcus regions in the right hemisphere. In each of these

regions, the BOLD functional connectivity with the seed ROI

increased with performance score. We did not observe significant

relations using the other seed ROIs listed in Table 1.

Discussion

We have shown that resting-state BOLD signal variability in

multiple brain regions (basal ganglia, hippocampus, amygdala,

thalamus, insula, and regions in the frontal and temporal lobes) is

correlated with unsupervised spatial learning performance in an

immersive VR environment. In addition, we found that the

resting-state functional connectivity between the left caudate and

right hemisphere areas associated with object recognition and

visual perception is correlated with learning performance (Fig. 3).

In our experimental paradigm, subjects were not aware of the

memory component of the task during the free exploration on day

1. Since subjects were learning location-object associations in an

unsupervised fashion (there was no explicit instruction or

reinforcement involved), we were able to highlight the unsuper-

vised learning aspect of the task. In addition, this type of

experiment has been used in the rodent literature [38–41] to

examine unsupervised learning. Thus, the results of this study

contribute to our understanding of the brain regions involved in

unsupervised spatial learning.

Although the findings are correlational, the observed relation

between BOLD signal variability and performance across multiple

regions is consistent with the involvement of multiple aspects of

behavior in the experimental paradigm, which required subjects to

engage in exploration, unsupervised learning, memory, and

decision-making. With regards to exploration, prior studies have

demonstrated that basal ganglia circuits play a critical role in

facilitating exploratory behaviors [42–46]. The thalamus is tightly

coupled to the basal ganglia [47,48], and the correlation between

BOLD signal variability and performance in this region may

reflect this close relationship.

The association between performance and BOLD signal

variability in the anterior hippocampus, amygdala and temporal

lobe reflects the role of these brain regions in various aspects of

Figure 2. Whole brain map highlighting regions of significant
correlation (p,0.05, corrected for multiple comparisons using
AlphaSim in AFNI, minimum cluster size = 258 voxels) between
BOLD signal variability and performance scores across sub-
jects.
doi:10.1371/journal.pone.0109622.g002

Resting-State fMRI Activity Predicts Unsupervised Learning and Memory

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e109622



T
a

b
le

2
.

R
e

g
io

n
s

o
f

si
g

n
if

ic
an

t
co

rr
e

la
ti

o
n

(p
,

0
.0

5
,

co
rr

e
ct

e
d

fo
r

m
u

lt
ip

le
co

m
p

ar
is

o
n

s
u

si
n

g
A

lp
h

aS
im

in
A

FN
I,

m
in

im
u

m
cl

u
st

e
r

si
ze

=
2

5
8

vo
xe

ls
)

b
e

tw
e

e
n

th
e

B
O

LD
si

g
n

al
va

ri
ab

ili
ty

an
d

p
e

rf
o

rm
an

ce
sc

o
re

s
ac

ro
ss

su
b

je
ct

s.

B
ra

in
re

g
io

n
s

S
id

e
#

o
f

v
o

x
e

ls
P

e
a

k
co

o
rd

in
a

te
s

(i
n

L
P

S
o

ri
e

n
ta

ti
o

n
)

P
e

a
k

co
rr

e
la

ti
o

n
w

it
h

th
e

p
e

rf
o

rm
a

n
ce

sc
o

re

x
y

z
r

p

B
a

sa
l

g
a

n
g

li
a

C
au

d
at

e
L

1
1

6
2

8
2

0
.7

5
0

.0
1

R
3

4
2

8
2

1
2

4
0

.8
7

0
.0

0
1

P
u

ta
m

e
n

L
2

1
3

2
4

1
4

2
4

0
.8

9
6

e
-4

R
1

7
6

2
2

6
2

1
0

2
2

0
.8

5
0

.0
0

2

P
al

lid
u

m
L

9
0

2
2

1
2

2
2

0
.8

3
0

.0
0

3

R
8

6
2

1
8

2
2

4
0

.8
8

8
e

-4

N
u

cl
e

u
s

ac
cu

m
b

e
n

s
L

2
9

6
2

8
2

4
0

.9
4

e
-4

R
3

7
2

8
2

6
2

1
0

0
.8

7
8

e
-4

O
th

e
r

su
b

co
rt

ic
a

l
a

re
a

s

A
n

te
ri

o
r

h
ip

p
o

ca
m

p
u

s
L

8
0

2
2

6
2

1
8

0
.9

3
1

e
-4

A
m

yg
d

al
a

L
1

5
9

1
6

2
2

2
1

2
0

.9
4

5
e

-5

R
2

8
2

2
6

2
2

2
1

4
0

.8
4

0
.0

0
2

T
h

al
am

u
s

L
6

2
4

4
2

0
.8

6
0

.0
0

1

R
1

4
9

2
1

2
1

2
1

4
0

.8
9

6
e

-4

F
ro

n
ta

l
lo

b
e

Su
p

e
ri

o
r

fr
o

n
ta

l
R

3
3

4
2

8
2

2
4

5
4

0
.9

7
3

e
-6

La
te

ra
l

o
rb

it
o

fr
o

n
ta

l
L

1
5

4
1

8
2

6
2

1
6

0
.9

5
3

e
-5

R
8

8
2

3
0

2
2

4
2

1
6

0
.9

0
4

e
-4

In
fe

ri
o

r
fr

o
n

ta
l

(p
ar

s
o

p
e

rc
u

la
ri

s)
R

3
2

2
4

8
2

8
-

0
0

.8
5

0
.0

0
2

T
e

m
p

o
ra

l
lo

b
e

Su
p

e
ri

o
r

te
m

p
o

ra
l

L
3

8
4

4
2

4
2

1
2

0
.8

7
0

.0
0

1

R
1

6
0

2
5

0
2

8
0

0
.8

6
0

.0
0

1

M
id

d
le

te
m

p
o

ra
l

R
3

8
2

5
4

0
2

2
2

0
.8

0
0

.0
0

5

In
su

la
co

rt
e

x
L

1
6

0
3

4
2

1
4

2
8

0
.8

7
0

.0
0

1

R
7

4
2

2
8

2
8

2
1

2
0

.8
1

0
.0

0
5

W
it

h
in

e
ac

h
re

g
io

n
,

th
e

p
e

ak
co

rr
e

la
ti

o
n

(a
n

d
th

e
as

so
ci

at
e

d
p

-v
al

u
e

)
w

it
h

th
e

p
e

rf
o

rm
an

ce
sc

o
re

is
p

ro
vi

d
e

d
fo

r
th

e
p

u
rp

o
se

o
f

q
u

al
it

at
iv

e
as

se
ss

m
e

n
t.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
6

2
2

.t
0

0
2

Resting-State fMRI Activity Predicts Unsupervised Learning and Memory

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109622



memory and learning [49–56]. For example, activity in the

anterior hippocampus has been shown to be related to associative

memory [57,58], while activity in the amygdala has been linked

with associative and emotional learning [49,53]. Together with the

prefrontal cortex and hippocampus, the amygdala contributes in

generating motivational signals to the ventral striatum for

enhancing learning and incorporating episodic information [56].

Furthermore, the middle and superior temporal gyri in the right

hemisphere are thought to belong to a neural network that

supports spatial learning [54,55]. The other regions identified in

our study (insula, right superior frontal, lateral orbito-frontal and

pars opercularis of the right inferior frontal gyri) have been shown

to be associated with processes of self-representation and decision

making [51,59–64]. In summary, brain regions associated with

spatial and episodic memory appears to be involved during

unsupervised learning.

We found that learning performance was associated with

functional connectivity between the left caudate and brain regions

(lateral occipital complex, fusiform gyrus, and superior temporal

sulcus) responsible for visuospatial object processing and attention

[65–71]. Given the basal ganglia’s role in exploration, these

findings suggest that tighter integration of the brain systems

responsible for exploration and visuospatial processing may be

critical for learning in a complex environment.

In resting-state fMRI, one of the major networks that has been

identified is the Default Mode Network (DMN) [11,72]. Brain

activity in the DMN was found to decrease during task

performance and is thought to be a network that mediates the

resting-state [73]. Hampson et al. [3] found that the connectivity

in the DMN is associated with working memory performance.

However, in the current study, we did not identify an association

between the DMN and unsupervised learning performance.

Further investigations examining the relationship between working

memory and unsupervised learning would therefore be useful.

In the present study, we found that the correlation of

connectivity associated with object recognition regions was

observed only for the left basal ganglia, but not the right. In

comparing our results with those of Vo et al. [1], we note that the

findings of the prior study suggest a link between performance and

structural connectivity (i.e. white matter tracts), while our current

findings show that this link is also observed for functional

connectivity measures based on intrinsic dynamic fluctuations.

Both studies enrolled only right-handed subjects and observed that

the link was more pronounced for structures within the left basal

ganglia. The basis for this lateralization effect across studies needs

to be further explored.

A potential limitation of the current study is that the findings

were correlational, a property shared with a number of other

recent studies that have examined the relation between intrinsic

fMRI activity and behavioral performance [2,3,10–12,74]. In

general, these types of studies can be considered to lay the

foundation for further studies that can more clearly elucidate the

link between resting-state activity and behavior. For example, the

ROIs identified in the current study can be used to guide the

design of future studies aimed at deepening our understanding of

the role of the basal ganglia in unsupervised learning.

In the current work, we were able to scan 10 subjects from a

previously published study [23] that had a relatively small sample

size (n = 13). The sample size used is similar to those found in three

prior studies relating resting state activity to behavior [3,12,75],

which used sample sizes of 9 and 14. It is possible that the sample

size may have limited the ability of this study to detect brain

regions in which the resting-state brain activity exhibits a weaker

relation to unsupervised learning performance. Thus, this study

can be considered to have identified the brain regions with the

strongest correlation to unsupervised learning performance, with

the distinct possibility that future studies will identify secondary

regions that have a weaker correlation.

Recently, an increasing number of studies have examined the

self-similarity of brain activity at multiple temporal scales [75–85].

Such scale-free or fractal time dynamics are typically long memory

processes exhibiting a 1/f frequency spectrum, and have been

found to be related to disease and cognitive performance

[75,86,87]. In particular, Wink et al. have shown that response

time in a fame decision/facial encoding task was inversely

correlated with the mean Hurst exponent in the inferior frontal

cortex calculated using resting-state fMRI data acquired after the

task [75]. Further studies to investigate the relationship between

the unsupervised learning performance and monofractal (e.g.

Hurst exponent) or multifractal (e.g. Hölder exponent) dynamics

of resting-state fMRI signals are warranted.

In this study, we considered measures of BOLD signal

variability and connectivity over the course of two eight-minute

resting-state runs. Recent studies have shown that significant

variations in functional connectivity can occur over the length of a

typical resting-state run [88]. Further studies to examine how

dynamic variations in functional connectivity are related to

unsupervised learning would be useful.

The VR experiment and the MRI scan dates in our study were

spaced about 6 to 12 months apart. The fact that we were able to

observe significant correlations between the performance scores

and fMRI measures with a substantial temporal spacing between

Figure 3. Whole brain correlation map showing regions that exhibit a significant correlation (p,0.05, corrected for multiple
comparisons using AlphaSim in AFNI, minimum cluster size = 258 voxels) between performance scores and functional connectivity
with the left caudate.
doi:10.1371/journal.pone.0109622.g003
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measures suggests that unsupervised learning ability and the

associated resting-state brain activity may both be relatively stable

traits. Resting-state fMRI measures may therefore prove to be a

useful method for identifying individuals who are likely to perform

better in unsupervised learning environments.

Supporting Information

Figure S1 Whole brain map showing correlation values between

the BOLD signal variability and performance scores across

subjects (p,0.05, corrected for multiple comparisons using

AlphaSim in AFNI, minimum cluster size = 258 voxels).

(TIF)

Figure S2 BOLD signal variability (calculated using the

averaged BOLD signal within each significant cluster) versus

performance score plotted for the significant clusters identified in

Table 2.

(TIF)
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