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Mitochondria are essential organelles in the cell. One of their most critical functions is the 

generation of cellular energy in the form of ATP. The presence of DNA in the mitochondrial 

matrix makes this organelle semi-autonomous. However, it relies heavily on the nucleus and 

cytosol to import ~99% of its proteins and some RNA molecules for its normal functioning. 

Mutations in the mitochondrial DNA (mtDNA) cause several devastating disorders. Due to their 

complexity and our incomplete understanding of mitochondrial disease pathogenesis, these 

disorders are difficult to diagnose and currently no pharmacological treatment exists. Further, 

gene therapy for these devastating disorders is impeded due to lack of mitochondrial genome 

manipulation techniques. Understanding the mechanism of pathogenesis and developing 

mtDNA manipulation strategies are key to developing remedial therapies.  

 

In my thesis, I investigated an RNA allotopic strategy of targeting RNA into the 

mitochondria in vivo in flies. In my first aim, I improved an in vivo mitochondrial-targeting tool 

(mtTRES vector) to manipulate proteins encoded by the mitochondrial DNA. This vector 

integrates into the nuclear genome and results in the transcription of a chimeric RNA consisting 

of a mitochondrial targeting signal sequence and a small non-coding antisense RNA.  

 

Previous studies have attempted allotopic expression via both protein and RNA import 

with mixed results. Only a few of them, however, have been tested in vivo and none have been 
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examined for rescue in an animal model of mitochondrial disease. Since our lab has a well 

characterized mtDNA mutation fly model, ATP6[1], I had a unique opportunity to investigate 

rescue strategies in these models.  In my second aim, I improved a unique set of mtTRESPro 

vectors for both flies and humans to target long coding RNAs into mitochondria. Once imported 

these long RNAs are designed to be endogenously translated in mitochondria. By targeting a 

wild type copy of the mutant ATP6 gene, I explored the rescuing potential of allotopic RNA 

import in vivo. Our data suggest the mtTRES and mtTRESPro mitochondrial manipulation tools 

have genuine potential to be developed into a mitochondrial disease gene therapy.  
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1.0  GENERAL INTRODUCTION 

1.1 Mitochondrial origin, structure and function 

 

Mitochondria (Greek origin – mitos meaning thread-like and khondros meaning grain or granule) 

are essential organelles found in almost all cells having a nucleus. According to the 

endosymbiont theory, ~1.5-2 billion years ago, aerobic bacteria formed a permanent symbiosis 

with early eukaryotic cells that lacked the ability to use oxygen for metabolism 2,3. This symbiotic 

relationship evolved into modern day eukaryotic cells that metabolize substrates using their 

mitochondria much more efficiently than their primitive counterparts.  

Mitochondria are semi-autonomous organelles. They have their own DNA in the 

mitochondrial matrix. Mitochondrial DNA (mtDNA) is double stranded, circular and in humans 

contains 16,568 base pairs (Figure 1). In all higher eukaryotes it encodes 37 genes: 2 rRNA 

(12S and 16S), 22 tRNA and 13 protein-coding genes. mtDNA are maternally inherited in 

contrast to nuclear DNA (nDNA), which is inherited from both parents.  

 

Fly mitochondrial DNA shows remarkable similarity with the vertebrate mitochondrial 

DNA gene content. Just like the mammalian counterpart, it codes for 37 genes: 2 rRNAs (lrRNA 

and srRNA), 22 tRNA and 13 protein-coding genes. However, the Drosophila mtDNA differs 

considerably from the mammalian mtDNA in size and the organization of genes (Figure 1) 4. 

The mtDNA contains an A+T rich region, which ranges between 1-5 kb depending on the 

 1 



species. The A+T region harbors regulatory sequences for mitochondrial replication and 

transcription and is thought to be functionally homologous to D-loop of vertebrate mtDNA 5-7.  

 

 

Figure 1. Map of human and Drosophila melanogaster mitochondrial DNA. Human mtDNA 

schematic adapted from: DiMauro and Schon, NEMJ, 2003 and Fernandez-Silva et.al., 

Exp. Physiology, 2003). Fly mtDNA schematic adapted and modified from Echevarria 

et.al., 2010. lrRNA stands for large ribosomal RNA and srRNA stands for small ribosomal 

RNA. 
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Interestingly, it has recently been reported that the 16S region of mitochondrial genome 

can code a small peptide “humanin” 8. These small peptides are termed as “mitochondrial-

derived-peptides” and may have a role in mitochondrial stress response 9. In contrast to the 

nuclear genes that are present in two copies, it is common to find more than one copy of mtDNA 

per mitochondrion. Depending upon the energy demands of a cell, it may have varying numbers 

of mitochondria. This means that there could be more than several hundred mitochondrial 

genomes in a single cell.  

 

Structurally, the mitochondrion is a double membrane organelle with four distinct sub-

compartments – a) outer mitochondrial membrane (OMM), b) inner mitochondrial membrane 

(IMM), c) inter-membrane space (IMS) and d) matrix. As other biological membranes, 

mitochondrial membranes are composed of phospholipids with embedded proteins. 

Phospholipid composition of mitochondrial membrane consists of phosphatidyl choline (40%), 

phosphatidyl ethanolamine (28.4%), phosphatidyl inositol (7%), phosphatidyl serine and 

phosphatidic acid (5%) 10,11. Cardiolipin (22.5%) and phosphatidyl glycerol are found exclusively 

in the mitochondrial membranes 12,13. There are numerous proteins in mitochondrial membranes 

such as the subunits of the respiratory chain complex or electron transport chain (ETC) that is 

discussed later. It is essential to note that lipids and proteins interact extensively within the 

mitochondrial membranes. Homeostasis of phospholipids in the mitochondrial membranes is 

key to maintaining mitochondrial structure and its normal function such as fission and fusion, 

import of macromolecules and optimal performance of the respiratory chain. Lipids also are 

known to stabilize the super-complexes within the IMM 14.  

 

Contrary to general thinking, mitochondria in higher eukaryotes are not typically 

“sausage shaped or cylindrical”. In yeast, mitochondria are primarily tubular, whereas in humans 

it forms interconnected reticular networks. Studies focused on mitochondrial dynamics have 
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shown the existence of polymorphic mitochondria during the course of cell division from long 

filamentous network to fragmented and then back again 15. Interestingly, mitochondria also 

appear to demonstrate “site-specific” functional differences as in the case of perinuclear versus 

synaptosomal mitochondria in neuronal cells 15. This suggests that mitochondrial function may 

be linked to its location. Mitochondria are dynamic organelles and they continually undergo 

fusion and fission within a cell 16. Consequently, this results in mixing and homogeneous 

distribution of mitochondrial content including mtDNA within the cell.  

 

Mitochondria are involved in several cellular functions such as generation of energy in 

the form of ATP, generation and regulation of reactive oxygen species (ROS), buffering 

cytosolic calcium ion levels and regulating programmed cell death (apoptosis)17. The IMM folds 

and creates finger like projections known as “cristae”. The cristae provide greater surface area 

to accommodate the ETC complexes and other proteins such as adenine nucleotide translocase 

(ANT). ATP is generated by catalyzing high-energy substrates via oxidative phosphorylation 

(OXPHOS) and is the most important function of mitochondria.  

 

OXPHOS is performed by proteins organized as complexes and super complexes termed 

the electron transport chain (ETC) which are located within the IMM.  The ETC consists of 5 

protein complexes – complexes I, II, III, IV and V (Figure 2 and Table 1). The components of 

the ETC are encoded by both the nuclear as well as mitochondrial genome. With the exception 

of Complex II, all other ETC complex have at least one subunit coded by the mtDNA (Table 1). 

Thus, OXPHOS is extensively regulated by both the genomes. These ETC complexes are 

arranged in the increasing order by their reducing potential. Reducing equivalents from various 

metabolic pathways such as the Kreb’s cycle, pyruvate oxidation, metabolism of fatty acids, 

amino acids and steroid are used to drive protons across the mitochondrial inner membrane. 

According to the classical Mitchell chemiosmotic hypothesis, this results in an electrochemical 
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proton gradient, which then drives the rotary component of Complex V to generate ATP (Figure 

3).  Complex V is a rotary complex in the IMM consisting of two domains F1 (motor’s stator, 

matrix exposed) and Fo (rotor, membrane embedded). As the protons flow through the Fo 

complex, it rotates the F1 domain via a shaft. Rotation of F1 is coupled with catalytic conversion 

of ADP and Pi to ATP that is then released in the matrix. ATP generated in the mitochondrial 

matrix is exported to the cytosol by adenine nucleotide translocator (ANT) to be used in various 

cellular processes.  

 

 

 

 

Figure 2. Schematic of mitochondrial electron transport chain showing electron and 

proton flow across various OXPHOS complexes. Adapted from Mourier and Larsson, 

2011 18.  
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1.1.1 Mitochondria and Reactive Oxygen Species 

 

During the process of OXPHOS in the mitochondrial matrix, oxygen (O2) is reduced to water 

(H2O) by addition of 4 electrons (e-) and 4 protons generated from the energy rich substrates. 

When only one or two electrons are transferred to O2, the reaction yields highly reactive 

superoxide (O2
-) or peroxide (O2

2-) anions respectively. Superoxide dismutase converts 

superoxide to relatively inactive hydrogen peroxide (H2O2). However, H2O2 can be further 

reduced by a metal ion via a Fenton reaction to generate hydroxyl radical (OH). O2
-, O2

2- and 

OH are called reactive oxygen species (ROS). ROS are a “double edged sword” and play 

important roles in cellular defense (neutrophils and macrophages), signaling, but, when in 

excess, result in DNA damage and pathological conditions 19.  

 

The mitochondrial matrix is akin to a central processing unit. The machinery required for 

mtDNA replication, transcription and translation of 13 protein-coding genes of mtDNA lies in the 

matrix. All metabolic processes converge in the matrix ultimately resulting in the creation of 

reducing equivalents (protons), which are then funneled to the ETC. The enzymes for the Kreb’s 

cycle, fatty acid metabolism, urea cycle, heme synthesis, and antioxidant defense mechanism 

all reside within the matrix. However, other than the 37 genes coded by the mtDNA everything 

else required for these mitochondrial processes is encoded by the nuclear DNA and imported 

into mitochondria. Given the impressive magnitude of protein and RNA traffic into the 

mitochondria, it is widely accepted that the mitochondrial import pathways play a critical role in 

determining mitochondrial homeostasis.  
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1.2 Mitochondrial genetics and inheritance  

1.2.1 Maternal inheritance  

 

During fertilization, embryonic mitochondria are derived from the oocyte. Males transmit only the 

nuclear genetic material but not the mtDNA to the embryo. Only a few mitochondria from the 

sperm enter oocyte through the process of fertilization and these are selectively eliminated by 

ubiquitin-mediated degradation or mitophagy. Why this is evolutionarily favored is not clear 20,21. 

A study by Sharpley et.al., in 2012, proposed that mixing of maternal and paternal mtDNAs 

would diminish the OXPHOS capacity and affects the cross signaling between the nuclear and 

mitochondrial genomes 22. This could result in aberrant physiology and behavior, which might 

explain why there is uniparental inheritance of mtDNA. Mitochondrial genetic material is thus 

maternally inherited and follows a non-Mendelian pattern 23. If there is a mutation in maternal 

mtDNA it can be transmitted by the mother to both sexes. Hence occurrence of disease in both 

sexes, dependent on maternal lineage is strongly indicative of mitochondrial mutation. 

Interestingly a study in 2002 reported that the paternal mtDNA was detectable in the muscle of 

the progeny 24. Inconsistencies in the mtDNA sequences of blood and muscle of the subject led 

to the discovery that paternal inheritance may be possible although this is an exception rather 

than the rule. No other studies have since reported other cases of paternal inheritance in 

humans. Therefore, mtDNA is believed to be inherited exclusively from the mother. 

 

1.2.2 Heteroplasmy and the threshold effect 

 

As a consequence of mtDNA polyploidy, mitochondrial inheritance patterns of diseases are 

quite complex. When normal cells contain the same type of mitochondria, this condition is 
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termed as “homoplasmy”. Mutations in mtDNA can occur in just a few mtDNAs within a fraction 

of the mitochondria. The presence of a mutant mtDNA and wild type mtDNA is termed as 

“heteroplasmy” and is typically expressed as a ratio of mutant:wild type mtDNA 25. The 

proportion of how much mutated mtDNA is present in a cell is used to calculate percentage 

heteroplasmy. PCR-SSCP is usually the method of choice to calculate the percent 

heteroplasmy levels, although experimental artifacts make it nearly impossible to predict the 

exact percentage. Early on during oogenesis, primordial germ cells divide to give rise to the 

primary oocyte. During this process, there is a reduction in the mitochondrial content that leads 

to a “mitochondrial genetic bottleneck” 26. Since this process is random, it results in a “sampling 

effect” thus a range of resulting heteroplasmy levels. As a consequence, some oocytes receive 

higher levels of mutated mtDNA and others receive less or even none of the mutant mtDNA. 

This ultimately contributes to determining whether the offspring will be affected by the mutation 

or not. Studies of several mitochondrial disorders show that the presence of mtDNA mutation is 

not sufficient to result in a disease state; rather the percent heteroplasmy generally correlates 

with disease. The heteroplasmy level typically has to reach a “minimum critical mutation load” or 

“phenotypic threshold effect” for the mutation to manifest its symptoms 27. For example 

individuals with mtDNA mutation T8993G who have ≤60% heteroplasmy will be asymptomatic. 

However, when the heteroplasmy level is 70% and 90% it results in NARP (Neuropathy, ataxia 

and retinitis pigmentosa) and it’s more severe form MILS (Maternally inherited Leigh syndrome), 

respectively 28-31. Although the heteroplasmy levels and disease severity do not perfectly 

correlate, they are generally related and discrepancies likely are related to methods of assaying 

heteroplasmy and somatic differences in heteroplasmy observed within individuals.  
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1.2.3 Mitotic segregation 

 

Mitochondrial disorders are characterized by their progressive nature; as the patient ages, the 

symptom worsens. During cell division the cellular contents are distributed to the daughter cells. 

This pattern of distribution for mitochondrial content however is not equal among the daughter 

cells. If the cell has a mtDNA mutation it may result in unequal transmission of the mutation. As 

a consequence, the mitochondrial mutant heteroplasmy may shift. This phenomenon is called 

“mitotic segregation” and could subsequently affect the phenotype 32. The progressive nature of 

the mitochondrial disease could be caused, at least in part, by “mitotic segregation”. Mitotic 

segregation was one of the technical challenges during earlier attempts to create transgenic 

mice models as discussed later in Chapter 1. Cytoplasm containing one type of mitochondria 

(donor-CAPR mtDNA) can be fused to the cytoplasm of another cytoplasm (recipient) creating 

cybrids. However, initial experiments failed to identify transmission of CAPR mtDNA in the 

cybrids 33. This was due to loss or segregation of mitochondrial genomes.  

1.3 Mitochondrial DNA replication  

 

Mitochondrial genome has obvious differences from the nuclear genome. In addition to 

exclusive maternal inheritance, mtDNA also confers polyploidy of its genes, uses a different set 

of codons, undergoes higher rates of mutations and has a specific organization of genes lacking 

introns.  Mitochondrial DNA size, expression mode and gene organization differs notably across 

phyla. Mitochondrial gene content and function however, is well conserved and mostly consists 

of protein coding genes for OXPHOS, tRNAs and rRNAs necessary for the mitochondrial 

translation 34. mtDNA sequences from several other species can be found at 
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http://megasun.bch.umontreal.ca/gobase/. The referred sequence of the human mitochondrial 

DNA is the Cambridge reference sequence and the more recently revised Cambridge sequence 

35,36.  

Although mtDNA replication has been studied extensively and some of the key players 

involved in the process are known, a clear understanding of how it is regulated by nuclear 

genome is lacking 37,38. How the mitochondrial DNA replication and transcription are coordinated 

in response to metabolic demands and developmental stages remains largely unexplored. Since 

the mtDNA structure and content are highly conserved in mammals, human mtDNA is 

considered as a model (Figure 1).  

Human mtDNA is 16.6kB in size and is double stranded. The two strands can be 

separated in a density gradient owing to their distinct density due to the differences in their 

nucleoside composition (i.e. the heavier or H- strand and lighter or L- strand). There are two 

non-coding regions in the mtDNA. First is the displacement loop (D-loop). The D-loop is a triple 

stranded structure in the non-coding region of mtDNA and is the most variable region in term of 

sequence and size in different species 34,39. It contains the major regulatory region of 

mitochondrial replication and transcription 37,40. The D-loop may have a ‘nascent H-strand’ 

annealed to the L-strand in cells that are metabolically active. Origin of replication for the heavy 

strand (OH), the heavy strand promoter (HSP) and the light strand promoter (LSP) for 

transcription are all located in the D-loop (Figure 1). In some species, the D-loop may also 

contain conserved sequence blocks (CSB) and termination associated sequences (TAS) 39. The 

second non-coding region is the L-strand origin of replication (OL).  

There are two models proposed for mtDNA replication: asynchronous ‘strand-

displacement’ and synchronous ‘coupled leading-lagging strand’ 39,41,42. The two different 

mechanisms have been proposed based on the use of different techniques, electron microscopy 

and mapping of 5’ mtDNA ends for the asynchronous and 2D gel electrophoresis for the 
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synchronous or ‘strand-coupled’ model. The asynchronous strand displacement model is the 

orthodox model of mtDNA replication.  

According to the strand-displacement model, mtDNA replication is initiated by priming at 

the OH region. This initial primer is created by mtRNA polymerase (mtRNApol) while initiating 

transcription from the L-strand. This initial L-strand transcript is processed by mitochondrial 

RNAse MRP (mitochondrial RNA processing) to generate primers. The mitochondrial DNA 

polymerase (DNAPol ϒ) then extends the processed and mature RNA primer to replicate the H-

strand. Once the replication unidirectionally proceeds to two-thirds distance from the OH of the 

newly synthesized H-strand, the OL region is exposed. The parental H-strand is rapidly cleaved 

by the S1 nuclease. Once the single stranded OL region is exposed it acquires a stem-loop 

structure. This stem loop structure is then used by a specific primase to generate primers for the 

initiation of L-strand replication. During the process of replication, there are several proteins 

participating to unwind the mtDNA (helicase/Twinkle), single strand binding proteins that 

enhance the fidelity and activity of DNAPol ϒ, and mitochondrial associated topoisomerases to 

resolve the mtDNA supercoils 43-47. A mitochondrial DNA ligase has been recently identified that 

may help seal the nicks in the mtDNA during replication 48,49.  Chaperones such as mtHsp90 

and mtHsp70 are also required for mitochondrial nucleoid stability.   

Interestingly, the majority of the proteins participating in mtDNA replication and 

transcription (discussed next) have also been identified and studied in Drosophila, mice and 

humans. This suggests that all these factors involved in mtDNA replication and transcription are 

well conserved among higher metazoans 7. 
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1.4 Mitochondrial transcription 

Mitochondrial transcription produces eight tRNAs and one protein (ND6) from the L-strand and 

the rest from H-strand. mtRNApol, mtTFAM and mTERF are the three important components of 

the mammalian mitochondrial transcription process 50,51. mtTFAM binds to the consensus region 

around mitochondrial promoters HSP1 (containing H1 initiation sequence) and LSP (containing 

L initiation sequence).  Binding of mtTFAM allows transcription by mtRNApol. mtTFAM 

regulates the mitochondrial RNA transcription. The H-strand is transcribed as two separate 

units. The first transcription unit initiates at H1 and produces the two rRNAs tRNAPhe and 

tRNAVal. It is terminated at the 3’ end of the 16S rRNA sequence. mTERF is known to assist in 

termination of mature mitochondrial transcripts 52. The second transcription units initiates at H2 

at a much lower frequency. This second unit results in a polycistron covering almost the entire 

H-strand giving rise to twelve tRNAs and 12 protein-coding mRNAs after being processed. A 

single polycistron is generated by the transcription of L-strand that yields eight tRNA and one 

protein-coding mRNA. The termination mechanism or sequence elements for the H2 and L 

transcription units are not exactly well understood.    

1.5 Mitochondrial mutation and associated disorders 

 

The incidence of mtDNA disease is unknown. Several epidemiological studies have estimated 

the presence of specific mtDNA mutations and mitochondrial disease incidence within small 

populations. Based on estimates, the frequency of pathogenic mtDNA mutations in the 

population is approximately 1 in 200 53,54. However, most of these mutations will remain 

unnoticed because clinical symptoms of mitochondrial disorders manifests at very high 

heteroplasmy levels and in situations of stress. Based on clinical cases the incidence of mtDNA 
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disease is estimated to be 1 in 10000 55. According to a review in 2001, 4000 children were born 

with mtDNA disease every year in the United States 56. This high incidence of mitochondrial 

disease underscores the need to invest time and resource in unraveling the mysteries of 

mitochondrial disorders and designing therapeutics targeted to cure mitochondrial disorders.  

Due to its exclusive maternal inheritance and polyploid nature, mtDNA mutations follow 

the laws of population genetics 57. This is a key difference from most nuclear genetic diseases 

that exhibit Mendelian inheritance patterns and contributes further to the complexity of 

mitochondrial disorders. The diversity of mitochondrial disorders has led researchers to classify 

them based on their pathogenicity or phenotype. One of the classifications is based on whether 

the mitochondrial disorder is due to mutations in the genes coding OXPHOS components and 

whether it is coded by the mtDNA or nDNA 58. Nuclear or mitochondrial DNA encoded mutations 

that affects OXPHOS are typically classified as Class I mitochondrial disorders. Mutations in 

other genes that localize within the mitochondria but are not directly involved in the OXPHOS 

function are classified as Class II mitochondrial disorders 59. Another form of classification 

groups mitochondrial disorders based on the clinical symptoms 2.  

Since the discovery of the first mutations as the pathogenic cause of mitochondrial 

disorder, increasing numbers of mutations in a variety of genes have been discovered such as 

genes involved in translation of OXPHOS subunits, its assembly, mitochondrial dynamics 

(fission and fusion) and regulation of mtDNA 60,61. Mitochondria have their own mtRNA 

processing and translation machinery. Mutations in factors facilitating mtRNA transcription, 

stability, processing including the addition of poly-A tails to mitochondrial mRNAs, amino-acyl 

tRNA synthetases and directly in the mitochondrial tRNAs have all been implicated in 

mitochondrial disorders 62-64. One of the examples is a common point mutation in the mt-

tRNALeu(UUR) gene at position 3243 which is found in ~80% cases of MELAS (Mitochondrial 

encephalomyopathy, lactic acidosis and stroke like episodes) patients and also has been 
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correlated with diabetes mellitus 64,65.  

Mutations in the mtDNA cause a large number of primary mitochondrial disorders with a 

wide spectrum of symptoms. Mitochondrial disorders often present with complex clinical 

symptoms and typically progressively worsen. Organs or tissues relying heavily on mitochondria 

for their general functioning are the most affected. Hence, the neuromuscular system, including 

the CNS, striated and cardiac muscles, is more affected than others in mitochondrial disorders. 

Additionally, mitochondrial disorders show quite complex heterogeneity between individuals of 

the same family. This is generally attributed to the heteroplasmy levels, although the 

heteroplasmy-severity correlation is not always perfect. 

Numerous reviews and articles have been published describing various mitochondrial 

diseases in the past three decades. Hence, I have mentioned only a few here with descriptions 

limited to their typical symptoms related to major mutations of the primary gene affected. For 

convenience and due to the expansive nature of mitochondria related diseases, my thesis will 

focus largely on primary mitochondrial disorders: disorders caused by mtDNA mutations.  

 

1.5.1 Ragged Red Fiber Mitochondrial Syndromes  

 

“Ragged Red Fibers" is caused due to the accumulation of defective mitochondria in the 

sarcolemma region of the muscle fiber. When the affected muscle tissue is stained with 

‘modified Gomori trichrome stain’, it reveals a distinct appearance of "ragged red fibers" and 

therefore, this is a histopathological classification for “Ragged Red Fiber mitochondrial 

syndromes“. These include MELAS (Mitochondrial encephalomyopathy, lactic acidosis and 

stroke like episodes), MERRF (Myoclonic epilepsy with ragged-red fibers) and KSS (Kearns-

Sayre Syndrome). 
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1.5.1.1    Mitochondrial encephalomyopathy, lactic acidosis and stroke like episodes 
(MELAS)  

 

First identified by Pavlakis et.al., this is characterized by stroke, migrainous headaches, 

seizures, vomiting and ragged red-fibers 66. It can clinically present at late childhood, early adult 

life or sometimes even in infancy. The majority of the MELAS cases (~80%) have an A3243G 

transition in the tRNALeu(UUR) gene 67. Approximately 10% of the cases are caused due to 

T3271C affecting tRNALeu(UUR). 

1.5.1.2    Myoclonic epilepsy with ragged-red fibers (MERRF) 

 

This disorder was first identified by Fukuhara et.al., 1980 68. The majority (~80%) of the cases 

have a point mutation in the mtDNA at 8344 affecting tRNALys  69. Clinical symptoms include 

‘myoclonic (involuntary) epilepsy’, myopathy and progressive ataxia (uncoordinated movement 

of the body). Progressive onset of dementia and mental retardation is also observed.  

 

1.5.1.3   Kearns-Sayre Syndrome (KSS)  

 

First described by Kearns and Sayre in 1958, this is one of the most studied mitochondrial 

cytopathies and exhibits brain and muscle symptoms 70. Several different point mutations in the 

mtDNA with multiple symptoms can result in KSS and therefore it is known as a “syndrome”.  

DiMauro and colleagues categorized KSS symptoms as “progressive external ophthalmoplegia 

of all extraocular muscles, retinitis pigmentosa (pigmentary degeneration of retina) and possibly 

cardiac conduction blocks, cerebellar defects” 71. 
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1.5.2 Non-ragged Red Fiber Mitochondrial Syndromes  

1.5.2.1    Leigh’ syndrome 

Leigh described this syndrome first in 1951 72. Leigh syndrome could be caused by mutations in 

either nuclear or mitochondrial DNA. Mutations in nuclear encoded respiratory chain subunits or 

pyruvate dehydrogenase can lead to Leigh syndrome. If the mutation is nuclear, it is transmitted 

in an autosomal recessive manner. If it is caused by mitochondrial DNA mutation it is inherited 

maternally and is termed as “Maternally Inherited Leigh Syndrome” (MILS). One of the mtDNA 

mutations that result in MILS is a point mutation in ATP6 gene at position 8993. MILS manifests 

itself when the mutation load increases to more than 90% 28-30. MILS patients present clinically 

at a much younger age: typically around 3 months post-partum. Aphenotypic at birth, it is 

characterized by “progressive lethargy, visual impairment, dyspaghia, hypotonia with weakness 

and paucity of movement” 73. Additional features may include movement and other neurological 

disorders such as seizures, progressive neurologic deficits, calcified neurons and abnormal 

mitochondrial morphology 73.   

 

1.5.2.2  Neuropathy, ataxia and retinitis pigmentosa (NARP)  

 

NARP is caused by mutations in the mitochondrial ATP6 gene and is closely related to MILS in 

that the same mutation can cause either conditions 74. The NARP symptoms first occur in 

childhood, in contrast to infancy as in MILS, and individuals often live into their thirty’s 31. 

Generally, NARP patients have a mutant heteroplasmy between 70-90 percent. 
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1.5.2.3    Leber’s hereditary optic neuropathy (LHON)  

 

Mutations in a gene encoding a subunit of Complex I often lead to a mitochondrially inherited 

optic neuropathy called LHON. It occurs at a higher prevalence in males as compared to 

females (M:F ratio of 5:1). The majority of the LHON cases have a mutation in any of the genes, 

ND1 G3460A, ND4 G11778A and ND6 T14484C or G14600A.  

 

LHON symptoms involve degeneration of retinal ganglion cells, atrophy of optic nerve 

and loss of central vision. The frequency of LHON affecting males is 1 in 14000 with typical 

clinical symptom of painless vision loss in one eye generally followed by loss of vision in the 

other eye within a short period.  Interestingly, small populations of LHON patients show an 

unexplained visual recovery and alleviation of symptoms over time. It is observed that the 

presence of a LHON mutation may not necessarily result in a disease phenotype. Incomplete 

penetrance of LHON is typical of mitochondrial disorders and is not well understood at the 

molecular level. Inexplicable recovery of symptoms appears to be unique to LHON.  

 

With the increasing correlation of abnormal bioenergetics observed in several diseases 

such as neurodegeneration, cancer, diabetes and even aging, mitochondria is now beginning to 

be viewed as the hub of metabolic disorders. 
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1.6 Modeling human mitochondrial disease 

1.6.1 Cellular models of mitochondrial disorders 

 

Lack of manipulation techniques for the mitochondrial genetic material is a severe limitation in 

creating models of mitochondrial disorders of specific mtDNA mutations. However, advances in 

cell fusion and organelle transfusions have made it possible to create cellular models from 

naturally occurring mutations. It is possible to create cytoplasmic hybrids or cybrids containing 

the desired mtDNA mutation. Generally, a cell line (recipient) is depleted of its mitochondria 

such as by treating with ethidium bromide (EtBr) or rhodamine 6G dye 75,76. EtBr intercalates 

between the DNA strands and inhibits replication. Once the mtDNA is depleted, isolated 

mitochondria from patients harboring the mutation are then transplanted in these mitochondrial 

devoid cells 77,78. The nucleus from the donor cells is extruded using cytochalasin B. The donor 

and recipient cells are then fused to create a cybrid.  Most of our understanding of the 

mitochondrial disorders has arisen from cell cybrid models over the past couple of decades 79-82. 

Cell cybrids have been instrumental in studying the effect of specific mtDNA mutations on 

mitochondrial bioenergetics 83. These include examples such as partial tandem duplication of 

the tRNAPhe gene in mitochondrial myopathy and A3243G transition affecting tRNALeu(UUR), both 

of which result in respiratory defect and reduced oxygen consumption rates 84,85. Nuclear 

genetic background can have significant impact on disease risk. As a method to generate cell 

cybrids mutant mitochondria are placed in a foreign nuclear background, which alters the 

normal dual control of the organelle.  This can be confounding but also might be used to 

evaluate the role of nuclear genetic background in disease pathogenesis.   

 

Despite their significance, cybrid models have several limitations in terms of recapturing 

features of tissue specificity. Various groups have developed techniques to make these cybrids 
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more relevant to the disease such as by combining cybrid and stem cell technologies to 

evaluate mitochondrial dysfunction in neurons.  In one report mechanisms of neurodegeneration 

were studied in mouse embryonic stem cell cybrids with Complex I and Complex IV mutations 

after differentiating them into neurons 86. An interesting approach of mtDNA depletion using 

nucleoside analogs was employed to create cybrids in human pluripotent stem cell derived 

neuronal progenitors (hNPs). It was found that a family of nucleosides that are commonly used 

as antiretroviral agents (zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC)) blocks 

mtDNA polymerase, terminating mtDNA strand synthesis and consequently depleting mtDNA 

87,88. Using one such dideoxynucleoside analog, zalcitabine, Iyer et.al., created hNP cybrids 

carrying ND4 G11778A LHON mutation 89. Patient derived cell cybrids in various cell types such 

as fibroblasts and induced pluripotent stem (iPS) cells have been engineered to recapitulate 

mitochondrial disorders. With the recent advancement in techniques, it has been possible to 

regulate the level of heteroplasmy in these cell cybrid models 85. This is a huge step forward as 

the heteroplasmy level is critical in determining the outcome of mtDNA mutation/s. Not only 

have cybrids revolutionized the understanding of pathogenesis they have also provided a 

unique in vitro platform to screen drug candidates for mitochondrial disorders.  

 

1.6.2 Animal models of mitochondrial disorders  

 

Although cell cybrid models have been instrumental in helping us understand mtDNA mutations 

and their pathogenicity, they are unable to capture the composite characteristic of mitochondrial 

diseases. Mitochondrial disorders are progressive in nature, are heterogeneous affecting 

multiple organs and are tissue specific. These phenotypes are impossible to study in a cellular 

model. Therefore, animal models were developed to study mtDNA mutations and test 

therapeutic strategies in an in vivo system.  
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Various techniques have been employed to generate animal models of mitochondrial 

disorders such as nuclear transgenesis (of genes involved in OXPHOS and mtDNA regulation), 

chemical induction, allotopic expression and transmitochondrial approaches 25,90-92. Standard 

nuclear transgenesis has been quite useful in cases of nuclear genes involved in OXPHOS. 

One such transgenic mice model is the NADH dehydrogenase (ubiquinone) iron-sulfur protein 4 

(NDUFS4) mutation modeling Leigh syndrome model 93. NDUFS4 is a nuclear encoded 

Complex I subunit.  The Leigh syndrome mouse model has phenotypes observed in human 

patients such as progressive encephalomyopathy, loss of motor ability, respiratory abnormalities 

and aberrant mitochondrial morphology. Other well-known mouse models created using nuclear 

transgenesis are mutator mice (mutation in polymerase (Pol γ (gamma)), deletor mice (mutation 

in helicase Twinkle), ANT1 knockout and PINK1 knockout mice 43,94-97. A LHON model was 

created by chemical injections of rotenone and the mice exhibits degeneration of retinal 

ganglion cells in as seen in LHON 98.  

 

Animal models of mitochondrial disorders due to mutations in the genes encoded by the 

nuclear genome has been successful in elucidating key features of these fatal disorders. 

However, engineering animal models of mtDNA mutation is much more challenging and rare. 

Allotopic expression strategies have so far resulted in at least two mouse models e.g. L156R-

ATP6 and R340H-ND4 99-101.  Both these models however, have an endogenous mitochondrial 

encoded wild type copy of ATP6 and ND4 proteins and hence are not truly mitochondrial 

mutants. These and other allotopic expression studies will be discussed in detailed later in 

Chapter 2. 

 

Another strategy for creating mtDNA mutation models is by altering mtDNA in embryonic 

stem (ES) cells. Even though the xenomitochondrial approach of injecting cybrid 129S6 ES cells 
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(Mus terricolor) into blastocyst of C57BL mice (Mus musculus domesticus) generated distinct 

nuclear and mtDNA background, the resulting mice remained largely aphenotypic 102. 

Microarray data of the resulting mice displayed a gene expression profile that did not show any 

involvement in mitochondrial function. In vitro data using the same mtDNA-nuclear genome 

combination previously showed respiratory defects. Lack of clear phenotype has been attributed 

to various compensatory mechanisms as a consequence of gene manipulations. These 

compensatory mechanisms contribute to the complexity of diagnosis and treatment of 

mitochondrial disorders, and require further investigation 103.  

 

Trans-mitochondrial engineering of mice employs two common methods – mitochondrial 

injection and ES cell transfer technology 104.  In the first method, isolated mitochondria are 

injected into the cytoplasm of pronuclear unicellular fertilized ova (zygote). The second method 

is a fusion technique of cytoplast containing mutant mitochondria with mtDNA depleted ES cells. 

Depletion of mtDNA in recipient cells is critical and is usually achieved by the use of R6G dye. If 

the recipient cells have their own mtDNA, it is possible to lose donor mtDNA via the process of 

mitotic segregation as discussed earlier. Trans-mitochondrial techniques have yielded 

mitochondrial deletion mutants (“mito-mice”) and the ND6 G14600A mutant mouse model 105,106. 

Interestingly, the ND6 G14600A mouse model is homoplasmic and has been instrumental in 

identifying ROS as the primary cause of LHON pathogenesis.  

 

Other organisms such as Drosophila and C. elegans have also been used to create 

mitochondrial disorder models. One of the earliest fly models was the technical knockout (tko25t) 

mutant as the “Drosophila model of mitochondrial deafness” 107,108. The tko25t mutant was 

rescued by a 3.1 kb DNA fragment that was later found to code for mitochondrial ribosomal 

protein S12 (MRPS12). This mutant shows bang sensitivity, mitochondrial translational defects 
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and sensory defect. Several other fly mitochondrial mutation models mostly involved in 

neurodegeneration exist and has been reviewed by Debattisti and Scorrano in 2013 109.    

 

Given their relevance, animal models of mitochondrial disorder capture the range of 

compound phenotypes and are critical in unraveling the mysteries of mtDNA mutations and its 

impact on whole organism.   

 

1.6.3 Drosophila model of mitochondrial encephalomyopathy 

 

In 2006, the Palladino lab identified and characterized a pathogenic mutation in Drosophila 

mtDNA encoded gene ATP6 110. The ATP6 gene (726 bp) codes for an essential 25kDa protein 

subunit of Complex V. The mutation ATP6[1], is a missense mutations that leads to substitution 

of glycine for glutamate at position 116 (G116E) of the ATP6 polypeptide chain. Flies harboring 

this mutation have ~98% mutant heteroplasmy level. The mutation results in significant 

reduction in longevity, sensitivity to mechanical stress and strobe light-induced convulsive 

seizures and paralysis as a function of age. ATP6[1] flies also exhibit progressive 

myodegeneration, neural dysfunction, abnormal mitochondrial morphology, progressive 

increase in mtROS, and reduced ATP synthase activity 110-112. Based on the predicted partial 

crystal structure of ATP6, this substitution lies at the interface of ATP6 dimers. Among other 

phenotypic and biochemical features, ATP6[1] also affects dimerization of the ATP synthase 

complex.  

 

Interestingly, the ATP6[1] mutation was identified as a maternally inherited enhancer of 

sesB1.  Importantly this mutation has a high mutant heteroplasmy but is not homoplasmic and it 

is surprisingly stable, especially when maintained as a sesB1 double mutant. Although the 

  22 



reason why this mutation is stable in the sesB1 background is unknown, this is an important 

feature of this model.  We have suggested that ANT dysfunction (encoded by sesB in flies) may 

have caused and or selected for the ATP6[1] mutation. Families suffering from adPEO 

(autosomal dominate progressive external ophthalmoplegia) -- a dominant disease with severe 

ocular phenotype -- have also been found to have a specific mitochondrial dysfunction where 

they accumulate mtDNA mutations. Several gene loci have been implicated in adPOE (4, 10 

and 15). The 4p gene locus encodes ANT1.  

 

Thus, the ATP6[1] mutant fly strain captures key features of mitochondrial disorder, is 

stable, amenable for progressive studies and is an excellent model to study disease 

pathogenesis and validate therapeutic strategies in vivo.   

1.7 ATP synthase complex and associated mutations 

 

Complex V or ATP synthase complex is a massive multi-subunit protein complex (~300kDa) 

residing in the IMM. Complex V is assembled as two domains F1 and Fo from 10-16 subunits 

encoded by nuclear DNA and 2 subunits (ATPase 6 and ATPase 8) are encoded by the mtDNA 

(Figure 1 and 3) 113,114. The F1 domain is exposed in the matrix whereas the Fo is membrane 

bound.  

 

F1-Fo ATPase complex couples the proton gradient generated by the reducing 

equivalents passing through the ETC to produce ATP from ADP and Pi 115-117. Protons are 

passed from the IMM space to the matrix through the ATP6 proton channel of the Fo complex 

118,119. This passage of protons results in a “rotary catalysis” mechanism that drives the central 
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stalk making it work like a rotor (subunit γ) 117,119. ATP6, in conjunction with subunits b and δ 

(analogous to mitochondrial OSCP) constitute the stator – the stationary part of the rotating 

“molecular machine” Pi 115.  Subunit γ works like a “cam” that induces a conformational change 

in the subunits α-β of F1 domain. 3 α-subunits and 3 β- subunits are arranged in a hexameric 

arrangement alternating with each other (Figure 3). This unique arrangement allows for 

repeated cycles of binding with ADP and Pi to generate ATP and then release of ATP 120. 

Interestingly the direction of the rotation determines whether the ATP will be generated or 

hydrolyzed 121. In other words, ATP synthase complex can also act as an ATPase – hydrolyzing 

ATP instead of generating ATP.  

 

The ATP synthase complex is known to exist as a dimer 122. There are several factors 

that affect the dimerization status of Complex V 123.  Lack of dimerization however, has been 

shown to result in decreased respiration and is usually observed in mutant/pathogenic 

conditions. Several groups have reported mutations affecting ATP synthase originating either in 

the nucleus or the mitochondria 30,74,124-130.  

 

Of particular interest to my thesis is the subunit ATP6. This subunit interacts with subunit 

c and couples the proton flow to the rotation of the c-ring of Fo domain 118. In humans, 

nucleotides 8527-9207 of the mitochondrial genome encode subunit 6 (ATP synthase a chain 

(EC 3.6.3.14) (ATPase protein 6 - Uniprot accession: P00846)) of the mitochondrial ATP 

synthase complex. It is obvious that mutations in such a critical subunit could result in 

pathogenic conditions. There are at least 9 pathogenic mutations associated with the ATP6 

protein. Out of these, 7 are point mutations and 2 are deletions. Flies have homologous ATPase 

protein 6 that serves the same function (D. melanogaster- Uniprot accession: P00850). The 

ATP6 subunit is predicted to have 5 transmembrane domains and seems to be highly 

conserved throughout metazoan evolution. 
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Figure 3. Subunits of bacterial ATP synthase complex – also known as Complex V. ATPa 

or ATP6 is shown dark blue. The five predicted TM domains of ATP6 are highlighted. 

Adapted and modified from Rastogi and Girvin, Nature 1999. 

 

1.8 Management of mitochondrial disorders 

 
The diversity of mitochondrial disorders not only makes them challenging to diagnose but even 

tougher to treat. In fact, current therapies for mitochondrial disorders are grossly inadequate. 

There is no known cure for mitochondrial disorders. In the absence of proper therapeutic 

options, the management of mitochondrial disorders is restricted to palliative care 131,132. 

Patients with mitochondrial disorders are typically prescribed vitamins (such as riboflavin, 

thiamine, Vitamin C and E), cofactors and oxygen radical scavengers with a goal to delay or 

circumvent the damage to the respiratory chain especially during excessive physiological stress 
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132. Coenzyme Q10 (CoQ10) supplements are used in cases of CoQ10 biosynthesis defects 133. 

Drug cocktails with combination of vitamins, CoQ10 and other antioxidants (alpha lipoic acid) to 

act synergistically are commonly used although specific composition of these cocktails is 

universally not the same. Whether these cocktails vitamins and cofactors have any real benefits 

for patients with mitochondrial disorders remains debatable and data for their clinical trials is 

lacking 134.  Pharmacological interventions are unpredictable in mitochondrial disorders as the 

use of drugs could exacerbate physiological stress or mitochondrial toxicity in patients. In a 

review in 2009, Parikh et.al., have listed and evaluated some of the drugs and their effects on 

mitochondrial toxicity 132.  

 

Using exercise as a therapy (“aerobic conditioning”) in mitochondrial myopathy has 

proven effective by enhancing normal mitochondria, and restoring/repairing muscle functions135.  

Exercise remains an integral part of the quest for clinical management of these disorders 136-138.  

Some of the emerging therapies such as Sirtuin (SIRT-1) and PPAR agonist (bezafibrate) 

targeting multiple metabolic enzymes have recently been shown to improve mitochondrial 

performance 139. However, none of these have been tested in clinical trial for their safety and 

efficacy in primary mitochondrial disorders.  In the absence of definitive therapies to treat these 

devastating disorders, novel strategies such as hematopoietic stem cell transplant, nuclear 

transfer and mitochondrial gene therapy seems like a viable option 140-142.  
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2.0  ALLOTOPIC EXPRESSION AND MITOCHONDRIAL RNA IMPORT 
 

 

 

Genetic material exchange between the nucleus and mitochondrion has taken place since the 

earliest endosymbionts. During the course of evolution thousands of mitochondrial genes have 

been transferred to the nucleus. More than 600 mtDNA-derived fragments are thought to have 

migrated to the nuclear DNA 143. Interestingly, some of the genes from the nucleus acquired the 

capability to be targeted to the mitochondria. Most of the molecules targeted to the mitochondria 

are either proteins or RNA. Depending upon the organism, most metazoans are thought to 

target 900-1100 proteins to mitochondria 35,141. These imported proteins participate in various 

mitochondrial functions. As a result, mutations in these proteins or RNA could lead to 

mitochondrial dysfunction. In fact many mitochondrial disorders have mutations in 

mitochondrial-targeted protein or RNA as the underlying cause of pathogenesis 144,145.   

 

Why have only a few protein coding genes and tRNA genes remained in the mtDNA and 

others have migrated to the nucleus? Although this is not known, there are theories as to why 

this is the case. Studies of protein composition of the 13 human mitochondrial coded proteins 

revealed that they are extremely hydrophobic. Translation of very hydrophobic proteins in the 

cytosol can lead to inefficient import and cytosolic aggregation. Aggregated proteins may be 

cleared by the cell or worse – could lead to cytotoxicity. It is possible there was a selective 

advantage to retain the genes encoding these hydrophobic proteins within the mtDNA. These 

could then be translated in the mitochondrial matrix in close proximity to IMM where they are 
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likely co-translationally integrated into the IMM. Some species such as the algae 

Chlamydomonas reiinhardtii and some legumes have evolved a less hydrophobic protein that is 

now within the nucleus, consistent with the hydrophobicity hypothesis 146.  

 

Gene therapy intended to replace defective or missing genes for nuclear encoded 

proteins are well established and have demonstrated significant benefit in several fatal disorders 

such as immunodeficiencies, thalassemia and leukodystrophies 147-150.  Discovery of 

mitochondrial disorders and their associated mutations sparked an interest in manipulation 

strategies to fix these diseases. There are several strategies to introduce foreign DNA into the 

mitochondria and a host of manipulation techniques for mitochondrial DNA have been proposed 

151 . Although functional in cellular or in vitro models, none of them have been successful as a 

gene therapy 152,153. As a consequence, currently, there is no technique to treat these 

devastating disorders.  

2.1 Allotopic expression strategies 

Allotopic expression is “the expression of a gene in a different cellular compartment to its target 

location. In the context described here, it is the recoding of a mitochondrial gene to allow it to be 

expressed in the nucleus. The subsequent conjugation of a mitochondrial-targeting sequence 

promotes import and localization of the gene product to the organelle” 144,151. In general there 

are two strategies of allotopic expression – protein and RNA allotopic expression. Protein 

allotopic expression has been studied in detail using several mitochondrial genes 154,155. Much is 

known about protein import and hence it makes it a bit easier to exploit this pathway for 

mitochondrial protein targeting. On the other hand, RNA allotopic expression has recently 

gained interest. The discovery of mitochondrial RNA import pathways and identification of 
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various RNA carrier proteins in the cytoplasm is an attractive avenue for a viable gene therapy. 

However, vigorous data to support this strategy is lacking. 

 

2.1.1 Allotopic protein expression 

 

Several proteins have been targeted to the mitochondria using nuclear allotopic protein 

expression strategies. A few examples involve heterologous protein, restriction enzymes, zinc 

finger nucleases and DNA repair factors. Using protein allotopic expression, a few mtDNA-

encoded proteins have been allotopically expressed to complement and rescue the mutant 

counterparts such as ATP8155, ATP6156-158, ND4152,156 and ND6153.  

 

This method was first demonstrated in yeast by Nagley et al., 1988 155.  In this paper, the 

authors used a normal copy of the ATP8 gene recoded for nuclear expression and 

supplemented with a mitochondrial targeting sequence to facilitate mitochondrial import. The 

normal copy of ATP8 gene could rescue respiratory deficient mutants of S. cerevisiae that do 

not have endogenous subunit of ATP8. Allotopic expression was also attempted in human cells. 

As mentioned earlier, NARP and MILS are caused by a mtDNA point mutation at locus T8993G 

of ATP6 subunit. Manfredi et al., 2002, successfully expressed and incorporated a normal copy 

of ATP6 in the ATP synthase complex of T8993G mutant cells by using cell cybrid models. Guy 

et al., 2002 used a similar strategy for a mtDNA point mutation of G11778A, responsible for 

LHON that codes for ND4 subunit of Complex I. In this study, the rescued cybrids showed 

significantly enhanced ATP synthase activity. In contrast, in a 2006 study, Bokori-Brown et al., 

found no evidence of improvement of mitochondrial function or assembly of normal ATP 

synthase subunits.    
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In a variation of this strategy, the “nuclear derived transcripts”, coding mtDNA-encoded 

proteins, are targeted to the OMM using specific sequences such as 3’UTRs. Once the 

transcript is targeted to the OMM, it is believed to be either co-translationally imported or 

translated and then imported in the mitochondria 159. One obvious advantage of this alternative 

approach is that this would address the aggregation of hydrophobic protein hurdle associated 

with protein allotopic expression 100,160,161. Other studies have reported the use of non-human 

mitochondrial proteins to complement respiratory chain defects162-165. In the case of protein 

allotopic expression, there are a few hurdles that make it quite challenging to rescue a mutant 

phenotype.  

 

2.1.2 Allotopic RNA expression 

 

We, and others have proposed RNA allotopic expression as a possible therapy strategy. This 

involves targeting protein-coding transcripts to the mitochondrial matrix that will endogenously 

be translated in the mitochondria. Another application of this strategy is to target normal copies 

of the defective mitochondrial tRNAs into the mitochondria.  A 2011 study by Karicheva et.al., 

targeted ‘specifically designed transgenic tRNA’ to rescue MELAS syndrome due to a 

tRNALeu(UUR) gene mutation A3243G in the mtDNA 166. This imported tRNA was able to improve 

mitochondrial translation and rescue mitochondrial respiration defect. However, the absence of 

the mechanistic knowledge of RNA import into the mitochondria such as lack of clear 

understanding of RNA import pathways, the proteins involved and the identification of 

sequences that are recognized by import proteins currently makes this approach an extremely 

challenging task.  
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2.2 Mitochondrial import of macromolecules – proteins and RNA 

2.2.1 Mitochondrial Protein Import 

 

Out of approximately 900-1100 mitochondrial proteins, only 0.01% (13 proteins) are coded by 

the mammalian mtDNA 35,167.  The rest of the proteins are encoded by the nuclear genome and 

imported by the mitochondria. These imported proteins are involved in several mitochondrial 

functions.  

 

Mitochondrial imported proteins may end up in the OMM, IMM, IMS or the mitochondrial 

matrix. The mitochondrial protein import machinery recognizes signals associated with the pre-

protein that is being imported. In most cases these signals are N-terminal associated peptide 

sequences and are commonly referred to as “mitochondrial targeting sequences (MTS)”. 

Examples of MTS are COX8MTS of cytochrome oxidase subunit 8, P1MTS, P2MTS or P3MTS of 

ATPase 9/c. These MTS have been identified and exploited to target non-mitochondrial proteins 

into the mitochondria such as EGFP, dsRED, GAPDH and other cytosolic proteins.   

 

“Hetero oligomeric membrane complexes” translocase of outer membrane (TOM) and 

translocase of inner membrane (TIM) sort out incoming proteins with the assistance of several 

other proteins that constitute the mitochondrial protein import machinery. It is believed that once 

the pre-protein with the MTS enters the mitochondria, a peptidase cleaves the MTS thus 

releasing the mature protein. TOM is the major translocation complex akin to a “gatekeeper” 

through which most of the proteins have to pass for mitochondrial import 168. Tom20, 22 and 70 

subunits recognize pre-proteins and transfer it to the central channel Tom40 169. Other subunits 

of TOM such as Tom5, 6 and 7 assist in the assembly of TOM complex 170. Sorting and 

assembly machinery (SAM), mitochondrial inner membrane assembly (MIA) and pre-sequence 
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associated motor (PAM) work in conjunction with TOM-TIM complexes to target some of the 

proteins to different mitochondrial compartments 171. SAM, MIA and TIM (carrier translocase of 

inner membrane) are thought to target the proteins to OMM, IMS and IMM respectively 170. 

Oxa1p is an insertase/export machinery of inner membrane that also interacts with 

mitochondrial ribosomes 172. Oxa1p thus facilitates the insertion of mitochondrial-translated 

proteins in a way that the N-termini lie in the IMS.  

 

Mia40, a conserved IMS resident oxidoreductase, has an interesting role in facilitating 

the IMS protein import. Proteins translated in the cytosol and destined to end up in the IMS are 

unfolded prior to mitochondrial import. Mia40 has an essential disulfide center in its Cys-Pro-

Cys signature domain 173. This redox-active disulfide bond oxidizes the unfolded proteins 

approaching from the cytosol and “locks” them in a stable folded state via a ‘mitochondrial 

disulfide relay system’ 174,175. Thus, the IMS targeted protein remains in the IMS via Mia40 

dependent oxidation process.  

 

In addition, the protein import machinery also consists of mitochondrial chaperones or 

heat shock proteins (mtHSP) that are required for proper folding of the mitochondrial imported 

proteins. Mutations in the protein import machinery components or MTS have been associated 

with disorders such as deafness dystonia syndrome (DDS), PDHC deficiency and 

methylmalonic acidemia 176-178.  

 

2.2.2 Mitochondrial RNA import  

 

In contrast, mitochondria import only a few RNAs. All mitochondrial imported RNAs are non-

coding and there is no evidence as of now that a coding RNA is naturally imported into 
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mitochondria. As discussed in the previous section, the mitochondrial protein import has a 

dedicated import pathway the components of which seem to be conserved across species. RNA 

import, however, is quite diverse across various species. Not only are there different types of 

RNAs imported in diverse species, divergent mechanisms exist to import these RNA into the 

mitochondria 179-182. This adds to the complexity of mitochondrial RNA import and its pathways. 

Unsurprisingly, RNA import pathways of mitochondria are largely unknown and remain less well 

characterized in contrast to protein import.  

 

Why only a few RNAs are imported into the mitochondrial? In a review in 2008, Salinas 

et.al., have discussed few of the factors such as selectivity, targeting, translocation and 

regulation that could affect the import of tRNAs into the mitochondria 180. Although it helps in 

understanding some aspects of RNA import, it remains to be validated whether these 

parameters are a general rule or specific to certain species.  

 

2.2.2.1 RNAs imported into the mitochondria 

a. RNase MRP  

 

RNase MRP is a site-specific endoribonuclease, which is coded by the nucleus. In order to 

initiate mtDNA replication, primer processing is necessary. RNase MRP processes mtRNA 

transcripts to generate primers that facilitate mtDNA replication. RNase MRP was first identified 

in mouse mitochondria and is 275 nt long 183. It has a ‘decamer sequence’ that is 

complementary to the mtRNA substrate. RNase MRP was identified having features of RNA 

polymerase III (RNAPIII) unit such as a region similar to Box A sequence (5’-RRYNNARYGG-3’) 

of RNAPIII and a 3’ tetra-T (RNAPIII termination signal) 184. RNase MRP has nucleo-
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cytoplasmic function as well and is mostly found in the nucleus 185,186. It is required for the 

correct processing of the ribosomal 5.8S rRNA in yeast (S. cerevisiae) 187-189. RNase MRP has 

also been shown to be critical for cleaving a B-type cyclin (CLB2) for cell cycle progression post 

mitosis 190,191.  

 

b. RNase P  

 

RNase P is a nuclear encoded endoribonuclease that is imported into the mitochondria and 

processes the 5’ ends of tRNAs 192,193. The mitochondrial genome is compact and often has 

tRNA ‘punctuating’ the coding regions 35,194. The heavy and light strands generate polycistronic 

mtRNA that requires processing. In contrast to their cytoplasmic counterparts mitochondrial 

tRNA or mRNAs do not possess significant 5’ or 3’ pre-sequences or UTRs 195. The 

polycistronic mtRNAs are processed by the RNase P to yield tRNAs and other RNAs in the 

mitochondria. There are two forms of RNase P – one that has a 340 nt long catalytic RNA 

component 193 and the other which is an RNA free mitochondrial RNase P. The second type of 

RNase P was described recently and is composed of three protein subunits (mitochondrial 

RNase P protein 1, 2 and 3) 196,197. Both RNase Ps have been proposed to cleave the 5’ end of 

the tRNAs. Interestingly, the RNA free RNase P activity has only been shown in vitro 196.  While 

investigating mitochondrial RNA import, Wang et.al., 2010 developed an ‘in vitro tRNA 

processing assay’ using mitoplast lysates. When the lysate was pre-treated with nuclease, the 

tRNA processing was lost. This result was consistent with the previous findings by Puranam 

et.al., that also demonstrated nuclease sensitivity of the mitochondrial localized component of 

RNase P 193. The same report also estimated that there are ~ 33-175 molecules of RNase P per 

HeLa cell. Although merely 0.1 to 0.5% of the nuclear pool, these numbers might be sufficient 

for tRNA processing in transcriptionally active cells.  
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c. 5S rRNA 

 

5S rRNA is a nuclear encoded fragment of RNA that is most abundantly imported into the 

mitochondria (~1% of the nuclear fraction) 198. That it is imported into mitochondria was first 

discovered in rabbit, chicken and bovine mitochondria 199. In plants, the 5S rRNA is transcribed 

from the mtDNA and gets incorporated into the mitochondrial ribosomes 200. Yeast is not known 

to import 5S rRNA into its mitochondria 198. The 5S rRNA is a component of mammalian 

cytoplasmic ribosomes. However, the mitochondrial ribosome lacks the L5 subunit that is 

predicted to interact with the 5S rRNA 201. Hence, the function of imported 5S rRNA in the 

mammalian mitochondria is a matter of debate. Several groups have studied the import of 5S 

rRNA into the mitochondria. The import of 5S rRNA is reliant on the mitochondrial membrane 

potential, requires ATP and other soluble factors 198. A conclusive mitochondrial function of 5S 

rRNA remains elusive. 

 

d. tRNAs  

 

Unlike human mtDNA, mtDNA of several other species do not encode for an entire set of tRNA. 

For example, the mitochondrial genomes of Spizellomyces punctatus codes for eight tRNAs, 

Arabidopsis thaliana for 14 tRNAs (lacking 6 tRNA) and Chlamydomonas reinhardtii codes for 

only 3 tRNAs. There are organisms such as Trypanosoma brucei and Leishmania tarentolae 

that completely lack tRNA genes in their mtDNA. Since tRNAs are essential for mitochondrial 

translation and given that mitochondria from most species do not have a complete set, the 

mitochondria of many organisms are widely believed to import nuclear tRNAs from the 

cytoplasm. It is possible to predict how many tRNAs are being imported into the mitochondria by 

cross referring the available mtDNA sequences and comparing them with the tRNA genes and 
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their respective codons 202. Importing a corresponding tRNA from the cytoplasm compensates 

the lack of tRNA gene encoded by the mitochondria. While the imported tRNA is only a fraction 

of what remains in the cytosol, it is sufficient to meet the demands of mitochondrial translation. 

 

Even simple organisms like Saccharomyces cerevisiae import at least one tRNA from 

the cytosol despite having a complete set of mitochondrial encoded tRNAs 203-205. Until 2008, it 

was assumed that tRNA import in human mitochondria did not occur. We now know that there 

are at least two tRNA (tRNAGly(CUG) and tRNAGly(UUG)) imported into human mitochondria 206. In 

this study, Rubio et.al., demonstrated that the two out of four nucleus-encoded 

tRNAGly isoacceptors can be imported from the cytoplasm into the mitochondria in vitro.  As a 

result, both the mitochondrial and nucleus-encoded tRNAGly(UUG) isoacceptors coexist in 

mammalian mitochondria. However, it is not clear why this redundancy occurs in nature. It is 

possible that this is an evolutionary burden or a prospective evolutionary maneuver directed 

towards losing analogous mitochondrial genes. Additionally, it may also be feasible that these 

redundant tRNA have a completely novel function other than aiding mitochondrial translation.  

 

It was not until 2007 that the function of nuclear encoded tRNALys(CUU) in yeast was 

elucidated using an elegant set of experiments 207. When grown at standard temperature of 

30°C, the tRNALys(UUU) has the potential to recognize two codons, AAA and AAG. Kamenski 

et.al., demonstrated that when the temperature is increased to 37°C, tRNALys(UUU)  fails to 

recognize AAG codon due to inadequate modification of its first anticodon. Under this condition, 

the imported tRNALys(CUU) is able to read the AAG codon thus compensating the translation 

insufficiency at elevated temperatures. Likewise there can be numerous other possibilities for 

the apparent redundancy of tRNAs imported into the mitochondria including that some are non-

selectively imported. 
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e. miRNAs  

 

Recently, there are a number of reports that miRNAs are imported into the mitochondria 208,209. 

These ‘mitomiRs’ play a significant role in mitochondrial homeostasis by responding dynamically 

to the changes in the cellular milieu. While majority of the cytosolic microRNA are known to alter 

the level of a protein expression via translational repression or degradation of the target 

transcript and gene silencing, there are reports of posttranscriptional upregulation as well 210,211. 

mitomiRs are the newest addition to the growing list of imported RNAs. In 2012, Das et.al., 

demonstrated that a mitochondrial miRNA, miR-181c could repress mitochondrial translation 212. 

However, this repression led to an overall increase in the mitochondrial activities. In contrast, 

Zhang et.al., in 2014, reported that muscle mitochondria import miR-1 (mitomiR) that regulated 

mitochondrial translation of at least two mtDNA encoded proteins, ND1 and COX1 213. The 

mitochondrial function of miR-1 is opposite to that of its cytoplasmic function where it 

downregulates its two targets HDAC4 and ELL2 214. The mechanism of mitomiR import is 

currently not known but it is possible that it relies on PNPase, porin or some other protein for 

mitochondrial import 208.  

 

2.2.3 Mitochondrial RNA import mechanisms 

 

Due to its polyphyletic evolutionary origin, it is challenging to classify RNA import pathways but 

it can broadly fall into two different categories 179,180. These are ‘protein import dependent 

pathway’ and ‘protein import independent pathway’ (Figure 4). It is evident from tRNA import 

studies that this is a selective process based on the sequence motif or structure of tRNA being 

imported 180. In general RNA import is an active process and sensitive to protease treatment of 

the OMM 215. The requirement of ATP for RNA import however may have a few exceptions 216. 
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The ‘protein import dependent pathway’ requires an intact mitochondrial membrane 

potential. This pathway uses the TOM-TIM complex similar to protein import. tRNALys(CUU) in 

yeast uses this pathway for import into the mitochondria and involves cytosolic factors such as 

pre-MSK, mitochondrial lysyl-tRNA synthetase precursor (LysRS) and the enolase enzyme 

205,217. Aminoacylation of cytosolic LysRS is thought to induce a conformational change that 

drives the interaction of tRNALys(CUU) with pre-MSK. This complex is then targeted to the protein 

import machinery by enolase 218. The tRNA import pathway in yeast has been hypothesized to 

be conserved in mammals as yeast tRNALys derivatives can rescue a human tRNALys mutation 

219. 

 

Several studies have reported that aminoacyl-tRNA synthetases are involved in RNA 

import in plants. Porin or voltage dependent anion channel (VDAC) is critical for RNA import in 

plants in vitro 220. In trypanosomatids, cytosolic factors such as eEF1a or dedicated RNA Import 

Complex (RIC) have been reported to play a role in mitochondrial RNA import 216,221,222. 
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Figure 4. RNA import mechanisms. There are two proposed mechanisms of RNA import 

into the mitochondria, protein import dependent and protein import independent. 

Adapted from Wang et.al., Biochimica et Biophysica Acta, 2011. 
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2.2.3.1 PNPases and the mechanism of RNA trafficking 

 

The PNPase (~78 kDa, polyribonucleotide nucleotidyltransferase) is a highly conserved 

nucleus-encoded mitochondrial 3’-5’ exoribonuclease with distinct RNA-processing and RNA-

import activities 223. The PNPase protein has 4 major domains – N-term RNase PH1 and RNase 

PH2 domains that catalyze RNA degradation, alpha helical domain in between the two RNAse 

PH domains and C-term KH-S1 domain that binds to RNA 224. Crystal structure of the PNPase 

from Streptomyces antibioticus (Uniprot accession: Q53597 and PDB entry: 1E3H) and 

Escherichia coli (Uniprot accession: A7ZS61 and PDB entry: 3GCM) reveal that the 3 

monomers interact via its catalytic RNase PH domain forming a donut-shaped configuration 224. 

This creates a central RNA binding substrate that can guide it through the trimeric complex. 

How the PNPase distinguishes the RNA for either of the activities is not yet completely 

understood. However, it seems that the stem loop structure is a recognition substrate for the 

PNPase mediated RNA import into mitochondria.  

According to the reported crystal structures (PDB entries 1E3H and 3GCM), the neck 

region of the central channel of PNPase trimer has at least two critical arginine residues (R102 

and R103) contributed by each monomer 225,226. Both these residues are conserved in human 

and flies. Arginine is a positive amino acid and it appears to play an important role in grasping 

the single-stranded RNA targets. Mutation of the R102/R103 results in both decreased binding 

and cleavage efficiency of the target RNA which in this case was a 20-mer RNA. Interestingly, 

mutation in R106 residue affects the size of the neck and it loses its efficiency for cleaving 

smaller RNA molecules. These results suggest that charge and size of the channel are 

absolutely critical in identifying and capturing RNA substrates.  

The N-terminal of PNPase contains a “putative mitochondrial-targeting signal”. Although 

debated, there is convincing evidence that PNPase localizes to the IMM. shRNA mediated 
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knock down PNPase has been associated with morphological changes in the mitochondrial 

network from filamentous to fragmented, decreased membrane potential and reduced 

respiratory chain complex activities. These and other ultrastructure and functional data suggest 

PNPase plays an important role in the maintenance of mitochondrial homeostasis 227. Studies in 

liver specific conditional Pnpt1 knockout – HepKO liver cells, showed a significant reduction in 

mature mRNA transcripts and encoded proteins suggesting impaired mRNA processing 223. It 

was further shown that PNPase deficiency led to a decreased import of RNase P RNA, which is 

a component of RNase P mtRNA processing complex 223.   

2.3 Mitochondrial mRNA, tRNA and mitochondrial RNA processing  

Only the mitochondrial protein ND6 is transcribed from the L-strand. Twelve of the thirteen 

mRNAs are transcribed as a single polycistron from the H-strand. This polycistron is processed 

resulting in 8 monocistronic mRNAs and 2 bicistronic mRNA (ATP8/ATP6 and ND4L/ND4). 

As mentioned earlier, there are two forms of RNase P: one with a nuclear encoded RNA 

and the other that is RNA free and contains only proteins. This RNA free RNAse P complex 

consists of three subunits (i.e. mitochondrial RNAse P protein 1 (MRPP1), mitochondrial RNAse 

P protein 2 (MRPP2) and mitochondrial RNAse P protein 3 (MRPP3)) 196.  The RNAse P 

complex catalyzes cleavage at 5’ end of the tRNA 192. This has been studied extensively in 

bacteria and yeast. In humans, it has been suggested to act as a transcription factors in addition 

to being an endoribonuclease 228. The 3’ end of mitochondrial tRNA is cleaved by the nuclease 

ELAC2 229,230. Brzezniak et.al., demonstrated that human ELAC2 gene is necessary for 3’ end 

processing of several mitochondrial tRNAs coded by either of the mtDNA strands, including 

tRNAVal, tRNALys, tRNAArg, tRNAGly, tRNALeu(UUR) and tRNAGlu 230.  After the cleavage of the 
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polycistronic transcript, mtRNA poly-A polymerase (MTPAP) polyadenylates mitochondrial 

mRNAs. This process of adenylation can add up to ~50 poly-A at the 3’ end of the mt-mRNA.  

2.4 Mitochondrial translation 

In mammals, mtDNA codes for 13 critical protein subunits of OXPHOS. These polypeptides are 

translated in the mitochondrial matrix by the mitochondrial ribosomes and the endogenous 

mitochondrial translational machinery.  

 

The 55S mitochondrial ribosomes or mitoribosomes consist of two subunits 39S and 28S 

consisting of 16S rRNA and 12S rRNA respectively. Mitochondrial ribosomes are larger in size 

than their cytoplasmic (80S) or prokaryotic (70S) counterpart. However, since mitoribosomes 

have lower RNA content their sedimentation coefficient is relatively lower (55S) 231. The 16S and 

12S rRNA of the large and small ribosomal subunits is coded by the mtDNA. There are at least 

81 other proteins coded by the nuclear DNA that are required to assemble the mitochondrial 

ribosome. Interestingly, 5S rRNA typically found in cytosolic ribosomes have not been found to 

be associated with the mitochondrial ribosomes. It may be possible that the function of 5S rRNA 

in the mitoribosomes have been taken over by either of its two constitutive rRNAs. This 

hypothesis stems from the fact that a 23-bp region at the end of 16S rRNA displays a 68% 

sequence identity to a fragment of Bacillus subtilis 5S rRNA. A quantitative study of rRNA 

steady state levels in the rat liver estimated approximately 100 mitoribosomes per mitochondria 

232,233.   

 

Mitochondrial initiation factors mtIF1 and mtIF3 initiate mitochondrial translation. mtIF3 

dissociates the mitoribosomes leading to the assembly of an initiation complex. The small 
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subunit of the ribosomes binds to the mt-mRNA aligning the start codon at its P-site. A number 

of nuclear encoded proteins are involved in the peptide elongation such as mitochondrial 

elongation factor Tu (mtEFTu) and mitochondrial elongation factor G1 (mtEFG1). These two 

elongation factors are primarily responsible for tRNA binding to the ribosome and facilitating the 

addition of new amino acids for peptide elongation. Once the elongation complex encounters a 

stop codon (UAG or UAA), the translational termination release factor 1a (mtRF1a) induces the 

release of nascent peptide from the terminal tRNA.  

 

The 13 proteins coded by the mtDNA are incorporated into the IMM to function in a 

multisubunit OXPHOS complexes I though V. With the exception of complex II, all other 

complexes have one or more subunits that are endogenously translated in the mitochondrial 

matrix (Table 1). Since these mtDNA encoded proteins are extremely hydrophobic, it is 

hypothesized that they get incorporated into the IMM co-translationally. To support this 

hypothesis, Greber et.al., proposed a model where the 39S large subunit of porcine 

mitoribosomes are tethered to the IMM via MRPL45 that acts as an anchor 234. This structure-

based finding reinforces the results of Liu and Spremulli that almost 40-50% of the 

mitoribosomes are attached to the IMM 235. Thus, mitochondria have evolved a strategy to 

effectively translate and incorporate hydrophobic proteins within its matrix and IMM, 

respectively. 

2.5 Challenges associated with mitochondrial genome manipulation and gene therapy 

 

There are several challenges associated with manipulating mitochondrial genomes such as 

targeting multiple mitochondria genomes per cell, lack of effective technique to penetrate the 
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mitochondrial double membrane, no mtDNA recombination and overcoming selective pressure 

against mutant mtDNA that are deleterious to OXPHOS 104,236-238. Artificial transfection methods 

utilizing lipofection or other lipid-mediated vehicles have been limited to the delivery of alien 

nucleic acids to the cytoplasm via plasma membrane fusion. This has been successful largely 

because the lipid composition of plasma membrane is very well known. Unfortunately, even 

though mitochondrial lipid architecture is known to a certain extent, the lack of exact lipid 

composition of the outer and inner membrane has made mitochondrial transfection strategies 

ineffective. How the lipids get incorporated into the IMM and OMM is key to developing 

mitochondrial transfection methods. Compatible lipid composition between the target and the 

vehicle liposome carrying passenger nucleic acid will ensure their effective fusion and delivery 

of the cargo.  

 

Even after overcoming these biological and technical obstacles, there are other 

obstacles that make mitochondrial gene therapy a formidable task. First is the hydrophobicity of 

mitochondrial proteins. The mitochondrial DNA encoded proteins are membrane bound and are 

extremely hydrophobic. They need an optimal environment for proper folding and co-

translational insertion that may only be possible in the mitochondrial matrix. The relative 

hydrophilic property of nuclear encoded mitochondrial-targeted proteins enables its 

translocation through the TIM-TOM complex. Therefore, adding a hydrophilic component to the 

allotopically expressed protein could be sufficient to allow its translocation through the TIM-TOM 

complex. However, strategies of adding a hydrophilic tail such as that of EGFP to allotopically 

expressed mtDNA encoded proteins, ND4 and apocytochrome-b, has failed to overcome the 

issue of effective import into the mitochondria as studied in COS-7 and HeLa cell lines 152. 

Interestingly, the nuclear encoded ATP6 protein from Chlamydomonas reinhardtii was able to 

rescue the ATPase function in human cells harboring mtDNA NARP mutation 157. Unfortunately, 

in most of the cases it leads to toxicity. Even if the proteins are expressed by using tags or 
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fusion proteins that reduce the hydrophobicity of these engineered mitochondrial proteins, these 

may end up in aggregating in the cytosol. This leads to cytotoxicity and is a major challenge in 

the field of genetic expression of mitochondrial proteins 152. The third major obstacle is the 

endogenous mutant competition. Oca-Cossio and Moraes hypothesized that since the majority 

of the pathogenic mtDNA mutations are missense mutations, they can still be translated from 

the mitoribosomes creating a hurdle for effective mitochondrial gene therapy 152. Therefore, 

even if the allotopic expression strategies become feasible, the endogenous competition from 

the mutant protein could present an obstacle to genetic rescue.  
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3.0  “SMALL MITOCHONDRIAL-TARGETED RNAS MODULATE ENDOGENOUS 
MITOCHONDRIAL PROTEIN EXPRESSION IN VIVO” BY ATIF TOWHEED 

ET.AL., 2014 
 

3.1 Abstract 

Endogenous mitochondrial genes encode critical oxidative phosphorylation components and 

their mutation results in a set of disorders known collectively as mitochondrial 

encephalomyopathies. There is intensive interest in modulating mitochondrial function as 

organelle dysfunction has been associated with numerous disease states. Proteins encoded by 

the mitochondrial genome cannot be genetically manipulated by current techniques. Here we 

report the development of a mitochondrial-targeted RNA expression system (mtTRES) utilizing 

distinct non-coding leader sequences (NCLs) and enabling in vivo expression of small 

mitochondrial-targeted RNAs.  mtTRES expressing small chimeric antisense RNAs were used 

as translational inhibitors (TLIs) to target endogenous mitochondrial protein expression in vivo.  

By utilizing chimeric antisense RNA we successfully modulate expression of two 

mitochondrially-encoded proteins, ATP6 and COXII, and demonstrate the utility of this system in 

vivo and in human cells. This technique has important and obvious research and clinical 

implications.  
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3.2 Introduction 

Mutations in the mitochondrial genome cause a set of devastating disease conditions 

categorized as primary respiratory chain diseases, also known as mitochondrial 

encephalomyopathies (MEs) 2.  Mitochondrial gene therapy has been proposed as a treatment 

for ME, however, this approach remains controversial as there are limited preclinical data 

demonstrating efficacy and evidence suggesting this approach may have significant limitations 

153,156,158. 

 

Endogenously encoded mitochondrial proteins function within large well-characterized 

respiratory complexes that perform oxidative phosphorylation (OXPHOS).  The mitochondrial 

genome is known to harbor hundreds of pathogenic mutations, including ones affecting all of the 

tRNA genes and over 260 distinct coding mutations. The vast majority of protein-coding gene 

mutations associated with human mitochondrial disease are missense mutations, accounting for 

~ 225 of the pathogenic mitochondrial mutations (www.mitomap.org), implying that mutant 

protein is usually capable of being expressed in the disease state.  We previously discovered 

and characterized a Drosophila model of ME with an endogenous missense mutation in the 

ATP6 gene affecting the F1Fo-ATPsynthase (complex V) 110,239. Twenty-one distinct human 

missense mutations exist within the ATP6 gene, fourteen of which have been shown to cause 

human MEs including Familial Bilateral Striatal Necrosis (FBSN), Neuropathy, Ataxia, and 

Retinitis Pigmentosa (NARP), or Maternally Inherited Leigh’s Syndrome (MILS) 240-242. ATP6[1] 

mutant flies contain a missense mutation with high mutant heteroplasmy and exhibit phenotypes 

analogous to human symptoms including locomotor and progressive neural dysfunction, 

seizures, myodegeneration, and reduced longevity 239.  
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Competition with mutant protein for incorporation into mature respiratory complexes is 

likely a major obstacle to a viable mitochondrial gene therapy: a fact that has largely been 

ignored. This competition may explain the controversial allotopic expression results and remains 

a formidable obstacle to the treatment of MEs resulting from any endogenous mitochondrial 

missense mutation. A method to specifically reduce expression of mitochondrial-encoded genes 

is not known. 

 

Several RNAs are naturally imported into the mitochondria from the cytoplasm and 

detailed studies have provided critical insight into the import process and import substrates 

179,181,202. Although the exact mechanism of RNA import into mitochondria is unknown, several 

pathways have been suggested to mediate mitochondrial RNA import 223,243,244. We have 

identified a nuclear encoded mitochondrial 5S rRNA isoform and engineered a novel vector to 

express small RNAs in vivo. We developed a mitochondrial-targeted translational inhibition (TLI) 

approach using small chimeric RNAs to regulate endogenous mitochondrial protein expression. 

Here we demonstrate the efficacy of mitochondrial-targeted TLIs by targeting two distinct loci 

encoding essential proteins of two different OXPHOS complexes, one in vivo and the other in 

vitro. The ability to selectively modulate mitochondrial protein expression in animals represents 

an important technological advance with obvious research and clinical applications.  

3.3 Material and methods 

3.3.1 Engineering mtTRES and mtTRES-TLI constructs 

 

The mtTRES vector was created using the available pUAST-attB vector as a backbone 245. A 

StuI site was added by site directed mutagenesis 5’ to the attP integration site using Quick 
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Change Lightning (Invitrogen, USA).  The 5S rRNA RNAPIII promoter (AE013599.4) and 

termination (AE013599.4) sequences were PCR amplified from wild type Drosophila genomic 

DNA and directionally inserted using standard cloning methods and the HindIII-EcoRI and StuI-

KpnI cloning sites, respectively. For the mammalian mtTRES vector the human U6 promoter 

(NT_010194.17) was PCR amplified from pSilencer 2.1 (Invitrogen, USA), purified and inserted 

in place of the fly RNAP III promoter. The EcoRI-EagI cloning sites were used to insert NCLs.  

The 5S rRNAmt variant was identified as the most abundant mitochondrial isoform by clonal 

analyses (88%) from three independent cloning events and sequence analysis of 135 clones. 

The 5S rRNAmt was the major mitochondrial isoform in all three independent clonal populations 

(Supplementary material: Figure 22 and GenBank: CR33451).  The 5S rRNAmt sequence was 

synthesized with flanking EcoRI-EagI cloning sites (GeneWiz, South Plainfield NJ, USA). The 

MRP and RNAseP (RNP) oligonucleotides were annealed and directionally cloned into EcoRI-

EagI cloning sites using published sequences 215. TLI complementary sequences were 

synthesized as oligonucleotides, annealed and directionally cloned into EagI-KpnI cloning sites. 

TLI-5Smt::ATP6(a) is 25 bases long, whereas TLI-5Smt::ATP6(b) is 26 nucleotides in length and 

the complementary region is shifted 3 nucleotides 5’. All oligonucleotides were commercially 

synthesized by IDT (Coralville IA, USA). The final constructs were sequence verified (GeneWiz, 

South Plainfield NJ, USA). 

 

3.3.2 Drosophila transgenesis, longevity and locomotor assays 

 

mtTRES vectors allow site-directed PhiC31-mediated attP/B transgenesis. We used the 

VK00027 attP insertion site and flies bearing the VK27 attP chromosome are the control for all 

transgenic experiments. DNA injections were performed by Genetic Services (Cambridge MA, 
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USA) and successful transgenesis events were identified using whitemc+. Homozygous 

transgenic strains were tested.  Previously established methods were used to test longevity 246 

and locomotor assays 247,248.  

3.3.3 Western blotting and antisera production 

 

Standard methods were used for western blot analyses 249. Briefly, flies were carbon dioxide 

anesthetized and snap frozen in liquid nitrogen. Thoraces from 8 flies were dissected and 

homogenized in sample buffer (125 μl), heated at 95 °C for 5 min, loaded into the wells of an 

SDS-PAGE gel. Antisera was generated to fly ATP6 protein using purified 

HKEFKTLLGPSGHNGS peptide (hc17), immunized New Zealand rabbits and antigen affinity 

purification (NeoBioSci, Cambridge MA, USA).  Anti-ATP6 antibody recognition specificity of 

hc17 peptide was confirmed by Southern Blot and ELISA (by NeoBioSci, Cambridge MA, USA).  

Western blotting identifies a single ~25 kDa protein that enriches with mitochondria. Competitive 

ELISA (kit by Cell Biolabs Inc., USA) using fly lysates and increasing concentrations of hc17 

peptide was used to further validate the specificity of the anti-ATP6 antibody (Supplementary 

material, Figure 23). ATP6 antisera is used 1:2000.  Anti-COXII antibodies (Proteintech, 

Chicago IL, USA) and anti-SOD2 antibodies (LSBio, Seattle WA, USA) were used at 1:2500 and 

1:2000, respectively. Anti-ATP-alpha (a5-c antibody, Developmental Studies Hybridoma Bank, 

University of Iowa, USA) was used as a loading control. ATPalpha is a nuclear encoded plasma 

membrane protein (the catalytic subunit of the Na+/K+ ATPase). For HeLa cells, 1x 106 cells 

were electroporated and harvested after ~48-72 hr for western blot. GAPDH (1:3000) (Abcam, 

USA) was used as a loading control. Secondary detection was performed using anti-rabbit 

(1:4000) (Biorad, USA) and anti-mouse (1:10000) (Biorad, USA) HRP conjugated antibodies. 

For all Western blots sub-saturation images have been quantified.  In some cases, darker 

exposures of the quantified images are used in the figures. 
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3.3.4 RNA isolation and Quantitative RT–PCR 

 

RNA was extracted from 12 whole flies, using 250 μl Trizol (Invitrogen, San Diego, USA) and 

the RNeasy mini kit (Qiagen, Valencia, USA). RNA was eluted in 100 μl dH2O and quantified. 5 

μg RNA was used to perform a reverse transcription reaction (Superscript RT, Invitrogen). 

Quantitative Real-Time PCR [Mx3000P QPCR System, Stratagene] was performed using 

standard techniques with normalization to RP49 expression 250. Only DNA-free cDNA samples 

were used. In a total reaction of 25 μl, 12.5 μl 2X-SYBR Green Supermix (Qiagen, Valencia, 

USA), 2 μl of cDNA and 400 nM each of forward and reverse primers (ATP6, COXII) were used. 

Fold change (FC) was determined using the equation, FC=2-Δ(ΔCt). All QPCR experiments were 

performed with four biological replicates and the data were normalized to mRNA expression 

levels of RP49.  

3.3.5 Isolation of mitochondria from HeLa cells  

 

Mitochondria were isolated using standard differential centrifugation procedure. In short, 24 

million cells were trypsinized and homogenized by Dounce homogenizer. Nuclear fraction was 

pelleted at 1000g for 15 min. The supernatant was then centrifuged at 10000g for 15min. The 

pellet contained the enriched mitochondria.   

3.3.6 In vitro transcription and radiolabeling 

 

Primers were designed to amplify 5Smt and TLI-5Smt::COXII sequences from previously 

engineered mtTRES-5Smt and mtTRES-5Smt-TLI::COXII plasmids. T7+5s_For 

(TAATACGACTCACTATAGGGGCCAACGACCATACCACGCTGAATAC) and 5s_Rev 
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(AGGCCAACAACACGCGGT GTTC) primers were used for 5S DNA amplification. For TLI-

5Smt::COXII, T7+5s_For and COX2_Rev(TCCAAAAAATCTTAATGGCACATGC 

AGC) primers were used. Using Thermo Scientific TranscriptAid T7 High Yield 

Transcription Kit and [α-32P] adenosine 5’-triphosphate (MP Biomedicals) in vitro transcription 

was performed, as per the manufacturer’s instructions. Unincorporated [α-32P] ATP was 

removed using NucAway™ Spin Columns (Ambion Inc. Austin, Texas). Specific activities of 

radiolabeled RNA products were quantified by LS6500 Multi-Purpose Scintillation Counter 

(Beckman Coulter) and equal amounts used in the mitochondrial import assay. 

 

3.3.7 Mitochondrial RNA import assay  

 

Mitochondrial RNA import assay was modified from 215,251,252. In short, mitochondrial pellets were 

suspended with RNA probes in the import buffer (200 μl final volume) containing 0.25M sucrose, 

2 mM KH2PO4, 50 mM KCl, 10 mM MgCl2, 2.5 mM EDTA, 5 mM L-methionine, 1 mg/ml BSA, 5 

mM ATP, 2 mM DTT, 20 mM succinate, 50 mM HEPES, [pH 7.1]. The mixture was incubated 

for 20-30 minutes at room temperature. Mitochondria were spun at 11000g for 5 min and 

washed once with wash buffer (0.6 M sorbitol, 20 mM Tris, [pH 8.0]). To remove RNA that was 

not imported in the mitochondria, the pellet was spun again and resuspended in 200 μl nuclease 

buffer containing 25 μg/ml of micrococcal nuclease (New England Biolabs Inc.) and incubated 

for 30 min at 27ºC. Mitochondria were collected, solubilized in SDS buffer at 65ºC for 5 min, 

RNA was purified using TRIzol® reagent (Life Technologies) and resolved by denaturing 

polyacrylamide urea gel (National Diagnostics). Autoradiography was performed using phosphor 

imager and gel was scanned using Image Quant software. 
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3.4 Results 

3.4.1 Generation of mtTRES for TLI in vivo  

 

The metazoan mitochondrial genome contains 37 genes that are critical for electron transport 

chain function. These include 13 protein-coding genes and RNAs to facilitate their expression: 

22 tRNAs and 2 rRNAs (12S and 16S) 35,195. All other proteins and RNAs functioning within the 

mitochondrion are imported from the cytoplasm.  It has previously been described that 5S 

rRNAs are expressed from large nuclear gene arrays (~100-200 genes) and that 5S rRNAs can 

readily be found within mitochondria from flies to humans 198,199,252-256.  Although these gene 

arrays encode many 5S rRNA isoforms, we identified a single common mitochondrial 5S rRNA 

variant (5S rRNAmt) representing the majority of 5S rRNAs within Drosophila mitochondria.  To 

enable studies in vivo, we developed the mtTRES (mitochondrial Targeted RNA Expression 

System) vector using 5S rRNAmt as a non-coding leader sequence (NCL) and employing RNAP 

III promoter and termination elements (Figure 5).  The RNAPIII promoter was selected due to 

its ability to direct transcription of rRNAs, tRNAs and other small non-coding RNAs 257.  

 

We asked whether we might utilize this mitochondrial RNA targeting system to modulate 

expression of endogenous mitochondrial genes in vivo.  To test this we generated transgenic 

mtTRES animals capable of expressing chimeric RNAs consisting of an NCL and a sequence 

complementary to a mitochondrial mRNA, specifically targeting the known translational start site 

(Figure 5B, C). Translational inhibition/repression has been demonstrated to be functional 

within the cytosol by antagonizing small ribosomal subunit docking and lowering translational 

efficiency but has never been demonstrated in mitochondria 258. 
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Figure 5. Design of the mtTRES attB transgenesis vector. (A) Restriction enzyme map of 

the mtTRES-attB vector. (B) Cartoon describing the linear 5’ to 3’ order of required 

components for allotopic RNA expression: RNAP III specific initiation and termination 

(orange and brown, respectively), non-coding leader sequence (NCL) RNA (blue) and the 

antisense RNA (TLI) (green). The subsequent RNA transcribed will be a chimeric NCL-TLI 

RNA. (C) Cartoon demonstrating the proposed mechanism of translational inhibition. The 

complementary sequence competes with the small subunit of the ribosome for binding 

thus inhibiting docking to the target RNA at the start codon (AUG). 
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3.4.2 mtTRES ATP6 TLIs phenocopy ATP6[1] longevity and locomotor dysfunction  

 

Numerous ATP6 missense mutations are associated with human disease and our detailed 

understanding of ATP6[1] mutant phenotypes prompted us to initially ask whether we could 

functionally knock down ATP6 expression in vivo. We utilized mtTRES to generate two 

independent transgenic ATP6 TLIs designated as TLI-5Smt::ATP6(a) and TLI-5Smt::ATP6(b). 

Lifespan assays were performed to test whether TLI-5Smt::ATP6 TLIs affect the longevity of 

flies.  We observed a significant decrease in the longevity of flies expressing TLI-5Smt::ATP6(a) 

or TLI-5Smt::ATP6(b) compared to wild type control flies (Figure 6A). These data demonstrate 

that mtTRES TLIs targeting ATP6 reduce longevity consistent with a loss of ATP6 function in 

vivo. 

 

TLI-5Smt::ATP6(a) and TLI-5Smt::ATP6(b) flies were tested for conditional locomotor 

function in response to sensory hyperstimulation (bang sensitivity), a progressive seizure-

related phenotype resulting from loss of ATP6 function in vivo 110.  Young TLI-5Smt::ATP6(a) and 

TLI-5Smt::ATP6(b) animals (day 5) were aphenotypic; however, aged animals (day 50) exhibited 

conditional locomotor impairment compared to wild type control animals (Figure 6B). Strikingly, 

both TLI-5Smt::ATP6 transgenic strains phenocopy the conditional locomotor dysfunction 

observed in ATP6[1], including the progressive nature of this mitochondrial seizure-related 

phenotype.  Importantly, ATP6[1] is of extremely high mutant heteroplasmy (98%) and results in 

severe locomotor and longevity phenotypes, whereas, TLI-5Smt::ATP6 results in a ~50% 

knockdown and the observed phenotypes are qualitatively similar but less severe, as would be 

expected. 
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Figure 6. Translational inhibitors exhibit reduced longevity, mechanical stress sensitivity 

and lower steady state protein expression in vivo. (A) TLI-5Smt::ATP6(a) (red)  has a 24% 

reduction in survival as compared to the wild-type animals (black) (n=95, p<0.0001). TLI-

5Smt::ATP6(b) (red)  displays a 15% reduction in survival as compared to wild-type 

animals (in black) (n=83, p<0.0001). (B) TLI-5Smt::ATP6(a) animals exhibit a progressive 

increase in mechanical stress sensitivity (day 5 and day 50 shown).  (C) TLI-

NCL::ATP6(a) fly extracts were probed with anti-ATP6 antibody to examine steady state 

protein levels. The expression levels were normalized to ATPalpha, the plasma 

membrane Na/K ATPase catalytic subunit (upper panel). (D) Quantitation of western blots 

show 50% decrease in TLI-MRP::ATP6(a), 34% decrease in TLI-5Smt::ATP6(a) and 40% 
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decrease in TLI-RNP::ATP6(a). Unpaired t-test was used as statistical test; *p<0.01, 

**p<0.001, ***=p< 0.0001; mean  ± SEM, n=3-4. 

 

3.4.3 Mitochondrial TLIs modulate protein levels  

 

To more directly test the ability of mtTRES TLI’s to modulate protein expression we performed 

western blotting with TLI-5Smt::ATP6(a) transgenic fly lysates. Western blotting demonstrated a 

34% reduction in ATP6 levels compared to lysates from wild type control animal (Figure 6C, D).  

These data demonstrate the mtTRES TLI approach is capable of endogenous mitochondrial 

protein modulation in vivo.  

 

3.4.4 mtTRES TLI using distinct NCLs in vivo 

 

Previously two small RNAs, MRP and RNP, were shown to be actively imported into 

mammalian mitochondria in vitro 223, suggesting their utility as NCLs.  We generated two 

additional transgenesis vectors for in vivo animal studies, mtTRESMRP and mtTRESRNP.  As an 

additional test of the functionality of the mtTRES system we generated TLI-MRP::ATP6 and TLI-

RNP::ATP6 that express chimeric RNAs targeting ATP6 mRNAs for TLI using mtTRESMRP and 

mtTRESRNP, respectively. ATP6 protein levels were examined in TLI-MRP::ATP6 and TLI-

RNP::ATP6 animal extracts and were shown to be significantly reduced similar to TLI-

5Smt::ATP6 (Figure 6C, D).  Together these data demonstrate the ability to reduce steady state 

ATP6 protein levels using several independent constructs in vivo. Importantly these experiments 

utilize three distinct NCL sequences, including two discovered in mammals 183,193,259. 
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3.4.5 mtTRES TLIs modulate expression independent of RNA stability 

 

mtTRES TLIs are designed to function by antagonizing translation and reducing steady state 

protein levels by an RNA-stability independent mechanism.  To test whether these chimeric 

mitochondrial targeted RNAs are modulating protein levels by regulating RNA stability, we 

performed qRT-PCR analyses on total RNA from TLI-5Smt::ATP6(a), TLI-5Smt::ATP6(b), and 

wild type control animals to determine whether RNA levels of the targeted gene were altered.  

No changes in ATP6 RNA levels were observed (Figure 7A, B).  We also examined whether 

TLI-5Smt::ATP6(a) or TLI-5Smt::ATP6(b) altered the RNA levels of another mitochondrial 

expressed gene, COXII, and found no significant changes in COXII transcript levels with either 

of the TLIs (Figure 7C, D).  Together these data are consistent with a translational 

inhibition/repression mechanism of action that is independent of alterations in RNA stability. 

 

3.4.6 Mitochondrial TLIs specifically knockdown target proteins 

 

The chimeric RNAs in the present study are predicted to knockdown mitochondrial protein 

expression levels by specifically inhibiting the docking of the small subunit of mitoribosomes on 

target mRNA akin to the cytosolic mechanism of action 258. To test the specificity of TLI-

NCL::ATP6 chimeric RNAs, we examined COXII protein levels by western blot (Figure 8). TLI-

NCL::ATP6 chimeric RNAs were able to modulate ATP6 protein levels, however, COXII protein 

was not altered (Figure 8A, B). These data suggest that TLI-NCL::ATP6 chimeric RNAs do not 

globally alter translation and modulate target mitochondrial gene expression specifically.   
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Figure 7. TLIs function by an RNA stability independent mechanism. Fold change in 

transcript levels determined by qRT-PCR. Fold change mRNA expression of ATP6 (red) 

and COXII (green) is shown relative to wild type controls (black). (A and C) TLI-

5Smt::ATP6(a).  (B and D) TLI-5Smt::ATP6(b). All transcript levels were normalized to RP49 

expression.  One-way ANOVA was performed to test significance; n.s. is p > 0.05; mean  

± SEM, n=9 (3 biological and 3 technical repeats of each sample).  
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Figure 8.  Translational inhibitors knockdown target protein specifically. (A) TLI-

NCL::ATP6(a) fly extracts were probed with anti-COXII antibody to examine steady state 

protein levels. The expression levels were normalized to ATPα (upper panel). (B) 

Quantitation of western blots showing no significant change in the COXII expression 

levels in NCL::ATP6(a). One-way ANOVA with multiple comparisons was used to test 

significance; n.s. is p > 0.05; mean  ± SEM, n=3. 
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3.4.7 Mitochondrial TLIs in vitro, import assay and scrambled control 

 

We developed a mammalian version of the mtTRES vector to examine efficacy of mtTRES-TLI 

constructs in human cells. We created a series of TLI-NCL::COXII constructs designed to target 

human COXII mRNAs.  All of the TLI-NCL::COXII constructs significantly decreased COXII 

protein levels (Figure 9). These data demonstrate the ability of mtTRES TLI constructs to 

modulate protein levels in human cells using multiple NCL targeting signals, although the TLI-

5Smt::COXII reliably gave the most significant knockdown.   

 

 

Figure 9. Translational inhibitors decrease steady state protein levels in HeLa cells. (A) 

HeLa cells were transfected with mtTRES plasmids expressing TLIs directed to human 

mitochondrial COXII RNAs. The cells were harvested at ~48-72 hrs and analyzed by 

western blot. (B) Quantification of steady-state COXII shown relative to the control 

plasmid (black) in cells transfected with mammalian mtTRES plasmids TLI-MRP::COXII, 

TLI-RNP::COXII and TLI-5Smt::COXII revealed reduced expression of 22%, 30% and 55%, 
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respectively. GAPDH was the loading control. One-way ANOVA with multiple 

comparisons was performed to test significance; * is p < 0.03, ** is p < 0.0005; **** is p < 

0.0001; mean  ± SEM, n=3. 

 

 

 

For chimeric TLI RNAs to regulate expression of endogenous mitochondrial proteins via 

translational repression they must be efficiently imported into mitochondria.  We directly 

examined mitochondrial import of 5Smt rRNA and chimeric TLI-5Smt::COXII RNAs using an 

established import assay (Figure 10). RNA import was dependent on mitochondrial membrane 

potential as evidenced by a lack of import when mitochondria were treated with FCCP (Carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone) prior to adding the RNA probes.  These data 

demonstrate robust import of the 5Smt rRNA used as an NCL and the chimeric TLI-5Smt::COXII 

RNAs. 

 

To further test the specificity of the mitochondrial TLI we generated a vector with a 

scrambled COXII complementary sequence (TLI-5Smt::scCOXII) and repeated our analysis with 

this additional control.  Western blot data shows that TLI-5Smt::COXII reduced COXII protein, as 

it had previously, however, TLI-5Smt::sc-COXII (scrambled) does not alter the target protein 

(Figure 11). Together these data demonstrate the utility of mtTRES-TLI constructs in human 

cells.  
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Figure 10. In vitro import of radiolabeled RNA into mitochondria.  [α-32P] labeled 5Smt 

RNA and TLI-5Smt::COXII RNA were transcribed in vitro and incubated with equal 

amounts of mitochondria isolated from HeLa cells in presence or absence of FCCP (+ or -

). The pellet was treated with nuclease to digest non-imported RNAs and SDS treatment 

was performed to produce mitoplasts.  Extracted RNAs were resolved using urea 

polyacrylamide gels and analyzed using Image quant (Storm 860 Molecular Imager). The 

experiment was repeated 3 times with a representative image shown. 
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Figure 11. TLI with scrambled complementary sequence do not alter COXII protein level. 

TLI-5Smt::COXII reduced COXII protein expression in transfected HeLa cells, as 

previously. TLI-5Smt::scCOXII with an intact 5Smt NCL but a scrambled complementary 

sequence did not alter COXII protein levels.  Quantitation of western blots showing no 

significant change in the expression levels of COXII in HeLa cells. One-way ANOVA with 

multiple comparisons was used to test significance; n.s. is p > 0.05, *** is p < 0.0004; 

mean ± SEM, n=3-6.  

  64 



3.5 Conclusions/discussion 

Mitochondrial dysfunction has been associated with the pathogenesis of numerous significant 

disease conditions 32,260-263. The study of ME has been severely hampered by a limited number 

of animal models, especially those affecting endogenous mitochondrial genes 239. Researchers 

have developed innovative methods to alter heteroplasmy using mitochondrial-targeted 

restriction enzymes and reported manipulating mitochondrial DNA 264 or general effects on 

mitochondrial translation via RNA import strategies 166,215,219,265-267, however, the ability to directly 

manipulate the expression of mitochondrial-encoded proteins has remained elusive and has 

obvious basic and clinical applications. The identification of NCL sequences that direct RNAs to 

mitochondria enables a TLI approach using chimeric RNAs with a complementary element.  The 

development of the mtTRES expression system enables expression of these chimeric RNAs in 

vivo. mtTRES utilizes RNAPIII promoter and termination elements such that NCLs and chimeric 

RNAs containing NCLs resemble natural substrates for RNA import.   The demonstration that 

the mtTRES system is functional in vivo now enables the manipulation of mitochondrial genome 

expression, which opens up numerous avenues of investigation and is of immense value to the 

mitochondrial research and clinical communities. 

 

These data demonstrate the general applicability of the approach by targeting two loci 

encoding proteins for which antibodies were available to verify functionality. TLI-NCL::ATP6 

RNAs achieved ~ 40-50% reduction in steady state protein levels in vivo. In human cells TLI-

NCL::COXII achieved 20-50 % reduction in protein levels, dependent upon the NCL employed.  

Differences in reduction between the various NCLs and TLIs could be due to sequence 

selective effects or differences in the stability of chimeric RNA secondary structures affecting 

import or availability of the complementary RNA sequence for targeting.  
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Although these data demonstrate general applicability, there is notable constraint in the 

design of TLIs that has the potential to restrict its application. There are data suggesting 

antisense targeting for translational repression, at least in the cytosol, must be directed to the 

start codon to be effective, restricting construct design options.  RNAP III is known to terminate 

within stretches of poly T, potentially restricting the use for some genes in some organisms 

where a poly A exists proximal to the start codon.  Lastly, our data demonstrate differing levels 

of functionality within the NCL. Although we cannot fully explain these differences at this time, 

such sequence selectivity could reflect the fact that within the chimeric RNA the NCL must be 

recognized and the complementary sequence must still be accessible in its native structure.  

Certain NCL- complementary sequence combinations will form stable secondary structures that 

abrogate one of these functions in a manner that may not be fully predictable.  Since the 5Smt 

NCL is larger and more highly structured with a lower delta G, it is predicted that this NCL will 

be more reliable but additional studies will be needed to fully test this prediction.  

 

Mitochondrial-targeted TLIs were designed to function by antagonizing ribosome docking 

and lowering translational efficiency.  Antisense RNAs are commonly employed to reduce 

expression of nuclear genes through a well-understood RNA interference mechanism that leads 

to target RNA degradation.  We investigated this possibility by examining RNA levels of ATP6 

and COXII and the data demonstrate normal RNA levels in vivo, arguing against an RNA-

destabilizing mechanism of action. To demonstrate that the 5Smt RNA and TLI-5Smt::COXII 

chimeric RNA are being imported into the mitochondria with similar efficiency we performed a 

direct in vitro RNA import assay. Earlier studies have suggested that RNA import is dependent 

on mitochondrial membrane potential. We observed that the RNA import into the mitochondria 

was almost negligible in presence of FCCP, which uncouples and depolarizes mitochondria.  
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The data presented here demonstrate the utility and general applicability of the mtTRES 

system as well as the ability to engineer TLI chimeric RNAs to modulate endogenous 

mitochondrial gene expression.  The capability to modulate mitochondrial gene expression will 

enable detailed studies of mitochondrial function and organelle dysfunction in vivo. Efforts to 

develop a mitochondrial gene therapy face a formidable challenge of competing with 

endogenous mutant protein expression.  The mtTRES TLI system described here has the 

potential to accelerate the realization of an effective gene therapy for mitochondrial diseases.  
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4.0  PROTEIN CODING MITOCHONDRIAL-TARGETED RNA RESCUE 
MITOCHONDRIAL DISEASE MODEL IN VIVO 

 

4.1 Abstract 

 

Mitochondrial encephalomyopathies (MEs) are a set of disorders resulting from mutations in 

genes encoded by the mtDNA that are critical for OXPHOS. Mutations affecting the 13 

endogenous mitochondrial encoded protein-coding genes result in devastating and incurable 

ME. Currently, we do not have an effective technique to manipulate mitochondrial genome or 

mitochondrial protein expression, limiting gene therapy options.  Here, we report the 

development of a system of vectors capable of expressing proteins in the mitochondria 

mitochondrial-targeted RNA expression (mtTRESPro).  We have evaluated the translatability of 

nuclear transcribed and mitochondrial-targeted mtTRESPro RNAs coding EGFP in vivo. 

Additionally we tested the potential of mtTRESPro constructs encoding wild type ATP6 to rescue 

a previously characterized ATP6[1] Drosophila model of ME.  In order to reduce expression of 

the endogenous mutant protein, genetic rescue is tested with or without expression of TLI-

NCL::ATP6 RNAs that function as translational inhibitors. The data demonstrate that when 

combined with a method to prevent competition for incorporation of the mutant subunit into the 

complex, mtTRESPro-rATP6 is sufficient to rescue a severe and established animal model of 

ME. These data demonstrate the importance of competition for the development of a gene 

therapy and suggest that the mitochondrial-targeted protein coding RNAs may be expressing 

functional proteins within mitochondria.  
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4.2 Introduction 

Abnormal mitochondrial function has been implicated in several disease including 

neurodegenerative diseases, autoimmune disorders and cancer 2,32.  A number of respiratory 

diseases known as mitochondrial encephalomyopathies (ME) are caused by mutations in 

mitochondrial DNA (mtDNA). MEs are challenging to treat due to their progressive nature, 

variability and complexity in clinical symptoms 2. At present, efficacious clinical treatments for 

these fatal disorders do not exist. Allotopic protein expression utilizing mitochondrial-targeted 

proteins have shown promise in recent years as potential gene therapies. However, the efficacy 

of this method is controversial and clinical data are not currently available 152,153.  One of the 

challenges that the current allotopic expression approaches face is an inherent issue of 

competition by endogenous mutant proteins. Mitochondrial oxidative phosphorylation complexes 

are assembled from numerous protein subunits encoded by mtDNA as well as the nuclear 

genome.  Thus, allotopically expressed mitochondrial proteins will typically need to compete 

with mutant protein to assemble into a functional complex, a complication that has not yet been 

addressed. 

 

As mentioned in the previous chapter, we devised a method to mitigate competition by 

modulation of mitochondrial-encoded proteins using small chimeric RNAs that function as 

translational inhibitors (TLI) 268. These small chimeric RNAs have a mitochondrial targeting 

sequence attached to a complementary region of the target mitochondrial mRNA. This 

antisense or complementary region hybridizes with the target mRNA and obstructs 

mitochondrial translational initiation of the target mRNA knocking down protein levels. We have 

also shown that this works in a gene specific and RNA degradation independent manner.  
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We have reengineered these vectors to express mitochondrial-targeted protein coding 

RNAs. In the present study, we demonstrate the effectiveness of these protein-coding 

constructs when concomitantly expressed with TLI-NCL::ATP6 to rescue a previously 

established ATP6[1] Drosophila ME model. This strategy of suppressing endogenous mutant 

protein expression supplemented with wild-type copy of the target protein has an obvious 

therapeutic application. 

4.3 Materials and methods 

4.3.1 Engineering mtTRESPro vector, constructs 

 

The mtTRES Pro expression vector was engineered from the previously described mtTRES 

vector 268. Sequences 5’ to known mitochondrial translational start codons were aligned but no 

sequence similarity were observed in the 13 mt-mRNA transcripts. We therefore chose the 5’ 

ATP6 sequence as it is a bicistronic mRNA and named them as Translational initiation elements 

(TIEs). Three independent open reading frames (ORFs) each for ATP6, EGFP, and rATP6 were 

cloned as TIE::ORF fusion products using EagI-KpnI cloning sites to generate mtTRESPro 

vectors.  All ORFs were optimized for mitochondrial translation. Stretches of poly-T in the ORF 

were recoded to prevent premature RNAPIII termination. Early cytosolic stop codons, which 

encode tryptophan (TGA) in mitochondria, were introduced at position 58 in EGFP and position 

20 in ATP6/rATP6. ORFs were commercially synthesized by Genewiz and sequence verified 

after introduction into mtTRESPro (South Plainfield NJ, USA). To ensure that mtTRESPro-rATP6 

was resistant to translation inhibition numerous nucleotide changes were engineered. A primer 

dimer PCR-based strategy was used to engineer EagI-AvrII DNA fragment bearing these 

changes from synthesized oligolucleotides with complementing 3’ ends. Primers were 
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commercially synthesized by IDT (Coralville IA, USA). It was then and utilized in a template-free 

PCR reaction with 15-20 cycles of amplification at a 50ºC annealing temperature. The primer 

dimer DNA fragment was then purified and directionally cloned into mtTRESPro-ATP6 using a 

unique AvrII site within the ATP6 coding region using standard techniques. Five myc tags (3 

epitope repeats) were engineered at the N-terminus, C-terminus, and positions 83, 133, and 

179 of ATP6 gene. These genes were commercially synthesized by Genewiz (South Plainfield 

NJ, USA). All constructs were sequence verified by Genewiz (South Plainfield NJ, USA).  

 

4.3.2 Fluorescence analysis of mtTRESPro-EGFP 

 

Drosophila heads were removed, probosci dissected and fixed with Carnoy’s fixative, as 

previously described 269. Samples were paraffin processed, sectioned (5 um) and imaged using 

confocal microscopy.  Fluorescence quantification of the neuropil region was performed using 

ImageJ software (NIH, Bethesda MD, USA). 

 

4.3.3 Drosophila transgenesis, locomotor function, and longevity assays  

 

The PhiC31-mediated attB site in the mtTRESPro vector allowed for site-directed transgenesis.  

We utilized the attP18 insertion site for the ATP6, rATP6, EGFP, and myc-tagged rATP6 

constructs on the first chromosome. mtTRES-TLI::ATP6 constructs were used as previously 

described and utilized the VK00027 attP (VK27) insertion site on chromosome 3. Control flies 

contained attP18 and/or VK27 attP chromosomes, as needed. Standard methods were used to 

assay longevity and locomotor function 269. 
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4.3.4 Western blotting 

 

Western blots were performed with 8 adult thoraces homogenized in 125ul of sample buffer. In 

cases where concentrated mitochondria were required, western blots were performed on crude 

preps of mitochondria from 40 adult thoraces using the previously described protocol 268. 

Mitochondrial pellet was suspended in a mixture of detergent and sample buffer.  All samples 

were heated at 95° C for 5 minutes and resolved using either a 12%, 16% or 18% SDS-PAGE.  

Gradient gels (4-20%) (Life Technologies, New York) were also employed in some cases. Anti-

myc antibody (Developmental Studies Hybridoma Bank, University of Iowa, USA) was tested at 

different concentrations- 1:800, 1:1000, 1:2000, 1:4000 and fly ATP6 antisera is used at 1:2500 

(NeoBioSci, Cambridge MA, USA).  Anti-COXII (Proteintech, Chicago IL, USA) was used as a 

loading control and is used at 1:2500.  Anti-SOD2 (LifeSpan BioSciences, Inc., Seattle WA, 

USA) was used as a loading control at 1:2500.  Secondary detection was performed using anti-

rabbit and anti-mouse (Biorad, USA) HRP conjugated antibodies (1:4000).  Standard methods 

were used for the analysis of the Western blots 249,268. 

4.4 Results 

4.4.1 Developing mtTRES-protein coding vectors from the mtTRES backbone 

 

We previously developed a series of mtTRES (mitochondrial targeted RNA expression system) 

vectors that transcribe small chimeric mitochondrial-targeted RNAs in mammalian cells and in 

vivo 268. These mtTRES vectors express antisense RNAs that act as translational inhibitors 

(TLIs) specifically decreasing the expression of endogenously encoded mitochondrial proteins. 

Utilizing the mtTRES system as a backbone we designed a novel series of vectors, mtTRES-
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protein coding (mtTRESPro) vectors, to express mitochondrial-targeted protein coding RNAs. 

Since this was aimed at translation, we included a translation initiation sequence into mtTRESPro 

utilizing the sequence 5’ of ATP6 translation initiation (Figure 12A,B). To test the import and 

translatability of the RNAs encoded by mtTRESPro vectors in vivo, we generated a series 

mtTRESPro-EGFP vectors using distinct non-coding leader sequences (NCLs). These vectors 

target the RNAs containing the coding region of the enhanced green fluorescent protein (EGFP) 

to mitochondria (Figure 12). To ensure that EGFP does not get translated in the cytoplasm, we 

recoded the tryptophan at position 58 of the EGFP gene as a TGA codon. The mitochondrial 

translation system recognizes the UGA codon as a tryptophan whereas for the cytosolic 

translation machinery, UGA is a signal for termination.  Therefore full-length fluorescent protein 

should only be efficiently translated within mitochondria and not in the cytosolic compartment.  

Brain slices from transgenic mtTRESPro-NCL::EGFP flies exhibit fluorescence which is above 

background, indicating significant expression of EGFP in vivo (Figure 12C,D). Two independent 

transgenic strains utilizing either the MRP or RNP NCL resulted in significant and similar 

fluorescence expression, demonstrating translatability of mtTRESPro -NCL::EGFP RNAs in vivo 

(Figure 12C,D).   We additionally, engineered a series of mammalian mtTRESPro-NCL::EGFP 

vectors that utilize a well established human U6 RNAPIII polymerase promoter sequence. 

Transfection of HeLa cells with mtTRESPro-NCL::EGFP resulted in significant mitochondrial 

fluorescence that co-localized with Mitotracker® (Figure 12E).  
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Figure 12. Translation of mitochondrial imported mtTRESPro-EGFP RNAs.  (A & B) Design 

of mtTRESPro-attB vector showing location of RNAPIII initiation (orange), RNAPIII 
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termination (brown), non-coding leader sequence (NCL) (blue), translation initiation 

element (red) and protein coding region (green).  Full-length protein will only be 

translated within mitochondria (green Mito. protein), whereas, cytoplasmic translation 

will be truncated and non-functional (grey Cyto. protein). (C) Imaging neuropil region of 

the brain to detect EGFP fluorescence. (D) Quantification of EGFP fluorescence 

intensities of brain slices (n > 85 for all genotypes).  (E) HeLa cells transfected with 

mtTRESPro-MRP::EGFP plasmid and imaged by confocal microscopy (10X mag). 

Mitotracker® Red and DAPI were used as mitochondrial and nuclear markers 

respectively. 

 

 

4.4.2 Is mtTRESPro-NCL::ATP6 capable of rescuing ATP6[1] ? 

 

ATP6[1] is a well-established animal model of mitochondrial encephalomyopathy with an 

endogenous mitochondrial loss-of-function mutation 110. We asked whether mtTRESPro-

NCL::ATP6 could rescue the mitochondrial mutation disease in the animal model ATP6[1] flies 

by expressing wild-type ATP6 mRNA targeted to the mitochondria.  Three independent 

transgenic animal strains (mtTRESPro-NCL::ATP6) utilizing different known NCLs, MRP, RNP 

and 5Smt were tested. As previously described with the mtTRESPro-NCL::EGFP constructs, the 

ATP6 coding region was optimized for mitochondrial expression and contained a cytosolic stop 

codon at position 20.  This was again engineered to ensure that ATP6 protein was expressed 

only from mitochondrial imported RNAs within the mitochondria and not in the cytosolic 

compartment.  As an initial test of function ATP6[1],mtTRESPro-NCL::ATP6 transgenic animals 

were examined for longevity, a well-characterized phenotype associated with the ATP6[1] 

mutation. All three characterized NCLs (MRP, RNP and 5Smt) were used. ATP6[1],mtTRESPro-
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NCL::ATP6 transgenic animals did not significantly increase median age relative to 

ATP6[1],attp18 control flies (Figure 13). Overall this experiment with the mtTRESPro-NCL::ATP6 

strains demonstrated that the constructs were unable to rescue the ATP6[1] longevity 

phenotype.  

 

 

 

 

Figure 13. Allotopic RNA expression of mitochondrial–targeted ATP6 coding RNAs. 

Survival curves for ATP6[1] attp18/attp18 (black), ATP6[1];MRP-ATP6/MRP-ATP6 (blue), 

ATP6[1];RNP-ATP6/RNP-ATP6 (green) and ATP6[1];5Smt-ATP6/5Smt-ATP6 (red) (n > 150 

for each genotype). Bars represent ±SEM. 

 

 

4.4.3 Endogenous protein competition is a formidable challenge to genetic rescue 

 

Our data with mtTRESPro-NCL::ATP6 transgenic animals were disappointing, especially since 

we observed translatability of mitochondrial imported RNAs by mtTRESPro-NCL::EGFP RNAs 
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that are almost identical in size (Figure 12). We performed western blotting with ATP6 antisera 

asking a simple question about the endogenous ATP6 protein steady state levels in the mutant 

ATP6[1] flies.  This experiment revealed that ATP6 protein levels were not altered in mutant 

ATP6[1] flies as compared to the wild type control animals (Figure 14). These data clearly 

demonstrate that the missense mutation in the mitochondrial encoded ATP6 gene, ATP6[1], 

does not significantly alter the steady state protein levels. This suggests that the mutant protein, 

even though non-functional and defective in dimerization is being translated and has 

comparable stability as wild-type protein. The mutant ATP6 protein may well be incorporated 

into the mature ~300kDa complex V. Thus, competition with the endogenous mutant protein for 

incorporation into the mature functional complex V presents an obstacle to achieving genetic 

rescue.   

 

 

 

 

 

 

 

 

 

 

Figure 14. Competition with endogenous ATP6 protein expression.  (A) Immunoblotting 

of fly lysates to measure ATP6 protein levels. Mitochondrial localized SOD2 protein used 

as a loading control. (B) ATP6 protein levels expressed relative to wild-type control flies 

(black) and ATP6[1] (red). N is greater or = to three. Bars represent ±SEM. One-way 

ANOVA.  
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4.4.4 Genetic rescue of ATP6[1] with allotopic RNA expression 

 

Previously we have shown that mtTRES expressed chimeric RNAs are capable of decreasing 

protein expression in vivo via translational inhibition 268. To directly test the hypothesis that our 

inability to rescue ATP6[1] flies with mtTRESPro-NCL::ATP6 was at least in part due to the effect 

of mutant protein competition, we engineered a series of vectors expressing wild-type ATP6 

mRNA but resistant to TLI (mtTRESPro-NCL::rATP6). Silent changes were made to the target 

site of NCL-TLI::ATP6 RNA complementary region to ensure the rATP6 construct is resistant to 

the TLI  (Figure 15). Using three independent NCLs, we generated mtTRESPro-NCL::rATP6 

transgenic animals, co-expressed each with TLI-RNP::ATP6 and examined their ability to 

rescue the ATP6[1]  longevity phenotype.  With concomitant expression of TLI-RNP::ATP6 

RNAs all mtTRESPro-NCL::rATP6 constructs were able to significantly rescue the longevity 

phenotype of ATP6[1] control animals (Figure 16A). Additionally, the locomotor function was 

significantly rescued in these same genotypes and all combinations of mtTRESPro-NCL::rATP6 

and TLI-RNP::ATP6 (Figure 16B). These data demonstrate a functional genetic rescue with 

three completely independent mtTRESPro-NCL::rATP6 transgenes utilizing distinct NCL 

elements. 

 

 We have previously shown that TLIs with all three different NCLs are capable of 

knocking down ATP6 protein expression in vivo 268.  Therefore, we examined the efficacy of all 

three mtTRESPro-NCL::rATP6 transgenes in combination with TLI-MRP::ATP6 expression to test 

their ability to rescue the ATP6[1]  longevity phenotype.  Consistent with the previous results 

each of the mtTRESPro-NCL::rATP6 transgenes, when expressed with TLI-MRP::ATP6, were 

able to significantly improve longevity over ATP6[1] controls (Figure 17A).  We further 

examined locomotor phenotypes in all genotypes, and these combinations demonstrated a 

reduced mean recovery time. The mtTRESPro-MRP::rATP6; MRP-TLI::ATP6 and mtTRESPro-
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RNP::rATP6; MRP-TLI::ATP6 combinations showed significant improvement over the ATP6[1] 

control animals (Figure 17B).  Taken together these data show that allotopic RNA expression of 

mitochondrial-targeted coding RNAs using mtTRESPro are capable of genetic rescue with 

concomitant expression of mitochondrial-targeted TLI RNAs.  

 

 

 

 

Figure 15. Mitochondrial translation initiation elements. The endogenous ATP6 locus 

near the start of translation is shown with encoded protein below (red). mtTRESPro-ATP6 

sequence is shown. mtTRESPro-rATP6 (TLI resistant) sequence is shown. Blue indicates 

changes from the endogenous locus designed to confer TLI resistance.  Underlined is a 

silent change to avoid RNAPIII polymerase termination. Consensus translational 

initiation is from an analysis of nucleotides immediately 5 prime to the translation 

initiation of the 13 protein coding mitochondrial genes. 
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Figure 16. Allotopic RNA expression mitochondrial–targeted ATP6 coding RNAs with 

RNP::TLI. (A) Survival curve for flies ATP6[1];attp18/attp18;;VK27/+ (black, A), 

ATP6[1];MRP-rATP6/MRP-rATP6;;RNP-TLI::ATP6 (blue, B), ATP6[1];RNP-rATP6/RNP-

rATP6;;RNP-TLI::ATP6 (green, C) and ATP6[1];5Smt-rATP6/5Smt-rATP6;;RNP-TLI::ATP6 

(red, D), Log-rank (Mantel-Cox) test was done for statistical significance, bars represent 

±SEM, n > 150 each genotype. (B) Mechanical stress sensitivity assay showing time to 

recovery for flies A, B, C and D (n>20, bars denote ±SEM, One-way ANOVA). 
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 Figure 17. Allotopic RNA expression mitochondrial–targeted ATP6 coding RNAs with 

MRP::TLI.  (A) Survival curve for flies ATP6[1];attp18/attp18;;VK27/+ (black, A), 

ATP6[1];MRP-rATP6/MRP-rATP6;;MRP-TLI::ATP6 (blue, B), ATP6[1];RNP-rATP6/RNP-

rATP6;;MRP-TLI::ATP6 (green, C) and ATP6[1];5Smt-rATP6/5Smt-rATP6;;MRP-TLI::ATP6 

(red, D) (Log-rank (Mantel-Cox) test was done for significance, bars represent ±SEM, n > 

150 each genotype), bars represent ±SEM. (B) Mechanical stress sensitivity assay 

showing time to recovery for flies A, B, C and D (n>20 , bars denote ±SEM, One-way 

ANOVA). 
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4.4.5 Allotopic RNA expression constructs alter ATP6 protein expression  

 

Only when the allotopically expressed rATP6 (wild-type) constructs are co-expressed with the 

TLIs to specifically knock down endogenous mutant protein expression, we observe a significant 

genetic rescue. Hence, endogenous expression of mutant ATP6 protein is a barrier to genetic 

rescue.  We performed western blot using ATP6 antisera as a biochemical test of our ability to 

genetically manipulate the ATP6 protein levels. mtTRESPro-MRP::rATP6 constructs do not 

significantly change ATP6 levels in vivo (Figure 18, lane 2). However, as anticipated, flies 

expressing TLI-MRP::ATP6 RNAs knock down endogenous mutant ATP6 levels (Figure 18, 

lane 3). When we simultaneously expressed mtTRESPro-MRP::rATP6 and TLI-MRP::ATP6 total 

ATP6 protein levels are significantly increased (Figure 18, compare lanes 1 and 4). These 

data demonstrate that the allotopic RNA expression constructs have the ability to genetically 

alter ATP6 protein expression levels in vivo. This further corroborates the conclusion that 

diminishing endogenous mutant protein expression is crucial for an efficacious genetic rescue 

expressing wild-type protein.  
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Figure 18. Allotopic RNA expression constructs alter ATP6 protein. (A) Western blot 

showing steady state level of ATP6 proteins in flies. ATP6[1] (lane 1), ATP6[1];MRP-

rATP6/MRP-rATP6 (lane 2), ATP6[1];TLI-MRP::ATP6 (lane 3) and ATP6[1];MRP-

rATP6/MRP-rATP;TLI-MRP::ATP6 (lane 4). Mitochondrial protein COXII was used as a 

loading control. (B) Quantification of western blot data for ATP6 protein levels was 

normalized to the loading control.  One-way ANOVA, n=3, ±S.E.M. 

 

4.4.6 Can the import of allotopically-expressed rATP6 biochemically demonstrated?  

 

We identified five different locations on the ATP6 protein to engineer a myc-tag as an 

independent confirmation that allotopic mtTRESPro-MRP::rATP6 derived protein is being 

expressed. We engineered a series of mtTRESPro -MRP::rATP6MYC transgenic animals with 5 

distinct tagged sites; two at the termini (N-term and C-term) and three internal sites (positions 

83, 133 and 179) (Figure 19A).  On performing initial tests of functionality to determine which 
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epitope tag locations abrogated functional rescue of ATP6[1] we found that mtTRESPro-

MRP::rATP6MYC with N-term myc tag completely abrogated functional rescue of ATP6[1].  On 

the other hand, the C-term myc retained the ability to functionally rescue the ATP6[1] phenotype 

(Figure 19B). Similarly mtTRESPro-MRP::rATP6MYC with internal tagging sites were examined. 

The internal myc-tagged constructs retained some functionality and partially rescued the 

ATP6[1] longevity phenotype. Myc-tagged construct with myc tag at position 179 demonstrated 

the best phenotypic rescue (Figure 19C).   

 

We then asked whether we could detect myc-tagged rATP6 proteins by western blot 

using anti-myc antibodies. Unfortunately, we could not detect any myc signal at the anticipated 

molecular weight (~29 kDa) by western blot. Attempts to detect a double band at approximately 

~29 kDa using anti-ATP6 antisera also did yield any bands at the desired location. We also 

tested several different myc-antibodies and used a positive control to confirm the specificity of 

the antibody. This yielded negative results as well. Since ATP6 is an extremely hydrophobic 

protein, we pursued additional experiments by optimizing western blot conditions for 

hydrophobic proteins. This too failed to reveal a band of interest. Taken together these data 

suggest the protein level even though capable of rescuing phenotypes, may not be translated at 

such high levels so as to be detected by conventional western blotting techniques. It may also 

be possible that the allotopically-expressed protein may have a very short half-life. Inefficient 

import and short half-life thus would not reach a sufficient enough steady state level to be 

detected by western blot.  
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Figure 19. Myc-tagged allotopically expressed rATP6 rescues mutant phenotype.  (A) 

Illustration of myc-tagged constructs. Untagged mtTRESPro-MRP::rATP6 (no color). N-

term mtTRESPro-MRP::rATP6MYC (red), C-term mtTRESPro-MRP::rATP6MYC (green), 83 

position- mtTRESPro-MRP::rATP6MYC (blue), 133 position- mtTRESPro-MRP::rATP6MYC 

(violet), 179 position- mtTRESPro-MRP::rATP6MYC (magenta). (B) Survival curves for 

external myc-tagged flies. Untagged mutant control ATP6[1], attp18;;VK27/+ (black), 
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mtTRESPro-MRP::rATP6 control (orange), N-term mtTRESPro-MRP::rATP6MYC (red) and C-

term mtTRESPro-MRP::rATP6MYC (green). (C) Survival curves for myc-tagged (internal) 

flies. Untagged mutant control ATP6[1], attp18;;VK27/+ (black), mtTRESPro-MRP::rATP6 

control (orange), 83 position- mtTRESPro-MRP::rATP6MYC (blue), 133 position-mtTRESPro-

MRP::rATP6MYC (violet), 179 position- mtTRESPro-MRP::rATP6MYC (magenta). (B and C). 

Log-rank (Mantel-Cox) test was done for significance, bars represent ±SEM, n > 150 each 

genotype.  

 

 

4.4.7 Amplification of chimeric RNA reveals polyadenylation 

 

To further confirm that the chimeric transcript is being transcribed, total RNA was isolated from 

transfected HeLa cells and cDNA prepared using reverse transcriptase, using either poly-T 

oligos or gene specific primers for EGFP. Using nested primers and standard 35-cycle PCR 

amplification we found that the cDNA isolated using both the methods (poly-T or gene specific 

primer) yielded amplified products of the exact size of the chimeric EGFP transcript (Figure 20). 

This suggests that the chimeric EGFP is being actively transcribed in the transfected cells. 

Importantly, amplification of cDNA using poly-T oligos suggests that they are being 

polyadenylated. Since the mtTRESPro constructs do not contain a cytosolic polyadenylation 

signal, it is plausible that these chimeric transcripts get polyadenylated in the mitochondria after 

being imported.  
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Figure 20. PCR amplification of chimeric EGFP transcript using two different methods of 

cDNA preparation – first, using poly-T oligos and second, using gene specific primers 
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4.5 Discussion 

Allotopic protein expression gene therapies have been tested by a number of laboratories with 

different degrees of efficacy 152,153.  Noted throughout the literature are issues with competition 

of imported allotopic protein and endogenous protein for incorporation into OXPHOS complexes 

and hydrophobicity.  Import of proteins with three or more transmembrane spanning regions has 

proved to be difficult 270. ATP6 exemplifies both of these issues of allotopic protein expression 

because of its hydrophobicity (due to 5 transmembrane spanning regions) and competition 

through its incorporation into F1Fo-ATP synthase (Complex V). 

 

In order to resolve these issues, we designed constructs to import translatable RNAs 

using RNA allotopic strategy along with simultaneous repression of endogenous mutant 

proteins.  How the RNA is imported into the mitochondria is not very well understood and is an 

active area of research. Mitochondria are known to import different types of RNAs. It could be 

possible that there are different mechanisms for their import in different species. A well-studied 

RNA import mechanism involves the PNPase dependent and TOM dependent pathways 215.  

 

In our present report, we demonstrate that long RNAs can be imported and translated 

utilizing already known mitochondrial RNA targeting sequences as NCLs (MRP, RNP and 5Smt). 

Our EGFP data suggests that translation of mtTRESPro-coded transcript is occurring after being 

imported into the mitochondria. The signal is mitochondrial because we engineered an early 

stop codon in EGFP both in vivo and in vitro in mammalian cells. The controls used in these 

reporter assays were constructs that did not have EGFP sequence. However, a more 

appropriate control to test the EGFP import and mitochondrial expression would be an EGFP 

construct without NCL sequence. This construct will have EGFP but will not be imported into the 

mitochondria due to the lack of import sequence (NCL).  
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We were able to utilize this system to optimize tagging sites within ATP6 gene that 

would not disrupt the protein’s functionality.  The two external and three internal sites were 

tested.  The internal sites were chosen based on the partial crystal structure of ATP6 118.  

Previously, tagging of ATP6 has been restricted to end tags (HA tag) only when ATP6 is being 

translated in the cytoplasm 152. Internal tagging of ATP6 has never been reported, which also 

makes this a novel report. We show that the external (except N-term) and internal sites are 

capable of functionally rescuing the ATP6[1] mutant phenotype.  Not only do these data 

reiterate that our RNA is both imported into the mitochondria and translatable, but also opens 

the field to a number of new optimal tagging sites for future study. 

 

Although some modest rescue of ATP6[1] was observed with the rescue constructs, a 

more robust rescue was seen when the rATP6 was combined with TLI.  Again, this points to the 

challenge of competition from mutant protein for incorporation into the OXPHOS complexes. 

This is a significant finding if allotopic gene therapies need to be considered as clinical 

therapeutic options in future. The mutant protein is being produced so that methods of 

endogenous protein repression can be employed to knockdown this competition. Future studies 

are needed to optimize translation of the rescue constructs as well as to optimize the TLI 

repression system.  
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5.0  DISCUSSION AND FUTURE WORK 

5.1 Mitochondrial disorders and associated challenges 

Mutations in mtDNA lead to primary mitochondrial disorders. Due to the complexity of 

mitochondrial inheritance, variability of symptoms and lack of distinct clinical biomarkers, 

mitochondrial disorders are difficult to diagnose and even more challenging to treat. 

Unfortunately, there is no known cure for mitochondrial disorders. Further, the lack of relevant 

mitochondrial disease model organisms have impeded the development and testing of novel 

therapeutic strategies for mitochondrial disorders.  

 

Factors such as diversity of symptoms, external modulators and tissue specificity make it 

difficult to study pathogenesis of mitochondrial disorders.  The same mitochondrial mutation in 

different individuals may result in diverse symptoms, many times manifesting at variable stages 

of life. While some symptoms appear quite early, some appear around 10-12 years of age, and 

others much later in life. For example, patients with MELAS or MERRF may remain symptom 

free until they reach their thirties 56. This late appearance of symptoms is particularly challenging 

because delayed onset of symptoms around or beyond the reproductive age may result in 

transmission of mtDNA mutations to the next generation. Hence, individuals with a family history 

of mtDNA disorders need to undergo genetic screening and counseling early in life. 

 
 

External modulators seem to have an impact on the manifestation of mitochondrial 

diseases symptoms. It is well known that the level of mutant mtDNA affects the severity of 
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mitochondrial disease. As illustrated by NARP and MILS (Maternally Inherited Leigh Syndrome), 

caused by a single pathogenic point mutation T8993G in ATPase 6, an individual may remain 

symptoms free or be affected when mutant heteroplasmy exceeds a threshold 28,30,31. Other 

factors such as mitochondrial haplogroups, environmental factors and nuclear modifiers are also 

known to affect the severity of mitochondrial disease. Certain mutations occur at a higher 

prevalence in certain haplogroups such as ND4 G11778A and ND6 T14484C in haplogroup J. 

Specific symptoms associate with mutations and background haplotype as in the case of ND1 

G3460A in haplogroup K demonstrating enhanced risk of vision loss 271. Some reports have 

suggested that haplotypes determine the quantity of mtDNA in a cell. Others indicate that levels 

of estrogen can contribute to the occurrence of mitochondrial disorders. This explains why 

mitochondrial disorders predominantly affect males because they have relatively lower estrogen 

levels as compared to females 272,273. It is possible that mtDNA number and levels of estrogen 

affect the OXPHOS capacity and the rate of ATP production resulting in variable compensatory 

effects.  However, the exact role of genetic background and external modulators remain less 

well understood and is an active area of research.  

 

Tissue specificity is a hallmark of mitochondrial disorders. Tissues within the 

neuromuscular systems are generally more affected than other tissues in the body. One 

hypothesis is that very high-energy requirements of these tissues amplify the dysfunction. 

However, there are several unanswered questions of tissue selectivity in mitochondrial 

disorders. Previous studies have found preferential occurrence of mutations in specific tissues 

such as the brain. In an experiment using in situ hybridization, Tanji et. al., showed that mtDNA 

deletion responsible for KSS abundantly accumulates in the choroid plexus of the brain 274. The 

same group also found that 8344-MERFF mutation resulting in COXII depletion concentrated in 

olivary nucleus of the cerebellum 275. In another report, Betts et.al., found the 3243-MELAS 

mutation localizing in the cerebral artery 276. These classical studies indicate preferential tissue 
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accumulation of mtDNA mutations. It is also interesting to note that certain tRNA mutations are 

associated with specific diseases. Mutations in tRNAIle, tRNAGlu and tRNALys genes are 

oftentimes connected with cardiomyopathy, diabetes and multiple lipomas respectively 32. 

However, neither the mechanism of tissue selectivity nor their correlation with symptoms is 

clearly understood.  

 

To sum up, the complexities of transmission, variations in symptoms, external 

modulators influencing severity of the disease such as genetic background, age and tissue type 

all seem to contribute a great deal in the pathogenicity of mitochondrial disease. As a result, the 

exact pathogenesis of mitochondrial disorders remains practically unknown. Despite such 

diversity, some key pathways tend to be universally affected such as ROS and ATP generation, 

calcium homeostasis, mPTP regulation, mitochondrial biogenesis and mitochondrial import. This 

opens up avenues for therapeutic strategies targeted at these common pathways.  

 

5.2 Mitochondrial therapies and alternative strategies 
 

In the past several years, many research groups have worked to develop therapies for 

mitochondrial disorders, most of them being targeted to nuclear genes. The development of 

mitochondrial gene therapy has been impeded by mitochondrial heteroplasmy, polyploidy of the 

mitochondrial genome, lack of mitochondrial transfection techniques and absence of amenable 

models for mitochondrial disorders.  Various strategies have been suggested to rescue 

mitochondrial dysfunction such as mtDNA manipulation 166,265,266,277, RNA import 223, enzyme 

targeting 264, carrier mediated nucleic acid delivery (RIC complexes) 267 and protein targeting 

152,153,157.  
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With the discovery of mitochondrial import components, it was an obvious scientific 

endeavor to target wild type proteins to rescue the defects caused due to mutation in protein 

coding regions of the mtDNA. Such an approach, known as allotopic expression, has had mixed 

outcomes both in cases of protein and RNA import strategies. Allotopic expression strategies 

have the potential as a therapeutic approach to overcome the challenges of mitochondrial 

mutations. 

 

Protein import pathways are better understood than RNA import and its key players have 

been well characterized. Researchers have attempted to target wild-type proteins into the 

mitochondria using protein allotopic strategies. The gene of interest can be artificially coded by 

the nucleus, translated in the cytoplasm and then imported into the mitochondria. Since the 

mitochondria uses different set of codons, this approach requires recoding of the transcript to 

enable its cytosolic translation. In addition, these also carry a mitochondrial targeting sequence 

(MTS). Depending on the type of the MTS employed (discussed in Chapter 2), it acts as a “zip-

code” that targets the proteins into specific mitochondrial compartments. A tag such as HA- or 

FLAG-tag can be used to detect whether the targeted protein localizes to mitochondria.  

 

RNA allotopic expression strategies are an alternative approach to protein allotopic 

strategy. Several nuclear encoded RNAs are imported into the mitochondria such as RNase 

MRP, RNase P, 5S rRNA, tRNAs and miRNAs (discussed in Chapter 2). Several of these 

mitochondrial imported RNAs contain unique structural components or “stem-loop” structures 

that are believed to be critical for import. It is known at least in the case of PNPase-dependent 

import that stem loop structures in the imported RNAs are critical for their recognition and import 

into mitochondria. However, not all RNAs are thought to be recognized and imported by the 

PNPase-dependent pathway. Are there other proteins that work in an analogous manner to 

import RNAs into mitochondria? Can RNA be imported without any help from proteins? 
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Unfortunately, these pathways are largely unknown and their identification will open up avenues 

for allotopic gene therapy strategies.  

 

The studies discussed earlier clearly exemplify the efforts aimed at developing gene 

therapies for mtDNA disorders. However, with only a few exceptions, almost all mitochondrial 

rescue strategies including allotopic protein expression have resulted in modest or no rescue of 

symptoms 152,153,270. More importantly, none of these studies have evaluated allotopic 

expression approaches in an in vivo model of mitochondrial disease mutation. Irrespective of 

the techniques used, mitochondrial gene therapy faces several major obstacles in the form of 

overcoming hydrophobic toxicity and translocation barriers across the mitochondrial 

membranes, aggregation and competition from endogenous mutant proteins. Due to the 

presence of endogenous mutant protein, even if a wild-type copy of the mutant protein 

effectively reaches mitochondria, it may not get properly incorporated into a functional complex. 

 

5.3 Development of TLI and its application  
 

The first aim of my thesis was to use an in vivo approach to develop effective chimeric 

antisense approach- TLIs (translational inhibitors) that specifically knock down mitochondrial 

target proteins.  

 

Several nuclear encoded factors play a role in regulating mitochondrial translation 278. 

Manipulating any of the essential players could hypothetically have an impact on mitochondrial 

translation. In fact, research groups have used RNAi mechanism to knockdown mitochondrial 

translation elongation or initiation factors such as Initiation Factor 3 (IF3) and Elongation Factor 

Tu (EF-Tu) to inhibit mitochondrial translation 279. There are a few chemicals that are commonly 

used to inhibit mitochondrial translation i.e., chloramphenicol, oxazolidinones (e.g., linezolid), 
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doxycyclin and recently reported tigecycline 279. These drugs appear to interact with the large or 

small subunit of the mitochondrial ribosome. However, these methods cause a generic inhibition 

of the mitochondrial translational machinery blocking all 13 mitochondrial-encoded proteins. In 

other words, these approaches lack targeting specificity. 

 

We developed a targeted translation inhibition approach using a novel series of mtTRES 

vectors. This vector is designed to integrate with the nuclear genome and transcribe a chimeric 

RNA that is targeted to the mitochondria. This chimeric RNA has a sequence, which we termed 

as non-coding leader (NCL) sequences consisting of a structured element. The NCL functions 

as a mitochondrial import determinant. We used three previously characterized NCLs (MRP, 

RNP and 5Smt) to direct the localization of a small non-coding antisense RNA (TLI) into the 

mitochondria. The TLIs are designed to hybridize to its target mRNA complementary sequence 

surrounding the start codon. Once hybridized, it is proposed to inhibit the docking of the small 

subunit of mitoribosomes and inhibit translation of that specific mRNA. Our results demonstrate 

that the TLIs work in a specific and sequence dependent manner. This specificity is unique as 

opposed to other generic translation inhibitors mentioned earlier. The TLI can be expressed 

concurrently with either the allotopic expression (RNA or protein) strategy or other techniques 

(for introducing wild-type copy of the mitochondrial gene) thus making it a widely applicable tool. 

 

5.4 RNA allotopic expression and rescue 
 

The second aim of my thesis was to combine TLIs against ATP6 transcript with mitochondrial 

targeted full length mRNA coding wild-type ATP6, and test them for their ability to rescue mutant 

ATP6.  
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To achieve this goal, we modified the mtTRES-NCL::TLI vector initially used to target 

small non-coding RNAs into mitochondria. We termed this new set of vectors as mtTRESPro. 

We modified and introduced several elements into this new vector in order to make its 

transcripts importable and translatable in mitochondria. We introduced open reading frames 

(ORF) after the RNAPIII promoter sequences. This ORF contains translational initiation 

elements (TIE) followed by the protein coding sequence. The mtTRESPro-NCL uses the same 

RNAPIII termination signal previously used in the mtTRES-NCL::TLI vectors.  

 

During the engineering process, we realized that a reporter assay would tremendously 

benefit our endeavor to effectively import and translate using the mtTRESPro-NCL. Hence, we 

engineered another set of mtTRESPro-NCL::EGFP vectors specific for flies and mammalian 

cells. As an internal control, we introduced stop codons in both the mammalian and fly versions 

of the mtTRESPro. We exploited a difference in the mitochondria codon usage as compared to 

the cytosol. The TGA codon is read as a stop codon when a transcript is being translated in the 

cytoplasm. However, mitochondrial translation machinery recognizes TGA as a tryptophan and 

continues with the translation. Thus, we ensured that the allotopically expressed chimeric 

transcript is translated to a full-length protein only in mitochondria but not in the cytoplasm.  

 

Using first generation mtTRESPro-NCL::ATP6 constructs, we targeted longer protein-

coding RNA transcripts into mitochondria in an attempt to rescue a fly mitochondrial mutant 

ATP6[1]. Our initial data demonstrated lack of phenotypic rescue when assayed for longevity. 

This was surprising because both the transgenic flies and mammalian cells demonstrated 

EGFP fluorescent intensities above background as compared to the control. Although having 

very low intensity EGFP signal, these images suggested that the mtTRESPro-NCL::EGFP was 

transcribing a chimeric transcript that was being imported and translated in the mitochondria. 

However, western blot on both the transgenic EGFP fly and transfected mammalian cell 
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expressing using various anti-EGFP antibodies did not show band at the expected size (~27 

kDa).  

 

The choice of cell type could affect the outcome of transfection experiments. We 

previously used PC3 cell for reported assays. After repeated attempts of inefficient 

transfections, we switched to HeLa cells. HeLa cells are immortal cell line that relies primarily 

on glycolysis. The relative inactivity of mitochondria in HeLa cells could be one the factors for 

the poor efficiency observed in the reporter assay. Another factor is the efficiency of 

transfection. Since the reporter assay displayed EGFP expression in a few cells sporadically, it 

may be due to the fact that a certain copy number of the plasmid is required show EGFP 

fluorescence from the imported transcript but too many copies may lead to toxicity. Since there 

are multiple mitochondria in a single cell, it is possible that a specific number of chimeric 

transcripts are required to optimally translate EGFP. Too many molecules or too few molecules 

of the chimeric transcript may lead to toxicity or inefficient signal of the reporter. A study in 

2001 by Puranam and Attardi calculated the presence of ~33-175 RNase P molecules per 

HeLa cell 193. Even if there are ~20 transcriptionally active mitochondria per cell, it might end up 

having ~5 molecules (assuming ~100 RNase P/cell) of RNase P per mitochondrion. Is this 

sufficient for the fluorophore signal that we are trying to detect? This aspect of the reporter 

assay has presented a limitation because even though we are able to observe a select few 

cells with EGFP intensities higher than the background by confocal imaging, several attempts 

to detect it on the western blot have resulted in repeated failures.  
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5.5 Using allotopic RNA and TLI in combination 
 

Mutations in the mtDNA (point mutations) protein-coding region can lead to a decrease in the 

protein level. An affected family discussed in this study demonstrated a typical variability in 

symptoms as observed in primary mitochondrial disorders 280. The mutation was found in the 

start codon of the gene encoding COXII. As a result of “near-homoplasmic level” of the 

mutation, translation of COXII was significantly decreased in cells affected with the mutation. 

Interestingly, cells with this mutation were found to also have 2.3 fold decreased mRNA level of 

COXII as compared to the control.  

 

We found that the mutant ATP6[1] flies expressed ATP6 protein levels at the same 

steady state level as the wild type flies. In a study Bokori-Brown et.al., found that an allotopically 

expressed wild-type copy of the mitochondrial protein was not being integrated into a functional 

complex 158. Could it be possible that the endogenous mutant protein that was stably expressed 

is competing with the allotopically expressed wild-type copy of the protein?  

 

Based on this novel finding of the steady state level of mutant ATP6 protein, we 

hypothesized that we could combine the TLI against ATP6 mRNA with concomitant expression 

of mtTRESPro-NCL::ATP6. As we demonstrated earlier, TLIs are capable of altering the levels of 

a specific target mitochondrial encoded protein; it would significantly reduce this endogenous 

competition. Therefore, we combined the strategies of specifically knocking down competition 

endogenous ATP6 subunit using NCL-TLI::ATP6 and co-expressing wild-type of the ATP6 gene 

via mtTRESPro-NCL::ATP6. This ultimately paves the way for the exogenously targeted wild-type 

copy of the gene to be successfully integrated into a functional complex.  
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To ensure that the NCL-TLI::ATP6 would not inhibit the allotopically expressed wild-type 

copy of ATP6 mRNA we recoded the wild-type ATP6 mRNA sequence and changed 11 

nucleotides to make it resistant to the NCL-TLI::ATP6. Interestingly, the initial sequence of 

endogenous ATP6 also harbors a “tetra-T” sequence that is a signal for RNAPIII termination. To 

eliminate the risk of early termination, we replaced this last ‘T’ keeping the amino acid 

conserved as coded by the endogenous codon.  The vector coding this new TLI resistant ATP6 

transcript was now termed as mtTRESPro-NCL::rATP6, where ‘r’ stands for resistant to TLI. 

 

Transgenic flies created using these novel constructs simultaneously expressing NCL-

TLI::ATP6 and wild-type rATP6 were evaluated for phenotypic rescue. Our results suggest that 

this strategy was able to partially but significantly rescue mutant ATP6 fly phenotypes. Both 

longevity and mechanical stress sensitivity demonstrated modest improvements as compared to 

the ATP6[1] control flies suggesting that the allotopic RNA expression strategy is working 

although inefficiently. Another interesting control could involve expressing mutant ATP6[1] 

chimeric RNA in mutant ATP6[1] flies. Mutant ATP6[1] chimeric RNA should not affect the 

phenotype of ATP6[1] flies.   

 

Interestingly, the steady state level of ATP6 protein was found to be elevated in flies 

expressing both the NCL-TLI::ATP6 and wild-type rATP6 transgenes.  To further quantitate this 

increase of ATP6 level, we needed to differentiate the allotopically expressed rATP6 protein 

from the endogenously mitochondrial expressed ATP6 subunit. Since the customized anti-ATP6 

antisera that we use for western blots is unable to differentiate between mutant and wild-type 

ATP6 we engineered another set of constructs with mtTRESPro-NCL::rATP6-myc tag 

sequences.  
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Incomplete knowledge of ATP6 structure and lack of previous tagging information for 

ATP6 protein made it challenging to identify suitable tagging sites. We therefore, chose five 

sites based on the partial crystal structure of ATP6 subunit and its five predicted 

transmembrane (TM) domains. The sites were selected such that the triple myc-tags lay 

between the two adjacent TM domains or at the termini. However, this hypothesis was entirely 

based on a theoretical assumption that these tags would not interfere with protein assembly or 

function. When the chimeric rATP6::myc transcript is translated, it is possible that the tags 

obstruct the natural folding and integration of the ATP6 protein into the IMM. If this happens, it 

will stimulate a faster degradation and removal of the translated product due to mitochondrial 

unfolded protein response (UPRmt).  Recent studies of the UPRmt suggest that normal 

functioning of mitochondria is monitored in terms of mitochondrial protein import efficiency 281. 

The cell then responds to the abnormal mitochondrial function by transcriptionally regulating 

UPRmt. It is possible that as a consequence of aggregation of unfolded proteins in the 

mitochondrial matrix, the mitochondrial protein-synthesis rates are adapted and mitochondrial 

autophagy gets activated to eliminate the defective mitochondrion.  

 

All mtTRESPro-NCL::rATP6-myc constructs should express a protein of the expected ~ 

29 kDa size. Contrary to our expectations, repeated attempts to detect the myc-tagged rATP6 

protein failed. There could be several reasons why the myc-tagged ATP6 protein was unable to 

be detected by western blot. Western blot is a technique that has a sensitivity of detection at the 

lowest range of 10 pg. For the rATP6-myc (~29 kDa) protein, this translates to ~ 0.000344 

pmole or roughly 180,000,000 molecules. It appears that the NCL-mtTRESPro::rATP6-myc 

constructs are capable of delivering the chimeric and translatable RNA coding sequences 

sufficient for a phenotypic rescue but not enough to be detected by western blotting. In a report 

in 2002, Manfredi et.al., suggested that only a small number of “corrected functional complexes” 

would be sufficient to rescue a mutant mitochondrial phenotype 156.  
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Even if using crude mitochondrial preps could possibly concentrate such high numbers 

(~180,000,000 molecules) of our target protein molecules for western blot detection, there could 

be several other factors that might affect the detection of rATP6-myc.  Overwhelming the RNA 

import pathway resulting in limited import, lack of proper ribosomal docking and translation, the 

stability of the chimeric RNA and its half-life are just a few of these factors. Another issue of 

tagging hydrophobic protein, such as ATP6, is that the tags could remain hidden within the 

hydrophobic pockets making it inaccessible to conventional detection techniques. A counter 

argument is that a high-resolution technique such as mass spec might be able to detect the 

signal at such low levels. We attempted mass spec analysis using our fly mtTRESPro-

NCL::rATP6-myc constructs. Preliminary data indicated two out of four predicted post-

trypsinized peptide ion fragments. However, further attempts to concentrate the sample by using 

mitochondrial preps proved futile. At such extreme level of sensitivity the signal to noise ratio 

loses resolution to conclusively prove whether the protein is present in the sample. 

 

The allotopic expression strategies used in our project appear to have worked but with 

poor efficiency. We established a modest rescue in ATP6[1] mutant flies when WT-rATP6 and 

NCL-TLI::ATP6 were concurrently expressed. Our data demonstrate the importance of mutant 

protein competition in the development of genetic rescue and gene therapy approaches for 

mitochondrial disease resulting from a protein coding missense mutations. It is pertinent to note 

that the ATP6[1] model used in this study has 98% heteroplasmy level. This is by far the highest 

level of mutant heteroplasmy reported in any model organism for mitochondrial disorder. Partial 

recovery of longevity and a behavioral phenotype may be because RNA allotopic expression 

only modestly changes the ratio of wild-type to mutant proteins. Because the mutant will still 

express a significant amount of mutant protein in presence of allotopically expressed WT-rATP6 

and NCL-TLI::ATP6, this may contribute to a modest rescue effect. In actual disease 
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phenotypes such as NARP where the symptoms begin to appear above a threshold of ~60-70% 

heteroplasmy, a modest change in the ratio of mutant to wild-type protein has the potential for a 

significant rescue.   

 

5.6 Mimicking endogenous mt-mRNA to improve import and translational efficiency  
 

The canonical translation machinery requires several initiation factors, ribosomal binding site 

(such as Shine-Delgarno sequence in prokaryotes or IRES), modification of mRNA (such as 5’ 

capping in eukaryotes) and long 3’ UTRs. In contrast, only three out of eleven mitochondrial 

cistrons have 5′ UTRs. These three UTRs are extremely short and may only be a few 

nucleotides in length. The other eight mitochondrial mRNAs are leaderless and do not have a 5′ 

UTR 282. This means that the mitochondrial ribosomes are capable of recognizing, initiating and 

translating these “compact no frills” mt-mRNAs. How does this process occur? In the absence of 

in vitro mitochondrial translation this process is largely unknown.  

 

Although mt-mRNAs either lack or have extremely short 5’UTRs, it is believed that they 

form structured 5’ ends and have their start codon embedded in one of these stem loop 

structures 283. It is further hypothesized that mitochondrial ribosomes may have the capability of 

initiating translation from elements called “IRES” for internal ribosome entry sites. Cytosolic 

IRES are sequences of RNA that fold into special secondary structures that maybe recognized 

by the initiation factors required for translation initiation and something similar could happen in 

mitochondria. The initiation factors may help ‘melt’ the secondary structure making it accessible 

to mitoribosomes for initiation of translation 283.  

 

Inspired by the divergent mt-mRNA features, we identified and proposed several 

modifications that could increase efficiency of mitochondrial translation.  We therefore, focused 
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our efforts on creating second generation of mtTRESPro-NCL::EGFP vectors. These second 

generation vectors were designed to simulate endogenous mt-mRNA that would result in more 

efficient mitochondrial translation. Initially, we will validate the efficacy of mtTRESPro-

NCL::EGFP constructs in cell culture systems. Hence, we decided to use HeLa cells to validate 

these second generation mtTRESPro-NCL::EGFP vectors.  

 

As reported in earlier allotopic protein expression strategies, the targeted genes need to 

be recoded. The phenomenon of using specific tRNAs at a higher frequency relative to other 

tRNAs for the same amino acid is known as “codon bias” 284. It is well known that certain codons 

are preferentially recognized in the cytoplasm by the tRNAs at a higher frequency than others. 

The actual reason for codon-bias is not well understood but it may have a translational 

advantage.  

 

Analogous to this cytoplasmic phenomenon of codon bias, is there a preference for 

tRNA usage in proteins coded in the mitochondrial matrix? In other words, is there codon bias in 

mitochondrial proteins? We, and others, have calculated the percentage usage of ATG versus 

AGA for internal methionine in every human and flies mtDNA encoded protein (Figure 21, 

Table 2). The results were exciting. On further analysis of the rest of the codon usage by all 

mitochondrial proteins, it is evident that they have a codon bias as well. This led us to 

hypothesize that designing our engineered allotopic mRNA could be optimized for mitochondrial 

translation. Hence, we replaced five internal methionine in EGFP coded by ATG with the more 

frequently used ATA sequence to optimize it for mitochondrial translation. It remains to be 

tested whether codon optimization worked better than the previous non-optimized sequence.  

 

As mentioned earlier, we exploited the non-canonical codon usage by mitochondrial 

translation machinery to ensure that the translation of the allotopically expressed chimeric RNA 
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does not occur in the cytoplasm. There are three stop codons in the canonical genetic code i.e., 

TAG amber, TGA opal, and TAA ochre codons.  Since the earliest discovery of translation and 

the genetic code, there have been several reports of variations in the use of the universal 

genetic code 285. In addition to commonly observed reassignments of stop codons in virus 

(bacteriophages) and bacteria, mitochondria use opal (TGA) to code for tryptophan instead of a 

stop codon. Variation from the standard genetic code in viruses provides a distinct advantage 

when the virus manipulates and takes over the host to fuel its own packaging and then lysis 

from the host 285. Why do mitochondria have to use a non-canonical genetic code when it relies 

heavily on the “host” nucleo-cytoplasmic content? We know that there is abundant cross talk 

and retrograde signaling between the mitochondria and the nucleus 286. Does this reassigned 

codon usage confer a regulatory role of mitochondria towards its host nucleus? A general 

search of the literature does not provide a definitive clue to this question. Since mitochondria 

evolved as an endosymbiont the presence of reassigned codons could serve an ulterior 

regulatory role or might just be a remnant of its prokaryotic evolutionary lineage.   

 

 

 

Figure 21. ATA codon usage for internal methionine in human and fly mitochondrial 

protein 
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Nevertheless, the usage of TGA to code for tryptophan in the mitochondria is intended 

to ensure that this recoded transcript does not yield a full-length protein in the cytoplasm. 

However, this strategy has a caveat. There is evidence that “stop codon readthrough” occurs at 

TGA when immediately followed by CTAG 287. Although our constructs do not contain a CTAG 

sequence immediately succeeding TGA, “stop codon readthrough” might be a possibility in our 

constructs. There are 283 readthrough events predicted in Drosophila out of which 6 have 

been experimentally confirmed 288,289. These may possibly be higher in mammalian cells and 

could lead to translation and aggregation and/or toxicity of the mitochondrial-targeted rATP6 or 

EGFP in the cytosol. Although this does not explain why we don’t observe cytoplasmic EGFP 

signal, it may explain the poor efficiency of rescue with the fly rATP6 constructs. 

 

It is difficult to design allotopic expression chimeras due to the absence of complete 

crystal structures of ATP6 protein. The ATP8 and ATP6 subunits are predicted to have one and 

five transmembrane domains respectively 290. This makes it impossible to predict the orientation 

of these proteins in terms of their N-and C-termini. We currently do not have any data to confirm 

whether the fusion protein that we engineered to be translated in the mitochondria ends up in 

the matrix, IMM or IMS. EGFP is sensitive to pH. Attaching C-term EGFP to ATP8 or ATP6 

could result in EGFP in any of the three compartments i.e., matrix, IMM or IMS.  

 

In a review in 1996, Stuart and Neupert highlighted that some yeast mitochondrial IMM 

proteins such as COX2 and ATPase Su9 insert and orient themselves in the IMM such that both 

their N- and C-terminal lie in the IMS 291. In yeast, COX2 and ATPase Su9 is coded both by the 

mitochondrial and nuclear genomes. Generally, the IMM localizing proteins, either coded by 

mtDNA or nDNA, have sequence determinants known as ‘topogenic signals’ that determine 

their topological arrangements in the IMM 291.   These ‘topogenic signals’ are usually a 

hydrophobic sequence flanked by hydrophilic, charged amino acids.  Some of these signals of 
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nuclear encoded proteins are known, but the ‘topogenic signals’ of mitochondrial-encoded 

proteins remain uncharacterized 291. Based on the partial crystal structure of ATP6, it appears 

that the C-terminal domain faces the matrix and so should be the C-term fused EGFP. In case 

of ATP8, we do not have sufficient evidence of its N-term or C-term location. However, since 

ATP8 has a hydrophobic N-term domain, it is possible that it gets embedded in the IMM first and 

remains as such. This will keep the EGFP in the matrix but tethered to the IMM. Unless we have 

conclusive data, we can only predict it to be in the matrix. 

 

We have engineered novel mtTRESPro-NCL::EGFP vectors with either just ATP6::EGFP 

or both ATP8/ATP6::EGFP sequences to create fusion proteins that will be translated in the 

mitochondrial matrix once the chimeric RNA is imported in the matrix. These novel designs were 

based on the fact that mtDNA encoded proteins are co-translationally inserted into the IMM. Our 

hypothesis is that attachingATP6 or ATP8/ATP6 sequences to the imported transcript will 

enable co-translational incorporation of EGFP into the IMM. The cryptic translation initiation 

sequences within ATP6 or ATP8/ATP6 sequences will enable a productive recognition and 

landing of mitoribosomes on the chimeric transcript. The fusion protein will then remain tethered 

to the IMM. This will reduce the risk of EGFP being degraded by the UPRmt as mentioned 

earlier.  

 

Although it remains to be verified how these second generation of vectors will perform 

in terms of import and translatability, these novel mt-mRNA mimicking strategies have the 

potential to be developed into  more efficient RNA allotopic expressing chimeras.  
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5.7 Future work and scope of mitochondrial gene therapy 
 

The complications discussed here need to be addressed in the future, but it is important to note 

that inefficient expression and cytotoxicity are not only associated with our vectors but also with 

the entire field of allotopic expression.   

 

My project represents significant progress toward solving these problems.  The first aim 

of the project helped alleviate one of the most important limitations in the field of mitochondrial 

genetic rescue, namely, competition by endogenous mutant protein expression. The second 

aim of genetic rescue by allotopic RNA expression has been more challenging but shows 

potential. My project has laid the groundwork for further improvement of these vectors targeting 

full-length protein coding RNAs, which will require further understanding of the molecular 

frameworks of mitochondrial RNA import, RNA processing and mitochondrial translation. These 

three components, in addition to a precise design of allotopically expressed chimeric RNA 

conducive to mitochondrial import and translation, are key to achieving effective and robust 

allotopic RNA rescue.  

 

Despite all attempts to engineer a more favorable ‘mitochondrial mRNA like’ chimeric 

constructs, we face a severe limitation of testing actual mitochondrial translation due to the lack 

of a reliable in vivo mitochondrial translation assay. To circumvent this huge technical gap, we 

could use a different approach and evaluate whether the chimeric transcript is actually being 

translated by mitochondrial ribosomes. In a recent report, Rooijers et.al., significantly improved 

the protocol for ribosomal profiling of ‘mitochondrial ribosome protected fragments (RPF) 292. 

Using similar strategy of identifying and isolating mitochondrial monosomes and their associated 

RPF, we could isolate mitochondrial ribosome associated RPFs and analyze by deep 

sequencing. In the absence of a mitochondrial in vitro translation system, this approach can be 
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instrumental in determining whether the chimeric transcripts associate and get translated by the 

mitoribosomes.  

 

It has previously been shown that PNPases play a role in mitochondrial RNA import. 

One possibility to enhance the allotopic RNA import efficiency is to over-express PNPases. 

However, fly PNPases have not been characterized as well as the human homologues. In 

mammalian cells, over expression has been shown to enhance ROS production via increased 

respiratory chain activity. Additionally, PNPase overexpression also leads to activation of NFkB 

and related proinflammatory cytokines such as IL-6, IL-8, RANTES and MMP-3 293. It is not clear 

whether over expression of PNPase will upregulate RNA import into the mitochondria. It is 

possible that this might have an overall negative impact resulting in increased ROS production 

and activation of inflammatory signals. Thus, this approach requires further experimental 

validation.   

 

Through the years of my PhD, I realized the importance of understanding the 

mechanism of the RNA import pathway. Since my project was directed towards developing 

tools, I had the opportunity to investigate molecular aspects of RNA import and processing. I 

examined whether the chimeric transcript is being transcribed by a simple PCR amplification of 

the target gene. Using two different strategies of isolating mRNA and preparing cDNA that is by 

using gene specific or poly-T oligos, I isolated the chimeric transcripts from the transfected cells. 

These data suggest that after transcription in the nucleus, the transcript traverses to the 

cytoplasm and then possibly to the mitochondria as it gets polyadenylated. Currently, we do not 

know how many “A”s are added to this chimeric transcript. Using “Topo-TA” cloning strategy 

followed by sequencing will determine the level of polyadenylation in these chimeric transcripts.  
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As mentioned earlier, there are several pathways to import RNA into the mitochondria. It 

appears that the type of RNA to be imported determines the pathway that will handle its delivery 

to the mitochondria. Based on most of the RNA import mechanism reports, interaction of RNA 

with the proteins is an essential step. Understanding the interactions of the target RNA with 

proteins in the cell might be crucial in determining the partners that interact with these RNA. 

RNA immunoprecipitation (RIP) is a powerful tool to study RNA-protein interactions 294. Some of 

the interactions may be direct and others could be indirect. Using RIP in vivo, it is possible to 

not only identify the direct binding partners but also indirect protein associations to better 

elucidate RNA import pathways. Several other questions still remains to be answered such as 

whether the RNA import mechanism involves a dedicated pathway for specific RNA type, 

whether the importability is determined by a structure or is reliant on the sequence or both. 

 

Mitochondrial gene therapy is a highly dynamic field as more laboratories around the 

globe are focusing on therapeutic strategies to treat mitochondrial disorders. Alternative 

strategies such as allotopic strategies have been used to target proteins and RNA into the 

mitochondria. Mitochondrial gene therapy, however, is far from reality. My thesis focused on 

manipulating endogenous mitochondrial proteins and expressing wild type of the mutant 

mitochondrial protein by exploiting the natural RNA import mechanism. Although inefficient in its 

present stage, this strategy has a strong potential to be developed into a practical gene therapy. 
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APPENDIX A 

A.1 SUPPLEMENTARY MATERIAL 

A.2 “SMALL MITOCHONDRIAL-TARGETED RNAS MODULATE ENDOGENOUS 

MITOCHONDRIAL PROTEIN EXPRESSION IN VIVO” BY ATIF TOWHEED ET. AL., 

2014 
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Figure 22. Predicted secondary structure of 5Smt RNA.  Mfold 

(http://mfold.rna.albany.edu) was used to generate the secondary structure of the 5Smt 

RNA used in the present study. Sequence of 5Smt RNA (120 nucleotides) is shown at the 

bottom.  
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Figure 23. Competitive ELISA using hc17 peptide. Fly lysate (15 flies) was diluted to 

1:50000 in 1X PBS (with protease inhibitor cocktail, Roche) and coated on ELISA plate 

wells overnight at 4ºC.  Anti-ATP6 antibody (1:1000) and increasing concentrations of 

hc17 peptide (7.5, 15, 30, 60 and 120 μg/ml) was added and incubated overnight, washed 

extensively, anti-rabbit HRP conjugated secondary antibody (1:2000) was added and 

incubated for 2 hr at room temperature. Absorbance was quantified using ELISA plate 

reader at 450 nm after adding substrate and stop solution. The O.D. values are were 

plotted as a function of hc-17 peptide concentration and one phase decay curve fit 

applied using Prism (ver. 6) to extrapolate 0 μg/ml O.D. value. The O.D. values were then 

normalized to 0 μg/ml and plotted as percent inhibition (mean O.D., ± SEM, n >3).  
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