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The presence in patient’s brain tissues of neuritic plaques containing Aβ aggregates is one of the 

pathological hallmarks of Alzheimer’s disease (AD), and Aβ aggregates have been implicated in 

the disease mechanism. These facts have inspired a large number of biophysical and structural 

studies on Aβ behavior over the last 25 years. Much remains to be learned, but there are a 

number of barriers to progress, including the challenges of making and manipulating these 

peptides and understanding their aggregation behavior.  This thesis describes an improved 

method for the chemical synthesis of highly aggregation prone peptides like Aβ, insights into 

some previously unrealized limitations of a widely used “disaggregation” procedure for making 

high quality monomer solutions, and two fundamental studies on aspects of Aβ self-assembly. 

The improved synthesis method involves reversible addition of Lys residues to the C-terminus of 

the peptide during solid phase synthesis, which we show improves the synthetic yield and also 

improves the chromatographic behavior of the peptide during purification.   The new knowledge 

about disaggregation reveals that a method involving sequential treatment of peptides with 

trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP), while very effective with Aβ40, 

can alter the self-assembly of Aβ42, compared with an alternative protocol, and introduce highly 

stable oligomers that may possess substantial toxicity. In one fundamental study, we show that 

the minor brain form, Aβ43, aggregates more slowly than Aβ42 to make amyloid fibrils that are 

highly inefficient at seeding Aβ42 monomers. In another study, we describe the surprising result 
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that amyloid fibrils of D-Aβ40 can seed L-Aβ40 monomers, and vice versa, suggesting a curious 

lack of structural discrimination to the prion-like propagation of Aβ amyloid in vitro. The results 

add to our knowledge of Aβ amyloid assembly and how it can best be studied in the laboratory. 
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1.0  INTRODUCTION 

1.1 ALZHEIMER’S DISEASE AND AMYLOID- β (Aβ) PEPTIDES 

1.1.1 Overview of Alzheimer’s Disease (AD) 

Alzheimer's disease (AD) is the most common form of dementia in humans and is an 

irreversible, progressive neurodegenerative disease that gradually leads to the loss of memory, 

thinking skills, and the ability to carry out daily activities.  Eventually the destruction of brain 

functions leads to death of the individual. According to recent estimates, as many as 5.3 million 

people in the U.S., and 26.6 million people worldwide, have developed AD and these numbers 

are expected to quadruple by 2050 [1]. It is currently the sixth leading cause of death in the U.S. 

AD was first described in 1906 based on the autopsy of a woman who died of an unusual 

mental illness [2]. On analysis of the brain tissue, many abnormal clumps and tangled bundles of 

fibers were found, which were later termed amyloid/senile plaques and neurofibrillary tangles, 

respectively. Since then, these two classical brain lesions have become the major 

neuropathological features of AD. In the 1960s, the use of electron microscopy allowed the ultra-

structures of these plaques and tangles to be studied, revealing the fine fibrillar structures of 

these brain lesions long before the proteins that are the source of these deposits were identified 

[3-6]. With advances in biochemical pathology, the compositions of the plaques and tangles were 
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identified in the 1980s. It was found through biochemical analysis that the amyloid plaques 

mainly contain extracellular deposits of a previously unknown 4-kDa amyloid-β (Aβ) protein [7-

10]. The neurofibrillary tangles were found to be mainly composed of hyperphosphorylated 

versions of a microtubule-associated protein, tau, found predominantly in neurons [11-14]. Tau 

was previously discovered as a protein binding to microtubules and assisting in their formation 

and stabilization [15]. However, upon phosphorylation, it loses its ability to bind to microtubules 

and the unbound tau clumps together in neurofibrillary tangles [16].  Both Aβ and tau proteins 

are present in a highly ordered and aggregated form known as ‘amyloid fibrils’ in the plaques 

and tangles. 

Due to the fact that amyloid plaques and neurofibrillary tangles can occur independently 

of each other, and that neurofibrillary tangles are also present in many less common 

neurodegenerative diseases in the absence of Aβ deposition [17, 18], it has been suggested that 

the tangles are likely to occur as a secondary response to the injury of neuronal cells [19, 20]. 

Therefore, AD studies have primarily focused on Aβ peptides. Indeed, with extensive research 

on Aβ peptides over the years, more evidence was gained in support of their direct involvement 

in AD. Some of the key evidence for the importance of Aβ in AD pathology include: (a) 

increased amounts of soluble Aβ in individuals with Down syndrome who eventually develop 

AD over time and whose duplicated chromosome is home to the gene for the amyloid precursor 

protein, APP, whose breakdown generates Aβ peptides [21, 22];  (b) genetic studies of the 

familial forms of early-onset AD have implicated several point mutations in the Aβ peptide 

sequence as the critical mutations, e.g. Arctic (E22G), Dutch (E22Q), Flemish (A21G), and Iowa 

(D23N) mutant peptides [23-27]. It has been shown that these peptides have greater propensity 

for oligomerization and aggregation in vitro, and are directly linked to the genetically inherited 
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forms of the disease [23, 28-30]. Other FAD (familial AD) mutations have been discovered near 

the γ-secretase cleavage site on APP which lead to increased production of Aβ [31]; (c) Other 

genetic studies uncovered several FAD mutations in the enzymes that process APP, such as 

presenilin-1, in such a way to generate higher concentrations of more pathogenic forms of Aβ 

[32, 33]. The presenilins are components of a proteolytic complex involved in APP processing 

and degradation; (d) The direct incubation of Aβ peptides with neuronal cells, or the 

overexpression of amyloid precursor proteins (APP, whose proteolysis generates Aβ peptides 

(see below)), results in cell death [34-36]; (e) The direct injection of Aβ peptides into mice, or 

the overexpression of amyloid precursor protein (APP), results in significant neurodegeneration 

and cognitive deficits in mice [37, 38]. 

Thus, it is clear that Aβ peptides play a critical role in the development of AD and is 

quite likely that their toxicity involves some sort of aggregation step. 

1.1.2  Origin of Aβ peptides and presence of proteolytic variants 

Aβ is a small (~4 kDa), an intrinsically disordered peptide, which is normally present in both 

cerebrospinal fluid and blood at extremely low physiological concentrations (nanomolar or less) 

[39]. It is formed by the sequential cleavage of an integral transmembrane protein, amyloid 

precursor protein (APP). Although the primary physiological function of this precursor protein 

remains unknown, the protein is found in many tissues including in the synapses of neurons. 

APP undergoes post translational processing involving its cleavage by various secretases and 

proteases [40]. In the major non-amyloidogenic pathway (~90% of APP is processed in this 

pathway), APP is sequentially cleaved by α-secretase and γ-secretase yielding in two relatively 

benign membrane associated C-terminal fragments, p3 and AICD (Amyloid Precursor Protein 

 3 



Intracellular Domain). The α-cleavage site is located in the middle of the Aβ sequence and 

produces a large extracelluar domain called sAPP-α. In the other amyloidogenic pathway, APP is 

acted upon initially by β-secretase forming a membrane bound C-terminal fragment (C99) that 

can no longer be efficiently cleaved by α-secretase. γ-secretase then acts on C99 to release AICD  

and Aβ peptides [41] (Figure 1-1 a). The Aβ peptide portion of the cleaved amyloid precursor 

protein is then released extracellularly. 

 

 

Figure 1-1: Proteolytic processing of amyloid precursor protein (APP) by secretases. 
a. The cleavage of amyloid precursor protein by α-secretase followed by γ-secretase cleavage yields the benign P3 
and AICD fragments, whereas the cleavage by β-secretase followed by γ-secretase yields Aβ peptides and AICD.  
b. Sequential processing of APP by γ-secretase enzyme resulting in the two predominant product lines. From [42]. 
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Variability in the cleavage site of γ-secretase creates several Aβ peptide forms, with 

lengths of the major products varying from 39 to 43 amino acids. The variability in the C-

terminal cleavage site occurs due to the fact that γ-secretase has multiple cleavage sites within 

the transmembrane domain of APP. It has been postulated that the enzyme sequentially cleaves 

APP multiple times at 3-4 amino acid intervals along the transmembrane α-helix domain starting 

with the initial cleavage products of Aβ49 and Aβ48 [43-45] (Figure 1-1 b). Longer Aβ species, 

for example, Aβ49, Aβ48, Aβ46, Aβ45 and Aβ43 have been found in cell lysates and also in 

homogenates of APP-transgenic mouse brains by using SDS-PAGE gel analysis [44, 46, 47].  

Among the Aβ peptides that have been detected, the 40 residue peptide Aβ40 and the 42 

residue Aβ42 are the most common forms present in disease brain (see Figure 1-2 for their 

sequences). The aggregates formed from these peptides deposit outside the neurons in dense 

formations known as senile plaques or neuritic plaques, in less dense aggregates as diffuse 

plaques and also sometimes in the walls of small blood vessels in the brain in a process known as 

amyloid angiopathy. The diffuse plaques are composed of non-fibrillar amorphous aggregates 

that are not associated with degenerative changes, whereas the neuritic plaques contain Aβ fibrils 

that are associated with pathological changes [48].  While Aβ40 is much more abundant, Aβ42 is 

much more amyloidogenic [49], which means it can oligomerize and fibrilize (see below) much 

more rapidly than Aβ40. 

 

Figure 1-2: Sequences of Aβ40 and Aβ42. 
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Evidence has been reported for the presence of small oligomers of longer Aβ species in 

the brains of individuals with AD [50]. Especially, the presence of Aβ43 is seen in plaque cores 

obtained from occipital and frontal cortex in both sporadic and familial AD cases and also in the 

case of diffuse plaques [51]. Longer Aβ species have also been detected in the case of transgenic 

mice models and in cell cultures expressing APP [44]. There has been no comprehensive 

biophysical study so far conducted on Aβ variants which are longer than 42 amino acids. Recent 

data indicate that Aβ43 showed higher propensity to aggregate and higher levels of neurotoxicity 

[52]. These recent findings indicate that Aβ43 - a neglected species in AD research - may have an 

impact on AD, and shows the potential importance of studying the aggregation properties of 

longer Aβ species, like Aβ43, both alone and in association with the more common Aβ species.  

In Chapter 5, we studied the in vitro aggregation properties of Aβ43 peptide and the 

results obtained indicate that the Aβ43 peptide has differing fibril formation properties when 

compared to its close homolog Aβ42. In Chapter 3, we demonstrate an improved way to make 

difficult-to-synthesize Aβ46 and provide preliminary data that it forms amyloid considerably 

faster than Aβ42. 

 

1.1.3 β-amyloid neurotoxicity hypothesis  

 

Although it has been shown that Aβ peptides are neurotoxic, and are directly linked to AD, the 

underlying mechanism remains unclear. Over the years, different hypotheses for β-amyloid 

neurotoxicity have been developed. 

In the original amyloid hypothesis, it was proposed that the amyloid fibrils that make up 

the neuritic plaques first observed by Alzheimer are the fundamental cause of the disease [53, 
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54]. However, recent studies do not fully support this hypothesis. For example, it has been found 

that, in transgenic animals that over-express APP, neuronal abnormalities and cognitive deficits 

start to appear well before amyloid plaques can be detected [55-57]. Furthermore, little 

correlation between overall amyloid plaque density and clinical severity of dementia has been 

found [58, 59]. In some cases, a significant amount of amyloid plaques were found in the brain 

tissues from patients without AD, whereas in other cases, few amyloid plaques were detected in 

the brain tissues from patients with severe AD. One hypothesis to explain these observations 

consistent with the original amyloid hypothesis is that fibril deposition in particular parts of the 

brain and at particular times (long before autopsy) might be critical [60]. Another hypothesis that 

stands in distinction to the amyloid hypothesis, is that small oligomeric species of Aβ peptides 

formed prior to mature amyloid fibrils may be the real toxic species [61], while the amyloid 

fibrils might play a protective role by scavenging the smaller forms of toxic Aβ. 

A central question in AD field is: by what mechanism might extracellular amyloid 

aggregates formed by Aβ harm the cells? One hypothesis suggests that metastable oligomeric 

structures that have been described in the formation of many amyloid-forming peptides, when 

produced extra-cellularly, can cause potentially toxic alterations of cell membranes [62]. In line 

with this, studies have indicated that Aβ oligomers are the origin of neurotoxicity, potentially 

through membrane permeabilization [63-67]. It is thought that the oligomers induce 

neurotoxicity by forming pores/channels in the cell membranes and that these pores allow a 

rapid, uncontrolled influx of ions, particularly calcium ions, into the neuronal cells, which may 

directly lead to the cell death, or trigger the apoptosis signaling pathway [68]. In another study, 

the toxicity mechanism was suggested to be associated with the exposure of toxic surfaces 

formed by the oligomers and their interactions with other molecules. For example, recently 

 7 



cellular prion protein PrPc emerged as a specific receptor of toxic Aβ oligomers which then 

mediates synaptic dysfunction [69]. In other study, synaptic binding of Aβ oligomers to putative 

receptor proteins is reported to inhibit long term potentiation, leading to impaired cognitive 

performance and AD. 

However, the exact meaning of the term ‘toxic Aβ oligomer’ has been loosely used in the 

field and is confusing. In fact, the Aβ aggregation pathway is highly complex leading to 

heterogeneous populations of intermediate species with differing structures and toxicities as 

summarized below and as illustrated in Chapter 5. 

1.2 MECHANISM OF Aβ AGGREGATE FORMATION  

1.2.1 Introduction to aggregation 

Proteins are fundamental components of living organisms and they participate in most cellular 

processes. Each protein molecule acquires its unique structure by folding, which depends on the 

primary amino acid sequence of the molecule [70]. This unique structure gives the protein a 

unique function. This fully functional state of the proteins is called its native or folded state. 

However, some protein molecules undergo misfolding or even aggregation, thereby losing their 

functionality. Often these misfolded structures, through mechanisms that are as yet poorly 

worked out, can be toxic to the living cells. Sometimes these misfolded and conformationally 

unstable protein monomers can lead to the formation of insoluble protein aggregates, such as 

amyloid fibrils, which are characterized by specific structural features. These aggregates are 

predominantly β-sheet rich, long thread-like structures with a typical diameter of 6-12 nm and a 
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length >100 nm. Such structures are classified as “amyloid fibrils” and the phenomenon is 

termed as “amyloid aggregation”. The classic histopathological definition of an amyloid is an 

extracellular, proteinaceous deposit that exhibits apple-green birefringence when viewed under a 

microscope under polarized light after staining with Congo red [71]. Recently, amyloid species 

have been observed in distinct intracellular locations as well [72]. A biophysical definition of an 

amyloid species is a broader classification which includes any polypeptide chain that 

polymerizes to form a ‘cross-β’ structure, in vivo or in vitro (Figure 1-3) [73]. Presence of such 

amyloid cross-β structures can be identified using fluorescent dyes, stain polarimetry and CD or 

FTIR; but the predominant test to see if a structure contains cross-β fibers is by placing the 

sample in an X-ray diffraction beam. The term ‘cross-β’ was based on the observation of two 

sets of diffraction lines, one longitudinal and one transverse, that form a characteristic ‘cross’ 

pattern. The two characteristic scattering diffraction signals produced at 4.7 and 10 Å, 

corresponding to inter-strand and stacking distances in β-sheets. 

 

 

Figure 1-3: Schematic representation of a double layered anti-parallel (left) and parallel (right) 
cross-β motif [74], the fundamental building block of amyloid structure 

  

Amyloid aggregation of the specific disease related proteins occurs in several age-related 

neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases [75-

78]. Many proteins which aggregate in vivo have been found to aggregate in a similar fashion 

under physiological conditions in vitro. Autopsies of deceased patient’s brains show deposits of 
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amyloid fibrils [79-83], and in the pathway towards amyloid aggregation, some of these proteins 

also form quasi-stable soluble intermediate structures [55, 84-86]. Recent research suggests that 

these smaller soluble (i.e., diffusible) protein aggregates are principally responsible for the 

corresponding pathology in the case of neurodegerative diseases. For Aβ protein, these structures 

are classified as monomers (4 kDa); multimers (such as dimers, trimers, tetramers, hexamers, 

etc.) [87-89]; large oligomers (few nm diameter) [90], amyloid spheroids (2-30 nm) [91], and 

large soluble aggregates or protofibrils (~10's of nm in length) [92]. Although much work 

remains to be done to characterize their mechanistic inter-relationships, the aggregation process 

is often modeled as the sequential progression of the peptide population through the following 

species.  

a. Monomers  

b. Misfolded monomers  

c. Dimers/tetramers and small oligomers  

d. Large diffusible non-β aggregates  

e. Protofibrils and large β aggregates 

f. Amyloid fibrils  

These species have been depicted as a cartoon in the Figure 1-4. For disease-causing 

proteins, one or a few of these species are believed to be responsible for the dysfunction of 

neurons in diseased brains. Since recent reports suggest that the soluble aggregates (species c and 

d) might be the most toxic species, destabilizing these intermediates with respect to their 

precursors and/or their products has been proposed to be a potential way to ameliorate toxicity 

and disease. It is not clear which of these species is ‘on-pathway’ to fibril formation and which 

of these, if any, are ‘off pathway’ of fibril formation.  
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Figure 1-4: Cartoon representation of Aβ aggregation pathway (Adapted from [93]) 

 

1.2.2 Oligomerization of Aβ amyloid peptides  

The small intermediates formed in the aggregation process of Aβ peptides are commonly called 

oligomers. However, some ambiguity of this terminology exists in the amyloid field. To date, 

many types of Aβ oligomers have been documented and described in the literature, e.g. 

protofibrils [94-97], annular structures [87, 98], and Aβ-derived diffusible ligands (ADDLs) [61, 

99]. In general, Aβ oligomers tend to remain in suspension in aqueous solution after low speed 

centrifugation; however this is not an iron-clad criterion. The heterogeneity of Aβ oligomers has 

been demonstrated by various structural and biochemical techniques [100].  One investigation of 

Aβ oligomers suggested that they are heterogeneous, and exist in equilibrium with each other 

and also with the monomers and with the final aggregates (in the case of ‘on-pathway 

aggregates’) [87].  

Oligomers are referred to as spherical species by EM or other biophysical techniques. 

Although they are generally considered to be smaller in size in comparison with fibrils, this size 

definition is usually based on how soluble they are under centrifugation conditions. The 

dimensions of the oligomers confirm to a high molecular weight of the oligomeric states and to 

the presence of a large number of peptide chains (in the order of hundreds to 1000s of 
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monomers). Hence, sometimes the large soluble oligomers are referred to as “non-fibrillar 

aggregates”, and the smaller oligomers can denote multimeric assemblies. Current literature, 

however, does not show these differences and often just denotes them as ‘low-molecular-weight’ 

and ‘high-molecular-weight’ oligomers.  

Oligomeric structures also typically represent the earliest kinetic intermediates of the 

amyloid formation reaction and they occur as metastable states that appear and disappear over 

the time before which fibrils begin to form. Structural studies on oligomers require them to be 

stable for the period of analyses, and techniques have been devised to trap these intermediates 

species through appropriate methods, including ligand binding, covalent modification, etc.  

There are several other features that discriminate oligomers from fibrils apart from size 

and shape differences. The characteristic feature of amyloid aggregates is the presence of a 

generic ‘cross-β-structure’. Some oligomers do have β-sheet structure and have the ability to 

bind to ThT and are termed as “β-oligomers” [101]. Other oligomers which do not have such 

generic structures are classified as “non-β oligomers” [102]. The oligomer field in the case of Aβ 

is diverse and confusing. The secondary structural characteristics of oligomers can vary 

substantially from high β-sheet content to random-coil-like conformations and even α-helical 

structures [103] depending on the methods used to prepare them. In some studies, the similarity 

of the structures between β-sheet rich oligomers and fibrils have been shown [101], whereas in 

other cases significant differences in the CD and FTIR spectra or antibody binding properties of 

certain oligomers and fibrils have been shown [102].  

These data are testament to the idea that oligomers are present in highly polymorphic 

states; that is, a single polypeptide chain can make multiple types of oligomers based on growth 

conditions or at different times in an assembly reaction. Such variations can occur, between 
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different samples, where they result from such sources as different preparation protocols and 

where differences are recognizable through discrete antibody binding interactions. On the other 

hand, polymorphism may arise even within the same sample, apparently as the result of 

stochastic fluctuations. Such intra-sample heterogeneity can be demonstrated by single-particle 

techniques, such as EM or fluorescence correlation spectroscopy (FCS) [104-106]. 

1.2.3 Are oligomers on or off pathway? 

One of the important questions in the amyloid field is whether the oligomers and protofibrils, 

which are typically seen during the aggregation reaction, lie on or off the pathway of amyloid 

formation. It is very difficult to study amyloid aggregation mechanism in vitro to obtain data to 

make kinetic arguments to support or disprove a hypothesis on precursor-product relationships. 

In some cases, spherical intermediate oligomeric structures have been proposed to serve a key, 

on-pathway role in both the nucleation and elongation steps of the formation of amyloid fibrils. 

In one such model, nucleation takes place by ‘conformational conversion’ of oligomers to form 

‘nucleus’ which can then be converted to fibrils by elongation process [107]. According to this 

model, fibril growth can then happen either by subsequent additional conformational conversions 

of oligomer docked on the ends of the fibril, or by monomer addition. In the case of Aβ40 

protofibrils, the β-sheet regions have been shown to provide the core for the β-sheets in the 

corresponding mature fibrils [108], consistent with protofibrils being on-pathway intermediates.   

By contrast, many other data are inconsistent with the hypothesis that oligomeric forms 

are on the amyloid assembly pathway [109, 110]. For example, in the case of Aβ, amyloid fibrils 

have been shown to grow in low concentrations of denaturant where no oligomer formation was 

seen [110]. Under certain conditions, stable oligomers and protofibrils were seen without the 

 13 



conversion to mature amyloid as detected by ESI-MS [111]. Often times, the presence of an off-

pathway stable intermediate depends on the reaction conditions. As shown in Chapter 4, the 

presence of stable off-pathway intermediates can complicate the study of amyloid fibrils.  

1.2.4 Structure of protofibril intermediates 

Protofibrillar intermediates represent the species that are structurally the closest to the final end-

stage fibrils. They represent the late-stage intermediates of the amyloid pathway and can be 

distinguished from oligomers by their elongated, linear shape. Protofibrils lack the tertiary 

structure features and periodic symmetry of the mature fibrils. They are typically composed of 

one filament of the fibril (diameters of usually less than 6 nm) (however sometimes fatter 

protofibrils have been seen), shorter in length (usually below 100 nm) and are also more 

curvilinear or wigly in shape. The interaction of Aβ protofibrils to amyloid-staining dyes, such as 

CR and ThT are typically weaker than those observed for mature fibrils [112]. CD, IR and X-ray 

diffraction demonstrate that these filaments in the case of Aβ peptide, consists of high levels of 

β-sheet structure [113, 114]. Previous work from our lab and others have shown that, for some 

stable Aβ protofibrils, there is a difference in the extent of β-sheet protection between 

protofibrils and fibrils with protofibrils exhibiting lower level of β-sheet elements as measured 

by hydrogen-deuterium exchange [115]. In some cases, solid-state NMR has been used to study 

the secondary structures of protofibrils at a residue-specific basis sometimes showing a simpler 

β-hairpin conformation [116] and other times more complex hexameric barrel conformation 

[117].  

 14 



1.2.5 Structure and stability of mature Aβ fibrils 

Mature amyloid fibrils are the end stage reaction products of the fibrillogenic pathway. They 

typically possess a long, linear, sometimes twisted and highly regular morphology that is visible 

by TEM and other microscopic techniques. The generic ‘cross-β’ structure (Figure 1-3) that 

produce spacings at 4.7 and ∼ 10 Å is a property of various amyloid fibrils, irrespective of their 

sequence [73]. Mature Aβ amyloid fibrils can extend several microns in length, while the fibril 

width can vary between 5 - 15 nm, but different fibril polymorphs can present significantly 

different values [118]. Most Aβ amyloid fibrils are twisted when viewed under TEM which are 

termed ‘crossover’ points [119]. Mature amyloid fibrils are usually characterized by a high 

affinity for amyloidogenic dyes, such as CR and ThT. In the case of various Aβ peptides, 

detailed structural data of the fibrils are now available, including residue-specific assignments of 

the secondary structural elements of different fibril polymorphs using ssNMR and HX-MS 

studies [120, 121] and electron density maps obtained with cryo-microscopy at sub-nanometer 

resolutions [122].   

As in globular proteins, the net individual interactions within the structure of the folded 

fibril, balanced against destabilizing forces, determines fibril stability.  This stability is high but 

not infinitely so, and a thermodynamic equilibrium is typically reached where some amount of 

monomer exists [123, 124].  Thus, fibril growth is generally a reversible process, i.e., fibrils can 

revert back to soluble oligomeric species or monomers upon dilution of the fibril into buffer. 

This equilibrium value, termed critical concentration (Cr) is a reproducible property of a 

particular amyloid form grown in a specific set of conditions [125]. This dynamic equilibrium 

value can be approached both from the soluble monomer side (forward reaction) and from the 

aggregate side (reverse reaction) [124, 126] (Figure 1-5). These values can be converted to free 
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energy values for fibril assembly reactions, similar to a protein folding curve [127], or they can 

simply be compared qualitatively, with the understanding that the lower the Cr, the more stable 

the fibril. 

 

Figure 1-5: Thermodynamic equilibrium between fibrils and monomers [124] 

 

Both X-ray diffraction and NMR studies have revealed the highly ordered, β-sheet rich 

structure of Aβ amyloid fibrils [28, 121, 128]. The structure contains a unique quaternary, 

intermolecular cross β-sheet that spans across more than one molecule (Figure 1-6) [129]. 

However, one complexity in studying amyloid aggregates arises from the fact that structural 

polymorphism exists, i.e., one polypeptide chain can grow into more than one stable structure 

[130] (see below) and hence the high-resolution structures of Aβ aggregates known to date could 

be biased by the conditions used for aggregation. 

A diverse set of peptides and proteins with the capability to form fibrillar structures has 

been identified. Surprisingly, little sequence homology has been found. Furthermore, several 

proteins not associated with amyloid disease have also been shown to be able to form fibrils 

under certain conditions [131]. Therefore, the amyloid motif has been suggested to be a rather 

fundamental motif of the polypeptide backbone [131, 132]. 
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Figure 1-6: ss-NMR model of Aβ40 fibrils. 
TEM morphology (a) and fibrillar structural model (b) for Aβ40 fibril based on ss-NMR and EM data for fibrils 

grown at 25 ºC under no salt and agitation conditions showing a parallel arrangement of in-register intermolecular β-
sheets. (Figure from [133]) 

 

1.2.6 Presence of structural polymorphism 

The cross-β sheet structure constructs the core of amyloid protofilaments. These protofilaments 

represent the filamentous substructures of mature fibrils. The helical twist of the protofilaments 

can give rise to a discernible overall helicity that can be seen in many, but not all, amyloid 

fibrils. Although the basic structural arrangement of the cross-β structure is conserved for 

different fibrils, there are different possibilities how they can pack into the 3-D fibril structure. 

Such variable protofilament arrangements can be one of the reasons for several distinct amyloid 

fibril morphologies. These fibrils can differ in several structural properties, such as the extent of 

residues in β-sheet formation, cross-sectional thickness of the fibril, the helical pitch, etc.  

The interior of the protofilament can vary from one fibril to another resulting in 

difference in the extent of β-sheet protection in the fibril [125]. For example, in the case of Aβ40 

peptide our lab has previously shown that it can produce a broad variety of differently structured 

amyloid fibrils in vitro that differ in the extents and locations of hydrogen bonded β-sheet 
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structure within the fibril [125].  These polymorphs have also be shown to vary in their 

thermodynamic parameters (Cr), ThT binding and EM morphology.  Structural polymorphism of 

amyloid fibrils has been reported for numerous other polypeptide systems as well, for example 

amylin [134], glucagon [135], the SH3 domain of phosphatidylinositol-3′-kinase [136], insulin 

[137]  and lysozyme [132] .  

1.3 CURRENT ISSUES IN Aβ STUDIES 

Much has been learned in the last 25 years of research on the self-assembly of Aβ peptides, but 

much remains to be done.  We need to come to a better understanding of how many non-fibrillar 

intermediates there are in amyloid assembly reactions, their structures, which ones are on-

pathway and/or can interconvert, and which ones are especially cytotoxic.  We also need to know 

more about the roles, if any, of some of the minor Aβ species that are generated in the brain.  

These themes are brought together in Chapter 5, where we describe how the self-assembly of 

the relatively rare Aβ43, while following the same pathway as Aβ42, proceeds much more slowly.  

The slow progression through various stages gives us an opportunity to better characterize some 

of these intermediates.  We also found some very surprising features of the interaction of Aβ43 

with Aβ42 in self-assembly and in fibril structure that may have some general implications. 

 There has been considerable speculation in recent years about the possible prion-like 

nature of aggregation-associated neurodegenerative diseases like AD.  The idea is that disease 

might progress via the spread of aggregates from one neuron to the next, and be amplified in the 

new neuron via seeded elongation – all aspects of prion phenomena in human brains and in 

yeasts [138-140]. This makes it particularly important to continue to understand the process of 
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seeded elongation of amyloid fibrils, and in particular how universally seed structure is 

propagated into product fibril structure. In Chapter 6, in our studies of cross-seeding between D- 

and L-Aβ40, we describe an extreme example in which amyloid fibrils dramatically increase 

amyloid assembly via seeding while at the same time failing to replicate the structure of the seed 

fibrils.  Whether this disconnect between rate acceleration and structural replication will be 

observed more commonly, and in more biologically relevant examples, remains to be seen. 

 It is quite simple these days to generate data in amyloid studies, but it is a continuing 

challenge to do it right, and there is always room for improvements which sometimes can make a 

difference as to whether or not the data obtained represents the reality of the disease process.  In 

Chapter 4 we describe how the all-important disaggregation protocol has got to be matched to 

the peptide being studied, and how failing to do this can lead to flawed data that may not even be 

recognized as being flawed.  Peptide impurities can affect aggregation properties modestly 

(Chapter 3) to severely (Appendix A), and it is important to work to understand purity levels 

and improve on them to optimize results.  In Chapter 3 we describe a very convenient 

modification of standard solid phase synthesis of peptides that seems capable of being generally 

useful in improving the quality of highly hydrophobic amyloid peptides.  Methodology for 

characterizing amyloid can also be improved.  While the ThT assay is standardly done in almost 

all amyloid labs, we show in Chapter 5 that there is much more information content in ThT data 

than is normally appreciated, and this has helped to provide us with new insights into Aβ 

oligomer structures. 
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2.0  EXPERIMENTAL METHODS 

2.1 MATERIALS AND REACTION PROTOCOLS 

2.1.1 Peptide synthesis and purification 

Most of the Aβ peptides used in the various studies in this thesis were synthesized chemically by 

solid-phase Fmoc synthesis and obtained in crude partially purified versions.  In most cases, the 

peptides were obtained from the Keck Biotechnology Center at Yale University in synthesis 

scales of 25-100 µmoles. All the crude peptides were stored at -80 ○C. In some cases, purified 

wildtype Aβ42 and Aβ40 peptides were obtained via large-scale custom t-Boc synthesis also from 

the Keck Center. Pure recombinant Aβ peptides used in the thesis were obtained from rPeptide. 

Crude  peptides  were  purified  using  a  reverse  phase  Agilent  Zorbax  SB-C3  

preparative column (9.4 * 250 mm; 5 µm particle size)  using the protocol described below. The 

peptides were dissolved in 100% formic acid (Sigma Aldrich) and sonicated in a bath sonicator 

for ~5 minutes. Prior to injection into the reverse phase column, the peptides were diluted 

to ~50% formic acid using milliQ water. Peptides were purified in a Biorad Biologic Dual 

Flow system by gradient elution. The buffer systems used for purification were water (Fisher 

Scientific, HPLC grade) + 0.05% TFA (Sigma Aldrich) (solvent A) and acetonitrile (Fisher 

Scientific, HPLC grade) + 0.05% TFA (solvent B). Each purification run was preceded by at 
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least a couple of blank runs where only formic acid was injected, in order to eliminate the 

presence of any residual peptide bound to the column from previous runs. During the 

purification run, the solvents were run at a flow rate of 4 ml/min with a gradient system that 

was specific to the peptide type. In the case of Aβ peptides, the fraction collection gradient 

was either 20-50% solvent B in the case of Aβ40 peptides or 30-60% solvent B in the case 

of longer C-terminal Aβ peptides. This was done to ensure that the peptides with the highest 

purity elute in the middle of the shallow phase of gradient selected. Purifications were carried 

out either at room temperature or at 65 °C using a column heater (Sidewinder LC column 

heater, Restek Corp.).  Fractions were collected using a Biorad fraction collector with a 

collection volume of 0.8 ml/fraction. Based on the absorbance signals at 214 nm, fractions 

corresponding to the major peak were identified and analyzed for purity by mass 

spectrometry. Pure fractions corresponding to the correct molecular weights were then pooled, 

lyophilized overnight and stored at -20 ○C for future use. 

2.1.2 Purity analysis by Mass spectrometry 

An Agilent electrospray 1100 mass spectrometer was used to determine the masses of the 

peptides during purification. All the fractions were first run through an analytical reverse phase 

column (Agilent SB Aq column, 4.6 * 50 mm; 1.8 µm particle size). The masses were 

determined by using the in-built analysis module present in the software. Typically, fractions 

with > 90% purity were pooled, lyophilized overnight and stored at -20 °C until they were 

disaggregated in preparation for aggregation reactions. 
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In some cases, the purity of Aβ preparations before the disaggregation process was more 

carefully assessed (See Chapter 3). Raw data of ion current versus mass/z was transferred to an 

excel sheet and plotted. A baseline was drawn in a region of mass/z spectra not occupied by 

significant peaks. Purity was then calculated by using the peak cluster with the highest charge 

state (e.g., for Aβ42 we used the +5 state) and the ion current values normalized to 100% for the 

highest peak (in all cases which corresponded to the desired peptide). All the other peaks in the 

cluster with a normalized amplitude of >1% were included in the analysis of purity. All peaks 

were integrated and their areas summed and used as the denominator in the % purity calculation. 

Peaks corresponding to the sodium complexes of the desired Aβ were added to the pure Aβ peak 

to obtain the total peak area associated with desired product. 

2.1.3 Chemical disaggregation protocol 

It is well known that most amyloid peptides contain some amount of pre-existing aggregates 

which are capable of acting as seeds to accelerate the aggregation of the monomeric peptides, or 

as inhibitors to slow down spontaneous aggregation reaction [141, 142]. Hence detailed 

disaggregation methods have been developed by various groups over the years to completely 

remove preformed aggregates and also to achieve some degree of control and reproducibility 

of in vitro studies. In our group, we never attempt to save disaggregated samples for later use in 

experiments; rather, we always freshly disaggregated material on the day of the desired 

experiment. This leads to very good reproducibility and, we believe, results that best represent 

the behavior of monomeric peptide. 

For many applications (but see Chapter 4), we use a detailed chemical disaggregation 

protocol to obtain monomers of Aβ. The method has been described previously [44, 123]. 
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Briefly, about 1 mg lyophilized pure peptide powder was suspended in 1 ml TFA in a small glass 

vial. The vial was capped and sonicated in a water bath sonicator for 15 min. In a chemical fume 

hood, the peptide solution was dried under a gentle stream of nitrogen gas to generate a thin film 

on the walls of the vial. Then, the peptide was dissolved in 1 ml HFIP and incubated at 37 °C for 

1 hr. A small, measured aliquot of the HFIP solution was transferred into 1% TFA in water and 

chromatographed on HPLC to determine the approximate concentration of peptide in the HFIP 

solution; and hence the amount of peptide in the vial. Again the peptide solution was dried under 

a stream of nitrogen gas. Then, the residue was dissolved in 2 ml HFIP. This step is done to 

ensure that all of the TFA will be removed from the sample when the HFIP is removed. Based on 

the HPLC determination of the amount of peptide in the sample, aliquots were taken into glass 

tubes at 0.25 mg per tube. HFIP solution in the tubes was evaporated under a stream of nitrogen 

again. Immediately, the peptide was dried under vacuum using a lyophilizer for 60 min to ensure 

that all of the TFA and HFIP had been removed from the peptide. Slowly, 0.5 ml fresh 2 

mM NaOH was added per tube and was allowed to stand for 5 min undisturbed before mixing it 

gently to dissolve the film and then 0.5 ml 2× PBS with 0.1% sodium azide was added per tube. 

The peptide was centrifuged at 436,000 x g overnight at 4 °C in an ultracentrifuge in the case of 

Aβ40 peptide and for only 1 hr in the case of all other longer Aβ peptides. The peptide solution 

supernatant (~60-70%) was carefully removed from the centrifuge tubes. The solutions were kept 

at 4 °C while determining the Aβ concentrations using the HPLC assay (see below), before 

adjusting the concentrations to the start the experiment.  The use of azide in the PBS is to 

discourage bacterial growth during the sometimes very long aggregation reaction time courses.  

However, the azide is left out when preparing aggregates for FTIR analysis. 
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2.1.4 Peptide disaggregation through Size exclusion chromatography 

We found that the chemical disaggregation protocol which our lab has been using for Aβ40 

peptides was not ideal for longer Aβ lengths, since the method used sometimes influenced the 

reaction kinetics and the final morphology of the aggregates (Chapter 4). To obtain 

disaggregated peptide that behaved more ideally, we used a recently developed approach of 

isolating fresh monomer by size exclusion chromatography (SEC) from peptide freshly dissolved 

in a strong denaturing solvent like guanidine hydrochloride (Gdn-HCl) solution [143]. SEC was 

carried out on a Superdex 200 10/300 column (GE Health Sciences) equilibrated in PBS on an 

Agilent 1200 isocratic HPLC system with a flow rate of 0.5 mL/min and elution monitored at 

215 nm. Purified, lyophilized peptides were dissolved in 8M Gdn-HCl, sonicated briefly (bath 

sonicator), injected into the SEC column, and the fractions collected. Generally, separate peaks 

were observed eluting at the positions of oligomers and monomers. The monomer fractions were 

immediately analyzed for Aβ concentration, pooled, adjusted to the desired concentration by 

adding 1X PBS, and immediately used in the desired experiment.  

2.1.5 Determination of starting monomer concentrations 

Peptide concentrations were determined using an Agilent analytical RP-HPLC system. 

Peptides were injected by the auto-sampler onto an ana l yt i ca l  Agilent C8 column and 

eluted using an acetonitrile buffer similar to the purification buffer B. The elution profile 

was monitored by absorbance at the A215nm detector channel and the area of the elution peak 

was determined using Agilent ChemStation software. The area under the curve was converted 

to peptide concentration using a standard curve that relates peptide masses to HPLC areas. 
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This curve is determined by using the extinction coefficient at 215 nm (calculated using the 

method described in [144]) to calculate peptide concentration for 4-5 samples using an   

absorbance spectrophotometer (Beckman Coulter DU800). These calibrated samples were 

then individually injected into RP-HPLC to obtain A215 peak area which was t h e n  plotted 

against the corresponding concentration determined by the absorbance value to form the 

standard curve.  Although Aβ peptides exhibit very similar standard curves, they are 

generally reproducibly different from each other. We therefore normally generate and use 

specific, separately determined standard curves for each chemically different peptide being 

studied.  

2.2 KINETIC ANALYSIS OF AGGREGATION 

2.2.1 Sedimentation assay 

The sedimentation assay was the predominant method of choice used to study the aggregation 

kinetics and other thermodynamic properties of the peptides studied in this work [123]. The 

advantage of this method is that it gives a completely unbiased report on the aggregation of a 

peptide, regardless of the kind of aggregates being formed. Briefly, the method consisted of 

taking aliquots from an ongoing reaction of Aβ at any particular time and centrifuging each at 

436,000 x g on a table top ultracentrifuge (Beckman Coulter Optima TLX) for 30 minutes and 

then carefully isolating 70% of the supernatant. The concentration of peptide in the supernatant 

is then determined by injection into the RP-HPLC (as described above). The area under the 

curve at 215 nm gives the exact amount of monomer present in the sample at that time point. 
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This is carried out typically in duplicates till the end of aggregation when there is no apparent 

change in monomer concentrations of aliquots taken ~ 24 hrs apart. This final monomer 

concentration represents the equilibrium concentration of the peptide in the forward reaction. 

2.2.2 Thioflavin T binding measurements 

One of the unique and characteristic features of amyloid aggregates is their ability to bind 

ThioflavinT (ThT), a dye which binds to most amyloid structures. The mechanism of binding 

of the aggregates to the dye is not understood structurally in great detail, however, it is 

generally accepted that ThT behaves as a molecular rotor and amyloid fibrils provide the ‘lock’ 

site for inhibiting the dye’s rotation when it is bound to the fibrils [145, 146]. This binding of 

the aggregates to the dye can be studied as a kinetic assay along with HPLC sedimentation 

assay to provide additional information on the properties of the aggregates along the 

aggregation pathway and also as a means to compare the structures of the final aggregates 

formed from various peptides. For example, as shown in Chapter 5, the detection of 

aggregates seen in the sedimentation assay, by measuring the amounts of monomer drop, which 

at the same time do not bind ThT, can point to the presence of non-β oligomers [147]. 

To perform the time course ThT binding experiment, an aliquot of an ongoing reaction 

was taken at any particular time, mixed with a standard excess of ThT (4 µl of 1.5 mM 

stock to give final concentration of 15 µM) and the fluorescence measured using a Jobin 

Spectrofluorimeter. Typically, aliquots of the reaction were chosen such that 1 µg of total Aβ 

peptide is present in the cuvette for ThT binding. The total volume during the measurement 

was adjusted to 400 µl using 1x PBS. The instrumental parameters are as follows (λex = 445 

nm; excitation slit width = 2 nm; λem = 489 nm; slit width = 4 nm). 
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The ThT binding can be quantified using the following method. First, the ThT 

fluorescence of a blank solution was determined. This was done by replacing the volume of 

aggregates taken with PBS solution. Next, this value was subtracted from the raw fluorescence 

values obtained from ThT binding per µg of Aβ at each time point. Next, the resulting ThT value was 

weight normalized to the amount of aggregates present at each time point. This was done by using the 

% aggregate (total Aβ - % monomers) obtained from the HPLC sedimentation assay. The resulting 

values were plotted as ThT absorbance units vs time similar to HPLC sedimentation curve.  

The ThT reading can also be used to detect the presence of oligomer present during the 

early part of the reaction. This can be done in at least two ways.  The first way is to simply 

compare the progress curves of the aggregation reaction as monitored by sedimentation and by 

ThT, plotted on the same graph.  If the ThT curve is not a simple mirror image of the plot of loss 

of monomer over time by sedimentation, it is an indication that there are intermediates with 

different ThT sensitivities.  The other way is to normalize both the time-dependent ThT data and 

the sedimentation data to 100%, then plot one versus the other for the reaction.  If this plot 

deviates from a straight line with a slope of 1, it is an indication of the presence of intermediates 

with different ThT binding/fluorescence along the reaction profile [147] (See Chapter 5). 

2.2.3 Dissociation reactions 

Dissociation reactions were initiated with end stage fibril reaction mixtures to look for the true 

equilibrium concentration value between monomers and fibrils [148]. This value known as 

critical concentration (Cr) is an important thermodynamic parameter of the aggregates [149]. 

To undergo dissociation reactions, an aliquot was removed from the completed reaction 

mixture (at the end of sedimentation kinetics curve), and diluted in 1x PBS.  (It is important to 
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use a reaction mixture and not a sample of isolated fibrils, since manipulating and storing 

fibrils can sometimes compromise their reversibility). The dilution was done such that the 

remaining monomer concentration was sufficiently below the apparent Cr value (based on the 

end-stage plateau monomer concentration from the forward reaction) to allow observation of an 

increase in monomer concentration as aggregates dissociate when the mixture returns to 

equilibrium. At the same time, the total amount of  peptide in the diluted reaction must be 

substantially greater than the Cr, sufficient to ensure that some fibrils will still be present at 

equilibrium. For example, if a forward reaction had a starting concentration of 10 μM, and 

appears to equilibrate at 1 μM of monomer in the fibril assembly reaction, a 5-fold dilution of a 

late time point will bring the monomer concentration to 0.2 μM (well below the expected Cr), 

while maintaining a total peptide concentration of 2 μM in the reaction mixture, ensuring a 

clear store of aggregates at equilibrium. The diluted sample was incubated at 37 °C and 

aliquots were taken for concentration of monomers using HPLC sedimentation assay as 

described previously. 

 

2.2.4 Seeding experiments 

Seeded fibril elongation reaction can be used as an assay to explore amyloid fibril structure by 

looking at the compatibility of one amyloidogenic peptide with another in a “cross-seeding” 

reaction. For this assay, the final fibrils acting as seeds were isolated from spontaneous growth 

reactions by centrifugation at 436,000 x g for 30 min, and washed with one or more cycles of 

suspension of the pellet in the eventual elongation buffer (PBS, pH 7.4) followed by isolation by 

centrifugation. Fibrils were then sonicated in suspension using a microprobe sonicator [Sonic 
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Dismembrator Model 500; Fisher Scientific (20 kHz)], and the fibril weight concentrations were 

determined by dissolving an aliquot of the fibril suspension in formic acid followed by an HPLC 

assay as described previously. Aβ monomer was disaggregated, dissolved in PBS, and sonicated 

fibrils of the different polymorphic seeds added to an exact final concentration in the range of 5-

10% (w/w). Reactions were carried out at 37 °C without agitation in PBS and followed by the 

sedimentation assay. In some cases, ThT measurements were also carried out.   

2.3 AGGREGATE SIZE AND SHAPE STUDIES 

2.3.1 Dynamic Light Scattering 

Dynamic light scattering measurements (DLS) were done using the DynaPro plate reader 

(Wyatt technology) equipped with a temperature control. DLS was mainly used to follow the 

time-course of aggregation and to detect for the presence of oligomers followed by their size 

characterization. Aliquots at specific time-intervals were taken (~80 µl) and were transferred 

into a fresh well of a 384-well microplate and the scattering data was recorded. Typically, the 

measurements were performed at 37 ○C with an acquisition time of 5 secs/scan and 10 

acquisitions/sample. In each of the experiments, the software displays the average of 10 

acquisitions and this representative data is selected for analysis. In most cases, only 

acquisitions which have good correlation and decay were averaged for analysis and other 

acquisitions were neglected. 
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2.3.2 Aggregate morphologies by Electron microscopy 

Aggregate morphologies at different stages of aggregation were studied by transmission 

electron microscopy. 10 µl of an on-going reaction of any particular peptide of interest was 

taken at defined time-intervals and transferred onto a freshly glow-discharged carbon-coated 

grid, adsorbed for 2 minutes, washed twice by adding 10 µl of deionized water followed by 

blotting, then 10 µl of 1% (w/v) uranyl acetate was added. In order for optimal staining, the 

uranyl acetate was removed by blotting within 30 secs and the grid was washed with deionized 

water again. The grids thus prepared were either imaged immediately or were stored for 

visualization later at room temperature. Grids were imaged on a Tecnai T12 microscope (FEI) 

operating at 120kV and a magnification of 30,000X. The microscope was equipped with an 

Ultrascan 1000 CCD camera (Gatan) with a post-column magnification of 1.4X. 

2.4 SECONDARY STRUCTURE ANALYSIS OF AGGREGATES 

2.4.1 Hydrogen Deuterium exchange Mass spectrometry 

Significant insights into fibril structure could be derived from knowledge of the pattern 

and extent of hydrogen bonding within the fibril [150]. Recently HX-MS and HX-NMR studies 

have been described for amyloid systems like, β-2 microglobulin [151], transthyretin [152], Aβ 

[115, 153] and prion proteins [154, 155]. Our lab has developed the application of HX-MS 

technique to the analysis of amyloid fibrils of full length Aβ40 to reveal those residues which are 

involved in highly protected H-bonded structure [108, 115, 125, 150, 153, 156]. 
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2.4.1.1 In line analysis for global protection values 

 

The detailed description of the global HX-MS experiment has been described previously 

[156]. The brief methodology is presented here: 

Mature amyloid fibrils are isolated by centrifugation at 20,800 x g for 30 min in a 

bench‐top centrifuge. Check for good amount of pellet formation. The resulting fibril pellet is 

decanted and washed with 200 µl D2O solution, followed by centrifugation at 20,800 x g for 30 

min. Centrifugation at very high g‐forces is not a viable option because ultra-centrifuged pellets 

are difficult to quickly re-suspend for the H/D exchange measurement. Use gel loading tips to 

remove final traces of any protonated solvent without disturbing the pellet. Again, the aggregates 

are re-suspended in 60-70 µl of D2O solution and left at RT. This marks the start of the exchange 

reaction. The solution was kept overnight and the HX exchange was analyzed after 16-20 hrs of 

D2O incubation. After this, the aliquots from the exchanging suspension can be infused into one 

arm of the mixing T-tube using a syringe pump (Figure 2-1). The exchange reaction of 

deuterium into fibrils reaches completion after about 20 hrs; hence, this time of exchange is 

typically selected for the samples analyzed in this thesis.  

H-X exchange measurements require identification of a processing solvent that quickly 

dissolves fibrils within the mixing T, quenches exchange, and is MS‐compatible for efficient 

ionization [156]. Using this set of constraints (some of which may be instrument dependent), we 

used a processing solvent that is a mixture of 1:1 water: acetonitrile with 0.5% formic acid, with 

pH ~2.5 which is optimal to dissolve the highest possible concentration of fibrils in the mixing T 

and in the capillary prior to ESI. The flow rates used for infusing sample (0.5 μl/min) and solvent 

(9 μl/min) into the mixing T serve to dilute the sample by a factor of ~20 and establish a ~10sec 
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dwell time from mixing to spray. Reduced dissolution temperatures can also be explored to 

minimize exchange further (see below).   

 

 

Figure 2-1: Schematic of the experimental setup of the hydrogen/deuterium exchange-mass 
spectrometry (MS) [156] 
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2.4.1.2 Inline pepsin digestion 

Segmental analysis was done two different ways.  First, as shown previously with the help of on-

line pepsinolysis approach using the T-tube system shown earlier [125]. The fibrils in D2O were 

loaded onto one arm of the T-tube just like during global exchange experiment and the other arm 

contains quenching solution along with pepsin (0.5 mg/ml in 0.5% formic acid; 9 μl/min) and 

passed directly into the MS instrument.  

 

2.4.1.3 Offline pepsin digestion using pepsin agarose beads 

In the second approach to segmental analysis, electrospray ionization HX-MS data of the C-

terminal pepsin fragment was obtained using a modified solubilization protocol using Gdn-HCl 

and a modified digestion protocol using pepsin-agarose beads (Sigma Aldrich) [155]. Briefly, the 

aggregates were suspended in D2O for 16-20 hrs just like in the case of global exchange analysis. 

Then the aggregates in  D2O were spun down (20,800 x g, 30 min) and the pellet was dissolved 

in 20 µl of ice cold solution of 8M Gdn-HCl + 0.1% formic acid for 10 secs to undergo rapid 

dissolution. The dissolution and digestion were carried out at 4 °C to slow down artifactual 

exchange. The sample was quickly vortexed and 100 µl of pepsin agarose in 0.1% cold formic 

acid was added for 10 secs. The sample was spun down quickly (14,000 rpm, 30 secs) and the 

supernatant was analyzed by LC-MS at 4 °C to obtain the ESI-MS pattern for the aggregates. As 

controls, we also performed the C-terminal digestions of fully protonated and fully deuterated 

monomers.  

 

 33 



2.4.2 FTIR spectroscopy 

 

FTIR of the aggregates were performed by taking a large volume of aliquots of the final 

aggregates (~500 µl) and spinning down at 20,800 x g for 30 mins.  Aggregates were isolated, 

washed with PBS and then re-dissolved in ~5 µl 1x PBS to get a highly concentrated sludge. 

Spectra were acquired by then placing this aggregate sludge between two polished CaF2 windows 

on an ABB Bomem FTIR instrument by using the in-built data acquisition module, BioCell 

(BioTools, Inc.). The data were acquired by averaging over 400 scans, at a scan rate of 4 cm-1, at 

room temperature. The data were also corrected for residual buffer absorption. The resulting 

spectra was deconvoluted to a second derivative spectrum and analyzed for the presence of 

various secondary structures. 

2.4.3 Circular dichroism Spectroscopy 

Circular dichroism spectroscopy was used to determine the secondary structure of some 

aggregates used in this study (See Chapter 5). The aggregates obtained were typically in PBS 

buffer (pH 7.4). Far-UV CD spectra were recorded using a Jasco J-810 spectropolarimeter. 

Spectra were collected in a 0.1 mm cuvette with a resolution of 0.5 nm using at a spectral rate 

of 100 nm min-1. Spectra were collected and averaged over five scans and corrected for the 

appropriate buffer. 
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3.0  IMPROVED CHEMICAL SYNTHESIS OF Aβ PEPTIDES USING FLANKING C-

TERMINAL CHARGED RESIDUES 

[This chapter has text, figures and tables reprinted/adapted with permission from the following 

published journal paper [157]: Chemuru, S., Kodali, R. and Wetzel, R. “Improved chemical 

synthesis of hydrophobic Aβ peptides using addition of C-terminal lysines later removed by 

carboxypeptidase B”, Biopolymers. 2014. 102 (2) 2014; p 206-221. In this chapter, I had help 

from R.K. in the collection of TEM and FTIR data and I.B. in the collection of proton-NMR data 

used in some purity analysis]  

3.1 OVERVIEW 

Owing to the high hydrophobicity of Aβ and many other amyloidogenic peptides, they introduce 

significant challenges to obtain good yield and purity during solid phase chemical synthesis. This 

is mainly due to significant aggregation during synthesis and purification. Chemical synthesis of 

Aβ40 is not very challenging, but addition of C-terminal hydrophobic residues to generate Aβ 

molecules of longer lengths create a much more difficult synthesis resulting in low yields and 

purities of the resulting peptides.  In this chapter, we describe a new method of reversible 

addition of C-terminal flanking charged residues to Aβ peptides to significantly improve their 
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synthetic quality, yield and purity. We linked 2-6 Lys residues to the Aβ peptide’s C-terminus 

through peptide bonds during the synthesis.  These extra charged residues are then removed post-

purification using an immobilized carboxypeptidase B (CPB) column.  With this method, we 

obtained both Aβ42 and Aβ46 peptides of much higher purity than those obtained without Lys 

addition.  This approach of reversible Lys addition is applicable as a generally useful method for 

making difficult hydrophobic peptides which otherwise cause problems during synthesis.  

3.2 INTRODUCTION 

3.2.1 Background  

Our lab has historically looked at the aggregation kinetics and biophysical properties of 

aggregates formed from Aβ40 peptides and their mutants which were synthesized using solid 

phase peptide synthesis obtained in small scale crude form from Keck Biotechnology Center. 

But, when we started working with chemically synthesized crude Fmoc synthesis of Aβ42, we 

experienced difficulties during purification of the crude peptide using analytical HPLC column. 

The purification using the analytical C-3 resin yielded low yields and very low purities (Figure 

3-1). The HPLC chromatogram showed a broad profile with no obvious peak for the desired pure 

product. MS analysis of the purest fraction only yielded ~65% purity and significant amount of 

other deletion impurities. These impurities were not separated even after repeated purification 

runs and with narrower gradients.  Hence, it was not possible to work with this material for our 

studies and we started exploring options to improve the synthesis and purity of Aβ42 and other 

longer biologically relevant variants of Aβ. One of the reasons for this low purity of longer Aβ 
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derivatives was due to their higher hydrophobicity and β-branched amino acid content at the end 

of the sequence which leads to problems during synthesis and also during their purification. 

 

Figure 3-1: RP-HPLC purification and LC-MS profile of crude Aβ42. 

 RP-HPLC purificatation of Fmoc synthesis of crude Aβ42 using a preparative column (Agilent SB-C3) and 30-60% 
gradient of acetonitrile in water. LC-MS spectra of the purest fraction (blue bar) is shown here which shows 
significant amount of impurity peaks (red arrow).  

 

3.2.2 Problems due to aggregation during synthesis 

Most of the amyloidogenic peptides fall under the category of ‘difficult sequence’ containing 

peptides and solid-phase peptide synthesis of these ‘difficult sequence’-containing peptides is 

very problematic and challenging for a synthetic chemist [158-160]. Due to the highly 

hydrophobic nature of these peptides, they often result in low yields during synthesis and also in 

very low purities [159, 161-163]. Some examples of these difficult-to-synthesize proteins are 

amyloid forming peptides like amyloid-β (Aβ) [159], α-synuclein [164, 165], and acyl carrier 

protein (ACP)65-74 and also other hydrophobic trans-membrane segments of proteins, like 

glycophorin A, epidermal growth factor (EGFR) and M2 ion channel [166]. The hydrophobic 
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stretches present in these peptides appear to promote aggregation during synthesis and 

purification.  

In the case of AD research, it is imperative to obtain high quality Aβ peptides and their 

analogs for in vitro research for performing biophysical, structural and toxicity studies. Because 

of the synthetic challenges present in making longer versions of Aβ, longer than Aβ42, even 

though these peptides are known to be present in the AD brain and affect the disease pathology, 

their biophysical properties have not been well-characterized. This is mainly due to the synthetic 

challenges associated in working with highly pure versions of these peptide analogs.  

The difficulty in solid-phase synthesis of amyloidogenic peptides is attributed to 

intermolecular hydrophobic interactions between resin-bound peptide chains and between the 

peptide and the resin itself resulting in poor solvation and formation of extended structures 

during synthesis [167, 168]. This aggregation of the growing peptide chain on the resin results in 

steric hindrance of the growing N-terminus leading to a decrease in the extents of de-protection 

in each cycle and hence to incomplete repetitive coupling reactions [169]. The aggregation of 

these hydrophobic peptides has been characterized directly on resin-bound peptides by various 

techniques, such as ssNMR [167, 170], FTIR [171] and Raman spectroscopy [172]. This 

aggregation is clearly a serious problem in solid-phase synthesis since it leads to lower yields 

and difficulties in purifying the peptides present in low amounts. Impure amino acid deletion 

sequences of varying lengths but with similar properties accumulate during the synthesis and are 

difficult to separate from the target peptide. The resulting decrease in the purity of the crude 

peptide, as well as the intrinsically poor solubility of these hydrophobic sequences, also often 

results in subsequent difficulties in purification [163]. These sometimes hidden impurities can 

have consequences for the properties of the synthetic product that are significantly amplified 
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compared to the purity level.  For example, it has been shown previously that even small 

amounts of certain impurities in synthetic Aβ peptide can radically reduce Aβ aggregation and 

neurotoxicity [173]. 

3.2.3 Methods to improve chemical synthesis  

Several attempts have been made to improve the Fmoc solid phase synthesis of such 

hydrophobic peptides. Some of the approaches include the use of solvent additives to provide 

optimal coupling agents, like anisole to prevent aggregation [174-176]; improved de-protection 

agents to aid in C-terminal synthesis [177]; the use of better coupling reagents developed 

recently, like HATU [175, 178]; and other organic solvent additives which prevent aggregation 

during synthesis [176, 179, 180]. Other techniques that have been explored include microwave 

assisted synthesis [181, 182] and the use of a more hydrophilic PEG based copolymer resin 

[183].  Some approaches specifically target the peptide backbone.  These include photo-triggered 

interruption of amide bond formation with ester bonds (o-acyl isopeptide) [184-186], 

introduction of pseudoproline [187], which acts as a β-sheet breaker to prevent aggregation 

during coupling, and the use of other chemical moieties to act as backbone protecting 

intermediates [188, 189]. Most of these techniques are useful in producing much higher yields of 

hydrophobic peptides but are also, to varying degrees, cumbersome and expensive to undertake 

on a routine basis.  

Another approach to improve synthesis is to alter side chains that improve solubility on 

the resin and during purification, in such a way that the modification can be reversed after 

purification.  For example, oxidation of Met35 was employed to suppress aggregation of resin 

bound Aβ42 during synthesis, followed by reduction after purification [190]. Reversible 
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solubilization has also been accomplished by adding, during the synthesis, a cationic C-terminus 

separated from the peptide of interest by a labile non-peptide bond, which can either be removed 

to directly generate the peptide of interest [191], or can be incorporated into a fragment 

condensation approach to make longer polypeptides [192-194]. Data on the efficiencies of 

cationic tail removal are generally not reported, however.  In fact, in some cases, the reversible 

cationic tail approach was determined to not be beneficial due to relatively low yields [195]. 

In this Chapter, we introduce an alternative strategy for the reversible cationic tail 

approach in an effort to improve the synthesis of sequence variants of Aβ peptide. The method 

involves direct addition of C-terminal Lys residues during solid phase synthesis through only 

normal peptide bonds, and subsequent removal of the Lys tail using carboxypeptidase B enzyme 

(CPB) immobilized onto agarose beads. CPB is an exopeptidase and cleaves one residue at a 

time from the C-terminus and is highly specific for basic amino acids. We show that the method 

provides superior yields and purities of the human brain peptides Aβ42 and Aβ46.  

3.3 METHODS 

3.3.1 Peptides used 

Wild type Aβ42 and Aβ46 peptides used in this study, without and with C-terminal lysines (Table 

3-1), were synthesized at the Keck Biotechnology Resource Laboratory using standard Fmoc 

solid phase synthesis methodology using a PTI Symphony peptide synthesizer. All the amino 

acids during synthesis were double coupled with a four-fold amino acid excess using HBTU 

activator in DMF solution. The resins used were Life Technologies Peg-PS pre-loaded low load 
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resins carrying the appropriate C-terminal amino acid. Recombinant Aβ42 used in the study for 

comparison was purchased from rPeptide.  

 

Table 3-1: Peptide sequences described in this work 

 

3.3.2 Preparation of CPB-agarose column 

CPB enzyme, pre-treated with PMSF to remove any contaminating serine protease activity, was 

purchased from Worthington Biochemicals (Catalog No: LS001724). Very High Density 

Glyoxal Beads (6BCL), containing 6% agarose beads conjugated with aldehyde groups reactive 

with protein primary amino groups, were obtained from Agarose Bead Technologies.  

Crosslinking of CPB to the glyoxal beads was performed according to the modification of the 

procedure previously described by Blanco et al [196]. The aldehyde groups in the resin react 

with the exposed primary amines in the enzyme. This results, after reduction with a reducing 

agent, in a stable and reusable resin for our studies. The various steps involved during cross-

linking are briefly described below. 
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Approximately, 10 mg CPB was dissolved in 10 ml of 0.1 M sodium bicarbonate buffer 

at pH 10.0. The ligand solution was then mixed with 2 ml Glyoxal Agarose Beads and stirred 

gently for 5-6 hrs at 4 °C until the enzyme activity bound to the beads remained constant, as 

monitored using the Hippuryl-L-Arginine (Hip-L-Arg) assay. Hip-L-Arg is a well-known CPB 

substrate and we measured its hydrolysis by determining the increase in absorbance at 254 nm 

upon addition of the enzyme. Aliquots of the enzyme-bead mix were taken every hour for the 

substrate assay and absorbance at 254 nm was measured. Once there is no change in the 

immobilized CPB activity over the period of an hour, 20 mg of a reducing agent, sodium 

borohydride, was added to the suspension and stirred for 30 mins at room temperature in an open 

container in the chemical fume hood to allow hydrogen gas to escape. After the reaction, the 

CPB-agarose beads were loaded onto a Bio-rad Econo-column and washed with 10 mls of pH 

7.5 phosphate buffer.  The resin was further washed with Tris.HCl buffered saline (TBS), pH 

9.0, then the same buffer containing 20% ethanol. The columns were stored at 4 °C until they 

were used for lysine cleavage. These columns were stable for over a month and were reused for 

5-6 times. The enzyme activity was monitored occasionally to confirm stability by taking 

aliquots and performing the substrate assay. 

3.3.3 Calculation of purity percent by 1H-NMR 

As a complementary method to analyze purity along with MS (see Chapter 2), in some cases 

purity was also assessed by integration of NMR spectra using the published procedure of 

Zagorski [159]. Thus, proton-NMR spectra (900 MHz) of purified pools of Aβ42 peptides after 

the RP-HPLC step were obtained in TFA-d solution (0.5 ml). Peaks corresponding to the His-

2H, aromatic and αH protons were integrated. Integrals were scaled to the three His-2H protons 
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at 8.56 ppm and the total α-H protons relative to the His-2H protons were calculated.  This value 

was compared to the theoretical number of α-H protons to determine purity [159]. In the case of 

Aβ42, the total theoretical number of α-Hs were 52 (including Gly (6), β-CH2-Ser (4)). 

3.3.4 Optimized method to remove C-terminal Lys residues 

The standard protocol is summarized in Figure 3-2. The CPB-agarose column described above 

was equilibrated to room temperature and washed with at least five column volumes of TBS 

buffer. HPLC purification pool (adjusted to pH 7.5 in 1X PBS buffer) containing purified Aβ-

Lys tail peptide (typically 2-3 mls of ~ 1 mg/ml) was flowed over the column bed at 

approximately 0.2 ml/min flowrate, adjusting the flow rate with the column stopcock.  The 

column was then washed with 2 ml TBS.  One ml fractions from both the peptide load and wash 

were collected.  Fractions were analyzed by LC-MS to identify peptide-containing fractions and 

confirm complete removal of Lys residues.  If Lys removal was found to be incomplete (this 

only happened with the K6 tail peptide), the column flow-through was passed through the 

column again. LC-MS analysis was done to check for the presence of any contaminating enzyme 

activity.  (Commercially available CPB sometimes has contaminating carboxypeptidase A 

(CPA), trypsin, chymotrypsin activity which would cleave Aβ into impure fragments). Peptide 

containing fractions were pooled and the pool adjusted to pH 2.0 using formic acid, loaded onto 

the RP-HPLC column, and re-purified using the standard gradient.  Fractions were checked for 

purity, pooled, and lyophilized.  After use, columns were washed with 20% ethanol in TBS and 

stored at 4 °C. 
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Figure 3-2: Flowchart of the general methodology of Lys removal by immobilized CPB-agarose 
column 

3.4 RESULTS 

3.4.1 Optimization of conditions for enzymatic removal of lysines 

Using very high density glyoxal beads, we obtained almost 50-60 % immobilization of the CPB 

used. In our studies, we chose to maximize column loading efficiency, to make sure the lysine 

removal occurs in the quickest possible manner without any aggregation of the reduced solubility 

product happening on the beads. We used highly purified CPB obtained from Worthington 

Biochemical Corporation as we found out that this enzyme had very little activity of other 

contaminating enzymes (data not shown).  The enzyme is pre-treated with a serine protease 

inhibitor (PMSF) which can inhibit the action of trypsin and chymotrypsin [197]. Immobilized 
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CPB made with this product was also free of any measureable CPA levels and required no 

further PMSF treatment over multiple uses of the same column. We also tested for low levels of 

any contaminating enzyme that might introduce fragmentation by running a 1.0 mg/ml solution 

of Aβ42K3 peptide onto the column prepared with 2x density of CPB per milliliter of resin, 

stopping flow for 5 mins, then resuming flow.  Analysis of this flow through product showed no 

contaminating peaks due to contaminating enzymes. 

During method optimization, we used the Hip-L-Arg substrate assay to characterize CPB-

agarose activity over a broad pH range of 5 - 10 and also a temperature range 4 - 37 °C (data not 

shown), and determined the best conditions to be pH 9.0 and room temperature (RT). We also 

found that the covalently immobilized CPB was excellent over a period of 30 days, not 

exhibiting any detectible loss after storage at 4 °C. We found that CPB activity was unchanged 

when peptide substrates were dissolved in the HPLC elution buffer (40% acetonitrile v/v in 

H2O), after adjusting pH to 9.0. This important result told us that we can remove Lys residues by 

directly treating the HPLC pool from purification of the Lys-tail peptide.  We found that when 

we used the same column to treat an Aβ42 peptide followed by an Aβ46 peptide, we did not detect 

any Aβ42 carryover into the Aβ46 product.  This suggested that even though the peptides we 

processed were highly hydrophobic, it is possible to use the same column for treatment of 

different peptides. However, since the columns are inexpensive and simple to prepare, one could 

eliminate any concern about possible carryover by using a new column packing for each 

synthesis or each different peptide. In principle, the HPLC purification of peptides after Lys-tail 

removal may not be required.  However, it seemed possible that additional contaminants might 

be removed by doing this, and recoveries in the second HPLC purification were excellent (Table 
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3-2).  Typically we obtained yields for the combined CPB-agarose and subsequent RP-HPLC 

purification steps of about 75% (Table 3-2). 

 

Table 3-2: Recoveries of the peptide Aβ42 at each step via Aβ42K3 lysine removal 

 

3.4.2 Lysine addition to Aβ42 improves synthetic efficiency and RP-HPLC purification 

profile 

The goal for adding C-terminal charged residues was to improve solubility of the peptide during 

purification. To check if Lys addition, improved the chemical synthesis of Fmoc synthesis 

versions of Aβ42 peptides, we looked at the RP-HPLC purification profiles of the crude peptides 

(Figure 3-3).  

First, we analyzed the RP-HPLC chromatograms of Aβ42 synthesized without C-terminal 

Lys residues.  The RP-HPLC chromatogram of the initial purification of Fmoc-synthesized Aβ42 

peptides made without any C-terminal Lys residues (Figure 3-3 A, left panel) is typical for Aβ42 

and its analogs synthesized using this method. The A214-monitored chromatogram shows a broad 

profile with no obvious peak for the desired product. 
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Figure 3-3: Addition of lysines to C-terminus of Aβ42 improves reversed phase chromatography 
purification. RP-HPLC purification profiles of the various crude peptides synthesized using Fmoc chemistry. 
A) Aβ42 at RT column temperature; B) Aβ42 at column temperature of 65 °C; C) Aβ42-K2 at RT column; and D) 
Aβ42–K3 at RT column. The shaded region represents the fractions which were of highest purity and the electrospray 
mass spectra of each pool are shown in the corresponding right panel. 
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MS analysis of the purest fraction revealed a large number of significant small peaks 

which proves that this sample is highly impure (Figure 3-3 A; right panel).  By closely 

examining the m/z peaks of the +5 charge state cluster, we determined that the purest fraction 

(grey bar) from this purification study was only ~ 65% pure (Table 3-3). Many of the major 

impurity peaks in this fraction correspond to Aβ deletion peptides, mainly due the expected 

aggregation of the peptide on the resin during synthesis.   

 

 

Figure 3-4: Electrospray mass spectrograms of +5 charge state of purified Aβ42 peptides. 
a) Aβ42 synthesized using Fmoc chemistry and purified by 65°C RP-HPLC column; b) Aβ42 obtained from 

Aβ42-K2 as described; c) Aβ42 obtained by recombinant methods (rPeptide). 
 

The major impurity peaks correspond to losses of single Ala (Mobs 4441.7 Da), Gly (Mobs 

4455.9 Da) or Ser (Mobs 4426.5 Da) residues from the wild type Aβ42 peptide (Mobs 4513.2 Da).  
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All these impurities co-elute with the pure Aβ42 under our 25 °C RP-HPLC conditions.  Not only 

is the purity of the most pure fraction quite low, the amount of authentic wild type Aβ contained 

in this fraction represents a synthetic yield of only 2.7% (Table 3-3).  Presumably this yield 

would drop to lower levels if further purification efforts were undertaken to get the purity to an 

acceptable level. 

In some cases it is possible to improve the purification of synthetic peptides by operating 

the RP-HPLC column at higher temperatures [198, 199].  Therefore, we subjected the same 

crude Aβ42 peptide reaction product to RP-HPLC chromatography with the column equilibrated 

to 65° C. The chromatogram obtained (Figure 3-3 B; left panel) exhibits a dominant peak, 

which was confirmed to be Aβ42 by MS. The MS spectrum of the purification pool (Figure 3-3 

B, right panel; Figure 3-4 A) exhibits higher purity (80.6 %) than the 25 °C chromatography 

fraction (Table 3-3).  We confirmed this purity level by determining purity using an alternative 

method, the proton NMR integration method of Zagorski ([159])  This method gave a purity of 

the 65 °C purified peptide of 82.3 % (Table 3-3), in very good agreement with the MS method.  

The amount of Aβ42 in the purified pool corresponds to a synthetic yield of 5.4 %. The purity of 

~ 80 % may be sufficient for some studies, but it is not optimal and clearly not as high as the 

purities of 90-97 % for commercial recombinant Aβ42 we determined using the MS (Figure 3-4 

C) and NMR methods (Table 3-3). 

We next investigated the degree to which Lys-tails improved the overall quality of the 

synthetic product, and the percent yields, in Aβ42 syntheses.  We observed a marked 

improvement in the chromatographic separations of both Aβ42-K2 (Figure 3-3 C) and Aβ42-K3 

(Figure 3-3 D), each of which exhibited a major peak in the 25 °C HPLC purification, similar to 

what is observed in the 65 °C purification of the Aβ42 product (Figure 3-3 B). 
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Table 3-3: Data summary for Aβ syntheses and aggregation reactionsa 

Final 

peptide 

Initial 

peptide 

Column 

temp, °C 

% purity 

(MS) 

% purity 

(NMR) 

Yield 

(overall) 

Hours to 

50% agg. 

Cr 

(µM) 

Aβ42 Aβ42
b n/a 96.9 90.0 N/A 6.0 0.07 

Aβ42 Aβ42
c n/a 91.5 n.d. N/A 9.0 0.115 

Aβ42 Aβ42 25 64.9 n.d. 2.7 26 0.24 

Aβ42 Aβ42 65 80.6 82.3 5.4 17 0.16 

Aβ42 Aβ42K2 25 89.7 n.d. 6.2 n.d. n.d. 

Aβ42 Aβ42K3 25 90.2 87.2 7.8 9.5 0.13 

Aβ46 Aβ46 25 69.4 n.d. 1.0 n.d. n.d. 

Aβ46 Aβ46 65 74.6 n.d. 2.0 n.d. n.d. 

Aβ46 Aβ46K3 25 88.4 n.d. 5.6 n.d. n.d. 

Aβ46 Aβ46K6 25 91.0 n.d. 4.7 n.d. n.d. 

 aAll peptides from Keck small scale Fmoc synthesis unless otherwise indicated; bproduced by recombinant DNA 
expression and purification at rPeptide; cfrom large scale t-Boc synthesis with purification at Keck; n.d. = not 
determined; n/a = not applicable. 
 

Furthermore, the purities of the peptides purified at 25 °C from the crude reaction 

mixtures (actually determined after Lys removal; Figure 3-4 B) were superior to synthetic Aβ42 

purified both at 25 °C and at 65 °C (Table 3-3). The yields of these Lys-tail peptides in the 

purified pools were ~ 11 % for both Aβ42-K2 (not shown) and Aβ42-K3 (Table 3-2).  These 

substantially higher yields suggest that, as expected, the Lys tails improve not only the 

purification of the reaction product but also the quality of the product.  
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3.4.3 Lysine removal using immobilized enzyme 

Optimized CPB-agarose conditions (see 3.3.4) were used to remove the Lys tails from the Aβ42 

peptides described above. After Lys removal and re-purification by RP-HPLC, the purities of the 

final Aβ42 products were in the 90% range (Table 3-3). This purity level is approaching that of 

recombinant Aβ42 (90% vs. 97% by MS, 87% vs. 90% by NMR; Table 3-3, Figure 3-4 C).  

Furthermore, the final percent yields Aβ42 after Lys removal and re-purification by RP-HPLC 

were in the 6-8 % range, significantly better than the yields obtained for Aβ42 synthesized 

without C-terminal Lys tails (Table 3-3). Considering purity as well as synthetic yield, the 

approach of reversible addition of C-terminal Lys residues followed by 25 °C HPLC purification 

and CPB removal is even superior to direct synthesis of Aβ42 alone followed by 65 °C 

chromatography (Table 3-3).   

3.4.4 Lysine addition to the C-terminus of Aβ46 peptide 

Having validated the reversible Lys-tail method on Aβ42, we now turned the method to the 

peptide Aβ46, which is expected to be much more hydrophobic, aggregation prone, and difficult 

to synthesize and purify due to the added C-terminal Thr-Val-Ile-Val sequence (Table 3-1). In 

fact, we confirmed that conventional methods give very poor yields of this peptide, with poor 

final purities.  The RP-HPLC chromatogram of the purification of the crude Fmoc synthesized 

Aβ46 at 25 °C (Figure 3-5 A) exhibits a broad profile with a single fraction containing a small 

amount of partially pure peptide (Table 3-3).  The LC-MS spectrum of the purified fraction (not 

shown) revealed various impurities which co-elute with the pure Aβ46 peptide.   
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Figure 3-5: Addition of lysines to C-terminus of Aβ46 improves synthetic purity. 
RP-HPLC purification profiles of the various crude peptides synthesized using Fmoc chemistry. A) Crude Aβ46 
purified at RT column; B) Crude Aβ46 purified at column temperature of 65 °C; C) Aβ46-K3 purified at RT column; 
and D) Aβ46–K6 purified at RT column.  The shaded region represents the fractions which were of highest purity and 
the electrospray mass spectra of each pool are shown in the corresponding right panel. 
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The yield (1%) and purity (69%) of Aβ46 obtained in this product pool were quite low (Table 

3-3).  Running the purification with a column temperature to 65 °C gave a purified pool with 

only modest improvements in yield (2 %) and purity (75 %) (Table 3-3; Figure 3-5 B and 

Figure 3-6 A). Hence, as expected from its sequence, the Aβ46 peptide behaves more poorly than 

the Aβ42 peptide when directly synthesized by Fmoc chemistry. 

 

Figure 3-6: Electrospray mass spectrograms of +6 charge state of purified Aβ46 peptides. 
A) Aβ46 synthesized using Fmoc chemistry and purified by 65 °C RP-HPLC column; B) Aβ46 obtained 

from Aβ46-K3 and C) from Aβ46-K6 as described. 
 

We found, however, that addition of C-terminal lysines to the Aβ46 peptide afforded a 

marked improvement in product purity and yield of the Fmoc synthesized peptide.  RP-HPLC 

chromatography of the crude synthetic product of both an Aβ46-K3 and Aβ46-K6 peptide 
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exhibited dominant product peaks in the RP-HPLC purification, in contrast with the broad, 

featureless profile of the peptide without added Lys residues (Figure 3-5). After removal of C-

terminal Lys residues, the final yields of Aβ46 were in the range of 4.6 – 5.7 %, and the MS-

determined purities were in the range of 88 – 91 % (Table 3-3).  This is in contrast to yields in 

the 1 – 2 % range, and purities in the 69 – 75 % range, for Aβ46 synthesized without a Lys-tail, 

even using 65 °C HPLC.   

3.4.5 Analysis of source of the benefits of the Lys-tail method 

Although the reversible addition of Lys residues was envisioned to mainly provide the benefit of 

improved chromatographic behavior of the initial synthetic product, we had the impression that 

there might also be a significant benefit in terms of the initial total synthetic yield. To put this 

impression on a firm basis, we quantified the contribution of the added Lys residues to both 

aspects of solid-phase synthesis of Aβ42 and Aβ46 by carrying out small scale purifications at 65 

°C and analyzing the chromatography fractions (2.1.2) (Figure 3-7). The results clearly show 

that the addition of C-terminal Lys residues benefits the total synthetic yield and the purification 

yield separately, by substantial margins in the range of 50% each. For example, while the total 

amount of Aβ42 present in the crude reaction mixture represents about a 15% synthetic yield 

compared with theoretical, the total amount of Aβ42-K2 corresponds to a 23% synthetic yield. 

This gives an improvement of about 52% in synthetic yield (Table 3-4). Similarly, the added 

lysine residues clearly aid purification. Thus, based on the total amount of Aβ42 generated in the 

synthesis, only 18.6% of that material is found in the most pure chromatographic fraction in the 

65°C “mini-purification” (Figure 3-7A, left panel). In contrast, 31.5% of the total available 

Aβ42-K3 is found in the pool of the highest purity fractions of a similar purification (Figure 3-7 
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B; left panel). This corresponds to a benefit to the efficiency of the purification on the order of 

about 70% for the Lys tail method (Table 3-4). Together these two factors combine to produce a 

calculated 2.6-fold improvement in isolated yield of purified Aβ42, with an improvement in the 

purity of the pool from 79% to 93%. 

A similar analysis shows similar benefits in the preparation of Aβ46 (Figure 3-7 right 

panels; Table 3-4). We determined a benefit in synthetic yield of about 63 %, and a benefit in 

purification yield of 42 %, for a total 2.3-fold improvement in expected yield of purified peptide. 

The purity of the pool also increased, from 70 % to 91 %. 

 

 

 Figure 3-7: Analysis of 65 °C purifications of Aβ42 and Aβ46 peptides.  
Several mg of crude peptides of Aβ42 and Aβ46 (Panel A; left and right respectively) and Aβ42-K2 and Aβ46-K3 
peptides (Panel B; left and right respectively) purified were chromatographed on the preparative column. Total 
weight of the correct peptide in each fraction is indicated as gray bars superimposed on the A214 trace. % purity of 
the fractions are depicted by the numbers in each bar. Acetonitrile percent is also depicted.  
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Table 3-4: Relative contributions of approach to improved overall isolated yield of Aβ peptides 

Peptide 
Total 

synthetic 
yield (%) 

% Benefit to 
synthetic 

yield 

Purification 
efficiency 

(%) 

% Benefit 
to 

efficiency 

Fold Total 
improvement 

% Purity 
of pool 

Aβ42 15.1 n/a 18.6 n/a n/a 79 

Aβ42-K2 23 52.3 31.5 69.4 2.6 93 

Aβ46 11.5 n/a 18.2 n/a n/a 70 

Aβ46-K3 18.7 62.6 25.9 42.3 2.3 91 
 

3.4.6 Aggregation of Aβ42 peptides synthesized by different methods 

To assess the effects of the different purification levels of Aβ42 peptides on their ability to form 

amyloid fibrils, we determined the spontaneous aggregation kinetics with disaggregated samples 

(Chapter 2) of various purified Aβ42 peptides at 37 °C, pH 7.4. The reactions were carried out at 

a starting monomer concentration of 10 μM and the kinetics of aggregation were determined by 

measuring soluble monomer levels at various time points using HPLC.  We found that 

recombinant Aβ42 peptide obtained from rPeptide was the fastest aggregating peptide (Figure 

3-8 A), exhibiting a time to 50% aggregation of 6 hrs (Table 3-3).  The next fastest to aggregate 

version of Aβ42 was a sample produced by t-Boc chemistry and purified by undisclosed methods 

at the Keck Center via their “large scale synthesis” option.  This peptide, which exhibited 91.5% 

purity according to our own MS-based analysis (Table 3-3), had a t½ of 9 hrs.  (This peptide is 

shown simply for comparison; we do not know what special measures might have been taken in 

synthesis or in purification to achieve this product quality.) We found that the F-moc synthesized 

peptides described here aggregated at somewhat lower rates, with half-times of aggregation 
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inversely proportional to their purity levels.  Thus, Aβ42 obtained via Aβ42-K3, at 90% purity, 

exhibited a half-time of aggregation of 9.5 hrs (note the similarity in parameters to the t-Boc 

material).  Aβ42 synthesized directly and purified at 65 °C, which had a purity of 81%, showed a 

half-time of aggregation of 17 hrs, and directly synthesized Aβ42 purified at 25 °C, with a 65 % 

purity, gave a half-time of aggregation of 26 hrs (Table 3-3).   

The source of this variation in t½ values is not totally clear.  Since the reactions were set 

up at 10 μM by assuming the entire Aβ42 peak to be authentic Aβ, some of the drop in 

aggregation rate with decreasing purity levels could be due to a lower starting concentration of 

authentic Aβ42.  Thus, in another study, the t½ for 10 μM Aβ42 was found to be 6.5 hrs, while the 

t½ for 5 μM Aβ42 was found to be 25 hrs; it is noted that the actual concentration of WT Aβ42 in 

the sample purified at 25 °C from conventionally synthesized product would have been only 6.7 

μM in the Figure 3-8A comparison.  If all the increase in aggregation time were due to reduced 

WT Aβ42 concentration, it would imply that the contaminating Aβ peptides are neutral in the 

aggregation process, neither contributing to it nor inhibiting it.  If only part of the increase in 

aggregation time is due to lower starting Aβ42 concentration, then one or more of the Aβ peptide 

impurities might be actually inhibiting aggregation. 
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Figure 3-8: Aggregation kinetics of various Aβ derivatives. 
A) Aβ42 aggregation kinetics comparison obtained from various sources: Aβ42 from rPeptide (♦);Aβ42 from t-Boc 
synthesis (); Aβ42-K3 after lysine removal Aβ42 from Aβ42-K3 after lysine removal (●); Aβ42 synthesized as Aβ42 
and purified at 65 °C (▲) or RT (■); B) Aggregation kinetics comparison of Aβ46 (from Aβ46–K6) (♦); Aβ42 (from 
Aβ42–K3) (●); and Aβ40 (○). Fits of the actual data points were done for visual representation purposes only 

 

Another measure of the quality of a non-covalent aggregation product, such as the Aβ42 

fibrils produced here, is the concentration of the monomer at equilibrium, which reflects the 

thermodynamic stability of the amyloid fibril with respect to monomer [149].  We monitored the 

Aβ42 aggregation reactions until the amount of monomer in the supernatant, after centrifugation, 

did not change. We found that apparently the most stable amyloid is assembled from the 

recombinant material, giving a final monomer concentration of 0.07 μM (Table 3-3).  In 

contrast, other Aβ42 peptides gave final monomer concentrations proportional to the purity of the 

starting peptide (produced via Aβ42-K3, 0.13 μM; via 65 °C purification of directly synthesized 

Aβ42, 0.16 μM; via 25 °C purification of directly synthesized Aβ42, 0.24 μM).  The elevated final 

concentrations of amyloid assembly reactions from impure Aβ42 could be a reflection of less 

stable fibrils from occasional incorporation of Aβ42–related impurities, or due to the presence in 
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the monomer pool of Aβ42–related impurities that are incapable of assembling into fibrils, or to a 

combination of these effects. However, it is clear that a large portion of the Aβ42-related 

impurities, for example in the material that is only 65% pure, must be incorporated into amyloid 

fibrils along with the authentic Aβ42, otherwise the final monomer concentration would be much 

higher than 0.24 μM (Table 3-3). 

We also analyzed the samples from the various aggregation reactions of synthetic and 

recombinant Aβ42 peptides by negative-stain electron microscopy. Fibrils formed from 

recombinant Aβ42 (Figure 3-9 C) showed a more homogeneous morphology than fibrils formed 

from synthetic Fmoc Aβ42 obtained after HPLC purification (Figure 3-9 A,B). These less 

homogeneous aggregates appear to have protofibrils/oligomers along with the mature fibrils in 

the EM images (Figure 3-9 A,B). These might represent the aggregates obtained from the 

significant amount of impurities present in these samples or the ‘off-pathway’ intermediates 

obtained by the incorporation of the impurities into authentic Aβ42 aggregates. Aβ42 aggregates 

obtained from Lys-removal do not have these dead-end intermediate products and have similar 

morphology to recombinant Aβ42 (Figure 3-9 D).  

3.4.7 Amyloid formation by different Aβ peptide variants 

We compared the spontaneous aggregation of the two dominant Aβ species in the human brain, 

Aβ40 and Aβ42, with the behavior of the relatively rare variant, Aβ46, whose synthesis is 

described here. All peptides were highly pure chemically synthesized material. We found that a 5 

μM starting concentration of Aβ46 monomers aggregates with a time to 50% aggregation of 9 

hrs, compared with 32 hrs for a 4 μM solution of Aβ42 (Figure 3-8 B).  By comparison, a 10 μM 
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solution of Aβ40 requires 100 hrs to reach 50% aggregation. Thus, the additional hydrophobic 

residues at the C-terminus of Aβ46 appear to enhance spontaneous aggregation compared with 

shorter Aβ variants. 

 

Figure 3-9: Electron microscopy analysis of various Aβ amyloid fibrils collected at the end of the 
aggregation reaction. 

Aggregates of Aβ42 (a) synthesized as Aβ42 and purified at RT; (b) synthesized as Aβ42 and purified at 65 °C; (c) 
synthesized by recombinant means; (d) synthesized as Aβ42-K3 and processed as described.  Amyloid fibrils from (e) 
Aβ40 obtained purified from the Keck Biotechnology Center; (f) Aβ46 synthesized as Aβ46-K3 and processed as 
described here. 

 

Electron micrographs of the product fibrils (Aβ40, Figure 3-9 E; Aβ42, Figure 3-9 D; 

Aβ46, Figure 3-9 F) show them in each case to be uniform in morphology with no non-fibrillar 

aggregates present.  FTIR spectra show the previously described doublet in the portion of the 

spectrum assigned to β-sheet for Aβ40 fibrils grown under quiescent conditions [125], while the 

Aβ42 and Aβ46 fibrils exhibit similar spectra with only a single absorption peak in this region 

(Figure 3-10). 
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Figure 3-10: FTIR spectroscopy of the various Aβ amyloid fibrils. 

3.5 DISCUSSION 

One of the major problems involving in vitro Aβ research has been difficult to reproduce results 

on the aggregation of Aβ peptides. One of the possible explanations for this could be the 

difference in the general chemical purity of these synthetic peptides which are tough to 

synthesize and purify. Other reasons could be the presence of low but significant levels of 

backbone α-C-H epimerization during synthesis [173], whether or not efficient disaggregation 

procedures are used, and if so, which one was used, and the types of assays used to monitor 

aggregation kinetics and analyze aggregate morphology.  Our lab had been systematically 

evaluating some of these variable parameters and tried to answer few questions. In this chapter, 

 61 



we deal with improving the levels of purity in synthetic Aβ peptides generated from Fmoc 

synthesis and how to improve them. 

A recent literature work on designing a synthetic strategy included inserting methionine 

sulfoxide into the growing Aβ chain at Met35 to provide improved solution properties [190]. This 

helps in reducing the hydrophobicity of the C-terminal part of the molecule.  After purification of 

the synthetic product, the methionine sulfoxide was reduced back to Met. Another way to 

improve the solution properties of hydrophobic peptides is to append cationic tails to their N- or 

C-termini [200]. This general phenomenon has been exploited by our lab previously to design 

peptides related to HD, for example huntingtin exon 1 peptides and simple polyQ peptides by 

adding lysine residues to its C-termini. Here, we worked on an alternative method for reversible 

addition of a cationic charged residues in which only peptide bonds are used in the chemical 

synthesis, and this cationic tail is later removed enzymatically after synthesis.  This method was 

inspired by recognition of the potential effectiveness of highly specific removal of cationic 

amino acids by the C-terminal endoproteinase CPB in a previously described robust enzyme 

model system for converting pro-insulin to insulin [201, 202].  

In this Chapter, we show that an immobilized CPB column support is simple and 

inexpensive to prepare, stable over a period of multiple runs, and is simple to use in removing 

multiple Lys groups from the C-termini of Aβ peptides.  CPB of sufficient purity is 

commercially available (through Worthington Biochemical Corporation) so that undesired 

further cleavage within the desired peptide product can be avoided. The general utility of our 

method remains to be seen for many other hydrophobic peptides.  Some peptides may possess 

tertiary or self-assembled structure at the C-terminus which could impair CPB cleavage.  

However, in this regard the Aβ model system is a good test, since the highly hydrophobic, 
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oligomerization-prone Aβ is processed cleanly in our tests. Perhaps the acetonitrile component 

of the cleavage buffer (i.e., the HPLC elution buffer) helps prevent the formation of inhibitory 

structures.   

We show here that the Fmoc synthetic yields and purities of Aβ peptides are improved by 

the reversible addition of Lys-tails during solid phase synthesis. This improvement is especially 

notable if 65 °C HPLC is not possible.  The yield of Aβ42 increased from 2.7 % to 7.8 %, and 

peptide purity increased from 65% to 90%, with the CPB-reversible addition of three C-terminal 

Lys residues during synthesis (Table 3-3). We also found that spontaneous amyloid formation 

kinetics trend with the purities of these Aβ42 preparations, with the product of the synthesis via a 

Lys-tail aggregating considerably faster than the Aβ42 synthesized directly and purified at 25 °C 

(Figure 3-8A). Interestingly, the best quality chemically synthesized Aβ42 peptide from Lys 

removal aggregates nearly as fast as recombinant Aβ42, showing that chemically synthesized and 

recombinant Aβ peptides are not always significantly different in their aggregation behavior if it 

is possible to obtain high quality synthetic material to start with. 

It is well known that multiple C-termini of Aβ peptides are generated in the AD brain, 

some of which owe to an apparent processive action of γ-secretase on cleavage of APP [45]. One 

of the cleavages releases Aβ46. It has been speculated that some presenilin FAD mutations may 

work by shifting the balance of Aβ peptide products to longer, more aggregation-prone versions 

of Aβ [203].  It has also been reported that some γ-secretase inhibitors, in blocking the formation 

of Aβ40/42 peptides, result in the accumulation of intracellular Aβ46 peptide [204]. It is therefore 

of considerable interest how the aggregation kinetics and morphologies of Aβ46 and other 

“minor” Aβ species might differ from those of Aβ42.  A preliminary report on the aggregation of 

chemically synthesized Aβ46 focused on possible cross-seeding activity, but did not 
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quantitatively compare individual aggregation tendencies or describe the quality of the synthetic 

peptides used.  In the studies reported here, we focus on ensuring the purity of the Aβ46 used, and 

in making direct comparisons of the aggregation kinetics and aggregate structure of Aβ46 

compared with Aβ40 and Aβ42.   

Aβ46 peptide has a more hydrophobic C-terminus due to the addition of the TVIV 

sequence to Aβ42 (Table 3-1). Ile and Val are both particularly problematic for formation of β-

sheet-containing aggregates (in solution and during solid phase synthesis) because of their β-

branched side chains that are especially prone to β-sheet formation [205].  Hence, it was 

expected to behave even more poorly under standard chemical synthesis conditions than Aβ42, as 

we found (Table 3-3). HPLC purification of Aβ46 directly synthesized by Fmoc solid phase 

synthesis gave a yield of 1 % at 25 °C and 2 % at 65 °C, and purities in the 69 – 75% range 

(Table 3-3). In contrast, synthesis of Aβ46 via the intermediate Lys-tail product gave yields in 

the 4.7 – 5.5% range and purities in the 88 – 91% range (Table 3-3). It is shown that Lys-tail 

addition improves the quality of the synthesis as well as the ease and effectiveness of 

purification. The experiments done in Figure 3-7 and summarized in Table 3-4 indicate that our 

method provides benefits for both synthetic yield and purification yield. As expected, addition of 

lysines narrows the elution profile of the desired product (Figure 3-7) and surprisingly also 

clearly improves the synthetic yield (Table 3-4). 

 In contrast to the experience with directly synthesized peptides, using the CPB-reversible 

Lys-tail method we experienced no drop-off in yield or purity attained in going from Aβ42 to 

Aβ46.  This suggests that this method should be capable of making even longer Aβ peptides as 

well as other highly hydrophobic peptides. 
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Using this highly pure material, we found that Aβ46 undergoes spontaneous amyloid 

formation significantly more rapidly than either Aβ42 or Aβ40 (Figure 3-8 B). The fibrils 

appeared similar to those of Aβ42 in both EM morphology (Figure 3-9) and FTIR spectroscopy 

(Figure 3-10).  We did not explore the ability of Aβ46 to make oligomers.  Our results are 

consistent with the possibility that Aβ46, in spite of being present in relatively low amounts in the 

brain, may have a disproportionate impact on amyloid burden or other aggregation-associated 

events and could potentially act as a seed for other Aβ isoforms. 

The use of efficient recombinant synthesis methods for preparing high quality peptides 

and proteins introduced a major alternative to traditional methods of peptide synthesis for 

producing molecules for biophysical and biological studies [206].  At the same time, chemical 

methods capable of producing high quality peptide material continue to have a major role to 

play.  For example, chemical methods can generally more easily be used to prepare proteins 

containing unnatural amino acids and specifically isotopically labeled amino acids.  At least for 

chemically oriented peptide labs, chemical synthesis can be a more straightforward, less labor 

intensive way to conduct a preliminary investigation on a new peptide sequence. We described 

here a general method for greatly improving the synthetic yield and quality of chemically 

synthesized, highly hydrophobic and amyloidogenic peptides. Using this method, we obtain 

purities and performance in in vitro amyloid growth assays that are quite similar to those from 

the recombinant version of the same molecule.  We also show, however, that all chemical 

syntheses are not equivalent, and that rigorous methods of synthesis and analysis have important 

roles to generating quality molecules and quality data from those molecules. 
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4.0  IMPORTANCE OF DISAGGREGATION PROTOCOL IN Aβ42 AGGREGATION 

[In this chapter, I had help from R.K. in the collection of TEM, FTIR and SEC monomer-

oligomer mixing experiment]  

4.1 OVERVIEW 

It is known that in vitro studies on amyloid peptides can be compromised if small but 

functionally important levels of pre-existing aggregates are present at the start of the reaction. 

Hence various disaggregation protocols have been developed by different groups to achieve 

some degree of control and reproducibility of in vitro studies. Here in this Chapter, we looked at 

the importance of choosing the right protocol when studying Aβ42 peptide aggregation. 

Chemically synthesized Aβ42 peptide was disaggregated via two procedures: a chemical 

disaggregation protocol of sequential treatment of TFA and HFIP; and disaggregation via 

solubilization in Gdn-HCl solution followed by monomer elution in native size exclusion 

chromatography. The secondary structures of Aβ42 aggregates prepared via two different 

disaggregation protocols have been investigated via hydrogen-deuterium exchange mass 

spectrometry and compared to data obtained under similar conditions for Aβ40. In the case of 

Aβ42 aggregates prepared via chemical disaggregation, the structure of the final product was 
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dependent on the starting monomer concentration of the reaction. The reactions kept at higher 

concentrations never matured to form a uniform population of fibrils at the end of the reaction, as 

monitored by EM. This was confirmed in the HX-MS experiments where final aggregates 

exhibited a population with intermediate protection identical to that of protofibrils. Hence, at 

least with Aβ, disaggregation reaction conditions can be of critical importance in in vitro 

aggregation results.  Conclusions drawn from experiments performed using monomer 

preparations obtained under different disaggregation conditions can vary significantly, not only 

from each other but also from the behavior of Aβ in the AD brain. 

4.2 BACKGROUND 

4.2.1 Summary of disaggregation protocols used on Aβ peptides 

Various methods have been developed to disaggregate chemically synthesized Aβ peptides to 

obtain monomers, and each method has its own advantages and disadvantages. One of the first 

methods described was from the Lansbury lab, the first group to report on the need for 

disaggregation.  They dissolved synthetic Aβ in DMSO, sonicated and filtered, then diluted the 

DMSO solution into buffer (unfortunately leaving ~ 5% DMSO as part of the buffer, with 

unclear consequences to the aggregation results) [94, 141].  Our group published a protocol 

relying on HFIP solubilization, followed by evaporation and suspension of the residue in buffer 

[142, 207]. Variations on these DMSO and HFIP methods continue to be used.  Later, we 

adopted the method of Zagorski [159], in which peptide was first solubilized using TFA, and the 

residual TFA after evaporation was removed by HFIP evaporation [208]. The function of HFIP 
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was originally thought to facilitate the removal of TFA, although it was shown to have some 

ability to break down aggregates [207]. Other disaggregation methods introduced later include 

(a) brief exposure of lyophilized Aβ to strong acids or bases, followed by rapid neutralization 

[209]; (b) ultracentrifugation of aqueous solutions [210], (c) filtration through low-molecular 

weight cut off filters [211]; (c) density gradient centrifugation [212]; (d) size exclusion 

chromatography [95, 96, 143]. All of these techniques have been used to prepare soluble Aβ but 

yield preparations that vary in size and morphology. In any case, the decision to skip the 

disaggregation step might lead to incorrect results. The presence of any unwanted aggregate seed 

in the peptide solution might self-propagate and therefore influence reaction kinetics and 

mechanism as well as determine the final structure of the aggregated product. 

 In our lab, it was later found out that a 1:1 mixture of TFA and HFIP had superior 

disaggregation properties to TFA alone in the case of longer polyQ sequences [208]. Other 

parameters like incubation time and centrifugation speed can alter the properties of the starting 

material. A measure of the technique could be determined by measuring the lag phase of the 

reaction. Also when working with volatile organic solvents, it is important to completely remove 

the solvents before the start of the reaction. This is because buffers containing even low 

percentage of HFIP can radically alter the aggregation pathway of amyloidogenic peptides [113].  

The protocol described in 2.1.3 gave us the best possible conditions for dissolution of chemically 

synthesized Aβ40 peptides.  
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4.2.2 Previous unpublished results from the lab on Aβ42 peptide aggregation 

The lab has historically worked with Aβ40 peptide and its mutants and looked at their in vitro 

aggregation properties. Aβ40 is the predominant species in the AD brain, and is also one of the 

more well-behaved Aβ molecules to work with, so many labs, including ours, did initial work in 

the 1990s studying Aβ40.  However, more recently work in the field has focused on the Aβ42 

molecule based on its stronger association with disease pathology. Our lab initiated studies on 

Aβ42 in the early 2000s, when I.K., fresh from her successful characterization of Aβ40 amyloid 

fibrils by HX-MS, moved to Aβ42 fibrils. Her initial studies provided confusing results, however, 

in that the Aβ42 aggregation product, which appeared to be uniformly fibrillar by EM, exhibited 

fewer protective backbone H-bonds than Aβ40 fibrils, in spite of Aβ42 being faster to aggregate 

and giving more stable aggregates. I.K. used the lab’s standard protocol (2.1.3) [123], used 

routinely and highly successfully to work with Aβ40, to disaggregate the Aβ42. The protocol 

utilizes sequential transient treatment with TFA and HFIP followed by ultracentrifugation in 

aqueous solution [123]. 

 Later, post-doc D.K. took over this project, continuing to use the TFA/HFIP protocol. He 

found that much of the peptide was being lost in the overnight centrifugation step (after 

dissolving the Aβ film in aqueous buffer), so the centrifuge time was reduced to 1 hr.  Even with 

a 1 hr spin, however, ~ 50 % of the peptide was routinely lost in the form of aggregated pellet in 

this protocol. Aggregates made from the disaggregated monomer at a normal starting 

concentration of around 10 µM exhibited the same diminished protection, compared with Aβ40 

amyloid, as seen by I.K. Interestingly, the weight-normalized ThT value of the final aggregate 

was also significantly lower than that of Aβ40 fibrils.  This suggested that, in spite of the absence 

 69 



of visible oligomers in the EM, the Aβ42 product might actually represent an incomplete fibril 

formation reaction that also contains some unusually stable intermediates with low ThT signals.  

D.K. began to explore this hypothesis, first by conducting Aβ42 assembly reactions at different 

starting concentrations. In one experiment he compared starting concentrations of 0.8 µM and 6 

µM.  He found that the 6 µM reaction proceeded faster, but that the final aggregation product 

had a substantially lower weight-normalized ThT value than the product of the 0.8 µM reaction, 

consistent with the hypothesis. 

 To further probe the hypothesis, D.K. studied the products by HX-MS (Figure 4-1).  He 

found that the resulting ESI-MS +6 spectral envelopes showed striking differences. In particular, 

the 6 µM product exhibited a single, very broad peak for protected Aβ42 with a centroid for at 

m/z ~ 756.5, similar to that observed by I.K.  In contrast, the 0.8 µM product showed a centroid 

at ~ 755.5, a lower mass indicating fewer deuteriums had exchanged into the peptide. In order to 

understand these data, D.K. did a curve fitting analysis by assuming there are three species of Aβ 

present: (a) fully exchanged peptide (at ~ 759.2; see below); (b) maximally protected peptide (at 

~ 755.5; this is due to mature amyloid fibrils); and (c) peptide with intermediate protection levels 

(at ~ 757.5; this seemed likely to be due to some other type of aggregate with fewer backbone H-

bonds).  The curve fitting supported this model and showed that, in agreement with the 

hypothesis based on ThT data, the aggregated product from the 6 µM reaction contains 

essentially a 50:50 mixture of two kinds of aggregates with different numbers of protected amide 

protons, yielding, in the HX-MS, a very broad peak with a centroid in between that of fibrils and 

the other aggregates.  In contrast, the 0.8 µM material contained mostly mature amyloid and little 

of the other aggregate.   
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 These initial results for fibrils obtained from the 6 μM (Figure 4-1 A) thus clearly 

showed three distinct amounts of deuterium incorporation, hence three different patterns of 

protection showing at least two discrete aggregate conformations. The lowest m/z peak is 

attributed to the mature fibrils formed from Aβ42. The highest m/z peak was also seen previously 

in Aβ40 aggregates [150] which is attributed to exchange of monomers that are in equilibrium 

with the fibrillar aggregates and/or that dissociate, becomes fully exchanged, and reassociate 

with the fibrillar aggregates. The amount of protection in the intermediate m/z peak corresponds 

well with the amount of backbone amide protection found in Aβ40 protofibrils [108].  This 

suggested that D.K. was observing, with Aβ42, some kind of concentration dependent formation 

of a protofibrillar population that was incapable of maturing into more protected amyloid fibrils.  

EM analysis, however, failed to convincingly demonstrate the presence of such protofibrils.  

Nothing like this striking concentration dependent phenomenon had been previously reported for 

Aβ42 or indeed any amyloid system. Especially given the potential importance of these 

protofibrillar intermediates, we decided to further characterize this effect. 
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Figure 4-1: HX-MS analysis of Aβ42 aggregates prepared from TFA-HFIP method 
ESI-MS of deuterated Aβ42 +6 charge states of mature fibrils obtained from initial monomer concentrations of A) 

6.0 μM and B) 0.80 μM (D.K., unpublished data). 

4.2.3 Use of size exclusion chromatography to obtain monomeric Aβ 

SEC, in particular, offers several advantages for Aβ disaggregation. There are a variety of 

column matrices available with different separation capacities and can be used in isolation or in 

combination with other columns to obtain high-resolution separation and fractionation of Aβ 

aggregates of defined size distribution. One of other advantages of using an SEC column for 

disaggregation is that the columns are equipped with filters at the top that allow for the removal 

of insoluble (fibrillar) material from the injected sample, thus ensuring that the Aβ fractions 

obtained are free of any fibrillar seeds. The technique also offers the ease in accurate 

determination of aggregates size distribution when the SEC is coupled to a light-scattering 
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detector. SEC can also be used as a valuable tool to monitor early events in amyloid formation 

and quantification of monomer loss during the time course of fibril formation. The method also 

gives an inherent advantage that the Aβ peptide eluting at the position of monomer is 

immediately obtained in suitable solution conditions for aggregation reactions and is free of 

harmful or undesired substances like organic solvents, etc.  SEC has also been successfully used 

to isolate Aβ oligomers and high-molecular-weight aggregates (including protofibrils and 

amorphous aggregates) from complex cell culture media or from AD brain extracts [213]. 

Compared with other disaggregation methods, SEC also gives the advantage of a potentially 

greater recovery of the injected sample which is especially useful in the Aβ research because of 

the inherent cost in producing chemically synthesized peptides. However, strong non-specific 

adsorption of hydrophobic peptides (such as Aβ) to the column matrix might result in some loss 

in the yield of purified material. Weaker adsorption might not prevent elution entirely but delay 

it, so that some aggregates might elute as apparently lower molecular weight species. This is a 

potential problem both in analytical analysis and in isolation of disaggregated monomers, and so 

care must be taken in isolating the monomers from the oligomer pool. One of the drawbacks of 

this technique is that the sample can become significantly diluted compared to the load.  This 

means that significant amounts of peptide must be devoted to the disaggregation in order to 

obtain eluates of sufficient concentration and, furthermore, that there are difficulties in obtaining 

very high concentrations of monomer.  In spite of the disadvantages, disaggregation by SEC 

[143] has a number of potentially powerful advantages and in many ways is perhaps the most 

rigorous disaggregation method available.  
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4.2.4 FTIR of HFIP films 

To analyze the ordered structure of Aβ peptides present during HFIP treatment, we used a 

modification of the FTIR procedure described in 2.4.2 . After the Aβ40 and Aβ42 peptides were 

disaggregated by sequential treatment in TFA and HFIP (2.1.3), the peptide film obtained after 

the lyophilization step was immediately redissolved in HFIP and dried directly on the FTIR cell. 

FTIR experiment was done as previously described (2.4.2) and the primary spectra were 

analyzed.  

4.3 RESULTS 

4.3.1 Concentration dependence of Aβ42 aggregation using TFA-HFIP disaggregation 

To further investigate the preliminary results obtained in the lab on Aβ42 aggregation (D.K.), 

Aβ42 peptide was disaggregated using the chemical disaggregation method of sequential 

treatment with TFA and HFIP followed by resuspension in aqueous buffer and 

ultracentrifugation, and a series of aggregation reactions were initiated to look for the effect of 

initial monomer concentration on Aβ42 aggregation behavior (Figure 4-2). 
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Figure 4-2: Aggregation of TFA-HFIP disaggregated Aβ42 peptides 
Aggregation kinetics (A) and final product TEM images (B) of Aβ42 peptides disaggregated via TFA-HFIP 

method and kept at various starting concentrations. Curves are fits of the various data points obtained and are 
plotted for visualization purposes only. 

 

The initial monomer concentrations analyzed were 10 μM, 5 μM, 1 μM, 0.5 μM and 0.25 

μM. The aggregation proceeded in a concentration dependent manner with the higher starting 

concentration reaction proceeded faster (Figure 4-2 A). As a measure of the quality of 

aggregates, we measured the concentration of the monomer at the end of the reaction which is in 

equilibrium with aggregates (Cr). Cr values for all the reactions were not identical and showed a 

dependence on the starting concentration of the monomer (Table 4-1).  
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Table 4-1: Cr value measurements of various Aβ42 aggregation reactions 

Aβ42 monomer starting concentration (μM) Cr  (μM) 

10 μM, TFA-HFIP disaggregation 0.23 ± 0.02 

5 μM, TFA-HFIP disaggregation 0.217 ± 0.015 

1 μM, TFA-HFIP disaggregation 0.152 ± 0.007 

0.5 μM, TFA-HFIP disaggregation 0.115 ± 0.01 

0.25 μM, TFA-HFIP disaggregation 0.12 ± 0.004 

10 μM, Gdn-HCl SEC disaggregation 0.114 ± 0.01 

1 μM, Gdn-HCl SEC disaggregation 0.107 ± 0.006 

 

The reactions kept at a higher monomer concentrations of 10 μM and 5 μM proceeded to 

an equilibrium value of ~0.22 μM, whereas the lower starting concentration reactions proceeded 

to a lower Cr value of ~ 0.12 μM. This indicates that the reactions kept at lower concentrations 

proceeded to form aggregates which were more stable [124, 125]. The HX-MS analysis done 

earlier on Aβ42 peptide disaggregated with TFA-HFIP (Figure 4-1, D.K. unpublished data) 

showed that indeed the difference in the Cr values might be arising from the fact that the 10 μM 

and 5 μM reactions proceed to form a mixed populations of fibrils and protofibrils whereas the 

reactions at lower concentrations are forming an uniform distribution of stable amyloid fibrils. 

Our EM results also confirmed this result (Figure 4-2 B). The aggregates at the end of the 

reaction for 10 μM and 5 μM Aβ42, showed the presence of significant amount of protofibril 

species present along with the fibrils. The 1 μM reaction also displayed the presence of 

protofibrils. At lower reaction concentrations, a homogeneous fibril population was seen with 

negligible protofibrils.  
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The results obtained clearly showed that the Aβ42 peptide when kept at a higher starting 

concentration was not aggregating as expected and the reaction does not proceed to completion. 

Others have shown that Aβ42 incubated even at relatively high concentration aggregates to form 

a uniform population of fibrils just like the Aβ40 peptide. There could be multiple reasons which 

would result in an aberrant aggregation profile of Aβ42. One possible reason is that the starting 

material might not be sufficiently pure and could be contaminated by some chemical impurities 

(like Aβ deletions, or epimerization products [173]). However, MS analysis of the Aβ42 we 

commonly use in our experiments (large scale T-boc synthesis from the Keck Biotechnology 

Center) showed > 95% purity (Table 3-3) and almost no impure deletions were seen (data not 

shown). Another possibility was that the TFA/HFIP disaggregation protocol, in spite of its 

consistently good performance with Aβ40, might be causing a problem with the more 

hydrophobic Aβ42 peptide. We therefore carried out parallel studies with Aβ42 disaggregated by 

the Gdn-HCl/SEC method of Lashuel and co-workers [143].   

4.3.2 Aβ42 aggregation through Gdn.HCl-SEC disaggregation 

About 0.5 mg of pure Aβ42 was dissolved in 0.5 mls of a 8 M aqueous solution of Gdn-HCl, 

sonicated for 5 minutes and injected onto the SEC column (2.1.4). The monomer peak obtained 

was pooled and the starting monomer concentrations were adjusted immediately to the desired 

values (2.1.5). Reactions were initiated at starting concentrations of 10 μM and 1 μM of Aβ42 

peptide. Interestingly, we found that the aggregation kinetics of the 10 μM reaction proceeded at 

a similar rate to the 10 μM reaction obtained using TFA-HFIP disaggregation. The reaction 
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proceeds rapidly in the first 10 hrs and then concentration drops slowly to reach equilibrium by 

~100 hrs (Figure 4-3 A).  

 

Figure 4-3: Aggregation comparison of TFA-HFIP and Gdn-SEC disaggregated Aβ42 peptides 
Aggregation kinetics (A) and TEM (B) comparison of 10 μM concentration reactions of Aβ42 peptide 

disaggregated via TFA-HFIP or Gdn-SEC method. (C) ESI-MS spectra of the +5 charge state of aggregates formed 
from Aβ42 peptide after Gdn-SEC disaggregation is employed. Fits of the data time points (A) were done for 

visualization purposes only. 
 

In contrast to the 10 μM TFA-HFIP disaggregation reaction, which gives a Cr of 0.215 

µM, the final Cr value of the reaction from the Gdn-HCl/SEC-disaggregated Aβ42 is ~ 0.11 μM, 

indicating a more stable aggregate. EM analysis is consistent with this, showing a dramatic 
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difference from the TFA-HFIP monomer reaction product (Figure 4-3 B).  While the latter 

shows the previously described large component of protofibrils (top panel), the Gdn-HCl/SEC 

material exhibits a uniform collection of amyloid fibrils (bottom panel). Finally, HX-MS analysis 

on the final aggregates from the Gdn-HCl/SEC monomer show the presence of only two distinct 

amounts of deuterium incorporation as was the case with the lower concentration aggregates 

formed from TFA-HFIP disaggregated material (Figure 4-3 C and Figure 4-1 B). The lower 

m/z peak corresponding to the secondary structure of the fibrils has similar deuterium 

incorporation value as was seen in the case of fibril peak obtained earlier from the lower starting 

concentrations of peptide disaggregated by the TFA-HFIP method (Table 4-2). In contrast to the 

original results of I.K., the level of protection found for these Aβ42 fibrils now meets 

expectations in indicating a larger number of protected amide protons compared with Aβ40 (see 

Chapter 5). 

 

Table 4-2: Structural parameters from HX MS studies 
 Number of backbone hydrogens exchanged with deuterium, uncorrected values 

Aggregates N-H exchanged 

6 μM, TFA-HFIP 12.7 (fibrils) 

22.21 (protofibrils) 

0.8 μM, TFA-HFIP 11.5 (fibrils) 

10 μM, Gdn-HCl SEC 13.3 (fibrils) 

  

The 1 μM Gdn-HCl SEC reaction also proceeds similarly to the 10 μM reaction, albeit 

much more slowly (data not shown), yielding similar values for Cr (Table 4-1). EM morphology 

of the final aggregates resemble the 10 μM reaction product (data not shown).  
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Thus, we found that the Gdn-HCl SEC method allowed us to generate a clean amyloid 

fibril product even when the reaction was initiated at 10 µM.  These reactions were repeated 

many times with Aβ42 to confirm the effect.  In the case of the Gdn.HCl-SEC method, at least 10 

independent experiments, including disaggregation, amyloid formation and analysis, were 

conducted, and results always agreed with the results presented here.  The results using TFA-

HFIP disaggregation were also highly reproducible, although occasionally we saw good behavior 

even at ~10 µM with Aβ42 disaggregated by this method.  Nonetheless, in 6 out of 9 independent 

experiments we saw incomplete aggregation reactions when higher concentrations of monomer 

were incubated. 

 The results are of practical importance, indicating that for Aβ molecules longer than 

Aβ40, the Gdn.HCl-SEC method is a superior disaggregation protocol for obtaining well-behaved 

monomer.  The rest of this chapter is devoted to our efforts to understand the differences 

between the two disaggregation protocols, which may have some fundamental significance in 

addition to the practical applications. 

4.3.3 DLS comparison of early time points 

One difference between the two disaggregation methods is the nature of the denaturing 

solvents used.  While TFA and HFIP are both volatile solvents, both can demonstrate unusual 

avidity for peptides and can be difficult to completely get rid of, and this could alter the 

properties of the peptide [214].  In contrast, Gdn-HCl has a long history in the study of protein 

folding, where, in many cases with simpler globular proteins, reversible unfolding with recovery 

of protein properties is observed. 
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Another difference between the methods is the time between when monomer is generated 

and when it can be harvested.  With our standard TFA-HFIP method, the monomer solubilized in 

water is centrifuged to clear any remaining aggregates.  As mentioned earlier, long centrifugation 

times led to loss of material, presumably because of aggregation during the centrifugation time, 

and even a one hour centrifugation gave significant loss.  So it seems quite certain that 

monomers are being compromised during the centrifugation step.  In contrast, the time between 

the emergence of monomers from the SEC column in the Gdn.HCl-SEC method can be very 

short (~ 5 mins) before aggregation reactions are initiated.  

Thus, it seems possible that one of these factors, or perhaps the two in combination, give 

rise to the difference in results. 

 

Figure 4-4: Presence of pre-formed aggregates during TFA-HFIP disaggregation of Aβ42 peptides 
A.Aβ42 peptide obtained in 1X PBS immediately after the ultra-centrifugation step in the case of TFA-HFIP 

disaggregation (red) and obtained in monomer pool immediately after fractionation in SEC  (blue) were analyzed via 
DLS to look for pre-formed aggregates. The panel on the right represents raw intensity auto correlation plots vs 

time. B. TEM images of the peptide at the same time point. 
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To see if Aβ42 at time = 0 hrs (i.e., immediately after setting up the PBS solution) does 

indeed show some oligomers, we analyzed samples at this time point using DLS. In the case of 

Aβ42 collected immediately after the ultra-centrifugation step of TFA-HFIP disaggregation, the 

presence of small oligomers were seen by DLS (Figure 4-4 A, red curves) and confirmed by 

EM (Figure 4-4 B, i). The sizes of these oligomers were determined to be ~ 7 nm. No such 

aggregates were seen in the monomer pool coming out of SEC (Figure 4-4 A, blue curves; 

B,ii). 

4.3.4 FTIR shows differences in peptide films dried from HFIP 

We investigated whether there might be some measureable property of Aβ peptides, in their 

response to exposure to HFIP, that might correlate with our experience using the TFA-HFIP 

disaggregation method on Aβ40 and Aβ42 described in this chapter. It has been shown previously 

that HFIP does induce self-assembly of Aβ peptides leading to the formation of oligomeric 

structure in HFIP [214]. We were particularly interested in the state of the peptides in our 

disaggregation protocol after HFIP had been removed to leave a thin film.  We generated such 

films for both Aβ40 and Aβ42 and looked at their structures by FTIR, conducting secondary 

structural analysis on the spectra with Peakfit software (2.4.2).  FTIR spectra recorded for Aβ40 

and Aβ42 peptides in the dried form (Figure 4-5) suggest that both peptides, which are random 

coils as monomers in solution, adopt considerable α-helical structure after exposure to HFIP, 

based on a predominant peak at the 1659 cm-1. This is not surprising, since other fluorinated 

alcohols, like trifluoroethanol, have this property. We also observed some degree of β-structure 

formation in both peptide films, based on the Amide I band at 1627 cm-1. Interestingly, the 
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amount of β-structure is significantly more in the case of Aβ42 (45%) compared to Aβ40 (24%). 

The presence of β-structure suggests that both peptides, perhaps due to being present in the films 

at very high concentrations, have already begun to aggregate even before they are dissolved in 

water in our protocol.  It is not clear why Aβ42 has higher β-content, but the presence of 

aggregates at the stage of the HFIP film may provide an explanation for the considerable 

aggregation that occurs during the centrifugation step. It could also provide an explanation for 

the ability of the Gdn-HCl SEC method to provide higher quality monomer, since the peptide is 

never present in such a highly concentrated state as it is in the HFIP film. 

 

Figure 4-5: FTIR spectra of the freshly dissolved films in HFIP solution 
Both Aβ40 (A) and Aβ42 (B) peptide are treated via TFA-HFIP disaggregation protocol till the lyophilization step 

and then resuspended in HFIP and evaporated. FTIR spectra of these films are shown here. The various % secondary 
structures present are depicted with the help of Peakfit algorithm. 
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4.3.5 Oligomers obtained from SEC also produce heterogeneous populations of 

aggregates 

When Aβ peptides are dissolved in Gdn.HCl solution and injected into SEC, a small percent of 

Aβ (typically no more than 10%) elutes as aggregates or oligomers which can be separated from 

the monomer pool. HFIP is known to induce ordered amyloid structures in Aβ molecules [214]. 

When we replaced Gdn-HCl with HFIP for dissolving Aβ42 before loading the SEC column, 

almost 50% of Aβ42 peptide elutes as oligomer (Figure 4-6 A). To analyze if these 

oligomers/protofibrils are similar to the aggregates seen during TFA-HFIP disaggregation 

method for Aβ42 peptides, we pooled the fractions eluting as oligomers and monomers separately 

from SEC of HFIP-treated Aβ42. These eluted fractions were incubated separately at 37 ºC in 

PBS buffer and also in a 1:1 mixed ratio. After the samples were incubated for 7 days, they were 

analyzed using TEM (2.3.2) and HX-MS (2.4.1).  

The monomer pool incubated at 37 ºC aggregated to form amyloid fibrils as shown 

previously for Gdn-HCl SEC-disaggregated Aβ42 (Figure 4-6 C,i). HX-MS analysis on these 

aggregates showed the presence of only two distinct amounts of deuterium incorporation peaks 

as was the case with the lower concentration aggregates formed from TFA-HFIP disaggregated 

material (Figure 4-3 B,i and Figure 4-1 B). The lower m/z peak corresponding to the secondary 

structure of the fibrils has similar deuterium incorporation value as was seen in the case of fibril 

peak obtained earlier from TFA-HFIP method (Table 4-2). 

Surprisingly, the oligomers pooled from SEC were very stable and even after 7 days of 

incubation at 37 ºC in quiescent conditions did not mature to form fibrils and were 

predominantly a uniform population of oligomers/protofibrils in the EM (Figure 4-6 C,ii). HX-
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MS experiment on these aggregates showed three distinct deuterium incorporation peaks 

corresponding to fibrils, protofibrils and the fully exchanged monomer as was obtained with the 

higher concentration aggregates formed from the TFA-HFIP (Figure 4-3 B,ii and Figure 4-1 

A). The 1:1 mixed reaction of oligomer-monomer, showed a mixed population of fibrils and 

oligomers after 7 days of incubation (Figure 4-6 C, iii) very similar to the aggregates seen at 10 

μM TFA-HFIP disaggregated Aβ42 peptide (Figure 4-2 B, 10 μM). HX-MS analysis on these 

aggregates also show three distinct deuterium incorporation peaks with values similar to higher 

concentration aggregates formed from TFA-HFIP (Table 4-2). 

 

Figure 4-6: SEC generated Aβ42 monomer-oligomer mixing experiment 
Aβ42 peptide was dissolved in HFIP, sonicated and injected into the SEC column. A. Aβ42 fractionation by 

SEC showing the oligomer and the monomer peaks. The peaks were pooled separately and incubated separately or 
at a 1:1 ratio at 37 ºC for 7 days. B. HX-MS analysis done on the 7 day reaction. ESI-MS spectra of +5 charge state 

is shown here. C. TEM images of the aggregates formed after 7 days of incubation. 
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4.4 CONCLUSIONS 

Although it has many excellent qualities, the Gdn.HCl-SEC method of peptide disaggregation 

has at least one major disadvantage in that it cannot easily be scaled down because of the dilution 

that occurs during chromatography.  In contrast, methods relying on dissolution in volatile 

solvents like TFA and HFIP can be scaled down to adapt to situations where very small amounts 

of peptide are available.  Since such uses of the TFA-HFIP method will always exist, it is 

important to try to understand what goes wrong when it does not work.   

Organic solvents, particularly TFA and HFIP, have been used intensively to dissolve 

peptides that tend to aggregate. These solvents have been used in order to have stock solutions in 

which peptides are monomeric. Dissolution of Aβ peptides in HFIP followed by immediate 

drying has been one of the methods to make monomeric preparations of Aβ. The ability of these 

solvents to break β-sheet structures and induce helical conformations is presumed to be one of 

the reasons for their excellent solubilizing properties. In spite of this, extensive aggregation of 

Aβ in HFIP has been observed. The transition between α-helical to β-sheet structures is a key 

step in Aβ aggregation and could be induced in the presence of HFIP [214]. It has been shown 

previously that dissolution of amyloid-forming peptides in TFA and HFIP can result in the 

formation of ring-like annular structures in addition to self-assembled linear structures [215, 

216]. 

 When we analyzed the structure of Aβ in HFIP by looking at their FTIR spectra (Figure 

4-5), HFIP seems to be inducing some kind of ordered β-structure, especially in Aβ42, at least in 

the dry film stage of the disaggregation protocol. This presumably indicates some kind of 

aggregate formation in HFIP. These aggregates are likely initially small oligomers, as shown by 

the experiments summarized in Figure 4-6, and these are given the opportunity to grow and 
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accumulate during the centrifugation step of the TFA-HFIP protocol, as was shown by DLS 

(Figure 4-4) and by the high losses of peptide at long centrifugation times (~50% loss).  The 

resulting aggregates might act as precursors to the oligomers that are observed at the end of the 

fibril assembly reactions. Thus, we conclude that formation of stable intermediate species at 

higher concentrations from peptides disaggregated by the TFA-HFIP method could be due to a 

combination of HFIP effects and ultra-centrifugation. It is not clear why this competing 

protofibril formation should depend on the starting concentration of peptide.  One possibility is 

that the small oligomers present in the centrifugation supernatant might have the opportunity to 

dissociate back to monomers when present at low concentrations, but at higher concentrations in 

PBS are driven irreversibly to form larger oligomers and protofibrils that persist throughout the 

experiment. 

 In contrast, while small oligomers are also formed during the Gdn-HCl/SEC 

disaggregation step (Figure 4-6), the SEC component of this protocol allows us to separate these 

‘higher-sized’ species from the ‘lower-sized’ monomer pool. Thus, the monomer pool is initially 

devoid of any higher order aggregates.  
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5.0  BIOPHYSICAL INVESTIGATIONS OF Aβ43 PEPTIDE AGGREGATION 

[This chapter has text, figures and tables reprinted/adapted with permission from the following 

submitted manuscript: Chemuru, S., Kodali, R. and Wetzel, R. “C-terminal threonine reduces 

Aβ43 amyloidogenicity compared with Aβ42”. manuscript submitted. I had help from R.K. in the 

collection of TEM, FTIR and HX-MS data] 

5.1 OVERVIEW 

Aβ43 peptide is a proteolytic processing product of the breakdown of APP by γ-secretase enzyme 

that is related to Aβ42 by an additional Thr residue at the C-terminus.  Although Aβ43 is typically 

generated at low levels (~1 %) compared with the predominant Aβ42 and Aβ40 forms, it has been 

proposed that the longer peptide could have an impact on Aβ aggregation out of proportion to its 

brain content.  In this Chapter, we carry out in vitro comparative analysis of the aggregation of 

Aβ42, Aβ43 and their mixtures.  We found that Aβ42 and Aβ43 both spontaneously aggregate into 

mature amyloid fibrils via the sequential appearance of similar oligomeric and protofibrillar 

intermediates as detected by TEM, but also that Aβ43 passes through these intermediates 

considerably more slowly than Aβ42. The earliest of these transient assemblies appears to lack 

significant β-structure, based on its very low ThT fluorescence.  We also found, contrary to 

expectations, that Aβ43 fibrils are very inefficient in seeding Aβ42 amyloid formation, even 
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though Aβ42 fibrils seed fibril formation by Aβ42 and Aβ43 monomers equally well. Finally, 

mixtures of Aβ42 and Aβ43 aggregate into a single co-assembled fibril structure, but do so more 

slowly than Aβ42 alone. Interestingly, the C-terminus of Aβ43, while partially disordered in 

homogeneous fibrils, becomes fully integrated into the amyloid β-sheet when co-assembled with 

Aβ42 into these fibrils.  The results together suggest that low levels of Aβ43 in the brain are 

unlikely to stimulate the aggregation of Aβ42.   

5.2 BACKGROUND 

Aβ peptides are generated from the transmembrane APP through sequential cleavage by β-

secretase and γ-secretase enzymes (Figure 1-1) [217]. Depending on the site of cleavage by γ-

secretase, Aβ peptides of varying lengths in the C-terminus are generated [218]. The varying Aβ 

C-terminus has been attributed to the γ-secretase processing pathway that generates Aβ peptides 

by sequential cleavage of every three to four residues starting from Aβ48/Aβ49 which are obtained 

from APP [219]. Two major alloforms of Aβ exist in AD brain, Aβ40 and Aβ42, but there has 

been evidence for the presence of longer Aβ species, including Aβ43, Aβ46, Aβ48, Aβ49, that also 

co-exist in the brains of individuals with AD [220]. Especially, the presence of Aβ43 is seen in 

plaque cores obtained from occipital and frontal cortex in both sporadic and familial AD cases 

[221, 222] and also in the case of diffuse plaques [220]. Longer Aβ species have also been 

detected in the case of transgenic mice models [223, 224] and in cell cultures expressing APP 

[219]. Generally, longer Aβ peptides are considered to be more hydrophobic and aggregation-

prone as they are part of the transmembrane segment of APP [218]. 
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 There has been no comprehensive study so far conducted on Aβ variants which are longer 

than 42-amino acids although it has been seen that some FAD associated mutations in the 

presenilin genes increase the generation of longer Aβ species. The exact amount of longer Aβ 

species in brain plaques, especially Aβ43, has not been determined in all the cases because of the 

lack of suitable antibodies to distinguish it from Aβ42. Longer Aβ peptides tend to be more 

hydrophobic than shorter versions and, being rich in β-structure favoring β-branched amino 

acids, might be expected to be even more prone to make β-sheet rich aggregates [205]. Aβ46 has 

been reported to spontaneously aggregate much more rapidly than Aβ42 and Aβ40 [157], and 

mature fibrils of Aβ46 are able to seed elongation of Aβ42 and Aβ40 [225].  Aβ43 in isolation has 

been reported to aggregate at similar [226] or faster [227, 228] rates compared with Aβ42, and, 

when present in 10% the molar amount of Aβ42, has been reported to not affect aggregation 

kinetics but rather to considerably alter the final ThT fluorescence amplitude of the reaction 

mixture [226].   

Recently, Saito and colleagues produced transgenic mice models with elevated levels of 

Aβ43 and they showed impairment of short-term memory and acceleration of disease pathology 

[227]. The data indicated that Aβ43 showed higher propensity to aggregate and showed higher 

levels of neurotoxicity than Aβ42. Recent data also suggest that the differences in the toxicity 

could be due to the fact that Thr43 residue favors direct contact with the protofibril surface more 

so than the C-terminus of Aβ40 or Aβ42 [228]. These recent findings indicate that Aβ43 has been a 

neglected species in AD research and shows the potential importance of studying the aggregation 

properties of Aβ43 peptide in vitro and also in association with other Aβ species.  

Here, we studied the in vitro aggregation properties of Aβ43 peptide alone and 

characterized the oligomers and the final aggregates obtained and compared to those obtained 
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from the wildtype Aβ42 reaction. We further probed the hypothesized enhancement of Aβ42 

aggregation by Aβ43. Mature fibrils are also formed at different rates, but with Aβ43 mature 

fibrils forming more slowly than Aβ42 fibrils in isolation.  In addition, we found that small 

amounts of Aβ43 in mixture with Aβ42 in a ratio of 1:9, slow amyloid assembly compared with 

Aβ42 alone, leading to mature fibrils co-assembled from both molecules. Consistent with all these 

rate effects, the added Thr residue at position 43 also impairs the protective β-sheet structure at 

the C-terminus residues of Aβ43 in mature fibrils.  We also describe an unusual lack of 

reciprocity in amyloid fibril cross-seeding with Aβ43 amyloid being highly inefficient in seeding 

elongation of Aβ42 monomers.  The results provide new insights into some general features of 

Aβ aggregate assembly, and cast doubt on any stimulatory role of small amounts of Aβ43 on Aβ42 

amyloid assembly in vivo as shown by others. 

5.3 RESULTS 

The focus of this work is on a detailed characterization of the in vitro aggregation of Aβ43 alone 

and in mixture with Aβ42 at approximate physiological ratios.  We chose the Gdn-HCl/SEC 

disaggregation protocol given its superior performance with longer Aβ molecules (see 4.0 ).  In 

addition, the mixing experiments actually required the use of Gdn-HCl/SEC disaggregation 

protocol (see 2.0  and 4.0 ).  Doing this allowed us to eliminate any possible experimental bias 

by preassembly of the disaggregated peptides before mixing, such that they might not truly 

reflect the behavior of mixed monomers. By premixing Aβ42 and Aβ43 before disaggregation, and 

having the disaggregated monomers elute together in PBS from the SEC column, we have our 

best chance of focusing on assembly beginning with monomer-monomer interactions.   
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5.3.1 Aggregation kinetics comparison of Aβ42 and Aβ43 peptides 

We assayed the aggregation kinetics of Aβ42 and Aβ43 peptides at starting monomer 

concentrations of 10 μM by following the reactions both by the loss of monomer from solution 

by sedimentation assay and also by the accumulation of amyloid-related aggregates through ThT 

fluorescence assay (refer to 2.2.2) (Figure 5-1).  The drop in monomer concentration is a 

measure of total sedimentable aggregates produced, regardless of their morphology.  Further, 

monomer concentrations at different time points allow estimation of the aggregate concentration, 

which can then be used to normalize the ThT readings (see 2.2.2 for Method).  In addition, the 

monomer concentration at the end of the reaction, if it can be demonstrated to represent a true 

equilibrium position of the fibril formation reaction, is an important parameter, since we showed 

previously that these equilibrium concentrations – equivalent to the critical concentration (Cr) 

that controls aggregation initiation - are characteristic of particular aggregate morphologies and 

are also associated with fibril stability.  The ThT values, when normalized for fibril mass using 

values obtained from the monomer concentrations at each time point, indicate the accumulation 

of amyloid-related aggregates.  The weight concentration normalized values are characteristic of 

particular aggregate morphologies.  For example, the ThT response of the oligomers formed in 

the early stages of Aβ40 aggregation is minimal, and the responses of different amyloid 

polymorphs of Aβ40 are all significantly different from each other. 

For the Aβ42 aggregation reaction at a starting concentration of 10 μM, the monomer 

concentration drops rapidly within the first several hours to about 50 % and continues to drop 

steadily until 100 hrs, after which no further changes occur (Figure 5-1, ●). This final 

concentration of monomer (the apparent Cr value) was 0.105 ± 0.01 μM (Table 5-1).  The ThT 

signal produced by aliquots of this reaction correspondingly rose rapidly in the initial 24 hours, 
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reaching a plateau within 60 hrs to a relatively high yield of ThT fluorescence of ~2.2 * 105 

fluorescence units per µg (Figure 5-1, ●).  The steady increase in weight normalized ThT signal 

over the first 24 hrs suggests a transition through one or more intermediates with steadily 

increasing levels of ThT-positive β aggregates. 
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Figure 5-1: Amyloid assembly kinetics of Aβ42 and Aβ43 spontaneous aggregation. 
10 μM reactions of Aβ42 (●,○) and Aβ43 (■,□) were initiated after disaggregating the monomers via SEC protocol. 

HPLC sedimentation assay to check for kinetics for monomer decay (●,■) and weight-normalized ThT fluorescence 
(○,□) are depicted here. The curves represent fits of the data points and are plotted for visualization purposes only. 

 

This interpretation is supported by EM (Figure 5-2) and DLS (Figure 5-3) analyses of reaction 

time points.  After 1 hr, when 10 % of the Aβ42 molecules have already been converted to 

sedimentable aggregates (Figure 5-1, ●), DLS reveals a broad distribution of particles centered 

at ~ 10 nm in hydrodynamic radius (Figure 5-3 B), and this is consistent with EM images 

showing lightly staining particles in the same size range (Figure 5-2 1hr).  After 2 hrs, when 
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about 30 % of the Aβ42 molecules have been converted to aggregates (Figure 5-1, ●), most 

particles take up slightly more stain (Figure 5-2 2hr) and many have more clearly defined 

boundaries (Figure 5-2 2hr).  By 8 hrs, when about of 60 % of Aβ42 molecules are aggregated, 

EM analysis shows two types of oligomeric intermediate: narrow, positively stained filaments 

(Figure 5-2 8hr) and globular and wormlike negatively stained aggregates (Figure 5-2 8hr).  At 

this point light scattering is high and the DLS data can no longer be deconvoluted.  Between 8 

and 12 hrs, while the total amount of sedimentable Aβ remains at ~ 60 %  and the aggregate 

population remains mostly negatively stained globules and worms, an occasional negatively 

stained fibril can also be detected (Figure 5-2 12 hr).  By 24 hrs, when ~ 75 % of the starting 

Aβ42 is aggregated (Figure 5-1, ●), the reaction mixture is dominated by mature, negative-

stained amyloid fibrils (Figure 5-2 24hr).  By this point the weight-normalized ThT signal has 

risen to near maximum (Figure 5-1, ○). 
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Figure 5-2: Time course Electron micrograph images of Aβ42 and Aβ43 reactions. Number inserts represent 
hours of incubation.  Scale bars are 50 nm. 

 

 In contrast to the Aβ42 data, Aβ43 at 10.6 μM shows a slower drop in monomer 

concentration in the first 20-40 hrs to an intermediate concentration of about 5-6 µM. The 

monomer concentration drops about 30% within the first 10 hours, then continues to decline 

more slowly over the next 4 days, finally reaching apparent equilibrium at about 600 hrs (Figure 

 95 



5-1, ■). The weight-normalized ThT signals rise steadily over the first 10 hrs to a plateau value 

that persists for the duration of the first 24 hrs, before again beginning to climb to a final plateau 

 

Figure 5-3: DLS analysis of amyloid assembly time points of Aβ42 (left) and Aβ43 (right) reactions 

 

value of  ~ 1.5 x 105 fluorescence units per µg reached at ~ 100 hrs (Figure 5-1, □; Figure 5-4, 

■). After ~50 hrs, the monomer concentration drops further, to an apparent final equilibrium 

concentration of 0.202 ± 0.02 μM over the next 60-75 hrs (Figure 5-1, ■).  That this value 

reflects a true equilibrium position was shown by setting up a fibril dissociation reaction (2.2.3).  

We found that the final aggregates dissociate over a period of ~ 600 hrs to a value of 0.167 ± 
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0.015 µM, very similar to the value obtained from the fibril association value (Figure 5-1, ■).  

The very slow (weeks) dissociation kinetics of these aggregates also shows the validity of our 

ThT protocol, in which aliquots of the ongoing reaction are diluted into buffer containing ThT 

and fluorescence read only over a few mins.  
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Figure 5-4: Fibril dissociation reaction to monitor equilibrium Cr value for Aβ43 

Fibrils from Aβ43 taken at the end of the forward reaction (■) (~200 hrs) were diluted in 1x PBS four-fold and this 
diluted reaction is incubated at 37 ºC and the rise in monomer concentration measured (□ ) with the help of HPLC. 
The fits of the data points are for visualization purposes only.  
  

 The Aβ43 assembly reaction proceeds through very similar structures to Aβ42 

intermediates, but with an extended time course consistent with the slower kinetics. After 1 hr, 

when ~ 7% of the Aβ43 molecules are aggregated, EM shows poorly staining oligomers (Figure 

5-2 1hr) similar to those seen at 1 hr for Aβ42 assembly (Figure 5-2 1hr).  After 4 hrs, when ~ 

14 % of Aβ43 molecules are aggregated (Figure 5-1, ■), aggregates remain relatively poorly 

resolved but take up somewhat more stain (Figure 5-2 4hr) in analogy to those seen at 2 hrs in 
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the Aβ42 assembly reaction. By 12 hrs, when about 30% of Aβ43 molecules are aggregated 

(Figure 5-1, ■), oligomers have more highly resolved boundaries (Figure 5-2 12hr) in analogy 

to aggregates seen at 2 hrs for Aβ42.  Beginning at 16 hrs, when ~ 40 % of Aβ43 molecules are 

aggregated, and extending to 24 hrs, when about 46 % are aggregated (Figure 5-1, ■), the 

reaction mixture is composed entirely of thin, positively stained filaments (Figure 5-2 24hr) 

identical to those seen at 8 hrs in the Aβ42 reaction.  These filaments have average particle sizes 

in DLS at 20 hrs of ~ 75 nm in hydrodynamic radius (Figure 5-3).  Between 25 hrs and 40 hrs, 

neither the percentage of aggregated Aβ43 nor the weight normalized ThT signal has changed 

very much (Figure 5-1), but aggregate morphology changes dramatically, now being dominated 

by a mix of negatively stained worm-like aggregates either in isolation (Figure 5-2 45hr) or 

coating newly observed amyloid fibrils.  From 45 hrs to 90 hrs, the amount of aggregated Aβ43 

increases from ~ 46 % to ~ 91 %, the weight normalized ThT increases from the intermediate 

plateau value of 0.6 x 105 to a final value of 1.5 x 105 fluorescence units per µg (Figure 5-1), and 

the reaction mixture transforms to uniform mature amyloid by EM (Figure 5-2 90hr, F). 

The EM and weight normalized ThT data for the Aβ43 reaction reveal a number of 

important trends that are also present, but are less obvious, in the faster-moving Aβ42 assembly 

reaction.  First, the steady rise in weight-normalized ThT signal during the first 10 hrs of the 

Aβ43 assembly reaction is associated with a change in aggregate morphology from lightly 

staining, poorly resolved oligomers (Figure 5-2 1,4 hr) with no ThT signal to better-resolved 

oligomers (Figure 5-2 12hr) and narrow, positively stained filaments (Figure 5-2 24hr) that 

exhibit consistent weight-normalized ThT values.  A similar set of transitions occurs in the early 

part of Aβ42 assembly ending at about 8 hrs.  Interestingly, the rates of increase and final 
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magnitudes of weight normalized ThT signals for this part of the assembly process are 

essentially identical for Aβ42 and Aβ43 (Figure 5-5).   
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Figure 5-5: Kinetics of formation of ThT-positive oligomers for Aβ42 (●) and Aβ43 (■) reactions. 
ThT values at 10 hr for Aβ42 (●) and 45 hr for Aβ43 (■) were taken to be 100% (Figure 5-1) and the other values 
were plotted accordingly. These time points were chosen as these represent the last time point before the presence of 
fibrils were seen in EM analysis. 

  

Second, the point where amyloid structure is nucleated, as defined by the time of first 

appearance of amyloid fibrils (~ 40 hrs), occurs when about 50% of Aβ43 remains monomeric 

(Figure 5-1, ■).  Similarly, nucleation of amyloid structure occurs at ~ 12 hrs in the Aβ42 

assembly reaction, when about 35% of the Aβ42 molecules are monomeric (Figure 5-1, ●).  The 

ThT signals at these points of nucleation are already substantial, since at least some of the 

intermediates present when amyloid is nucleated exhibit ThT signals and therefore presumably 

have some β-sheet structural elements.  

Third, the direct precursor to the nucleus for amyloid elongation is not discernable from 

these data.  In the Aβ43 assembly reaction, there is a lag phase of constant ThT signal, from about 
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12 hrs to sometime between 25 and 40 hrs, that is occupied by narrow filaments (Figure 5-2 

24hr) leading up to the point of nucleation (Figure 5-1, ■).  Nucleation might involve the 

rearrangement of some of these filaments, or it might be driven by the conversion of some other 

species present in low amounts and/or at low visibility in EM.  In the Aβ42 reaction, nucleation of 

amyloid structure occurs at a time (~ 8 hrs) when both thin filaments and negatively stained 

oligomers are present.  As noted above, substantial amounts of monomers and/or very small 

oligomers are also present in both reactions when nucleation occurs, and so cannot be excluded 

as possible sources of amyloid nuclei.    

Fourth, nucleation of amyloid does not necessarily equate to a rapid increase in 

aggregation kinetics, as pointed out previously.  Here, for both Aβ42 (Figure 5-1, ●) and Aβ43 

(Figure 5-1, ■), the early steps of assembly are more rapid, in terms of mass of peptide 

converted over time into sedimentable particles, than the amyloid formation portions of the 

assembly reactions. These early aggregation steps appear to be non-nucleated assembly 

reactions, based on the absence of either a lag phase or marked curvature in the time courses of 

monomer loss. 

According to these data, the two Aβ peptides assemble into amyloid fibrils by similar 

mechanistic pathways involving similar intermediates. The chief reason for the slower 

development of mature amyloid by Aβ43 is the difference in approximate times of amyloid 

nucleation between Aβ42 (~12 hrs) and Aβ43 (~45 hrs).  In contrast, post-nucleation events 

leading to essentially homogeneous suspensions of amyloid take place with similar kinetics.   
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5.3.2 Structural properties of aggregation reaction products 

We discussed in great detail about the intermediate oligomer species present in both the 

reactions. Next, we looked at the structures of the final fibrils by EM, FTIR, HX-MS, Cr value, 

and weight-normalized ThT signals.  As noted above, the major aggregated species observable in 

the EM in the 25-40 hr range in Aβ43 amyloid assembly are positively stained, thin filaments that 

co-exist with monomeric peptides and are present over a long time period suggesting that they 

are in a quasi-equilibrium with monomer. 

The final amyloid product of Aβ42 incubation consists of typical unbranched, straight 

fibrils that appear to be composed of fibrils about 8-12 nm in diameter (Figure 5-2 Final).  The 

Cr value of these fibrils, a measure of stability equal to the concentration of monomer after the 

reaction has reached equilibrium, is 0.105 ± 0.01 µM (Table 5-1).  The weight-normalized ThT 

value for Aβ42 fibrils is 2.5 x 105 fluorescence units per µg (Table 5-1). 

 

Table 5-1: Cr parameters from spontaneous and seeded growth reactions 

Monomer Aβ42 seeds Aβ43 seeds Aβ42/Aβ43 seeds unseeded 

Aβ42 0.09 ± 0.01 0.114 ± 0.007 0.10 ± 0.01 0.11 ± 0.01 

Aβ43 0.115 ± 0.007 0.20 ± 0.02 0.125 ± 0.006 0.20 ± 0.02 

Aβ42/Aβ43 n.d. n.d. n.d. 0.067 ± 0.005 

0.075 ± 0.007 

  

The final amyloid product of Aβ43 incubation is similar in gross appearance to Aβ42 

fibrils, exhibiting structures consisting of bundles of two or more filaments (Figure 5-2 Final).  
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The Aβ43 filaments appear to be somewhat narrower, measuring 4-5 nm in diameter.  The Cr 

value of Aβ43 fibrils is slightly higher (i.e., less stable) than Aβ42 fibrils, at 0.20 ± 0.02 µM 

(Table 5-1), and the weight-normalized ThT value is 1.5 x 105 (Table 5-1).   

FTIR is well suited for analyzing the secondary structures of aggregates. Second 

derivative FTIR spectra show that the final aggregates of the 10 µM Aβ42 and Aβ43 reactions 

both exhibit a major, high intensity band in the β-sheet region between 1625-1640 cm-1 (Figure 

5-6). These aggregates also exhibit one or more smaller bands of varying intensity in the 1640-

1660 cm-1 region, which is typically assigned to α-helix or random coil structures, and in the 

1660-1685 cm-1 region, which is normally associated with 310 helix, and turns. The Aβ43 

aggregate also exhibits a small band at 1695 cm-1, which is normally assigned to the anti-parallel 

β-sheet conformation. Since amyloid fibrils of point mutants of Aβ40 can exhibit significant anti-

parallel sheet, we cannot rule out a component of this structure in the Aβ43 fibrils. Moreover, 

recently a similar band for anti-parallel β-sheet has also been seen in the case of Aβ43 oligomers 

[229]. Except for this small deviation, FTIR shows no clear differences between Aβ42 and Aβ43 

aggregates.  
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Figure 5-6: Second derivative FTIR spectra of various aggregates 

 

HX protection experiments have proved an invaluable method for mapping amyloid fibril 

secondary structure providing information on the structural significance of H-bonding in addition 

to the implicit spatial relationships associated with H-bonding.  The number of exchangeable 

backbone amide hydrogens that are protected by stable secondary structure after an overnight 

exposure to D2O is characteristic of a particular Aβ polymorph, and using a rapid quench of 

exchange followed by mass spectrometric examination of re-dissolved Aβ monomers this 

information can be obtained easily on small amounts of sample.  To obtain absolute values 

corresponding to the number of protected hydrogens, the raw data must be corrected for side 

chain exchange and backbone amide back exchange during sample workup.  However, 
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uncorrected values can also be compared directly to obtain qualitative differences.  Here we 

report uncorrected data.   

The various aggregates described here display different degrees of exchange protection. 

In the case of the final Aβ42 aggregates from the 10 µM reaction, we obtained a net incorporation 

of ≈15 deuteriums into each monomer in the fibril (Table 5-2); this corresponds to about half of 

the number that is obtained in an uncorrected exchange of the monomer’s 41 backbone amide 

hydrogens under these conditions (not shown).  In contrast, the 10 µM Aβ43 product exhibits a 

net incorporation of ≈18 deuteriums (Table 5-2).  The difference between these values is small 

but significant, indicating that there are approximately three fewer backbone amides involved in 

β-structure in Aβ43 fibrils compared to Aβ42 fibrils.  Aβ43 has an additional backbone amide 

group, which may or may not be responsible for one of these exchanged hydrogens, depending 

on its disposition in fibril structure (Aβ42 fibrils generally exhibit β-structure to the end of the C-

terminus).  

 

Table 5-2: Fibril structural parameters from HX-MS studies 
Number of backbone hydrogens exchanged with deuterium, uncorrected values 

Monomer Aβ42 seeds Aβ43 seeds Aβ42/Aβ43 seeds unseeded 

Aβ42 14.7 ± 0.3 15.1 ± 0.3 15.0 ± 0.3 14.9 ± 0.3 

Aβ43 15.9 ± 0.4 18.3 ± 0.3 15.8 ± 0.2 18.2 ± 0.2 

Aβ42/Aβ43 n.d. n.d. n.d. 15.3 ± 0.2 

16.5 ± 0.3 

 

We also examined the exchange protection specifically in the C-termini of Aβ peptides 

assembled into fibrils, using a protocol involving dissolution of fibrils from the exchange 
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reaction under quenched conditions, rapid pepsin digestion, and LC-MS analysis of the C-

terminal fragment generated by cleavage after residue 34 (2.4.1).  

The extent of deuterium incorporation in the C-terminal peptic fragments derived from 

Aβ40, Aβ42 and Aβ43 aggregates is summarized in Figure 5-7. ESI-MS spectra of the 35-40 

fragment obtained from Aβ40 aggregates shows complete lack of protection as the spectra 

overlapped perfectly with that obtained from fully deuterated Aβ40 monomer (Figure 5-7 A). 

This is consistent with the previous data obtained for all Aβ40 polymorphs where we showed that 

the 35-40 segment in these Aβ40 aggregates were devoid of any protection. In contrast, 35-42 

segment in Aβ42 aggregates showed complete protection, overlapping with the protonated 

monomer, indicating that β-sheet region in these aggregates extends till the extreme C-terminal 

amino acid, again a result consistent with previous studies (Figure 5-7 B). But more importantly, 

in the case of Aβ43 aggregates, ESI-MS spectra display an intermediate result to that of Aβ40 and 

Aβ42. Here, the ESI-MS spectrum of Aβ35-43 released from Aβ43 amyloid exposed to exchange is 

substantially shifted to higher mass from the spectrum from protonated monomers, but at the 

same time is not shifted as much as the spectrum from deuterated monomers.  This is consistent 

with partial protection of the Aβ35-43 fragment within the amyloid fibril structure, suggesting that 

in spite of its β-branched structure, the C-terminal Thr residue in Aβ43 to some extent 

compromises the integrity of the amyloid β-sheet at the C-terminus (Figure 5-7 C). 
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Figure 5-7: H-bonding status of Aβ C-terminus residues in fibrils 
ESI-MS spectra of the pepsin-digested fragments of (A) Aβ40 (B) Aβ42 (C) Aβ43. HX-MS protection of 

protonated monomer (cyan); deuterated monomer (black) and deuterated fibrils (red) are depicted. 
 

 Thus, the analysis of deuterium incorporation into the C-terminus qualitatively agrees with 

the analysis of exchange into the entire Aβ molecule (above), which in turn suggests that at least 

part of the difference in protective structure in these three homologous fibrils can be accounted 

for by differences in the status of the C-terminus. . 

 106 



5.3.3 Effect of mixing on Aβ aggregation kinetics 

Since, at least in some AD brains, the ratio of Aβ42 to Aβ43 is in the sub-stoichiometric range, we 

investigated the reaction kinetics and the properties of the aggregated product of a mixed 

reaction of these two peptides with a total Aβ concentration in the 10 µM range.  To compare the 

effects of mixed incubation, we also reassessed the aggregation kinetics of homogeneous 

reactions of 10 µM Aβ42 and 1.25 µM Aβ43, and plotted the results in terms of % loss of 

monomer in order to normalize the different reactions to a common scale (Figure 5-8).  

Interestingly, we found that the kinetics of monomer loss for both Aβ42 and Aβ43 are 

significantly slower in the mixed reaction than in the homogeneous reaction of Aβ42 at 10 µM.  

Thus, in the mixed reaction, the Aβ42 (●) and Aβ43 (■) monomer concentrations both decay to 

less than 20% of the starting concentration after 10 hrs (Figure 5-8).  In contrast, after 10 hrs 

incubation of the homogeneous peptides, the Aβ42 monomer concentration (○) has dropped to 

almost ~ 50%, and the Aβ43 monomer concentration (□) is unchanged (Figure 5-8).  This is a 

strong indication that these highly sequence related peptides are interacting, and probably co-

aggregating into a common fibril, in the mixed reaction. A particularly strong indication of this 

in our case is the final concentration of Aβ43 of 0.076 ± 0.007 μM in the mixed reaction, 

compared to the previously determined values of 0.205 µM in homogenous reactions (Table 

5-1). In contrast, the Cr of Aβ42 in the mixed reaction is essentially unchanged from the values of 

0.105 µM found in homogeneous reaction.  This suggests that the conformations of both peptides 

in the mixed fibril are dominated by the major component of the mixture and are essentially 

equivalent.  HX-MS also tells a similar story.  While the number of deuteriums exchanged into 

Aβ42 in the fibril product from the mixed reaction, at 15.3 ± 0.2, is identical to the value found 

for homogeneous Aβ42 fibrils, the value of 16.5 ± 0.3 for Aβ43 in the mixed fibrils corresponds to 
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2-3 lesser deuteriums exchanged into Aβ43 in the mixed reaction product (Table 5-2).  Thus, 

Aβ43 appears to make β-sheet H-bonds to a higher extent in this apparently mixed composition 

fibril.  The ThT signal for the mixed fibrils, however, is not much different from that of 

homogeneous Aβ42 fibrils.  Likewise, the FTIR spectrum of the mixed fibrils is similar to spectra 

of the homogeneous fibrils from both peptides, but perhaps more closely resembles the spectrum 

of Aβ42 amyloid with the 1695 cm-1 band missing (Figure 5-6). 

 Thus, in contrast to the original hypothesis, the presence of a small amount of Aβ43 

actually retards spontaneous amyloid assembly by Aβ42, rather than enhance it.  Although it is 

not clear why a small percentage of Aβ43 should slow down spontaneous aggregation of Aβ42, 

the data are a strong suggestion that these highly sequence-related peptides are interacting, and 

probably co-aggregating into a common fibril, in the mixed reaction.  
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Figure 5-8: Amyloid assembly kinetics of a mixed reaction of Aβ42 and Aβ43 peptides 
Aggregation kinetics of a 9:1 mixed of 10 µM Aβ42 (●) and 1.25 µM Aβ43 (■). Homogenous assembly of 10 µM 

Aβ42 (○) and 1.25 µM Aβ43 (□) is also shown.  
 

5.3.4 Cross seeding reactions 

As a further means of comparing fibril structures, we conducted cross-seeding experiments 

between these related peptides.  The relative ability of an amyloid fibril from one peptide to seed 

amyloid formation in another peptide can be a sensitive, discriminating measure that is 

presumably linked to structural features of how polypeptides fold into the amyloid motif.  In 

conducting cross-seeding reactions, one can monitor the effect of added seed on elongation 

kinetics or on the lag phase associated with the initial nucleation of aggregation. Very rapid 

aggregation reactions preclude the second approach, but also can compromise the first approach, 

since there has to be a window of lag time variation within which to observe seed-dependence of 
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the kinetics.  Thus, it is necessary to arrange reaction conditions to allow differences to emerge.  

To facilitate this, we minimized the concentration of monomer, to slow down the spontaneous, 

nucleation-dependent reaction.  There is a lower limit to the allowed starting concentration, 

however, and that is the Cr; near the Cr, even well-seeded reactions proceed slowly because of 

the significant back reaction of fibril dissociation.  After the monomer concentration is 

optimized, the amount of seed, on a weight percentage basis, can be elevated in order to 

significantly stimulate the rate compared to the unseeded control. 

 

 

Figure 5-9: EM images of mature fibrils from various spontaneous and seeded growth reactions 

   

We thus seeded reactions of freshly disaggregated Aβ42 and Aβ43 monomers at relatively 

low concentrations (5 µM) with high weight ratios of various seeds (10 %), isolated from the 

reactions described above, and measured the aggregation kinetics and some properties of the 

product fibrils.  We found that 10 % by weight of Aβ42 fibrils greatly stimulates the initial 
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aggregation kinetics of 5 µM monomeric Aβ42 (Figure 5-10 A).  In contrast, 10 % by weight of 

Aβ43 fibrils has no discernable impact on the aggregation kinetics of 5 µM Aβ42 (Figure 5-10 A).  

Interestingly, 10 % by weight of the fibril product from the 9:1 Aβ42:Aβ43 reaction stimulates the 

aggregation of 5 µM Aβ42 to the same extent as homogeneous Aβ42 fibrils.  This data further 

supports the above structural data that suggests that the 9:1 fibrils resemble Aβ42 fibrils.  One 

very interesting additional outcome of this experiment is that, while Aβ43 has enough structural 

compatibility with Aβ42 that it can co-assemble into an Aβ42-like amyloid fibril, the 

homogeneous fibrils made by Aβ43 are nonetheless not able to seed Aβ42 monomer. 

 

Figure 5-10: Cross seeding reaction kinetics 
Aggregation kinetics of 5 µM monomer of A. Aβ42 and B. 5 µM Aβ43 seeded with 10 % 

w/w of Aβ43 seeds (■),  Aβ42 seeds (●) and 9:1 Aβ42:Aβ43 mixed seeds (▲). Fits are for visualization 
purposes only.  

 

In the mirror image experiment, while there is little aggregation of 5 µM homogeneous 

monomeric Aβ43 in the first 5 hrs of incubation, all three possible amyloid seeds, at 10% by 

weight, are seen to produce significant enhancement of aggregation, so that all three seeded 

reactions go essentially to completion (i.e., to equilibrium) within 5-7 hrs (Figure 5-10 B).  Both 

Aβ42 and 8:1 fibrils produce rapid aggregation kinetics tending to relatively low final monomer 
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concentrations.  These rates and apparent Cr values are essentially identical, again pointing to a 

structural similarity of the 9:1 fibrils to Aβ42 fibrils. Thus, all three fibrils appear to be equally 

capable of seeding Aβ43 elongation, but, interestingly, they appear to dictate different final 

structures, with the Aβ42 and 8:1 fibrils making a more Aβ42-like elongation product with a Cr of 

~ 0.1 µM.   

Further analysis of the fibril products of these seeded elongation reactions reveals some 

interesting subtleties.  In HX-MS analysis (Table 5-2), all product aggregates, with the exception 

of the Aβ42 monomer seeded with Aβ43 aggregates, have similar N-H exchange to that of the 

parent seed (Table 5-2).  This exception is, of course, due to the fact that, since the Aβ43 fibrils 

do not seed Aβ42 elongation, the Aβ42 monomers have to undergo spontaneous aggregation, and 

as a consequence make the typical Aβ42 fibril product.  This is also shown in the EM, where the 

product of ineffective seeding of Aβ42 monomers by Aβ43 fibrils generates fibrils (Figure 5-10 

D) that faithfully resemble normal fibrils from spontaneous aggregation of Aβ42 under these 

conditions (Figure 5-2 F).  Thus, while in some respects the low percentage of Aβ43 in the 8:1 

fibrils seems to adapt to the Aβ42 fibril structure features, the 8:1 fibrils nonetheless have a 

unique, surprisingly robust morphology that propagates with high fidelity with either Aβ42 or 

Aβ43 monomers.   

EM also reveals an apparently subtle uniqueness in the morphology of the fibrils 

produced from seeding Aβ43 monomers with Aβ42 fibrils. Other parameters such as HX-MS 

(Table 5-2) and Cr (Table 5-1) suggest that Aβ43 adopts an Aβ42-like conformation in the cross-

seeding product. HX-MS values show that the protection in the case of Aβ43 monomers with 

Aβ42 seeds seem to indicate an Aβ42 –like structure for the final aggregates with lower stability 

as indicated by Cr. 
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5.4 DISCUSSION 

Recent studies have shown that even small amounts of the less abundant Aβ species can alter the 

structure and toxicity of the more abundant Aβ40 and Aβ42 aggregates [229]. Recently we had 

monitored the aggregation of one of the ‘minor’ species of Aβ present in the brain, Aβ46 peptide, 

and showed that it aggregates much faster than Aβ42 and Aβ40 peptides suggesting that even 

smaller amounts of Aβ46 in the brain could seed Aβ42 or Aβ40 and potentially alter the course of 

their reactions [157]. Among the other ‘minor’ species of Aβ, Aβ43 is of particular interest 

because of its enriched presence in plaque cores of AD disease brains [222]. Production of Aβ43 

is also enhanced in the case of few familial AD causing mutations associated with the presenilin 

genes [230]. 

Hence, we characterized the in vitro aggregation properties of Aβ43 peptide present alone 

and also in a biologically relevant mixture along with Aβ42. Aβ43 amyloid is clearly structurally 

different from Aβ42 amyloid, displaying a lower ThT response and a slightly higher elongation Cr 

value (0.202 μM) compared to Aβ42 amyloid (0.105 μM). Previously it was shown in the case of 

Aβ40 polymorphs that Cr is a property of the final amyloid structure and has a strong correlation 

with the number of strongly protected backbone amide hydrogens [125]. An Aβ40 polymorph 

prepared under standard quiescent conditions in PBS at 37 °C similar to the aggregates studied 

here, had an equilibrium Cr of ~ 1 μM and an NH-exchange value of 16.7 Da (number of 

protected backbone hydrogens ~ 22.3). Aβ42 aggregates studied under similar conditions 

displayed a much lower Cr of ~0.105 µM and higher number of protected amide hydrogens 

 113 



(~26) which correlates to the fact that aggregates with much stronger β-sheet protection are more 

stable.  The difference in the parameters between Aβ42 and Aβ40 aggregates is not surprising and 

is predominantly due to the C-terminal amino-acid sequence. The presence of additional two 

hydrophobic residues, Ile and Ala, contributes to a higher number of backbone protected 

hydrogens and hence the lower Cr value; in the case of Aβ42, the backbone protection extends all 

the way till the end of C-terminus. Even though higher Aβ length peptides are expected to be 

more hydrophobic, the presence of the side chain hydroxyl group on the threonine (Thr43) in the 

case of Aβ43 could slightly reverse the hydrophobic effect of Aβ42 peptide and could make it 

behave similar to Aβ40 aggregates. The fact that Aβ43 aggregates have a slightly higher Cr (0.2 

µM) and lesser backbone amide hydrogen protection (~23.5 protons) confirms the fact that the 

C-terminal Thr residue alters the secondary structure of the resulting fibrils. 

The role of C-terminal residues in Aβ aggregation and fibril structure has received 

significant attention [87, 231, 232]. We have showed previously that, in the case of Aβ40, all the 

polymorphs characterized had a low level of strong H-bonded structure in its extreme C-terminal 

residues (amino acids 35-40) [125]. Whereas in the case of Aβ42 aggregates characterized under 

quiescent conditions in PBS buffer at 37 °C, HX-MS indicate the presence of a highly protective 

structure in the C-terminus all the way till the last residue. It is interesting to note that, in the case 

of Aβ43 aggregates under similar conditions, there is only a partial protection in the C-terminal 

residues 35-43 presumably because the β-sheet does not extend till the end. But when the peptide 

is incubated either in the presence of excess Aβ42 or in a seeded elongation process with Aβ42 

seeds, the structure seems to resemble that of Aβ42 aggregates and have increased protection 

values.  
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Amyloid growth by monomer addition or seeded elongation is highly structurally 

discriminating and could be a good measure to compare structural similarities between two 

different aggregates [233, 234]. Cyclic amplification through seeding has been used to amplify 

brain fibrils for physical studies [121, 128, 235, 236]. In a surprising result, even though Aβ43 

aggregates look morphologically very similar to their Aβ42 counterparts, they fail to act as 

competent seeds for Aβ42 monomers. In a reaction where Aβ42 monomers are normally incubated 

in the presence of Aβ43 seeds, there was no acceleration of aggregation and the resulting product 

resembled that of the Aβ42 aggregates alone. It is not clear as to why Aβ43 aggregates do not 

behave as efficient seeds, but a similar result was previously seen for one of the polymorphs of 

Aβ40 which had lesser β-sheet protection and also failed to act as efficient seeds to propagate its 

structure under different conditions [125].  

The various Aβ peptides co-exist in an AD brain in a complex fashion. We report here 

that under a biologically relevant mixture of Aβ peptides (in a ratio of 9:1 of Aβ42:Aβ43), small 

amounts of Aβ43 can modulate the behavior of Aβ42 peptide and can form an altered morphology 

of the mixed aggregates. In the mixed reaction, Aβ42 aggregates more slowly and Aβ43 more 

quickly than comparable concentrations in isolation, suggesting co-aggrergation. The structure of 

Aβ43 within this mixed fibril is an intriguing blend of Aβ42–like and Aβ43-like structural features.  

Overall, our results indicate that Aβ43 has a unique aggregation behavior that is, however, not 

what was expected, since it actually slows down aggregation of Aβ42 rather than speeding it up.  

Nonetheless the result shows the potential importance of tracking it as a separate molecule in 

studies of Aβ profiles in AD brains. 

It is surprising that an additional amino acid, threonine, alters the β-sheet nature at the 

extreme C-terminus. Threonine, like valine and isoleucine, is branched at the β-carbon – a 
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feature that is normally associated with enhanced β-sheet propensity [237]. In spite of this, the 

addition of Thr appears to reduce the ability of the Aβ C-terminus to fully engage in β-sheet 

formation within the fibril.  But threonine has an additional structural feature, a hydroxyl group – 

also on the β-carbon – and this is expected to enhance the tendency of Thr43 in fibrils to be 

disordered and interact with solvent water. This hypothesis could be tested in future studies.  One 

of the interesting study would be the effect of crowding agents, like dextran or polyethylene 

glycols (PEG) on Aβ43 C-terminal structure in fibrils. Such macromolecular crowding has been 

shown previously to alter fibril morphologies presumably by changing solvent properties [238]. 

Changing growth conditions, like agitation, salt concentrations, can also be explored to try and 

understand the effect of addition of threonine to Aβ structure.   

Another experimental approach might be to alter the 43rd residue in subtle ways and 

inquire whether the altered amino acid is included in or excluded from fibril structure.   Our lab 

has previously studied positional effects of amino acids on fibril structure and stability by 

studying single point mutations in Aβ background [239, 240]. In addition, other studies have 

shown the effect of systematic amino-acid replacement at a single residue position on seed-

dependent amyoid fibril formation [241]. Thus, similar experiments can be done by mutating the 

Thr43 residue and monitoring the fibril structure changes. Amino acids like valine or isoleucine, 

are also β-branched but lack the reactive hydroxyl group. So mutating to these residues would be 

interesting to see if the β-sheet extends to the end of C-termini or not. On the other hand, serine, 

which retains the Thr hydroxyl group but which is lacking the methyl group on the β-carbon, 

would be expected – according to our hypothesis – to discourage β-sheet formation at the C-

terminus even more than Thr.  It is also worth noting that there are many non-standard amino 
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acids available for peptide synthesis, and some of these might offer further comparative analyses 

of fibril formation.  

We also hypothesize that the unusual seeding properties of Aβ43 described earlier owe to 

the above-discussed structural variation at the Aβ C-terminus.  To test this one might use the 

fibrils obtained from the mutational analyses proposed above to explore cross-seeding behaviors 

between mutant fibrils and Aβ42 fibrils.  Will the mutant Aβ fibrils be capable of seeding Aβ42 

monomer, in a way that Aβ43 fibrils are not?  If Aβ42 fibrils can seed amyloid formation by the 

mutant Aβ monomer, will the peculiar amyloid structural properties we found in Aβ43 fibrils also 

be present in the mutant Aβ fibrils? 
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6.0  ROLE OF CHIRALITY IN Aβ SEED PROPAGATION 

[In this chapter, I had help from R.K. in the collection of TEM, FTIR data] 

6.1 OVERVIEW 

One of the key features of amyloid assembly is seeded elongation process which occurs in the 

case of most amyloid systems. The propagation of distinct Aβ fibril conformation over multiple 

rounds of seeded elongation demonstrates the basic ability of Aβ to form amyloid “strains” with 

the potential to correspond to distinct phenotypes in AD. The fidelity of this process has been 

studied to look at structural polymorphs and also as a model for prion propagation. Here, to 

probe the specificity of amyloid formation and growth, we synthesized and examined the self-

assembly of the D-enantiomer of Aβ40 in vitro. Early studies on the role of chirality suggested 

that “cross-seeding” (that is, using one species as amyloid seed and a different species as 

monomer) is not feasible between two opposite enantiomers. But our lab recently reported that 

D- and L-polyglutamine (polyQ) can engage in efficient cross-seeding, presumably via a “rippled 

β-sheet” interface between seed and incoming monomer in the anti-parallel β-sheet core of 

polyQ amyloid. To examine if this cross-seeding is a general phenomenon common to other 

amyloid systems, we examined it in the Aβ background. Previous literature has reported that L-

Aβ40 fibrils cannot seed fibril formation by D-Aβ40. But surprisingly, we found cross-seeding 
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efficiency similar to what our group reported previously for polyQ amyloid.  This suggests that 

cross-seeding can also occur through a similar ‘rippled’ β-sheet interface in the parallel, in-

register structure of the Aβ amyloid core. 

6.2 INTRODUCTION 

Seeded elongation is a critically important aspect of amyloid fibril formation, a process that is 

the basis of biological propagation of prions [242-244]. The recruitment of cellular amyloid into 

growing amyloid assemblies is expected to be a highly structurally specific mechanism which 

depends on many factors like the sensitivity of amyloid seeding to fibril structure [245], the 

primary amino acid sequence [233, 234] and also the amino acid chirality [246, 247].  

Spontaneous growth of amyloid fibrils is often considered as a nucleated growth polymerization 

pathway [248] in which the overall rate of amyloid formation is limited predominantly by the 

slow generation of nuclei (Introduction). These nuclei once formed can quickly grow via 

monomer addition (elongation phase) which is thermodynamically favorable, resulting in rapid 

extension of amyloid structure [124]. The elongation mechanism can be individually studied 

with the help of seeded fibril growth reactions using exogenous seeds. This is particularly useful 

in the case of Aβ research because of the complexity involved in the nucleation step. Seeded 

elongation is also important as a mechanism for eliminating the need for nucleation to happen 

[124]. This is particularly useful in eliminating lag times and promoting rapid fibril growth even 

at very low peptide concentrations. Seeded elongation reactions have also been studied to 

explore amyloid fibril structure, by looking at the compatibility of one peptide with another in a 

‘cross-seeding’ reaction [125]. The efficiency of cross-seeding could be an estimate of the fit 
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between the amyloid folding unit of the seed molecule and the incoming monomer. Seeded 

elongation has also been used in efforts to prepare, for later analysis, large amounts of fibrils 

whose conformations are assumed to replicate the conformation of a small amount of brain-

derived amyloid used as the seed [121, 245].  The specificity of the cross-seeding reaction for Aβ 

peptides has been studied previously. The amyloid fibrils from a number of proteins have been 

shown to seed fibril formation by Aβ peptides, but not nearly as efficiently as self-seeding by Aβ 

fibrils [233, 249, 250].   

 Given the fact that there is strong D,L-chiral specificity in protein folding and in most 

protein activities [251], previous results suggesting that amyloid cross-seeding has stringent 

chiral specificity [246, 247] were not surprising.  In particular, a study by the Maggio group on 

the ability of soluble radiolabeled Aβ monomers to be deposited onto existing amyloid plaques 

in brain slices showed that iodinated L-Aβ40 is efficiently taken up by the natural (and therefore 

composed of L-Aβ40) amyloid templates, while D-Aβ40 monomer is not [246].  In contrast, our 

lab described previously that highly efficient cross-seeding of amyloid fibril growth happens 

between L- and D-polyQ [252] (Figure 6-1 A, B).  K.K. and co-workers showed that this cross-

seeding is also observed when D -polyQ amyloid prepared in vitro is taken up by cells expressing 

an L-polyQ sequence. The stereochemical compatibility of chiral cross-seeding in such an anti-

parallel arrangement is consistent with theoretical studies by Pauling and Corey showing that 

mixed β-sheets of alternating L- and D-peptides, producing “rippled” β-sheets, are 

stereochemically feasible [253]. Recently, such soluble stable mixed D,L-β-sheets have been  

obtained in experiments [254, 255]. A schematic visualization of a modeled structural 

compatibility between a D-polyQ and a L-polyQ assembly aligned in an anti-parallel fashion was 

shown in the paper taking a known x-ray diffraction based structural model for L-fibril end 
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(Figure 6-1 C) [252, 256]. This model was consistent with the idea of the presence of a 

“rippled” β-sheet interface with no steric clashes. This provided an explanation for efficient 

cross-seeding in the polyQ background. 

 

Figure 6-1: Seeding reactions between D,L-polyQ amyloids 
Interactions between polyQ amyloid (PKKKRKVGGQ25KK) and monomers (K2Q25K2) at 37 ºC in PBS [252]. A. L-
polyQ monomers and B. D-polyQ monomers (30 μM) seeded with 12% (w/w) seeds. C. Schematic D-polyQ strand 

aligned in anti-parallel fashion with an anti-parallel  L-polyQ amyloid assembly model [252]. 
 

We wanted to explore the notion that chiral cross-seeding could be a more generic 

phenomenon and in particular whether it could occur with more typical amyloid fibrils whose 

core consists of parallel, in-register β-sheet [257, 258], which contrast with the anti-parallel 

structure of polyQ amyloid [259, 260].  PolyQ system is also comparatively simple and possibly 

better suited for D,L- cross seeding, because there is no bulky side chains in polyQ, the way there 
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are in most amyloidogenic peptides, and it might be more difficult to accommodate a number of 

different, bulky side chains at the rippled interface. Hence, we wanted to explore if a peptide 

assembling into parallel, in-register β-sheet amyloid, such as Aβ, could support sterically 

acceptable D-/L-interactions and exhibit D,L-interactions.   

In this Chapter, we test whether chemically synthesized D- and L-Aβ40 peptides are 

capable of efficient cross-seeding in amyloid fibril growth, in in vitro experiments similar in 

design to those previously described with polyQ.  The results obtained here suggest that chiral 

cross seeding of amyloid may not be confined to polyQ or to anti-parallel β-sheet amyloid, but 

rather may be a more general phenomenon. 

6.3 RESULTS 

6.3.1 D-Aβ40 peptide synthesis 

Initially, D-Aβ40 peptide was synthesized in a general fashion from Keck Biotechnology Center 

at Yale University just like all the other Aβ peptides synthesized in a crude fashion by Fmoc 

synthesis strategy. We found, however, that this peptide synthesis gave an inferior product that, 

in spite of its acceptable purity by LC-MS analysis, aggregated extremely poorly and could not 

be used for our experiments (Appendix A). (Just as all-D synthetic proteins can fold as 

efficiently as all- L, we expect that Aβ of opposite chirality should undergo spontaneous amyloid 

formation identically to all-L.  This was the case with polyQ amyloid [252]) One of the reasons 

why the product might be impure is the presence of epimerization during synthesis resulting in 

peptide with higher % of L-amino acids present [173]. In fact, the coupling agent used during the 
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initial synthesis by the Keck Center, HBTU, is known to be less effective in reducing 

epimerization during synthesis. Hence, we worked in consultation with the Keck Center to 

explore the use of other coupling agents which would react faster with less epimerization during 

coupling. Two of the coupling reagents explored were COMU and HATU, and we found that 

HATU provided a better quality product (as defined by amyloid formation kinetics) with higher 

yields of the pure peptide (Appendix A). The peptide from HATU synthesis was used in our 

experiments here. We also purchased D-Aβ40 peptide from Sigma Aldrich (Catalog No: A5973), 

and this peptide had a similar aggregation profile to that of L-Aβ40 peptide and similar cross-

seeding behavior to the Keck D-Aβ40 F-moc product using HATU.  Sigma Aldrich, like other 

peptide suppliers, does not reveal details of their source or synthetic methods, so we don’t know 

how they successfully produced their product.  The Keck synthesis was required because of the 

cost of the Sigma-Aldrich material. 

6.3.2 Spontaneous aggregation reactions 

In an achiral solvent, we expect D-Aβ40 of good quality to undergo spontaneous aggregation to 

make amyloid fibrils with similar kinetics of formation and basic morphology as L-Aβ40.  This 

was confirmed by experiment.  The aggregation kinetics of L- and D-Aβ40 under quiescent 

conditions was monitored with the help of HPLC sedimentation assay (2.2.1) (Figure 6-2).  Both 

L- and D-Aβ40 peptides were incubated at a starting monomer concentration of ~50 μM. The 

aggregation kinetics for both the peptides was identical, with the reactions reaching equilibrium 

around 250 hrs. The D-Aβ40 aggregated at a slightly reduced rate with t½ of 72 hrs when 

compared to the L-Aβ40 with a t½ ~58 hrs. (t½ is a simple measure of time taken for 50% drop in 

monomer concentration and is useful to use as a crude way to quantify amyloid formation 
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kinetics.) The slight difference in half-lives is probably real and may reflect some small degree 

of poorer quality in the D-peptide. 
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Figure 6-2: Aggregation kinetics comparison of D- and L-Aβ40 peptides 

  

The fibril products of spontaneous amyloid formation by the D- and L-peptides are essentially 

identical in EM morphology (Figure 6-3 C, no seed). In addition, the secondary structures of the 

fibrils are identical, as seen both in the FTIR spectra of the isolated aggregates (Figure 6-3 B) 

and in the CD spectra of suspensions of aggregates (Figure 6-3 A). Both the techniques 

indicated a high level of β-sheet structure as expected. In the case of CD measurements, as 

expected with ordered structures of opposite chirality, the CD spectrum of D-Aβ40 amyloid is of 

opposite sign to that of L-Aβ40 fibrils (Figure 6-3 A).  The fact that we observe this mirror image 

CD spectrum confirms that the peptide in the “D-Aβ40” amyloid fibrils is that of opposite 

chirality to that of L-Aβ40.  
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Figure 6-3: Physical characterization of D-and L-Aβ40 amyloids 
A. CD and B. Second derivative FTIR spectra of D- and L-Aβ40 amyloid fibrils C. Negative stain EM 

images of the various seeded reactions. 
 

The Cr values for both the spontaneous growth reactions were also essentially identical (Table 6-

1). We obtained a Cr value of 1.07 ± 0.03 μM for the spontaneous aggregation of L-Aβ40 when 

compared to the value of 1.22 ± 0.04 μM for the D-Aβ40.  Thus, by all of the criteria measured, D-

Aβ40 behaves identically to L-Aβ40 in fibril assembly and forms fibrils with similar properties.  
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6.3.3 Cross-seeding experiments 

To look at the in vitro seeding specificities of L- and D-Aβ40 fibrils towards monomers of 

matched and opposite chirality, we initiated the aggregation reactions with 10% by weight of 

fibril seeds to monomer (Figure 6-4). We found that, as was the case with polyQ system, L-Aβ40 

fibrils greatly stimulated the aggregation of L-monomers (Figure 6-4 A, ●) compared with the 

unseeded reaction, with a t½ increase of 100 fold (Figure 6-4 A, ■) (Table 6-1). The t½ value 

reduced from ~58 hrs in the case of spontaneous growth kinetics to ~0.5 hrs in the case of seeded 

growth reactions (Table 6-1). More importantly, we found out that the reaction of L-monomers 

with D-fibrils (Figure 6-4 A, ▲) also proceeds at a rate much faster than the unseeded reaction 

(Table 6-1) with a t½ of ~ 9 hrs. The morphologies of the fibrils produced at the end of the 

reaction are essentially identical by EM analysis (Figure 6-3 C) and are similar in appearance to 

those of the spontaneous growth reactions. Identical results were obtained in the opposite 

reaction where D-monomers were seeded with L and D-aggregates (Figure 6-4 B). The Cr values 

of all the reactions are reported in Table 6-1.  
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Figure 6-4: Seeded elongation of L-Aβ40 and D-Aβ40 monomers with various aggregates 
A.Aggregation kinetics of 30 μM reaction of L-Aβ40 monomer with no seed (■) and seeded with 10% (w/w) of L-
Aβ40 (●) and D-Aβ40 (▲) aggregates. B. Aggregation kinetics of 30 μM reaction of D-Aβ40 monomer with no seed 
(■) and seeded with 10% (w/w) of D-Aβ40 (●) and L-Aβ40 (▲) aggregates. Fits of the data points are done for 
visualization purposes only.  
 

Table 6-1: Summary of results 

 L-Aβ40 monomer D-Aβ40 monomer 

Cr, spontaneous growtha 1.07 ± 0.03 μM 1.22 ± 0.04 μM 

t½, spontaneous growtha 58 hrs 72 hrs 

Cr, seeded growth, L-Aβ40 seed 1.02 ± 0.04 μM 1.131 ± 0.02 μM 

Cr, seeded growth, D-Aβ40 seed 1.12 ± 0.03 μM 1.205 ± 0.012 μM 

t½, seeded growth, L-Aβ40 seed 0.5 hrs 22 hrs 

t½, seeded growth, D-Aβ40 seed 9 hrs 0.75 hrs 

Cr, spontaneous growth, agitatedb 0.22 ± 0.06 μM 0.49 ± 0.02 μM 

t½, spontaneous growth, agitatedb n.d. 8 hrs 

a Peptides kept at 37 ºC PBS buffer under quiescent conditions [125] 
b Peptides kept at 37 ºC PBS buffer under agitation conditions [125] 
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6.3.4 Presence of polymorphism in the D-Aβ40 system 

Previous results from the lab has shown that in the case of L-Aβ40 peptide, varying structures of 

aggregates can be obtained under unique sets of spontaneous growth conditions [125]. The 

existence of these multiple amyloid forms is the basis of strain effects in yeast prion biology and 

might contribute to the variations in AD pathology as well. We reported 5 distinct structures of 

fibrillar aggregates of L-Aβ40 peptide as well as a non-fibrillar aggregate induced in the presence 

of zinc ions [125]. These varying polymorphs also differ in parameters like Cr, ThT binding, EM 

morphology and HX-MS protection.  

 

Figure 6-5: Presence of polymorphic form of D-Aβ40 aggegates 
A.D-Aβ40 and L-Aβ40 peptides kept under quiescent conditions at 37 ºC (■) and agitating conditions at 24 ºC (●) 

[125]. The representative EM images are shown in B. 
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We wanted to see if such polymorphism is present in the D-Aβ40 peptide enantiomer as 

well. We kept a reaction of D-Aβ40 under agitation conditions at room temperature as was done 

previously for L-Aβ40 peptide [125]. This polymorph was called L-Aβ40 APBS24. We found that 

as in the case of L-Aβ40 peptide, D-Aβ40 aggregation was also greatly influenced by agitation. The 

aggregation proceeded faster with a t1/2 of 8 hrs when compared to that of 72 hrs for quiescent 

conditions (Figure 6-5 A). The Cr was also much lower for the agitated fibrils (0.49 ± 0.02 μM) 

when compared to the quiescent D-Aβ40 at 37 ºC (Table 6-1). EM morphology of the final fibrils 

was short, straight and they appear to be composed of laterally associated filaments lacking any 

twist (Figure 6-5 B). Similar structures were seen previously for L-Aβ40 peptide at agitated 

conditions (Figure 6-5 B).  

6.4 DISCUSSION 

The ability of amyloid fibrils to seed the elongation of protein monomers has been shown 

to be highly sequence specific. Previous results showed stringent chiral specificity in amyloid 

seeding reactions. In one study with radiolabeled Aβ enantiomers, Aβ deposition onto authentic 

brain amyloid was highly stereospecific [246].  This assay was done by studying deposition of a 

very low concentration of radio-iodinated, monomeric Aβ onto a synthetic template of 

immobilized fibrillar L-Aβ40 aggregates on a polymer matrix. There are several possible 

explanations for why cross-seeding was not seen previously.  One possibility is that the chemical 

synthesis of the D-Aβ40 suffered from the same problems as some of our attempted syntheses, as 

outlined earlier (Chapter 3) and in the Appendix A.  Another, probably more significant, 

possibility is that the effort to observe cross-seeding was doomed to fail due to the very low 
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concentration of labelled Aβ monomers used.  In our previous paper on achiral cross-seeding of 

polyQ fibrils, we reported that the difference between homologous and heterologous seeding 

efficiencies increased as concentration decreased [252].  This is probably due to the different 

stereochemical requirements of the critical first step of cross-seeded elongation in what has been 

termed the “dock-and-lock” mechanism of amyloid fibril elongation. In the polyQ experiments, 

our group was able to show that the docking of a monomer to a fibril of opposite chirality has an 

especially restrictive concentration dependence compared to chiral self-seeding.  That means that 

the barrier to cross-seeding can be overcome by raising the monomer concentration to effectively 

“saturate” the fibril growth surface.  It is important to note that in the Aβ experiments described 

here, our monomer concentrations were substantially higher than those used by the Maggio 

group [246]. 

Previously, our lab has showed that in the case of PolyQ aggregates, there is 

stereochemical compatability between D-monomers and L-aggregates (and vice-versa) in an anti-

parallel arrangement [252]. The cross-seeding seen between D-monomers and L-aggregates is not 

as efficient as self-seeding but is much greater than spontaneous aggregation. This model of 

chiral cross-seeding was anticipated previously by Pauling and Corey and they proposed the anti-

parallel ‘rippled’ β-sheet model [253]. We show here that this cross-seeding is equally efficient 

in a much more complex system like Aβ which has a typical complex sequence and also a 

parallel, in-register β-sheet arrangement. It is important to emphasize, however, that in contrast 

to mixed D- and L-peptide β-sheets, D- and L-peptide amyloid cross-seeding only requires a 

single “rippled β-sheet” interface to form, and then only long enough for the elongation of the 

new fibrils to be established. 
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As expected D-Aβ40 behaves just like a mirror-image of the L-peptide and forms 

aggregates in spontaneous growth which are similar to the L-aggregates in all the properties 

measured. This confirms the previous in vitro studies on D-Aβ40 aggregates where they show 

similar biophysical properties to the aggregates like that of the corresponding L-aggregates [246]. 

When aggregation reactions are initiated with 10% by weight of cross-seeded fibrils, we found a 

significant amount of stimulation when compared to the unseeded reactions (3-6 fold).  The 

amount of enhancement is similar to what was seen in the case of polyQ cross-seeded reactions 

which shows that the reactions are not influenced by the complexity of the Aβ sequence and the 

parallel β-sheet nature of its amyloid fibrils. In fact, like the rippled anti-parallel β-sheet, rippled 

parallel β-sheets between L- and D-polypeptides were also proposed by Pauling and Corey, 

featuring a structure that has no steric clashes and acceptable values of H-bond distances and 

bond angles (Figure 6-6) [253]. 

 

 

Figure 6-6: Parallel chain ‘rippled’ β-sheet model of hydrogen bonded polypeptide chains ([253]) 
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 One interesting aspect of achiral cross-seeding is that, at least in a highly unusual way, it 

breaks the paradigm often observed and more often assumed in amyloid studies, which holds that 

if seeding enhances amyloid formation kinetics, the structure of the product fibrils will 

necessarily adopt structural features of the seed fibrils.  In the D, L cross-seeding described here 

and in the case of polyQ [252], we observe quite good acceleration of assembly kinetics in a 

situation where it is physically impossible for the product fibrils to take on, at the atomic level, 

the structure of the seed fibrils.  This is of course due to the adventitious alignment of H-bond 

donor and acceptor groups in the extended conformations of both the fibril growth edge and the 

incoming monomer, in spite of their opposing chiralities at their α-carbons.  Based on 

unpublished data from our laboratory, it seems likely that there are other, less trivial, examples of 

seeded reaction products that, although formed by rapid kinetics, do not replicate the structure of 

the seed.  Such results will require the field to reexamine this basic assumption and how it 

underpins some structural arguments and analyses.  
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7.0  CONCLUSIONS 

Previous work from the lab on Aβ focused predominantly on the in vitro characterization of 

aggregates formed in Aβ40 background. Structural features of Aβ40 fibrils were elucidated by 

limited proteolysis [153], hydrogen-deuterium exchange [108, 115, 150, 156, 261, 262], 

thioflavin binding [233], stability measurements [123, 124], and mutational analysis [261]. 

Seeded fibril elongation studies on single point mutants of Aβ40 also provide descriptions on the 

structure of the fibrils. The kinetics and the thermodynamic parameters involved in the in vitro 

aggregation of Aβ40, including the steps involved in nucleation and elongation have been studied 

by employing a variety of methods. It was shown that aggregation proceeds to a reversible 

equilibrium position exhibiting a characteristic equilibrium constant and associated free energy 

of elongation ([124]). The lab has also previously shown the polymorphic structures, ability of a 

single polypeptide chain to grow into more than one stable structure, exist in the case of Aβ40 

molecule each of which can propagate with retention of its structure [125]. The experiments 

done previously show that external factors, like conditions of amyloid growth, could lead to 

variations in details of H-bonding in the structures which can differ significantly between the 

polymorphs.  

We were interested in extending the Aβ40 work in understanding the fibril formation 

mechanism in the Aβ42 background based on its stronger association to AD pathology. 

Historically, our source for obtaining these biologically relevant molecules has primarily been 
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solid phase peptide synthesis. This offers us the ease to work with these peptides and also gives 

us a much cheaper way to study them when compared to the recombinant synthesis, provided we 

get a pure starting material to work with. Based on the inherent nature of the technique, however, 

chemically synthesized peptides often have other impurities which are mostly deletion fragments 

of the desired peptide. These impurities need to be avoided during synthesis and separated after 

synthesis to obtain the pure material. Chemical synthesis and subsequent purification of Aβ40 

peptides are not very challenging and result in pure peptides with high yields and > 95% purity. 

But addition of C-terminal hydrophobic residues to generate Aβ molecules of longer lengths 

create a much more difficult synthesis resulting in lower yields and purities of the resulting 

peptides. This is because of the inherent hydrophobicity of these longer Aβ sequences which 

results in aggregation during synthesis. In Chapter 3, we describe a new method of reversible 

addition of C-terminal flanking charged residues to Aβ peptides to significantly improve their 

synthetic quality, yield and purity [157]. We linked 2-6 Lys residues to the Aβ peptide’s C-

terminus through peptide bonds during the synthesis.  These extra charged residues are then 

removed post-purification using an immobilized CPB column.  With this method, we obtained 

both longer Aβ sequences, such as Aβ42 and Aβ46 peptides, of much higher yields and purities 

than those obtained without Lys addition. This method is robust and can be applicable as a 

general useful method for making other difficult-to-synthesize hydrophobic peptides which are 

otherwise problematic to synthesize using conventional chemical synthesis.  

Previous work in the lab on Aβ42 peptides, looked at the structures of their aggregates by 

HX-MS methodology, which has been developed with great precision to study Aβ40 peptides. 

Studies of Aβ42, obtained using the lab’s standard protocols for disaggregating Aβ peptides, 

suggested that the final aggregation product sometimes represents an incomplete aggregation 

 134 



reaction, resulting in a mixed population of fibrils and unusually stable intermediates with lower 

HX-MS protection values. In Chapter 4, we confirmed the previous findings that the standard 

disaggregation method that is consistently successful for Aβ40 peptides leads to incomplete fibril 

formation reaction with Aβ42 peptides. We confirmed that the behavior of Aβ42 is not related to 

intrinsic properties of the peptide by following Aβ42 aggregation of peptide disaggregated by a 

different method - dissolution of peptide in a strong denaturing agent (Gdn-HCl) followed by 

monomer isolation via SEC [143]. This technique indeed solved the problem of incomplete 

aggregation and gave a homogenous fibril population for Aβ42 peptide, even when incubated at 

relatively high concentrations, which is comparable to those obtained with Aβ40. Investigations 

into why the two methods differ were inconclusive, and further studies need to be done to fully 

explain the source of the problem with the TFA-HFIP method.  Nonetheless, from a practical 

point of view, the results obtained clearly show that choosing the right disaggregation method 

can play a significant role in determining the course and products of an aggregation reaction. 

Each disaggregation method has strengths and weaknesses which sometimes dictate the choice of 

method, but the weaknesses even of the chosen method must always be kept in mind. 

In Chapter 5, we shifted our focus to a fundamental analysis of another variant of Aβ, 

Aβ43, which is typically present at low levels (1% of Aβ40; 10% of Aβ42) compared with the 

predominant Aβ forms. It has been earlier proposed that the longer C-terminal variants of Aβ 

would tend to be more hydrophobic and hence could have an impact on Aβ aggregation out of 

proportion to its brain content [227].  We carried out in vitro comparative analysis of the 

aggregation of Aβ42, Aβ43 and their mixtures.  We found out that Aβ43 passes through the 

oligomeric intermediate stage considerably more slowly than Aβ42 before eventually arriving at 

mature amyloid fibrils. The presence of prolonged oligomers could be the reason for its proposed 

 135 



potent neurotoxicity [52]. We also found, contrary to expectations, that Aβ43 fibrils are very 

inefficient in seeding Aβ42 amyloid formation, even though Aβ42 fibrils seed fibril formation by 

Aβ42 and Aβ43 monomers equally well.  The results together suggest that low levels of Aβ43 in 

the brain are unlikely to favorably impact the aggregation of Aβ42 which is contrary to previous 

data on Aβ43. 

In Chapter 6, in another fundamental study, we probed one of the key features of 

amyloid assembly, seeded elongation, with respect to its stereochemical specificity. The fidelity 

of this process has been previously studied to look at various structural polymorphs of Aβ and 

also as a model for prion propagation.  Early studies on the role of chirality suggested that chiral 

cross-seeding is not feasible between two opposite enantiomers [246]. But our lab recently 

reported that D- and L-polyglutamine can engage in efficient cross-seeding, presumably through 

a “rippled β-sheet” interface between the seed and incoming monomer in the anti-parallel β-sheet 

core of polyQ amyloid [252]. To examine if this cross-seeding is a general phenomenon common 

to other amyloid systems, we extended this study in the Aβ background, by probing the self-

assembly and chiral cross-seeding of the D-and L-enantiomers of Aβ40 in vitro. In contrast to an 

old literature report, we found cross-seeding efficiency similar to what we reported previously 

for polyQ amyloid.  This suggests that cross-seeding, surprisingly, is not chirally discriminating 

and can also occur through a similar ‘rippled’ β-sheet interface in the parallel, in-register 

structure of the Aβ amyloid core. The possibility that a rippled β-sheet can be assembled from 

alternating strands of L- and D-peptides organized in parallel β-sheet was proposed by Linus 

Pauling in a theoretical analysis in the 1950s, long before the nature of amyloid was known 

[253]. Our results suggest some interesting contradictions or caveats to the general impression 
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that seeded elongation consistently propagates the structure of the seed, and thus raises issues of 

potential importance to prion biology. 
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APPENDIX A 

IMPORTANCE OF COUPLING AGENT IN Aβ SYNTHESIS 

A.1 PROBLEMS WITH D-Aβ40 SYNTHESIS 

D-Aβ40 peptide synthesized using the regular Fmoc synthesis protocol from Keck 

Biotechnology Center at Yale University was defective and did not aggregate efficiently (Figure 

A-1, Table A-1). It aggregated from a starting monomer concentration of 37 μM to about a final 

concentration of 30.3 μM. We tried exploring the reason for this defect by synthesizing D-Aβ40 

peptide with other coupling agents. Two other coupling agents were employed: COMU and 

HATU. During solid phase synthesis, peptides are synthesized by coupling the carboxyl group of 

the incoming monomeric amino acid to the amino group at the N-terminus of the growing 

peptide chain. For coupling, the carboxyl group is usually activated. This is important for 

speeding up the reaction.  One of the popular groups of activating agents are triazoles. HBTU, 

COMU and HATU fall under this group of activating agents. HATU and COMU are newly 

developed activating agents which have been proven to be very efficient in difficult sterically 

hindered couplings and usually give a minimal levels of racemization.  
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Figure A-1: Aggregation kinetics of D-Aβ40 peptides synthesized with different activating agents 
The peptides were purified (2.1.1) and disaggregated using the Gdn-HCl method (2.1.4). The starting monomer 
concentrations of these peptides are: 37 μM (D-Aβ40 HBTU), 30 μM (D-Aβ40 HATU), 7 μM (D-Aβ40 COMU) (2.1.5). 
By comparison, a 32 μM reaction of L-Aβ40 is shown. 

 
 
From Figure A-1, it is clear that D-Aβ40 peptide synthesized via COMU and HATU 

activating agent behaves much better than the peptide synthesized with HBTU as activating 

agent. The figure is somewhat misleading as to the relative efficiencies of these reactions since it 

is plotted as percent monomer rather than concentration, and the starting concentrations, out of 

necessity, were quite different. The graph suggests that the COMU product was not as good as 

aggregating as the HATU product, but this is not the case: the peptides from these 2 activating 

agents actually aggregate to essentially the same final equilibrium concentrations of 1.5 μM and 

1.15 μM respectively, which are comparable to the equilibrium concentrations obtained from L-
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Aβ40 peptide synthesized with HATU as activating agent 1.07 μM (Table A-1). The problem 

with COMU turned out to be that it gave very poor yields of ~2% of the pure peptide from the 

crude when compared to ~17% for HATU product. The low COMU yield was probably due to a 

previously unreported high degree of instability of the COMU agent, which meant that it 

decomposed during the prolonged automated synthesis of the Aβ40 and hence was less effective, 

especially in the last coupling steps.  Hence we chose to focus on HATU as a potentially 

improved coupling agent. 

Table A-1: D-Aβ40 final equilibrium concentration values 

Peptide Final concentrations (μM) 

D-Aβ40 (HBTU) 30.3 

D-Aβ40 (COMU) 1.5 

D-Aβ40 (HATU) 1.15 

L-Aβ40  (HATU) 1.07 

 

A.2 ENANTIOMETRIC PURITY ANALYSIS 

One of the reasons for this big difference in the aggregation propensity of these peptides 

could arise from impurities in the peptide. It has been previously shown that even small amounts 

of impurities in the form of racemized peptides in synthetic Aβ, prevent or slow Aβ 

incorporation into amyloid fibrils [173]. Hence we were interested in seeing if the differences in 

the aggregation of various D-peptides are due to the differences in the amounts of impure L-

enantiomer content.   For this D-enantiomer analysis, we sent the samples to C.A.T. GmBH & 
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Co, Tubingen, Germany (www.cat-online.com), who used gas chromatography on a chiral 

matrix to separate L- and D-enantiomers of amino acids. Given the cost of the analysis, we asked 

them to focus only on those amino acids considered to be more susceptible to racemization 

during peptide synthesis. The results of the analysis done on D-Aβ40 (HBTU) and D-Aβ40 

(HBTU) are shown in Table A-2. 

 

Table A-2: Racemate Analysis of synthetic D-Aβ40 (HBTU) 

Amino acid L-enantiomer content (%)a 

alanine 0.20 % 

valine < 0.10 % 

isoleucine < 0.10 % (L-isoleucine) 

0.12 % L-allo-isoleucine 

serine 1.15 % 

aspartate and asparagine 1.11 % 

methionine 7.78 % 

phenylalanine 0.39 % 

glutamate and glutamine 0.68 % 

tyrosine 0.33 % 

lysine 0.49 % 

arginine 0.22 % 

histidine 1.02 % 

 
a %  L -enantiomer content analysis in D-Aβ40 molecules was carried out by GC-MS methodology 
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As can be seen from Table A-2, most of the amino acids have a significant % of L-

enantiomer impurity. The impure D-Aβ40 molecules containing these L-enantiomers cannot be 

separated from the pure all-D form of the peptide by conventional RP-HPLC alone. These 

impurities have similar masses and similar covalent structures to the pure authentic D-Aβ40 

molecule. Hence, these impurities could contribute to the lack of aggregation in this peptide. 

This finding agrees well with a previous study showing that synthetic L-Aβ variants containing 

racemic impurities exhibit altered aggregation kinetics ([173]).  

However, upon racemate analysis of the D-Aβ40 (HATU) molecule which aggregates as 

well as the L-Aβ40, it was found that this peptide also contains significant amount of racemic 

impurities (Table A-3).  

Table A-3: Racemate Analysis of synthetic D-Aβ40 (HATU) 

Amino acid D-enantiomer content (%) 

leucine 0.38 % 

aspartic acid 2.45 % 

methionine 6.88 % 

histidine 2.26 % 

 

Hence, the differences in the peptide aggregation properties of the various D-Aβ40 

peptides cannot be just explained with the amount of racemate impurities present in one sample 

when compared to the other. Furthermore, in subsequent studies we found variable results in 

aggregation ability even with peptides synthesized with HATU.  Thus, our findings that some 

synthetic D-Aβ peptides with similar degrees of purity exhibit widely different abilities to 

aggregate remains unexplained and quite mysterious. 
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