
DISTRIBUTED SPECTRAL GRAPH METHODS

FOR ANALYZING LARGE-SCALE

UNSTRUCTURED BIOMEDICAL DATA

by

Shannon Patrick Quinn

M.S. Computational Biology, Carnegie Mellon University, 2010

B.S. Computer Science, Georgia Institute of Technology, 2008

Submitted to the Graduate Faculty of

the Department of Computational and Systems Biology in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2014



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTATIONAL AND SYSTEMS BIOLOGY

This dissertation was presented

by

Shannon Patrick Quinn

It was defended on

24 November 2014

and approved by

Dr. Chakra Chennubhotla, Computational and Systems Biology

Dr. Takis Benos, Computational and Systems Biology

Dr. Cecilia Lo, Developmental Biology

Dr. Arvind Ramanathan, Oak Ridge National Laboratory

Dr. Russell Schwartz, Carnegie Mellon University Department of Biology

Dr. Lans Taylor, Drug Discovery Institute

Dissertation Director: Dr. Chakra Chennubhotla, Computational and Systems Biology

ii



DISTRIBUTED SPECTRAL GRAPH METHODS FOR ANALYZING

LARGE-SCALE UNSTRUCTURED BIOMEDICAL DATA

Shannon Patrick Quinn, PhD

University of Pittsburgh, 2014

There is an ever-expanding body of biological data, growing in size and complexity, out-

stripping the capabilities of standard database tools or traditional analysis techniques. Such

examples include molecular dynamics simulations, drug-target interactions, gene regulatory

networks, and high-throughput imaging. Large-scale acquisition and curation biological data

has already yielded results in the form of lower costs for genome sequencing and greater cov-

erage in databases such as GenBank, and is viewed as the future of biocuration. The “big

data” philosophy and its associated paradigms and frameworks have the potential to uncover

solutions to problems otherwise intractable with more traditional investigative techniques.

Here, we focus on two biological systems whose data form large, undirected graphs. First,

we develop a quantitative model of ciliary motion phenotypes, using spectral graph methods

for unsupervised latent pattern discovery. Second, we apply similar techniques to identify

a mapping between physiochemical structure and odor percept in human olfaction. In both

cases, we experienced computational bottlenecks in our statistical machinery, necessitating

the creation of a new analysis framework. At the core of this framework is a distributed

hierarchical eigensolver, which we compare directly to other popular solvers. We demon-

strate its essential role in enabling the discovery of novel ciliary motion phenotypes and in

identifying physiochemical-perceptual associations.

iii



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Petabyte-scale biomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.0 SPECTRAL GRAPH ANALYTICS . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Graph structures and properties . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Graph affinities and neighborhoods . . . . . . . . . . . . . . . . . . 12

2.2.2 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Methods for finding eigenvalues and eigenvectors . . . . . . . . . . . . . . 21

2.4.1 Direct solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Hierarchical and multigrid solvers . . . . . . . . . . . . . . . . . . . 22

2.4.4 Geometric multigrid (GMG) eigensolvers . . . . . . . . . . . . . . . 23

2.4.5 Algebraic or Combinatorial multigrid (AMG, CMG) eigensolvers . . 27

2.5 Parallel and distributed implementations . . . . . . . . . . . . . . . . . . 29

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.0 LEARNING CILIARY MOTION PHENOTYPES . . . . . . . . . . . . 32

iv



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Data acquisition and study design . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Subject recruitment and data cohort breakdown . . . . . . . . . . . 35

3.2.2 Digital video annotation and preprocessing . . . . . . . . . . . . . . 39

3.2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Representing ciliary motion as dynamic textures . . . . . . . . . . . . . . 41

3.4 Derivation of differential invariants . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Differential Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2.1 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2.2 Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2.3 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Differential feature filters . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Computing digital signatures of ciliary motion phenotypes . . . . . . . . . 49

3.5.1 Autoregressive models . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Magnitude and frequency histograms . . . . . . . . . . . . . . . . . 53

3.6 Classification of digital signatures . . . . . . . . . . . . . . . . . . . . . . 56

3.6.1 Structure of SVM input . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Classifier design for CM recognition . . . . . . . . . . . . . . . . . . 57

3.6.3 Cross-validation and consensus diagnosis . . . . . . . . . . . . . . . 58

3.6.4 Results of CM classification . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Unsupervised discovery of novel motion phenotypes . . . . . . . . . . . . 68

3.7.1 Automated region selection . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.2 Spectral clustering of AR parameters . . . . . . . . . . . . . . . . . 71

3.7.3 Large-scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.0 LEARNING PERCEPTUAL OLFACTORY DIMENSIONS . . . . . . 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Dravnieks odor profile and physiochemical descriptors . . . . . . . . . . . 80

v



4.2.1 Nonnegative matrix factorization to determine ground-truth odor

percepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Derivation of a generalized odorant similarity metric . . . . . . . . . . . . 84

4.3.1 Diagonal Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Full Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.3 Populating constraint sets S and D . . . . . . . . . . . . . . . . . . 88

4.4 Using the similarity metric to improve odorant classification . . . . . . . . 89

4.4.1 Substituting each odorant ~x with G1/2~x . . . . . . . . . . . . . . . . 90

4.4.2 Projecting each odorant ~x using leading eigenvectors of G . . . . . . 90

4.4.3 Baseline methods for comparison to G . . . . . . . . . . . . . . . . 90

4.4.4 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.5 Effects of downsampling S and D on classification . . . . . . . . . . 100

4.5 Comparison to other metrics . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.2 Cosine angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.3 Alternative descriptor sets . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.4 Alternative models of olfaction . . . . . . . . . . . . . . . . . . . . . 105

4.6 Physiochemical signatures uniquely identify odor percepts . . . . . . . . . 106

4.7 Quantitative evidence for 10 perceptual categories . . . . . . . . . . . . . 112

4.8 Semi-supervised propagation of odor percepts to unobserved odorants . . 117

4.8.1 Graph kernels for semi-supervised learning . . . . . . . . . . . . . . 118

4.8.2 Using PubChem to test large-scale odor-percept mapping . . . . . . 119

4.8.3 Semi-supervised odor percept propagation . . . . . . . . . . . . . . 120

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.10 Appendix: List of physiochemical properties used . . . . . . . . . . . . . . 124

5.0 DRAENOR: A DISTRIBUTED SCIENTIFIC COMPUTING FRAME-

WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

vi



5.3 Practical distributed hierarchical eigensolvers . . . . . . . . . . . . . . . . 129

5.3.1 Language and architecture . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Geometric multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.3 Algebraic multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.1 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.1.1 Distributed geometric multigrid . . . . . . . . . . . . . . . . 137

5.4.1.2 Distributed algebraic multigrid . . . . . . . . . . . . . . . . 138

5.4.2 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.1 Ciliary motion analysis . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.2 Perceptual olfactory recognition . . . . . . . . . . . . . . . . . . . . 151

6.1.3 Large-scale scientific computing . . . . . . . . . . . . . . . . . . . . 152

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vii



LIST OF TABLES

1 Description and breakdown of datasets . . . . . . . . . . . . . . . . . . . . . . 37

2 Classification results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 AR results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Histogram results using CHP dataset. . . . . . . . . . . . . . . . . . . . . . . 63

5 Histogram results using CNMC dataset. . . . . . . . . . . . . . . . . . . . . . 64

6 Classification results for the linear SVM. . . . . . . . . . . . . . . . . . . . . . 94

7 Classification results for the nonlinear SVM. . . . . . . . . . . . . . . . . . . 95

8 Top 60 physiochemical features. . . . . . . . . . . . . . . . . . . . . . . . . . 97

9 Top 13 physiochemical features. . . . . . . . . . . . . . . . . . . . . . . . . . 98

10 Effects of downsampling similarity constraints. . . . . . . . . . . . . . . . . . 100

11 The properties listed are those that have a z-score of at least 1.0. . . . . . . . 110

12 Descriptors with z-scores of at least 2.0. . . . . . . . . . . . . . . . . . . . . . 111

13 Four images used to conduct initial tests of the Draenor GMG. . . . . . . . . 145

14 Empirical eigensolver runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



LIST OF FIGURES

1 Era of “Big Data.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Undirected vs Directed graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Affinity matrices for corresponding 2D data. . . . . . . . . . . . . . . . . . . 15

5 2D random walks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 K-means vs spectral clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Graph spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Hierarchical schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Pixel neighborhoods and graph structure. . . . . . . . . . . . . . . . . . . . . 25

10 Properties of ciliary motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 CHP and CNMC dataset breakdowns. . . . . . . . . . . . . . . . . . . . . . . 38

12 Website proof-of-concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

13 Derivation of elemental components. . . . . . . . . . . . . . . . . . . . . . . . 43

14 Basic distortion types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 Atomic flow detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

16 Autoregressive representation of ciliary motion. . . . . . . . . . . . . . . . . . 50

17 Pairwise angles between principal components of CM. . . . . . . . . . . . . . 52

18 CM histogram representations. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

19 Pixel selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

20 Classification pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21 CM AR model representations. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

22 Classification accuracy as a function of ROIs per patient. . . . . . . . . . . . 67

ix



23 Automated patch selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

24 CM subtypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

25 3D space of CM subtypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

26 Physiochemical properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

27 Dravnieks odor profile database. . . . . . . . . . . . . . . . . . . . . . . . . . 82

28 Learning algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

29 Outcome of PCA on metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

30 All classification results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

31 Classification accuracy using feature selection. . . . . . . . . . . . . . . . . . 99

32 Effects of downsampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

33 Classification accuracy with principal components. . . . . . . . . . . . . . . . 102

34 Energy vs angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

35 Physiochemical z-scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

36 Properties with significant z-scores. . . . . . . . . . . . . . . . . . . . . . . . 109

37 3D projections of odorants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

38 Submatrix containing CIM and thermodynamics properties. . . . . . . . . . . 114

39 Baseline classification accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

40 Odor space organization and chemical similarity. . . . . . . . . . . . . . . . . 119

41 Decimation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

42 Built-in eigensolver compared to distributed GMG. . . . . . . . . . . . . . . . 146

43 Large-scale GMG performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

44 Spark implementation bottlenecks. . . . . . . . . . . . . . . . . . . . . . . . . 148

x



PREFACE

ACKNOWLEDGEMENTS

Brace yourselves1; I have a lot of wonderful people I want to thank and acknowledge.

First and foremost, I want to acknowledge my advisor, Dr. Chakra Chennubhotla. I

cannot enumerate all the ways in which he has truly been the best advisor I could have

possibly asked for, but I will start by saying he is singularly responsible for keeping me

motivated, interested, and excited whenever we hit dead ends, or had a manuscript rejected

from the 27th journal we had submitted it to, or when administrative bureaucracy threatened

a project that had otherwise unassailable momentum. He respected and encouraged my out-

of-the-lab pursuits (training for and running marathons takes a lot of time!), and regularly

inquired about when my next race was or how the most recent one had gone. He gave me free

rein with bringing my own skill set and interests to whatever problem we were working on,

and made himself readily available to be inundated with questions when I inevitably (and

frequently) hit a roadblock. In my humble opinion, Chakra should skip Associate Professor

and go straight to a full Professor, to say nothing of tenure (as in, he should get tenure).

His enthusiasm and desire to learn is infectious and I cannot emphasize enough how critical

that was to my own personal success.

I want to thank the rest of my committee for their hard work and dedication to guiding

me on the path to graduation this past year. I have worked with some of them as fellow

collaborators, as a rotation student, as a summer subcontractor, as a student in their class;

for some, I had only heard of the ways in which they transformed their respective fields. Each

of them brings their own experience and wisdom to my committee, and I cannot thank them

1http://i.imgur.com/6vdT0uq.png

xi



enough, especially since they have to read this document. I hope they will enjoy reading it,

and enjoy even more when they have finished reading it.

My fellow classmates of the (incoming?) class of 2010: Aaron, Devin, Jose, Matt, Murat

Can, and Salim, who provided an invaluable social backdrop to the entire experience, bred

out of commiseration during our core courses in the first two years. They have since become

my workout and racquetball buddies, my board gaming partners, and even my groomsmen.

I can only hope we keep in touch once we all scatter; they have truly made this experience

more than the sum of its parts. L4D2, anyone?

To all the wonderful folks I have met in Pittsburgh through running, in particular:

Danielle and Jose, Kim and Scott, Kelly, and Mark. I want to thank Tim and Alys as well;

even though I knew them before I got into running, the Ragnar DC relay was really the start

of regular interactions. Running has been an integral and absolutely essential part of me for

the past four years helping to keep the stress manageable, in no small part because of these

wonderful, supportive, and perpetually-hopped-up-on-endorphins folks.

I also want to convey a heartfelt thank-you to Ellen, who I have known since high school

and who also ended up in Pittsburgh working for the university. Her support and incredible

wisdom and common sense have helped keep both myself and my wife rooted as we have

developed our lives in Pittsburgh both inside and outside of work. She has an unflappable

work ethic that is contagious, and a selfless devotion to her friends that is humbling. I am

(selfishly) grateful that her parents recently moved back to Atlanta; hopefully my wife and

I will be able to continue to enjoy her company over the coming years.

Speaking of supportive, I want to thank the members of the dissertation group I have had

the pleasure of meeting regularly with for the past year, specifically: Alba, Andrea, Aubrey,

Chelsea, Peter, Prerna, and my Panera writing partner emeritus Nathan; our fearless leader

Kym; and my individual mentor Kelly, all of whom have contributed immensely to helping

me maintain a relatively healthy and functional degree of crazy throughout the dissertation

process. The constant outpouring of support and wealth of insight has made all the difference.

I want to thank Tess, another Atlanta transplant who I’ve known since grade school

who also ended up in Pittsburgh. The morning Insanity and weightlifting workouts, early

mornings on the track, joint Java programming and thesis writing sessions, and innumer-

xii



able social outings have been enjoyable beyond measure and helped maintain a degree of

“normalcy” throughout my graduate years. I take comfort knowing she will make occasional

trips south to visit her family, and hopefully our paths will continue to cross.

To my dear Kat, who I have known since high school (although we too went to the same

grade school but never knew it at the time): though she has resided across the pond in an

older and more civilized part of the world for the past few years, she has managed to make her

presence felt through the occasional trip stateside (e.g., weddings!), Skype chats, hangout

messages, and even in lending her finely-tuned editing skills to my academic publishing

endeavors. She has been one of my best friends for over a decade, and I cannot thank her

enough for all her love and support.

I also want to thank faculty who have mentored me in some way beyond my immediate

research: Jim Faeder, for his perpetual enthusiasm and readiness to run 15 miles with me

at 5am on a departmental retreat; Dan Mosse, for his patience in allowing me to learn

by making mistakes in supervising his undergraduates in their capstone projects, and for

providing guidance throughout the job search; Rob Hall, for imparting invaluable machine

learning and statistics knowledge and also pacing me on tempo runs; Bob Murphy, for

getting me started in imaging and taking me on as a master’s student; Arvind Ramanathan,

for introducing me to Chakra and bringing me to Oak Ridge for a summer; and to Merrick

Furst, for his poignant advice, wisdom, and insights at and since leaving Georgia Tech.

I cannot thank my best man Dan enough for everything he has done over the years we

have known each other, and especially over these years I have been in graduate school. He’s

provided healthy perspective, come and visit on several occasions, run races with me, and

left the most fantastic voicemails. With everything from bouncing algorithm ideas off each

other to racing strategies, he has been a constant source of inspiration, calm, and humor.

Even though he still (incorrectly) insists his Towers of Hanoi solver was more efficient than

mine, I cherish the friendship we share.

To my family: words cannot express how important their constant love and support has

been, both over the years of graduate school and for as long as I can remember. My two

sisters, while distinct and incredible individuals who are extraordinarily talented in their own

rights, are the best versions of myself and the people I strive to emulate (though I would

xiii



never admit this to them, of course). My parents are among the most open-minded, loving,

and supportive people I have ever known. Among the myriad lessons I have learned from

them, the first that comes to mind is how they approach everything and everyone with love

first and above all else. I do, however, ultimately blame my dad for being an impeccable

role model for becoming a career academic, but at least I will be working a few miles away

and can come into his office and complain about it in person. And discuss the details of our

latest joint academic project.

And finally, I want to say thank you to my better half, Cathryn. Over the last four

years of graduate school, she went from girlfriend to fianceé to wife (and always when I had

just gotten used to the previous title change). But even more than that, she has been my

life partner. She kept me calm and focused when the stress of graduate school made even

the shortest training run unbearable and frustratingly difficult and it felt like the sky was

crumbling. She has sacrificed much on my behalf, particularly these last few months as my

dissertation has taken front and center, and for that–and so much over the past 8 years–I

am eternally grateful. I cannot express enough thanks to convey my gratitude for her edits

of my various publications and this very thesis. Though I am sorry to admit I can never

remember when I am supposed to use “which” versus “that,” but I suppose that is yet one

more dimension of our partnership. Thank you, Cathryn, for your encouragement, your

omnipresent love and support, and your unwavering confidence in me. Thank you for being

you.

xiv



DEDICATION

To my wife, my family, and my friends, without whose love and support I would not be here.

xv



1.0 INTRODUCTION

If you think it’s simple, then you have misunderstood the problem.

Bjarne Stroustrup

1.1 PETABYTE-SCALE BIOMEDICINE

There is an ever-expanding body of biological data, growing in size and complexity, out-

stripping the capabilities of standard database tools or traditional analysis techniques. Such

examples include long time-scale molecular dynamics (MD) simulations [1], gene regulatory

networks [2], biomedical image analysis [3], and specifically video libraries of ciliary mo-

tion [4], and odor percept association [5]. It is often raw, or unstructured, and some is

already in the public domain12. Large-scale acquisition and curation of unstructured bio-

logical data have already yielded results in the form of lower costs for genome sequencing

and greater coverage in databases such as GenBank, and is viewed as the future of biocu-

ration [6, 7]. The “big data” approach and its associated paradigms have the potential to

uncover solutions to problems otherwise intractable with more traditional investigative tech-

niques. NIH Director Francis Collins recently cast the analysis of large-scale biomedical data

as the “bottleneck” to new discoveries3.

What is responsible for the recent “data deluge?” In a word, cost. Prices for commodity

hardware have fallen precipitously over the last few decades, and simultaneously the amount

of computing power has risen dramatically. This is Moore’s Law [8] in practice: where this

1http://www.cellimagelibrary.org/
2http://databrary.org
3http://videocast.nih.gov/launch.asp?17711

1

http://www.cellimagelibrary.org/
http://databrary.org
http://videocast.nih.gov/launch.asp?17711


Figure 1: Era of “Big Data.” Biomedicine is but one of many areas of scientific and

corporate research in which new, scalable data analysis techniques are required to make

sense of increasingly large volumes of information.

theory relates to the narrow case of the number of transistors in dense integrated circuits

doubling every two years, Moore’s Law echoes across all areas of technology. As storage space

and processing power have increased while simultaneously dropping in cost, the bottleneck

in data analysis has shifted from curation and identification to downstream analysis [9]. It

is now cheaper and more cost-effective than ever to place sensors recording every possible

fluctuation in the data, gathering and storing petabytes of raw, unstructured information,

and to then perform comprehensive analysis after all data collection is complete.

However, there is an idiom in computer science: most problems can be solved by adding

another layer of abstraction, which tends to introduce a new problem. While we now cap-

ture more information than ever in unprecedented resolution, the quantity of data has far

outstripped the abilities of our traditional analysis toolkits to make sense of it. Instead,

we have been driven to devise new, more powerful techniques that discard the traditional

notion of a physical computer and instead rely on clusters of machines acting in a cohesive

unit. This addresses the immediate problem of more data than one machine can handle, but

2



simply throwing more hardware at the problem is not necessarily the final panacea; we have

to gain deeper insights into the problems we are attempting to solve, and the algorithms we

are applying to solve them, in order to find the optimal solution.

In this thesis, we pursue two seemingly-unrelated projects in biomedicine and computer

vision. In our first project, we examine the motion of cilia, microscopic hairlike structures

that line most of the internal organs in humans. We use a series of techniques to quan-

titatively decompose the observed motion, and in the process hypothesize that there exist

more than two discrete types of motion (healthy and abnormal). But to uncover these latent

motion patterns and develop objective quantitative concepts for these motion phenotypes,

we represent ciliary motion as a graph: an interconnected series of nodes, each representing

distinct samples of cilia, connected to other samples by edges weighted according to how

similar the motions between them are (Fig. 2). This graph structure appears in our second

project as well, in which we investigate computational approaches to defining and predicting

perceptual dimensions in olfaction. This problem is particularly interesting, given that olfac-

tion, unlike other sensory modalities, does not have a known well-defined mapping from its

stimulus space to the perceptual space. We use terms such as “fruity,” “nutty,” or “gasoline”

not in a rigorous context, but to vaguely group odorants into categories with poorly-defined

boundaries. However, by defining a metric according to pairwise similarity information, we

can generalize the quantitative similarity definitions to unobserved odorants. Before this

can happen, however, we have to organize the odorants into a graph structure, with edges

weighted according to their similarity. Only then can we use the learned metric to propagate

perceptual information across the network.

In both projects, the sheer quantity of data required novel and scalable analysis methods

to avoid resorting to significant downsampling. This motivated the design for the third con-

tribution of this thesis: a distributed hierarchical eigensolver, or Draenor. This framework

derives its namesake from the Orcish homeland in WarCraft, a landmass that shattered into

pieces. The eigensolver invokes the metaphor: not only does it make use of hierarchical,

or multigrid, techniques for breaking up the complex initial problem into smaller, simpler

version of the original problem, but Draenor is a distributed framework, capable of operat-

ing in parallel across many distinct physical and logical instantiations. As we will discuss

3



Figure 2: Graphs. Network structures are ubiquitous and field-agnostic, appearing in social

media, disease outbreaks, and automated object recognition. Shown here is a toy example

of a graph we create when searching for novel ciliary motion phenotypes.

4



in greater detail in the subsequent chapters, graphs naturally lend themselves to analysis

by computing the eigenvalues and eigenvectors. This is how Google’s famous PageRank

algorithm [10] functions. Websites are interconnected through a series of hyperlinks, which

results in a graph structure. By estimating the first eigenvector of this graph, PageRank can

produce a robust estimate of the most relevant websites given a particular search.

This addresses the need in biological research for a method to analyze the corpus of

data in a way that accounts for its increasing size. We have discussed existing parallel

implementations, but these require additional and expensive hardware to scale to larger

datasets; supercomputers are an example of highly parallel but expensive resources that are

difficult for many researchers to access. By contrast, assembling a cluster of commodity

hardware for distributed computation is not only vastly cheaper but can rapidly approach

supercomputing performance [11]. To our knowledge, no distributed version of a multigrid

hierarchical eigensolver exists.

1.2 CONTRIBUTIONS

This thesis contains the following contributions:

• Introducing a high-throughput computational method for classifying ciliary motion as

normal or abnormal with high accuracy. This method is novel in that it is the first

quantitative, objective framework for ciliary motion phenotype recognition.

• Revealing novel insights into the low-dimensional manifold of ciliary motion through

large-scale spectral analytics. We reveal through unsupervised machine learning tech-

niques and intelligent region selection that multiple motion phenotypes exist beyond

strictly normal and abnormal.

• Learning a pairwise odorant comparison metric that achieves unprecedented accuracy in

recognizing and predicting perceptual categories. Our similarity metric substantially im-

proves classification of odorants into perceptual categories by reorganizing their relative

orientations in physiochemical space.

5



• Showing the structure of the physiochemical space, and in particular which properties are

most informative both in general and for recognizing specific odor percepts. The metric

reveals the interplay and complex dependencies between physiochemical properties in

determining odor percept.

• Developing Draenor, a distributed hierarchical eigensolver, for the purpose of efficiently

solving linear equations that arise in large-scale datasets, such as our ciliary motion

phenotypes or olfaction recognition case studies. Draenor combines the theoretical O(n)

runtime of traditional hierarchical solvers with the scalability of distributed computing.

We demonstrate the capabilities of Draenor and compare its speed and accuracy to other

distributed eigensolvers.

• Providing these frameworks, and Draenor in particular, as actively maintained open

source software for use on commodity hardware.

1.3 THESIS OUTLINE

Before we delve into the specifics of Draenor, we first investigate the history and background

of solving linear systems, and in particular, finding eigenvalues and eigenvectors. In Chap-

ter 2, we examine the theoretical underpinnings of linear systems and the foundations of

solving for the eigenvalues and eigenvectors. We investigate some of the seminal advances in

building efficient solvers and insights into the subspaces spanned by the eigenspectrum. Ad-

ditionally, we link the logical structure of the network into the technical machinery of finding

eigenvalues and eigenvectors, and why this is of particular interest at extremely large scales.

Finally, we conclude the background section with a discussion on the benefits and disadvan-

tages of the current state-of-the-art hierarchical, or multigrid, eigensolvers, and why these

powerful methods are necessary for efficient analysis techniques in the area of biomedicine.

In Chapter 3, we introduce our first case study in large-scale biomedical data analysis.

We describe efforts in biomedical research and in clinical diagnostics to identify ciliopathies,

a class of diseases marked by abnormal or otherwise impaired ciliary motion. Cilia are

microscopic hairlike structures that line most internal organs including the throat, lungs,

6



kidneys, and brain. They beat in synchronous waves to clear particulate matter. Their

beat pattern phenotypes can be indicative of various ciliopathies, and providing an objective

measure for quantifying the observed motion phenotypes is clinically compelling. In this

chapter, we discuss our innovative approach to differentiating between normal and abnormal

ciliary motion. We further expand upon this notion by pursuing an unsupervised method

to discover novel ciliary motion patterns. We conclude by motivating large-scale analysis

frameworks, particularly for solving linear systems, as the means for achieving additional

breakthroughs.

In Chapter 4, we introduce our second case study: an investigation into the modes of

human olfaction. In contrast to other sensory modalities, the basic perceptual dimensions

remain unclear. We describe numerous approaches, both psychophysical and computational,

that have been proposed to elucidate the primary percepts of olfaction. In particular, we

examine our hypothesis that the odor space is occupied by a discrete number of percepts

that are intrinsically clustered. Using this information, we devise a pairwise metric based on

the physiochemical properties of odorant compounds which incorporates odorant similarity.

This novel method provides the quantitative foundation for large-scale computational studies

in olfaction; this metric could be utilized within a large-scale semi-supervised framework to

provide in silico percept predictions for the entirety of the PubChem corpus.

In Chapter 5, we discuss the central contribution of this thesis: Draenor, the DistRibuted

hierArchical EigeNsOlveR. While other highly efficient parallel and distributed eigensolvers

exist, to our knowledge this constitutes the first distributed hierarchical multigrid eigensolver

of its kind. We discuss its theoretical basis in the context of its technical implementations.

We investigate the practical trade-offs with this method, and compare its performance and

accuracy against other serial and distributed eigensolvers. We conclude with a discussion on

the technical limitations of this method, and its future directions.

In Chapter 6, we conclude with a summary of the novel computational methods and

subsequent discoveries enumerated here, the role of Draenor in enabling these types of large-

scale analytics, and informed speculation regarding the necessity of such methods to the

future of biomedical discoveries.

7



1.4 PUBLICATIONS

A significant portion of the materials of this thesis has either been published in conference

proceedings or has been submitted to conferences or journals. Listed below are the relevant

publications and the chapters with which they are primarily associated.

Chapter 3

• Novel use of differential image velocity invariants to categorize ciliary motion de-

fects. Shannon Quinn, Richard Francis, Cecilia Lo, and Chakra Chennubhotla.

Published in the proceedings of the Biomedical Sciences and Engineering Confer-

ence (BSEC).

• Dynamic texture analysis for automated identification of abnormal respiratory ciliary

motion. Shannon Quinn, Maliha Zahid, John Durkin, Richard Francis, Cecilia Lo,

and Chakra Chennubhotla. Submitted to the journal Science Translational Medicine.

Chapter 4

• Designing a physiochemical descriptor based metric for categorizing odors. Shannon

Quinn, Arvind Ramanathan, Jason Castro, and Chakra Chennubhotla. Submitted

in parallel to the journal Scientific Reports and the proceedings of the Research in

Computational Molecular Biology (RECOMB) conference.

Chapter 5

• ORBiT: Oak Ridge Bio-surveillance Toolkit for Public Health. Arvind Ramanathan,

L Pullum, T Hobson, Shannon Quinn, Chakra Chennubhotla, and S Valkova.

Published in the journal BMC Bioinformatics.

• Discovery of Disease Co-occurrence Patterns from Electronic Healthcare Reimburse-

ment Claims Data. Arvind Ramanathan, L Pullum, T Hobson, Shannon Quinn,

Chakra Chennubhotla, and S Valkova. Published in the proceedings for the Big Data

Analytic Technology for Bioinformatics and Health Informatics workshop (KDDBHI)

at the KDD conference.

8



• Oak Ridge Bio-Surveillance Toolkit (ORBiT): Integrating Big-Data Analytics with

Visual Analysis for Public Health Dynamics. Arvind Ramanathan, L Pullum, C

Steed, Tara Parker, Shannon Quinn, and Chakra Chennubhotla. Published in the

proceedings for the IEEE VIS conference.

• Statistical inference for big-data problems in molecular biophysics. Arvind Ramanathan,

Andrej Savol, Virginia Burger, Shannon Quinn, PK Agarwal, and Chakra Chen-

nubhotla. Published in the proceedings for the Parallel and Large-Scale Machine

Learning workshop at the NIPS conference.

1.5 MATHEMATICAL NOTATION

Throughout this thesis, we will consistently use notation that should be familiar to discrete

mathematicians, computer scientists, and statisticians. We denote a column vector as ~x.

The ith element of this vector is denoted by xi. Similarly, scalar values x are shown without

an arrow. Functions (discrete or continuous) f are denoted with boldface. Matrices M are

denoted with capital letters. Unless otherwise stated, the scalar n will be used to refer

to the number of data points, and m the number of dimensions per datum. Thus, M ∈

Rn×m denotes the matrix M which defines a mapping of n points in m-dimensional space.

Individual elements of a matrix M are indicated with subscripts Mij, denoting the element

in the ith row and the jth column. Calligraphic capital letters S often denote sets; these can

be tensors (sets of matrices) or other arbitrary data. These sets use brackets to denote the

elements of the set, such as S = {S1, S2, ..., Sn}, where Si is the ith element of the set S. In

some cases, calligraphic letters will be used to denote matrices that are composed of one or

more submatrices. These are not tensors, but rather larger matrix conglomerates of smaller

matrices of interest. For example, suppose we define the matrix P as

P =

P11 P12

P21 P22


In this case, it is implied that submatrices P11, P12, P21, and P22 have particular properties

9



that are relevant to the current topic. These properties will be discussed in depth wherever

this notation appears.

Greek letters are used to denote specific parameters of interest. For example, σ is often

used as the measure of standard deviation for a parametric distribution. Likewise, λ is

commonly used to denote a specific eigenvalue. Explanations will be provided within the

specific contexts of their uses throughout this thesis.

When discussing algorithmic complexity, we use the O(·) notation that is traditionally

used in theoretical computer science. Reporting the runtime of a procedure as O(n) on a

dataset with n elements explicitly states the algorithm complexity is proportionally linear;

that is, in the limit as the quantity of data approaches infinity, the runtime converges to

linear in the number of elements.

10



2.0 SPECTRAL GRAPH ANALYTICS

2.1 INTRODUCTION

One of the most fundamental queries when studying graphs is to examine the diffusion of

information across them, spatially and temporally. How many connected components are

there, and what are the constituent members of each component? Where are the bottlenecks

in information diffusion across the network? Are there any hubs in the graph? These are all

common questions to ask when analyzing graph structures. The heat equations governing

distribution of temperature within an insulated container [12] are one example. There are

many other such applications–including clustering, stability of dynamic systems, and Markov

chain models [13]–that are relevant to the study of biological systems. The spectral properties

of the graph are extremely useful for gaining insight into these behaviors.

At the core of spectral analysis is the process of finding some or all of the eigenvectors and

eigenvalues of a matrix that algebraically represents the graph of interest. The fundamental

equation defining this relationship is given as

L~u = λ~u (2.1)

where ~u and λ are an eigenvector and corresponding eigenvalue respectively of the matrix

L. How we define a graph algebraically, how we explicitly compute the eigenvectors and

eigenvalues, and how we can use the eigenspectrum of the graph to gain some intuition for

its structure and information diffusion, are the topics of the following sections.

11



2.2 GRAPH STRUCTURES AND PROPERTIES

In this section, we provide an overview of the mathematical formulation of graphs and the

methods used to analyze their structure. We consider only the case of undirected graphs,

whereby each edge connecting two nodes is bidirectional; that is, one can walk from node

i to node j and vice versa. Directed graphs are of considerable research interest; Google’s

PageRank algorithm is designed specifically for directed graphs, in which there can exist an

edge connecting node i to node j, but once at node j one may not necessarily be able to

move back to node i (Fig. 3). However, for the purposes of our case studies, we examine

only undirected graphs.

2.2.1 Graph affinities and neighborhoods

We start by defining a graph G in terms of its vertices V and the edges E that connect

them: G = (V,E). The vertices V correspond to individual data points; these can be pixels

in an image or users in a social network. Edges connect vertices that have some degree of

similarity; heavier weights on the edges indicate a higher degree of similarity. In terms of

a random walk, the heavier edges correspond to hops of higher probability. Formally, we

define affinities between nodes ~xi and ~xj as some measure of similarity. A common affinity

measure is the radial-basis function (RBF):

aij = exp
{
−γ(~xi − ~xj)2

}
,

where aij is the affinity, or weight, between nodes ~xi and ~xj in the graph, and γ is a scaling

parameter that dictates how quickly the affinity function falls off as distance between ~xi

and ~xj increases. All weights aij are nonnegative; a weight of 0 indicates the absence of an

edge between the specified nodes. In undirected graphs, aij = aji, resulting in a symmetric

affinity matrix A. There are many strategies for constructing A, three of which we discuss

here.

• Fully connected: In this case, we compute all n2 pairwise affinities, resulting in a dense

(fully-connected) graph, where aij > 0 for all pairs of nodes ~xi and ~xj.

12



Figure 3: Undirected vs Directed graphs. Two examples of a three-node graph, one

undirected (left) and the other directed (right). The technical differences between the two

are particularly apparent in their connectivity matrices (bottom row), in which the presence

of a “1” indicates the existence of an edge between the two nodes. Of interest is the property

of symmetry that is inherent to connectivity matrices of undirected graphs.

13



• ε-neighborhoods: For each node ~xi, we compute pairwise affinities for all other nodes

~xj that are within a distance ε from ~xi. If the pairwise distance is greater than ε, the

affinity is set to 0. This strategy is employed in Fig. 4.

• k-nearest neighbors: Each node ~xi is connected to its nearest k neighboring nodes.

There are circumstances under which node ~xi will have node ~xj in its k-nearest neighbors,

but the reverse will not be true. We can resolve this one of two ways: an edge can be

created between two nodes if either contains the other in its k-nearest neighbors, or an

edge can be created only if both nodes are in each other’s k-nearest neighbors. The latter

strategy is known as mutual k-nearest neighbors.

This touches on the notion of sparsity. This is a particularly interesting property, es-

pecially as graphs become arbitrarily large; it becomes useful to have a only a very small

number of edges in the graph relative to the number of vertices. Sparse graphs, which are

opposed in concept to dense graphs, can have their sparsity exploited to improve the runtime

and accuracy of certain graph analysis techniques.

Image data are a special case. Each pixel is a node in the graph, and we often connect its

four or eight neighboring pixels (edges and corners will have only five and three neighboring

pixels, respectively).

We define the degree di of node ~xi ∈ V as

di =
n∑
j=1

aij

From this definition, we form the diagonal degree matrix D = diag {d1, d2, ..., dn}. This

matrix is important for constructing the graph Laplacian L, a critical component of spectral

graph analytics [14]. There are many different formulations of graph Laplacians [15], far

too many to discuss here in depth. For our purposes, we are concerned with only a form

generally referred to as the normalized graph Laplacian:

L = D−1/2AD−1/2, (2.2)

where D is the degree matrix, A is the affinity matrix, and L is the normalized graph

Laplacian. This form of the graph Laplacian has several useful properties. As L is symmetric,

14



Figure 4: Affinity matrices for corresponding 2D data. Tightly coupled clusters of

points (top row) result in block-diagonal affinity matrices, relative to more loosely coupled

data (bottom row).

15



its eigenvalues are real and nonnegative. Because of the normalized form, the eigenvalues

λ1, ..., λn satisfy 0 ≤ λ1, ..., λn ≤ 1. We will use this form of the normalized graph Laplacian

throughout this document.

2.2.2 Random walks

An important analogy we use when discussing information diffusion over graphs and graph

segmentation is that of a random walk. We gain a great deal of intuition for the underlying

dynamics of a graph by considering it as a series of probability distributions. Imagine a

particle at some vertex v. What are the other possible vertices to which the particle can

move, and what are the relative probabilities of moving to each?

Formally, we can convert the affinity matrix A into a stochastic transition matrix M

using the following relationship with the degree matrix D [16]:

M = D−1A

The rows of the resulting matrix M sum to 1. Therefore, the element Mij represents the

probability of the particle moving from vertex vi to vj in one step, given the particle is

currently at vertex vi. This defines a Markov chain of probabilities between vertices, which

are proportional to the pairwise edge affinities Aij.

To explore this concept of a Markov transition matrix further, we illustrate with an

example of a random walk. Suppose the initial probability of a particle being at vertex vi is

p0i , for i = 1, ..., n. At the next time step, the probability of the particle moving to vertex

vj from its starting position at vertex vi is Mijp
0
i . Using matrix notation, we can define

the probability of a particle traveling to any one of the vertices ~v = (v1, v2, ..., vn) from its

starting vertex as ~p1 = M~p0. We can iterate this process over β steps, giving the relation

~pβ = Mβ~p0.

We can observe this process for different values of β in the two-dimensional example

given in Fig. 5. Each pixel in the two-dimensional plane is a vertex, and each vertex is

connected to its four neighbors above, below, and to either side of the pixel. For very large

16



(a) β = 10 (b) β = 100 (c) β = 100, 000

Figure 5: 2D random walks. Starting in the middle of each panel, we simulated the

random walk of a particle in two dimensions over β time steps. The intensity at each pixel

indicates the number of times the particle visited that position.

numbers of steps, we see the particle visits the entire graph; however, for smaller numbers, it

visits only the nodes for which it has the highest probability of visiting: in this example, the

immediate neighbors of a given pixel. This concept of a random walk across the underlying

graph to identify bottlenecks in transition probability is central to the application of spectral

clustering.

2.3 SPECTRAL CLUSTERING

Spectral methods for clustering rely on finding the eigenvalues and eigenvectors of the un-

derlying graph Laplacian. The normalized graph Laplacian L has several useful properties

that make it ideal for spectral analysis. In particular, it is positive semi-definite (L � 0),

and has n nonnegative real-valued eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn. Relative to other

matrices, such as the Markov transition matrix M , it is more stable to small perturbations

in the underlying graph, and is computationally more tractable to analyze. Partitioning the

17



graph k-ways can be done using the eigenvectors and eigenvalues of L [17]. Relating back to

the concept of a random walk, the eigenvectors of the Laplacian can identify the bottlenecks

in transition probability between vertices, which is crucial to segmenting graphs.

Suppose we have n data points, ~x1, ~x2, ..., ~xn, have computed our pairwise affinity matrix

A, and have determined a priori the number of clusters k we are interested in computing.

Traditional spectral clustering proceeds according to the following steps:

1. Construct the normalized graph Laplacian L according to Eq. 2.2.

2. Build a matrix U of eigenvectors [~u1, ~u2, ..., ~uk] associated with the largest k eigenvalues

of L.

3. Create a matrix V by normalizing each row of U to be unit length:

Vi =
Ui
||Ui||

4. Consider each row of V as a point in Rk, and cluster them using K-means or some other

method.

5. Assign node ~xi to cluster k if the corresponding row Vi was assigned to cluster k.

Fig. 6 shows the results of spectral clustering as compared to traditional K-means in

two different datasets. For data that is largely isotropic (top row), both algorithms perform

similarly, correctly identifying the distinct clusterings. However, for data that is anisotropic,

such as the concentric circles in the bottom row, K-means cannot derive the desired clus-

tering. Spectral clustering, however, embeds these points in a low-dimensional space where

they are easily separable. Fig. 7 provides the intuition behind this mechanism: the data in

both the top and bottom rows result in distinct eigenvectors that behave uniquely for each

cluster, allowing them to be easily identified. The middle case, where the data are loosely

coupled, causes problems for both spectral clustering and traditional K-means.

18



Figure 6: K-means vs spectral clustering. Results of clustering using K-means and

spectral clustering on two different datasets.

19



Figure 7: Graph spectra. For three different data distributions, we show the resulting

affinity matrices, top k eigenvectors, and top 10 eigenvalues.

20



2.4 METHODS FOR FINDING EIGENVALUES AND EIGENVECTORS

Eigenvectors and eigenvalues arise from solving linear equations of the form A~x = ~b, par-

ticularly when modeling dynamics. The prefix eigen is adopted from German, translating

to “own” or “belonging to.” This is best exemplified using the expression A~x. For nearly

all vectors ~x, multiplication with A results in the vector changing its direction. However, in

some special cases, ~x are in the same direction as A~x. These special vectors are referred to

as eigenvectors of A. Their magnitude may differ by a corresponding constant λ, therefore

referred to as eigenvalues (Eq. 2.1).

There are many different methods for finding the eigenvectors and eigenvalues of matrices,

typically optimized for different conditions. This is a broad and active area of research with

a long history; we will only provide a brief overview to illustrate the breadth of available

solvers, the benefits and drawbacks of each, and to provide a background for the category of

solvers we are particularly interested in.

2.4.1 Direct solvers

Direct solvers, such as solving the accompanying characteristic polynomial of the graph

Laplacian, can directly factor the eigenvalues [18]. The characteristic polynomial takes the

form

det(A− λI) = 0.

As each eigenvalue λ is found, its corresponding eigenvector ~u can be found by solving

(A− λI)~u = 0 for each λ. When A is n× n, this equation has degree n.

Therein lies the core problem with the characteristic polynomial: as Arthur Cayley found

in his seminal 1861 publication [19], polynomials higher than degree 5 cannot be directly

solved, and only some quintic polynomials are solvable. Thus, other methods are required

to directly solve this equation for when the polynomial has a higher degree. Gaussian

elimination is one of the oldest direct methods, running in O(n3) operations [20]. However,

this is only tractable for a small number of eigenvalues.

21



2.4.2 Iterative solvers

Iterative methods, such as Arnoldi [21] (for non-symmetric systems) and Lanczos [22] (for

symmetric systems), repeatedly perform a matrix-vector multiplication (known as a power

iteration) until convergence to an eigenvector and eigenvalue. The resulting Arnoldi or

Lanczos vectors, respectively, form an orthonormal basis spanning the Krylov subspace.

This subspace is effectively a collection of n × n matrices (such as A) that are multiplied

by n-length vectors (such as ~u), forming a quantitative basis in n-dimensional space for

the results of the iterative methods for finding eigenvalues and eigenvectors. There are

many methods that exploit the Krylov subspace for this purpose. They are advantageous in

that they provide partial results after a relatively few number of iterations, whereas direct

solvers must finish completely before providing any results. Some of these methods include

conjugate gradient [23], GMRES [24], and MINRES [25], among many others [26,27]. While

they operate much more efficiently than direct solvers, their running time can still be large

and difficult to accurately estimate [22].

Most of these iterative methods rely on sparsity, the disparity between the number of

edges compared to the number of vertices. Sparse graphs are interesting from a computa-

tional perspective, as their graph Laplacians, while still n×n, are also sparse, implying most

entries in the matrices are 0. In this document, we will focus exclusively on sparse graphs.

Many eigensolvers are specifically tailored for sparse graphs, including direct solvers [28], as

significant performance optimizations can be made under these circumstances.

2.4.3 Hierarchical and multigrid solvers

The class of sparse eigensolvers we focus on are hierarchical or multigrid [29–32]. The basic

premise involves the iterative reduction of the initial graph to simpler versions. Successively

simpler, or coarser, graphs are constructed, creating a graph hierarchy until some coarseness

threshold is reached and the graph becomes simple enough to solve directly. This is known

as preconditioning. A preconditioner is the transformation of a problem into a version more

suitable for finding a numerical solution [33–35]. The preconditioner must be carefully chosen

so as to ensure the resulting system is easier to solve than the original, and that the solution

22



to the original system can be easily derived from the solution to the preconditioned system.

The resulting eigenvectors for the coarse graph are then combined with the interpolation

operators defined at each level of the hierarchy, interpolating the approximated eigenvectors

until the original level is reached.

There are two main families of hierarchical methods: geometric multigrid (GMG) and

algebraic multigrid (AMG) [36,37]. GMGs have prescribed grid hierarchies; for example, the

first hierarchy may consist of selecting every other pixel from an image. For smooth images,

or homogeneous systems, this will yield good results. However, for inhomogeneous systems

with discontinuities and large, sudden derivative fluctuations, such a prescribed grid will not

capture the underlying structure. AMGs, by contrast, pick interpolation operators auto-

matically based on the current topology of the Laplacian at each level, conferring enormous

empirical performance benefits over GMGs in inhomogeneous systems [34,38,39].

A core objective with hierarchical methods is to reduce the condition number of the

system. The condition number κ is defined as the ratio of the system’s largest and smallest

eigenvalues:

κ(L) =
λmax

λmin

.

2.4.4 Geometric multigrid (GMG) eigensolvers

When this ratio is large, as in most inhomogeneous systems, this typically implies a wide

distribution of both strong and weak edges in the graph, introducing the spatial irregularities

that are difficult for GMGs to solve.

Still, we found GMGs to be useful in establishing baseline performance, and particularly

for performing image analysis. Geometric methods are known to give linear O(n) runtime

for spatially homogenous systems. Graph matrices associated with images have very regular

structures; while the distribution of edge weights can vary according to the affinity function

used, most associated graph matrices from images share the same highly regular pattern of

edges between neighboring pixels (Fig. 9). Another classic example application for GMG

solvers is the regular homogenous Poisson equations [29].

23



Figure 8: Hierarchical schematic. This schematic depicts the broad conceptual process

of hierarchical eigensolvers. The original graph is iteratively “coarsened” in such a way that

it maintains a similar structure to the original while simultaneously simplifying the problem

to be solved. During this process, interpolation operators are generated at each step of the

hierarchy which defines the coarsening procedure. This process is repeated until a threshold

is reached, at which point it is solved directly. The interpolations operators at each level of

the hierarchy are then used to interpolate the results back up to the finest level.

24



Figure 9: Pixel neighborhoods and graph structure. The graphs underlying image

data have very regular structure which make them ideal candidates for analysis by geometric

multigrid. The top row shows three common strategies for constructing a graph from image

data: each pixel (identified p) is connected to its 4, 8, and 24 nearest neighbors (identified

as shaded boxes). The resulting subgraph around this pixel is illustrated in the middle

row. The bottom row depicts the structure of the final resulting graph matrix given the

connectivity strategy. These matrices are extremely sparse, with only 1.47%, 2.84%, and

7.97% respectively of the total number of possible edges between vertices.

25



Algorithm 1 dncuts

1: Input:A,D,K

2: A0 ← A

3: for d = [1 : D] do

4: id ← pixel decimate(Ad−1)

5: Bd ← Ad−1[:, id]

6: Cd ← diag(Bd
~1)−1Bd

7: Ad ← CT
d Bd

8: end for

9: XD ← eig(AD, K)

10: for d = [D : −1 : 1] do

11: Xd−1 ← CdXd

12: end for

13: return whiten(X0)

We focus on the algorithm as proposed in [40], reproduced in Algorithm 1. Given a graph

matrix A (an affinity, similarity, or connectivity matrix representing the underlying graph of

the image), a positive integer number of iterations D, and a desired number of eigenvectors

K, this method performs a repeated decimation and squaring operation, whereby every

alternate pixel in the original image is removed entirely and its corresponding entries in

the graph matrix are deleted. This is the decimation operation. Where this operation

by itself would significantly perturb the eigenvectors of the underlying graph, the second

operation, squaring, involves multiplying the graph matrix by itself as a way of propagating

information along the edges of the graph, thereby preserving some of the information lost in

the decimation step.

We see the decimation in Step 5 of Algorithm 1, which is renormalized in Step 6 and

squared in Step 7 to compute the new, smaller graph matrix for the next iteration. This

process repeats D times, at which point the resulting graph matrix AD is given to a direct

eigensolver in Step 9, and the top K eigenvectors are computed and stored as a matrix XD.

Using the interpolation operators CD, CD−1, ..., C1 defined in the first loop, the eigenvectors

26



are interpolated back up the hierarchy to provide a robust estimation of the top K eigenvec-

tors of the original graph matrix A. Some whitening is performed on the final eigenvectors

in Step 13 to reorthormalize them, as interpolation can skew the vectors.

However, GMGs perform poorly when strong spatial inhomogeneities are introduced. For

most problems, this alone would remove GMGs from consideration. Consider the examples

of ciliary motion analysis in Chapter 3 and olfactory perception recognition in Chapter 4:

both problems live in high-dimensional spaces that are very likely nonlinear.

2.4.5 Algebraic or Combinatorial multigrid (AMG, CMG) eigensolvers

Algebraic multigrid methods have a distinct advantage of GMGs in that they iteratively

reformulate the problem over a hierarchy of adaptively coarsened grids. These grids are

linked throughout the hierarchy by a series of interpolation weights, capturing increasingly

coarse connections in the original matrix. Whereas GMGs operate by homogenous coarsening

of the original grid, AMGs adaptively select portions of the grid to coarsen as a reaction to

the algebraic properties and distributions of the grid complexity. This formulation makes

AMGs significantly more robust to spatial inhomogeneities, and much more useful for most

practical linear systems.

We use the method proposed in [35], which aims to find a preconditioning matrix Q−1

such that the condition number of the preconditioned system, κ(Q−1L), is significantly lower

than that of κ(L). This is achieved through a hierarchical coarsening process, in which the

system is iteratively decreased in size until it becomes trivial for a fast, direct computation

to solve the system. The coarsening process at each level involves the segmentation of the

graph Laplacian into coarse and fine vertices, building a matrix such that

L =

Lcc Lcf

Lfc Lff

 , (2.3)

where the subscripts indicate whether coarsened vertices are connected to other coarsened

vertices (Lcc), or fine vertices are connected to coarsened vertices (Lfc), and so on (note that

Lfc = LTcf ). Fine edges are disconnected from each other, making Lff a diagonal matrix that

27



is therefore trivial to solve directly. To eliminate these edges and generate a coarser hierarchy,

the method computes the Schur decomposition by creating a transformation matrix T

T =

 Icc 0

−L−1ffLfc Iff

 ,
where I denotes an identify matrix of suitable size. The lower corner of T is the interpolation

matrix for this level, specifically the interpolation matrix P = −L−1ffLfc. When we apply

the transformation matrix T to both sides of L

T TLT =

Lcc − LcfL−1ffLfc 0

0T Lff

 .
Lff is easy to solve directly, both because it is diagonal and orders of magnitude smaller

than Lcc − LcfL−1ffLfc. The upper block forms a Laplacian matrix that is coarser than the

original but retains many similar properties. This reveals a recursive hierarchical structure

that can be followed by setting Lcc − LcfL−1ffLfc as the Laplacian for the next iteration and

repeating the procedure. Once the size of the coarse Laplacian dips below a certain threshold,

it is solved directly, and the resulting matrix (e.g. eigenvector matrix U) is interpolated back

up the hierarchy (Fig. 8). In addition to the interpolation operators P defined at each step

in the hierarchy, the method can use block Davidson smoothing [33] to refine the vectors

even further.

In order to identify, or color, variables as fine or coarse, a loop iterates over each ver-

tex, examining its neighborhood and both coloring the variable appropriately and locally

sparsifying the graph.

At first glance, the method proposed in [35] and summarized in Algorithm 2, hierarchical

sparsify-and-compensate (or hsc), appears significantly more complex than the GMG we

investigated previously. However, there are many similar elements on closer inspection.

Both methods rely heavily on sparsifying the graph so as to simplify the problem, but both

sparsify the graph in such a way as to respect the underlying structure. In the GMG,

alternating pixels are eliminated; here, a more sophisticated and localized heuristic is used.

For each vertex v in the underlying graph, the algorithm examines any triangles it may

participate in. If v participates in any triangles of connected vertices, the weakest edge is

28



identified and removed; this is the sparsification step. The weight of the removed edge is

added to the weights of the remaining two edges of the triangle. This is the compensation

step.

After sparsifying and compensating the graph, remaining nodes are identified as either

coarse or fine in Step 9. Once colored, the variables are reordered as seen in Eq. 2.3,

resulting in the block-diagonal representation of the sparsified matrix and providing the

next iteration’s graph matrix, as well as means for computing the current level’s interpolation

matrix.

2.5 PARALLEL AND DISTRIBUTED IMPLEMENTATIONS

For addressing larger datasets, there is a significant body of work dedicated to creating

highly parallel implementations of these algorithms [41–44], allowing for much larger graphs

to be analyzed. SLEPc [45] is one such implementation, performing many independent tasks,

such as matrix-vector multiplication, in parallel to increase throughput. Nonetheless, there

is still a limitation in terms of raw computing resources: a single physical machine can only

store a finite and relatively small amount of information in memory. HEigen [46], included

in the Pegasus library [47], is a distributed eigensolver on the open source MapReduce

framework Apache Hadoop. However, these libraries have not been maintained, and do not

implement multigrid methods. Apache Spark [48], one of the newest open source distributed

frameworks, implements a distributed iterative method that invokes ARPACK on the head

node once the system has sufficiently converged. Its GraphX library implements the SVD++

collaborative filtering algorithm for dimensionality reduction [49]. Apache Mahout [50],

another open source framework, uses a stochastic method for performing dimensionality

reduction, sacrificing a small amount of accuracy for a significant speedup. GraphLab [51]

implements both a variant of SVD++, and a distributed version of the iterative Lanczos

algorithm.

Supercomputers provide a highly optimized and parallel environment for such computa-

tions. However, most researchers do not have access to such resources, and both the cost

29



of maintenance and high learning curve for the specialized parallel protocols can make de-

ployment of such an eigensolver prohibitive. Instead, we consider the case of distributed

computing, in which a collection of commodity hardware is tied into a high-performance

computing cluster [11] using one of several software frameworks.

2.6 CONCLUSIONS

Graphs are a convenient way of structuring interconnected data for the purpose of identifying

discrete clusters and measuring the diffusion of information across the network. Critical to

this analysis is the process of computing the eigenvectors and eigenvalues of the graph,

i.e. studying the spectrum of the graph. However, this is a computationally expensive

process; direct solvers operate in cubic time to the number of vertices, limiting their utility

to very small graphs. We focus on hierarchical methods, algebraic multigrids in particular,

for adaptively coarsening a graph until it can be solved trivially and using the computed

interpolation operators to find a robust estimate of the final eigenvectors and eigenvalues.

Scalable solvers are of particular interest to us, as the problems we examine in biomedicine

approach and, at times, exceed the capacity of even the most robust traditional solvers

(e.g. ARPACK). While there are numerous distributed solutions to consider, we found

hierarchical solvers to be especially compelling given their flexibility, empirical performance,

and theoretical runtime guarantees. Furthermore, to the best of our knowledge, we found

no existing distributed implementations of hierarchical eigensolvers. As we shall discuss in

the following two chapters, the problem of finding the eigenvectors and eigenvalues of a large

biomedical system has proved to be the bottleneck to new insights, motivating the need for

a scalable solver. In Chapters 3 and 4, we will investigate the problems that highlighted this

need. Chapter 5 will detail Draenor, our solution, and how it ties into our two projects.

30



Algorithm 2 hsc

1: Input:A, t,K

2: A0 ← A

3: i = 1

4: while length(Ai−1) > t do

5: for v ∈ vertices(Ai−1) do

6: t = triangles(v)

7: sparsifyAndCompensate(t)

8: end for

9: Ai−1 = colorAndReorder(Ai−1)

10: Ai = Ai−1[cc]

11: i = i+ 1

12: end while

13: Ui ← eig(Ai, K)

14: for d = [i : −1 : 1] do

15: Ud−1 ← PdUd

16: end for

17: return U0

31



3.0 LEARNING CILIARY MOTION PHENOTYPES

3.1 INTRODUCTION

Cilia are microtubule based hair-like projections of the cell that can be motile or immotile,

and in humans are found on nearly every cell of the body. Ciliopathies, or diseases with

disruption of nonmotile or motile cilia function, can result in a wide spectrum of disorders.

In primary ciliary dyskinesia (PCD), cilia in the airway that normally beat in synchrony

to mediate mucus clearance can exhibit dyskinetic motion or become immotile, resulting in

severe sinopulmonary disease [52–55]. As motile cilia are also required for left-right pattern-

ing [56,57], PCD patients can exhibit mirror symmetric organ placement as in Kartagener’s

syndrome, or randomized left-right organ placement as in heterotaxy [58]. Patients with

congenital heart disease (CHD) and heterotaxy exhibit a high prevalence of ciliary motion

(CM) defects similar to those seen with PCD [59]. This was associated with increased respi-

ratory complications and poor postsurgical outcomes [59–61]. Similar findings were observed

in patients with a variety of other CHD, including transposition of the great arteries (TGA),

a CHD that may also arise from left-right patterning defects [62] with an incidence as high

as 1 in 200 [63]. Interestingly, respiratory CM defects and airway inflammatory disease have

also been reported in patients with Leber congenital amaurosis [64], a ciliopathy involving

cone-rod dystrophy in the connecting cilium of the retina. Diagnosing CHD patients with

CM abnormalities prior to surgery may provide the clinician with opportunities to institute

prophylactic respiratory therapies to prevent these complications. Together these findings

suggest motile cilia dynsfunction may have broader clinical impact beyond PCD. Therefore,

the role and importance of diagnosing CM abnormalities will only grow.

Given the long-term prognosis for patients with airway clearance defects can be improved

32



Figure 10: Properties of ciliary motion. (A) Schematic (hand drawn) diagrams of ciliary

motion subtypes to aid clinical diagnosis. (B, C) Single frame of a video of normal CM

(B) and abnormal CM (C) with three pixels identified: blue (proximal), red (distal), and

black (background). See Videos S1-S9 for scale bars. (D, E) Time series of gray-level pixel

intensities over 100 frames at each of the pixel locations in (B) and (C), respectively: (D)

shows pixel intensity variations for corresponding locations in (B); (E) corresponds to pixel

locations in (C). (F, G) Time series of rotation over 100 frames at each of the pixel locations

in (B) and (C), respectively. (H, I) Time series of deformation amplitude over 100 frames

at each of the pixel locations in (B) and (C), respectively. (J) Elemental components of

rotation, deformation, and divergence, shown here in a template form. Deformation is a

vectorial quantity requiring two templates for measurement.

33



with early diagnosis and intervention, a robust pipeline for diagnosis of airway CM defects

is clinically compelling. One of the current methods for assessing CM entails the use of

videomicroscopy for CM analysis of nasal brush biopsies [65]. While ciliary beat frequency

(CBF) can be quantitated from these videos [66–68], this has low sensitivity for abnormal CM

due to a variety of technical and methodological limitations [54, 69–73]. Even under ideal

conditions, CBF does not capture the broad distribution of frequencies present in ciliary

biopsies. Normal CM is comprised of a forward power stroke followed by a recovery stroke

coordinated across the multi-ciliated airway epithelium. In contrast, abnormal CM may be

described as dyskinetic, wavy, asynchronous, and/or with incomplete stroke. Schematics

as used by clinicians to diagnose CM are shown in Fig. 10A. CM exhibits a great deal

of variability, even within the same region of cilia. Time series pixel intensity variations

are shown for three different pixels in ciliary biopsies of healthy motion (Fig. 10B) and

dyskinetic motion (Fig. 10C). While the healthy motion (Fig. 10D) demonstrates stronger

periodicity than abnormal motion (Fig. 10E) in general, the distal (red) and proximal (blue)

regions of the cilia nonetheless exhibit heterogeneity of motion that can be problematic for

characterizing motion within a single phenotype. Clinicians often employ visual assessment

of ciliary beat pattern to augment CBF measurements; however, this relies on reviewer

experience and is therefore highly subjective and error prone [71, 74]. Electron microscopy

(EM), considered one of the most reliable methods for PCD diagnosis, cannot identify all

PCD patients given some mutations causing PCD do not cause ultrastructural defects; in

some instances these have been associated with high CBF and abnormal beat pattern [69].

Furthermore, it is difficult to compare results of the diagnostic ensemble in cross-institutional

studies. CM heterogeneity stipulates a larger-scale method for aggregate analysis, and a

quantitative method is needed to ensure cross-institutional relevance of the results. The

types of motion that human eyes are optimized to detect are not necessarily those that

are most clinically relevant when identifying CM phenotypes. Computational methods,

however, can be trained to detect the best types of motion for identifying CM defects, and

either present them in a quantitative format, or classify the motion phenotypes with greater

precision and objectivity to make them suitable for clinical diagnosis.

Our approach is twofold. First, we design an automated CM classification framework

34



that recapitulates manual expert review, providing a computational blackbox for classifying

CM in a high-throughput manner. Given a high-speed digital biopsy video, we decompose

the CM into idealized elemental components (Fig. 10J) that form a “digital signature,” a

quantitative description of the CM. We used two independent datasets of differing quality

(Table 1, Fig. 11) to test our classification framework.

Second, we build on the computational framework and design a fully-automated, unsu-

pervised pipeline for discovering novel, latent CM phenotypes. It is generally believed that

CM phenotypes encompass a richer spectrum than strictly normal and abnormal motion,

with subcategories of motion existing in both overarching phenotypes (Fig. 10A). However,

in the absence of rigorous quantitative methods for measuring CM, there has previously

been no method by which these motion subtypes can be identified and defined. Here, we

demonstrate the utility of unsupervised spectral analytics on a larger scale to discover latent

CM phenotypes and begin the process of building a quantitative CM library.

3.2 DATA ACQUISITION AND STUDY DESIGN

3.2.1 Subject recruitment and data cohort breakdown

All study protocols were approved by the University of Pittsburgh Institutional Review

Board.

Nasal epithelial tissue was collected by curettage of the inferior nasal turbinate under

direct visualization using an appropriately sized nasal speculum utilizing rhino-Probe (Ar-

lington Scientific, Springville, UT). Nasal brushings and tracheal biopsies have been shown

to provide tissue of comparable quality, and shown similar pathology with increased sensi-

tivity over nasal biopsies [75–77]. Three passages were made and the collected tissue was

resuspended in L-15 medium (Invitrogen, CA) for immediate videomicroscopy using a Leica

inverted microscope with a 100x oil objective and differential interference contrast (DIC)

optics. Digital high-speed videos were recorded at a sampling frequency of 200 Hz using

a Phantom v4.2 camera. At least 8 videos were obtained per subject. These videos were

35



used in our study. However, to establish ground truth CM, these samples were reciliated,

and these reciliated biopsies were analyzed by a panel of researchers (M.Z., R.F., C.W.L.)

blinded to the subject’s clinical diagnosis, nasal nitric oxide values, and reciliation results.

This process of establishing ground truth using reciliated samples while performing the com-

putational analysis on original samples eliminates, or otherwise minimizes, the possibility of

introducing secondary CM defects as a result of tissue sampling. After reviewing all recil-

iated videos, a call of normal or abnormal CM was made by consensus. Where differences

could not be resolved, the majority vote was accepted.

We performed our analysis on two independent data cohorts. From Children’s Hospital

of Pittsburgh (CHP), 49 patients were recruited with TGA. Additionally, 27 healthy subjects

were recruited to serve as controls. Informed consent was obtained from adult subjects or

parents/guardians of children, with assent obtained from children over seven years of age.

The video samples were subjected to rigorous quality control, and data from numerous sub-

jects were discarded on the grounds of spurious camera motion, variable lighting conditions,

poor focus, or other recording artifacts. In addition, we recruited 5 PCD patients to serve as

abnormal controls. The resulting corpus formed the first data cohort (CHP), consisting of

high-quality videos with minimal artifacts and noise, depicting biopsies from 49 individuals

(27 healthy controls, 5 PCD controls, and 17 TGA patients).

The second cohort consisted of nasal biopsy videos from 31 subjects from Children’s

National Medical Center (CNMC) in the Nakhleh et al study [60]. The cohort included 27

subjects who were patients with heterotaxy; 17 had normal CM and 10 had abnormal CM, as

evaluated by a blinded panel of investigators in an identical manner to the CHP cohort. Four

additional subjects were included as PCD controls. The original dataset was used with only

minimal quality control, discarding videos that were uninterpretable to manual evaluation.

Thus, the first cohort (CHP) fulfilled the role of establishing the baseline viability of our

framework, and the second cohort (CNMC) tested its robustness to noisier data. See Table 1

and Fig. 11 for the breakdown of the cohorts.

36



Table 1: Description and breakdown of datasets

Individuals Videos ROIs

Children’s Hospital of Pittsburgh (CHP)

Healthy Controls 27 76 114

PCD Controls 5 38 96

CHD/TGA with Abnormal CM 17 56 121

Total 49 170 331

Children’s National Medical Center (CNMC)

PCD Controls 4 25 58

Heterotaxy with Normal CM 17 65 139

Heterotaxy with Abnormal CM 10 31 65

Total 31 121 262

37



Figure 11: CHP and CNMC dataset breakdowns. Relative fractions of the subject

demographics in both of our ciliary motion data cohorts.

38



3.2.2 Digital video annotation and preprocessing

Collaborators uploaded high-speed digital videos of ciliary biopsies at 200 fps in AVI format.

After upload, the user was presented with an HTML5 canvas interface through which they

could specify regions of interest (ROIs, Fig. 13) by drawing boxes over a still frame of the

video (Fig. 12). ROIs were drawn wherever ciliated cells were seen in profile in order to avoid

overlapping cells or multiple layers of ciliated cells; multiple cilia beating in different planes

could spuriously lead us to believe the motion was asynchronous. Only areas where mucus

or cell debris is seen overlying the cilia and interfering with motion are excluded. Each ROI

inherited the normal or abnormal label of the patient from which it was derived. For each

subject, an average of three to four videos were uploaded, and an average of five to eight

ROIs were selected, though the ROI count per patient varied from as few as two to as many

as 18 (performance of our framework as a function of ROIs per patient is shown in Fig. 22).

All subsequent analysis was performed at the ROI level.

We preprocessed the videos prior to cross-validation in order to filter out noisy pixel

data in the ROIs, such as pixels depicting cells or space beyond the cilia. This method

discarded pixels whose intensity changes fell below a set threshold. The threshold value was

adaptive and specific to each ROI, as the intensities between ROIs varied greatly. For a

single ROI, we computed the standard deviation σi of the time-varying intensity changes

at each pixel pi and constructed a histogram of these standard deviations. We used the

Kolmogorov-Smirnov distance metric [78] to determine whether the histogram more closely

resembled a gamma distribution or a Gaussian distribution. In the former case, we used the

distribution’s peak, or σpeak, as the pruning threshold value, and discarded all pixels pi for

which σi < σpeak. If the distribution was better approximated by a Gaussian, we used the

distribution’s mean, or σmean, and discarded all pixels pi for which σi < σmean. We performed

a connected component analysis on the remaining pixels and discarded all but those in the

largest component. Subsequent analysis was performed only on these remaining pixels.

39



Figure 12: Website proof-of-concept. We implemented a barebones proof-of-concept

website for uploading, annotating, and analyzing videos of ciliary motion. This was used

over the course of this study to enhance remote collaboration. This shows the three manual

steps involved in uploading (1) and annotating (2 and 3) videos.

40



3.2.3 Software

Python 2.7 was used to implement the analysis pipeline. We used the scientific computing

packages NumPy and SciPy, and the plotting package Matplotlib. For computing optical

flow vectors, we used the pyramidal Lucas-Kanade [79] implementation packaged in OpenCV

2.4 and confirmed its viability using the software package by Black et al [80] for Matlab.

For video collection and annotation, we used a website built using the open source jQuery-

File-Upload application (https://github.com/blueimp/jQuery-File-Upload) on an Apache

2.2 server running PHP 5. Annotations were stored in a MySQL database. Video transcod-

ing was performed using ffmpeg. Statistical classification was performed using the Python

scikit-learn machine learning library [81], which uses the popular libsvm implementation for

support vector machines. All of these packages (with the exception of Matlab) are publicly

available under open source licenses.

3.3 REPRESENTING CILIARY MOTION AS DYNAMIC TEXTURES

We hypothesize that CM is an instance of dynamic texture (DT) [4,82]. DTs are character-

ized by rhythmic motions of particles subjected to stochastic noise [83], and are active areas

of research in the fields of computer vision and machine learning. Examples of DTs include

many familiar motion patterns such as flickering flames, billowing smoke, rippling water,

or grass in the wind. Likewise, cilia beat in rhythmic waves with some stochastic behavior

that collectively determines their CM. DT analysis has been shown to be an effective anal-

ysis method in other biomedical contexts, such as localizing cardiac tissue in 3D time-lapse

heart renderings [84] and to quantify thrombus formations in time-lapse microscopy [85]. DT

analysis relies on using linear dynamics systems, such as autoregressive (AR) models [86], to

parameterize the components of DT motion.

Our approach is to use differential invariants, referred to here as elemental components,

rather than pixel intensities, in order to quantitatively represent the CM. These are funda-

mental quantities of motion that can be difficult to detect by manual inspection, but which

41



computational methods are extremely well-suited to analyze. They are computed as func-

tions of the pixel intensities, and are computed at each pixel. To determine the elemental

components, we first compute the optical flow of the CM. Optical flow [80] (Fig. 13) is used

to quantify the direction and magnitude of apparent motion observed at each pixel between

two successive frames. We do not explicitly delineate or track the cilium when determining

CM; rather, we estimate CM using spatial and temporal derivatives of the optical flow [87,88]

(see Appendix for full optical flow and elemental components derivations). We derive the

elemental components from the optical flow. The specific quantities are instantaneous ro-

tation (curl), divergence (dilation), and deformation (biaxial shear) (Fig. 13), computed at

each pixel position in each frame. The efficacy of elemental components for DT analysis has

been demonstrated in previous studies [89–91]. We excluded divergence from this analysis,

as the quantity did not offer insight into the differences between CM types in this study or

in our previous work [4]. This is likely a consequence of divergence as a dilation quantity:

the vast majority of our videos depict cilia moving within the two-dimensional plane of the

video. With little motion towards or away from the camera, dilation was near-constant for

most of the video samples.

Like pixel intensities, elemental components exhibit periodic temporal behavior (Fig. 10F-

I) that can be analyzed with similar techniques. Rotation and deformation computed for

healthy motion (Fig. 10F,H) show strong periodic behavior and high magnitudes, particu-

larly at the distal point on the cilia. By contrast, the rotation and deformation in dyskinetic

cilia (Fig. 10G,I) show little periodic behavior in addition to markedly reduced magnitudes of

each. However, unlike 8-bit grayscale pixel intensities, these quantities can be compared di-

rectly between video samples; pixel intensities would require a normalization step that would

need to be tailored to the specific lighting conditions and microscope settings. Further, and

most importantly, these quantities are orientation-invariant: automated CM analysis can

be conducted regardless of the orientation of the cilia. That is, the computed elemental

components for the same video will be identical irrespective of orientation of the light source

or the plated ciliary biopsy relative to the microscope camera. We will revisit this property

in the following section.

A critical hurdle in the current CM evaluation process is accounting for and capturing

42



Figure 13: Derivation of elemental components. First, the ROIs for each video are

selected and programmatically identified. Second, optical flow is computed at each pixel

location for every frame. Third, the first-order derivatives of the optical flow are computed

(red: optical flow at frame t; green: optical flow at frame t + 1; blue: optical flow at

frame t + 2). Finally, the derivatives of the optical flow are used to compute the elemental

components of rotation, divergence, and deformation.

the significant motion heterogeneity in a robust quantitative way. There is a great deal

of noise present in CM video samples, confounding both manual inspection and any naive

automated analysis implementations. A single nasal brush biopsy often contains a spectrum

of beat frequencies and motile behaviors. Consequently, a single numerical value such as

CBF cannot encapsulate an entire motion phenotype such as normal or abnormal. Motion

heterogeneity can arise from multiple sources, some an inherent property of the CM, some

technical artifacts: overlapping cilia with distinct motions, background particulate obstruct-

ing proper view of the cilia, and video capture artifacts such as changes in the plane of focus

or translational motion of the sample. Therefore, one challenge is to make the CM analysis

framework robust to these sources of heterogeneity while also respecting the heterogeneity

that exists within each cilium’s beat patterns and distinct regions of cilia. Briefly, our strat-

egy is to employ higher-order DT statistics to capture the distributions of these elemental

quantities, and use them to develop the digital signatures that will be used to differentiate

normal from abnormal CM.

43



3.4 DERIVATION OF DIFFERENTIAL INVARIANTS

In this section, we motivate the use of differential features of optical flow for characterizing

ciliary motion dynamics. The discussion below follows the notation from Kooenderink et

al [87] and Kovesi et al [92].

3.4.1 Optical Flow

Optical flow computation follows from invoking the standard brightness constancy assump-

tion,

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt), (3.1)

which states that image intensity I (or a filtered version of it) at a location (x, y) at time

t is preserved locally for small changes (uδt, vδt) observed in space in a small time interval

δt. Here (u, v) are the horizontal and vertical image velocity components of the optical flow

vector ~f T at pixel location (x, y).

A first-order approximation of the right hand term in the brightness constant equation

above gives rise to the gradient constraint:

Ixu+ Iyv + It = 0, (3.2)

where the subscripts x, y, and t on image intensity I denote partial derivatives of the image

structure at location (x, y).

The gradient constraint is pooled over a small image neighborhood around pixel (x, y) to

form an overdetermined system of linear equations from which the optical flow vector (u, v)

is estimated. We use a variation of the classical optical flow algorithm suggested by Black

et al [80] that incorporates a non-local smoothness term to integrate information over larger

neighborhoods.

While optical flow vector ~f = (u, v) T provides information on the image dynamics, the

first-order flow derivatives: (ux, uy, vx, vy), can be additionally used to derive a linear (affine)

model of optical flow, and provide a statistical means of characterizing ciliary dynamics.

44



3.4.2 Differential Invariants

Consider two spatially nearby image points ~r1 = ~r and ~r2 = ~r+δ~r along a cilium. The vector

δ~r = ~r2−~r1 gives their relative position. We assume that the points move according to their

optical flow velocities ~f1 = ~f = (u, v)T and ~f2 = ~f + δ~f and after a small time interval δt

they are at locations ~r1́ = ~r1 + ~f1δt and ~r2́ = ~r2 + ~f2δt. It follows that

~r2́ − ~r1́ = (~r2 − ~r1) +
(
~f2 − ~f1

)
δt, (3.3)

δ~r´= δ~r + δ~fδt. (3.4)

Given the spatial nearness of the two points ~r1 and ~r2, we can relate the flow vectors ~f1

and ~f2 by Taylor series expansion that uses first-order differentials of optical flow:

~f2 ≈ ~f1 +
∂ ~f1
∂~r

δ~r + · · · , (3.5)

~f2 ≈ ~f1 +

ux uy

vx vy

 δ~r + · · · , (3.6)

where (ux, uy, vx, vy) are elements of the spatial derivative of optical flow, i.e. flow gradient:

∂ ~f
∂~r

. As shown by Kooendernik and van Doorn, the flow gradient can be further decomposed

into scaling (divergence), shearing (deformation) and rotational (curl) components. These

are scalar quantities defined as

div ~f = ux + vy (3.7)

rot ~f = vx − uy (3.8)

def ~f cos(2µ) = ux − vy (3.9)

def ~f sin(2µ) = uy + vx (3.10)

45



where µ is the angle of maximal distortion. The quadruplet of quantities:

div ~f, rot ~f,
(

def ~f
)

cos(2µ),
(

def ~f
)

sin(2µ)

form a linear space and provide an equivalent representation of flow gradient ∂ ~f
∂~r

. Observe

that the deformation magnitude and orientation can be derived as:

def ~f =

√
(ux − vy)2 + (uy + vx)

2, (3.11)

2µ = arctan

(
uy + vx
ux − vy

)
. (3.12)

The quantities def~f , div~f , and rot~f are differential invariants as they are independent of

coordinate system used to measure the flow.

Using these definitions the velocity gradient can be rewritten as:

ux uy

vx vy

 =
div ~f

2

1 0

0 1

+
curl ~f

2

0 −1

1 0

+ (3.13)

def ~f

2

cos(2µ) sin(2µ)

sin(2µ) − cos(2µ)

 .

Fig. 14 illustrates the geometric/image distortions with which each of these differential

features are associated.

3.4.2.1 Divergence Divergence is image distortion seen geometrically as a local isotropic

expansion with speed 1
2

div ~f about a focus of expansion (Fig. 14A). We do not expect these

distortions to appear in the lateral views of the cilia, but they could be useful in characterizing

the ciliary motions captured by a perpendicular view of the cilia. Divergence is invariant to

the orientation of the cilia in the image plane.

46



Figure 14: Basic distortion types. (A) divergence, (B) curl, and (C, D) deformation. We

omit divergence in this study, as the majority of our video data is taken from a top-down, 2D

perspective, thereby all but eliminating the utility of a feature that tracks distortion along

the z-axis.

3.4.2.2 Curl The most salient features of ciliary motions are the sweeping forward and

backward strokes. Curl captures the local rotation of cilia with angular velocity 1
2

rot ~f .

Note this rotation is a component perpendicular to the viewing direction (Fig. 14B). Curl is

orthogonal to divergence. Like divergence, curl is invariant to the orientation of the cilia in

the image plane.

3.4.2.3 Deformation Deformation measures distortions that affect orientation of a cil-

iary region while preserving apparent areas (Fig. 14C, D). Two axes, the axis of maximal

extension and the axis of maximal contraction, form an orthogonal basis for describing all

possible motion field distortions or shearing motions. Since cilia are stuck to the cell wall,

it is more appropriate to see their motions as having both a rotational component and a

shearing motion (hence a directed shear).

3.4.3 Differential feature filters

Ciliary motion videos have high sampling frequency (200Hz) relative to their natural beats

(≈ 10Hz). While it is easy to construct the optical flow derivatives with Gaussian derivatives,

47



Figure 15: Atomic flow detectors. (A) divergence and (B) curl detectors with radius of

6 pixels. (C) and (D) deformation detectors of radius 6 and µ = 0◦ and µ = 45◦.

it is also instructive to consider how to design a filter mask that can elicit differential flow

information. Intuitively, the detector template mask would resemble a miniature vector

field exhibiting atomic motion types: divergence, curl or deformation. The magnitudes of

individual vectors in the motion template will be proportional to distances from the center

of the filter and the vector directions will be a function of atomic motion type. Indeed,

Eqs. 3.7, 3.8, 3.9, and 3.10 make it obvious how to construct these filters, as shown in

Fig. 15.

Fig. 15A shows a divergence filter mask that has vectors that point radially outward.

The curl filter has tangential vectors as shown in Fig. 15B. Observe that the curl filter is

orthogonal to the divergence filter. For deformation two orthogonal masks are necessary

for capturing distortion in all directions. For illustration in Fig. 15C and D, we show two

deformation masks with maximal expansion axes aligned to 0 and π/4 degrees. To reduce

corner artifacts, a circular envelope is applied on each of these masks.

48



3.5 COMPUTING DIGITAL SIGNATURES OF CILIARY MOTION

PHENOTYPES

3.5.1 Autoregressive models

Our first method for representing and quantifying CM involves the use of autoregressive

(AR) processes. AR models are linear dynamics systems that are useful for representing

periodic signals, and are among the state-of-the-art DT analysis methods [82–85]. While

linear models can be limited in their ability to capture complex behaviors, the high capture

speed of most CM videos (200Hz) virtually guarantees that linear transformations will be

more than sufficient to model the motion between successive frames. We use the formulation

of AR processes as defined in the Materials and Methods [83,86],

~yt = C~xt + ~ut (3.14)

~xt = B1~xt−1 +B2~xt−2 + ...+Bd~xt−d + ~vt (3.15)

where Eq. 3.14 models the appearance of the cilia ~y at a given time t (plus a noise term ~ut),

and Eq. 3.15 represents the state ~x of the CM in a low-dimensional subspace defined by an

orthogonal basis C at time t, and how the state changes from t to t + 1 (plus a noise term

~vt).

Eq. 3.14 is a decomposition of each frame of a CM video ~yt into a low-dimensional state

vector ~xt and a white noise term ~ut, using an orthogonal basis C (Fig. 16A). This basis was

derived using Singular Value Decomposition (SVD). The input to the SVD consisted of a

raster-scan of the original video; that is, the video was restructured into a matrix where

each row corresponded to a single pixel from the video, and each column was a frame (or

the value of that pixel in a given frame). Therefore, if the height and width of the video in

pixels were given by h and w respectively, and the number of frames as f , the dimensions of

the raster-scanned matrix would be hw × f .

A core assumption in DT analysis is that the DT lives in a low-dimensional subspace

as defined by the principal components C; that is, a significant majority of the variance in

49



Figure 16: Autoregressive representation of ciliary motion. (A) Top 15 principal

components of CHP rotation data. The first q are used to compute the AR motion parame-

ters. (B) Relationship between each principal component and the amount of variance each

captures from the original rotation signal. (C) CM amplitudes for normal (blue) and ab-

normal (red) CM as they appear reconstructed using the first principal components (q = 2),

the first five (q = 5), and the first 10 (q = 10) as compared to the original rotation signal

(top). A small number of principal components can reconstruct the original signal with a

high degree of fidelity.

50



the data can be explained with only a few dimensions (Fig. 16B-C). Once the data ~yt are

projected into this subspace, the motion of the DT ~xt can be modeled with relatively few

parameters by virtue of its low dimensionality, relative to ~yt. We can think of this motion

as a linear process: the position of the cilia in this low-dimensional space at time t + 1 is a

linear function of its position at time t. Eq. 3.15 reflects this intuition: position ~xt of the

CM is a function of the sum of d of its previous positions ~xt−1, ~xt−2, ..., ~xt−d, each multiplied

by corresponding coefficients B = {B1, B2, ..., Bd}. The noise terms ~u and ~v are used to

represent the residual difference between the observed data and the solutions to the linear

equations; often, these are modeled as Gaussian white noise.

When comparing DTs using AR models, each DT is often represented as a combination

of its coefficients B and its subspace C; explicitly, the DT is represented as M = (B, C) [93].

However, CM analysis differs in that we hypothesize all CM to live within the same subspace;

that is, all instances of CM share the same orthogonal basis C and therefore the same

principal components. What differentiates CM using this method, we claim, is the pattern

of motion in this subspace defined by C. Fig. 17 provides strong evidence for this hypothesis:

we averaged pairwise angles between the first 20 principal components from each video of

CM. Each pairwise comparison was orthogonal or nearly orthogonal, suggesting they are

derived from the same subspace. Therefore, we represent each instance of CM with only the

coefficients B; these formed the “digital signature” of the CM sample for the AR method.

The orientation-invariance property of the elemental components are critical to the suc-

cess of AR models. PCA realigns the axes of the data in the directions of maximal variance

(Fig. 16A). If we perform PCA on a video of raw pixel intensities, this will result in different

principal components depending on the relative orientations of the structures in the video.

For example, if a video depicting a profile-view of cilia beating from left to right, the principal

components of this video would be different from those of the very same video after rotating

it 90 degrees. However, since rotation and deformation are computed from the magnitudes

of optical flow derivatives (see Appendix), the relative orientation of structures as defined

by the pixel intensities does not matter in the computations, thereby making rotation and

deformation orientation-invariant. Consequently, a video can be rotated 90 degrees relative

to another, and the rotation and deformation quantities will still capture properties of the

51



Figure 17: Pairwise angles between principal components of CM. Mean-squared

average of all pairwise inner products of principal components derived from all image patches

of ciliary motion used in this study. The large number of orthogonal (0 inner product) basis

vectors provides strong evidence that all instances of CM occupy the same subspace.

52



CM regardless of the orientation of the cilia. In practical terms, this prevents the intro-

duction of any additional and potentially onerous requirements on the format of the data

that can be used in this framework. This underscores one of the main advantages of using

orientation-invariant properties of the CM such as rotation and deformation in lieu of pixel

intensities for automated DT analysis.

3.5.2 Magnitude and frequency histograms

Our second method for quantifying CM involves computing a series of histograms to represent

the distributions of elemental components present in CM samples. Our motivation for this

method is interpretability: whereas AR models are complex statistical tools and represent

the state-of-the-art for DT analysis, histograms are still powerful tools for statistical analysis

that are also extremely valuable for gaining an intuition for the behaviors and characteristics

of the data. We aim to provide that intuition using this method.

For each CM sample, we compute four histograms: a rotation magnitude histogram

(RMH, Fig. 18A), a deformation magnitude histogram (DMH, Fig. 18B), a rotation frequency

histogram (RFH, Fig. 18C), and a deformation frequency histogram (DFH, Fig. 18D). The

magnitude histograms were built by placing all rotation and deformation values computed at

each pixel position (Fig. 10F-I) into respective histograms. The frequency histograms were

computed by transforming the time-series rotation and deformation data into the frequency

domain using a Fast Fourier Transform. Specifically, we computed a spectrogram [94], or

a sliding average of frequency spectra, which resulted in a robust Fourier representation

of the original signal. We then computed the dominant frequency present at each pixel

position (analogous to computing CBF from pixel intensity variations, Fig. 19), and placed

the dominant frequencies from rotation and deformation into respective histograms. These

four histograms collectively formed a “digital signature” of the CM sample for the histogram

method.

53



Figure 18: CM histogram representations. (A, B) Time domain histograms of ciliary

rotation (A) and deformation (B) time-series from normal (blue) and abnormal (red) CM. We

project the time-series shown in Fig. 10F-I onto the vertical axis and construct histograms

of rotation (B) and deformation (C) magnitudes. (C, D) Frequency domain histograms of

ciliary rotation and deformation time-series from normal (blue) and abnormal (red) CM. We

use a Fast Fourier Transform (FFT) on the rotation and deformation time-series, compute

the dominant frequency at each pixel from the Fourier response, and create histograms of

these frequencies for rotation (C) and deformation (D) over all the selected pixels in a ROI.

54



Figure 19: Pixel selection. The heatmap overlay indicates the dominant frequencies at

each pixel. Light blue indicates low-frequency motion (1-5Hz), where yellow and red indi-

cate higher-frequency motion (5-15Hz). Pixels without color overlays were discarded by the

adaptive pruning method.

55



3.6 CLASSIFICATION OF DIGITAL SIGNATURES

To test our methods, we used two data cohorts (Table 1). The first cohort consisted of videos

from 49 individuals (27 healthy controls, 5 PCD controls, and 17 TGA patients) recruited

from Children’s Hospital of Pittsburgh (CHP). The second cohort consisted of videos from

31 subjects (27 patients with heterotaxy, 4 PCD controls) recruited from the Children’s

National Medical Center (CNMC) reported in the Nakhleh et al study [60]. The methods

for recruiting subjects and acquiring data are fully elucidated in Materials and Methods, and

a visual breakdown of these cohorts (CHP and CNMC) are listed in Table 1 and visualized

in Fig. 11. Using these two cohorts, we compared the performance of our framework to the

beat pattern calls made by expert reviewers.

We used a Support Vector Machine (SVM) [95], a popular classification algorithm in

machine learning, to test our methods. All classifiers operate on the premise of finding a

rule, or decision boundary, which most accurately separates data into their correct categories.

These boundaries often take the form of lines, or planes, which separate data in Cartesian

space. Functionally, each video of CM (or individual regions of CM within a single video) can

be considered a point in high-dimensional space; thus, an SVM will attempt to find a plane

in that space which most accurately separates the healthy instances from the dyskinetic ones.

In this study, these high-dimensional points representing instances of CM take the form of

either the AR coefficients, or the four histograms.

3.6.1 Structure of SVM input

For the AR method, we located a pixel nearest the middle of a ROI with a signal at the

dominant frequency for the ROI, and expanded a 15× 15 box around that pixel, forming a

patch. For each frame of the video (truncated at 250 frames), we flattened the pixels in the

15 × 15 patch into a single 225-length vector (~yt in Eq. 3.14). Repeating this process over

250 frames, each patch was contained in a data structure with shape 225×250. We repeated

this process for all ROIs, appending each patch to the end of the previous one. For the CHP

dataset with 331 ROIs, this resulted in a 225 × (331 ∗ 250) data structure, or matrix with

56



dimensions 225×82750. Performing SVD on this structure yielded the principal components

C (Fig. 16A). Having C, we solved for ~x in Eq. 3.14 and subsequently the AR coefficients B

in Eq. 3.15, which we used as the digital signature. The parameter q modulated the dimen-

sionality of the CM subspace C; therefore, each coefficient Bi was a matrix with dimensions

q × q. The parameter d specified the number of AR coefficients B = {B1, B2, ..., Bd}. The

coefficients B1, B2, ..., Bd were flattened row-wise and concatenated, resulting in a single vec-

tor with length q2d as the digital signature for each ROI. We performed parameter scans

over q ∈ [2, 20], and d ∈ [1, 5].

For our histogram method, the magnitude histograms were constructed using rotation

(RMH) and deformation (DMH) values. The frequency histograms were constructed using

the dominant rotation (RFH) and deformation (DFH) frequencies computed at each pixel.

These four histograms were combined by comparing them pairwise against the four matching

histograms of all other ROIs (Eq. 3.16), forming an n× n matrix K, where n = 331 for the

CHP cohort, and n = 262 for the CNMC cohort (Table 1). This matrix, used to initialize

the SVM classifier, is specifically referred to as a kernel matrix. We found that the values of

two parameters had the greatest effect on classification accuracy with the histogram method:

the size of Gaussian smoothing of the rotation or deformation time series σ, and the number

of bins in the frequency histogram κ. We performed parameter scans over σ ∈ [0, 8] and

κ ∈ [5, 100].

3.6.2 Classifier design for CM recognition

We used an instance of the NuSVC SVM in the scikit-learn library [81] with the default,

nonlinear radial-basis function (RBF) kernel. We found the RBF kernel significantly out-

performed other strategies, such as linear SVMs and ensemble methods including random

forests; the performance of linear classifiers was much lower in comparison. SVMs with non-

linear kernels are well-suited for high-dimensional classification problems where data are not

plentiful. For our AR strategy, the concatenated coefficients B constituted the input to the

classification algorithm.

For our histogram method, we employed a different strategy. Histograms lend themselves

57



to direct comparison through the chi-square (χ2) distance metric. Therefore, rather than

concatenate all four histograms into a single vector as with the AR strategy, we instead

combined the four histograms from each CM sample into a custom SVM kernel matrix

K [96]. Given a pair of ROIs, x(i) and x(j), we compared the four histograms of each ROI

pairwise, computing the χ2 metric between matching histograms. The metrics were in turn

weighted independently using weights α1 (RFH), α2 (RMH), β1 (DFH), and β2 (DMH),

such that α1 + α2 + β1 + β2 = 1. Multiple weighting schemes were tested to determine if,

for example, weighting the χ2 distance between magnitude histograms more heavily than

frequency histograms resulted in an improvement or decline in overall classification accuracy

(weights and subsequent classification accuracy shown in Tables 4, 5). The four weighted χ2

metrics were summed into a final similarity score between ROIs x(i) and x(j):

Ki,j =
∑

w∈α1,α2,β1,β2

w exp(−µwχ2(xw(i), xw(j))) (3.16)

where xw is a histogram with associated weight w ∈ α1 (RFH), α2 (RMH), β1 (DFH), and

β2 (DMH). Furthermore, µw was the average χ2 distance for histogram type w across all

ROIs. This was done for all pairwise combinations of ROIs x(i) and x(j), generating an

n × n kernel matrix K, where n is the number of ROIs in our data cohort (Table 1). This

was used to initialize the SVM for classifying the histograms. Such an initialization was not

required for the AR method; the default RBF kernel was used.

3.6.3 Cross-validation and consensus diagnosis

k-fold cross-validation, sometimes referred to as rotation validation, is a verification process

for classification algorithms to estimate their performance against unobserved data. The

data are split into k blocks, or folds, each containing roughly the same number of ROIs. In

the first iteration, the ROIs in the first k− 1 folds are used to train the algorithm, meaning

that the ROIs in these folds and their “ground truth” labels are provided to the algorithm

to learn the quantitative associations. The kth fold is explicitly held out, filling the role of

“new” and unobserved data. The kth fold is then used to test the algorithm, whereby the

ROIs in that fold are provided to the algorithm without their ground truth labels, and the

58



algorithm must predict the labels given what it learned in training. The predictions are

then compared to the true labels, and a percentage accuracy is computed. The process then

moves to the second iteration, whereby the kth fold becomes one of the training folds, and

the next fold in line becomes the testing fold. This continues until all folds have been used

exactly once as the testing fold.

We treated each ROI as a single datum with its corresponding ground-truth label (0 for

healthy, 1 for abnormal). Due to the relatively small size of our data cohorts, we chose to

perform 10-fold cross-validation to test our methods, maximizing the size of the training set

while also creating more diverse testing subsets.

Since ROIs were treated as single data instances, the algorithm would therefore predict

the CM of individual ROIs. However, our goal was to predict CM at the patient level.

Furthermore, ROIs from the same patient could potentially receive differing predictions

from the classification algorithm. Therefore, to translate the CM prediction for ROIs into a

CM prediction for each patient, we performed a consensus diagnosis. We first grouped ROI

predictions together according to the patients from which they originated; that is, all the

predictions for ROIs originating from patient p would be collected. If the majority of the

CM predictions on the ROIs for patient p were abnormal, then the patient-level prediction

for patient p would also be abnormal (Fig. 20). Consensus diagnosis was performed with

each iteration of cross-validation, and the accuracy reported was computed from consensus

diagnosis.

3.6.4 Results of CM classification

Both cohorts were classified independently of each other; no data from one cohort was

used when classifying CM in another cohort. For the CHP cohort, the histogram method

achieved an optimal classification accuracy of 93.8%. Classification performed using AR

models achieved an accuracy of 88.6% with rotation and 86.4% with deformation. For the

CNMC cohort, we obtained an optimal accuracy of 86.7% with the histogram method. The

AR models applied to this dataset yielded an accuracy of 83.3% using rotation and 70.0%

with deformation. PCD was the most accurately identified motion abnormality. In the CHP

59



Figure 20: Classification pipeline. Patient data, in the form of a handful of ROIs, is

classified as normal (0) or abnormal (1) based on the method (histograms or AR). A majority

vote, or “consensus diagnosis,” is performed using the ROI classifications for a single patient

to predict the CM of the patient. All results are reported as predictions for each patient.

60



cohort, it was correctly classified as abnormal 93.5% of the time; in the CNMC cohort, it was

correctly classified 100% of the time. These results, as well as their sensitivity, specificity,

and comparison to baseline CM analysis methods such as CBF, can be found in Table 2.

In all cases, rotation most accurately differentiated normal versus abnormal CM: the

AR model using rotation data outperformed the model using deformation (Table 3), and in

all the highest-accuracy histogram classifications, rotation (magnitudes in particular) was

used (Tables 4,5). Despite the subjectivity in manual identification of ciliary beat pattern,

clinical studies consistently describe abnormal motion as having reduced beat amplitude,

stiff beat pattern, failure to bend along the length of the ciliary shaft, static cilia, or a

flicking or twitching motion [70,71]. Rotation in particular is affected by the stiffness that is

often observed in abnormal CM; this specific phenotype could account for the performance

difference between rotation and deformation.

Both rotation and deformation were superior features to raw pixel intensities; as the

histogram method did not rely on PCA, we could compare the use of raw pixel intensi-

ties in this method directly to elemental components (Table 2). The magnitude histograms

(Figs. 18A,B) depict a broad distribution of rotation and deformation values for normal mo-

tion, which contrasts with the much more narrow distributions of rotation and deformation

for abnormal motion. Both rotation and deformation frequency histograms (Figs. 18C,D)

depict normal CM as having a clear dominant frequency. This contrasts again with abnor-

mal CM, in which there is noticeable power at multiple frequencies. Collectively, this forms

an intuitive picture of normal CM as having a relatively uniform beat frequency but which

rotates or deforms with a relatively wide variance, suggesting much greater freedom of move-

ment. This also underscores the importance of properly quantitating motion heterogeneity,

as this was an important property for differentiating CM.

For our AR method, the differences in the structure of the AR coefficients further sup-

ports the interpretation of the histogram results: the coefficients associated with abnormal

CM (Fig. 21A, bottom row) are largely uniform in the lower triangular half. By compar-

ison, the coefficients for normal CM (Fig. 21A, top row) are significantly more complex,

particularly in the higher-order coefficients. Intuitively, this equates to the former capturing

significantly less complex motion than the latter. This is precisely what we see in Fig. 21B:

61



Table 2: Classification results.

Method Dataset Accuracy Sensitivity Specificity

Proposed Methods

Histogram CHP 93.88% 0.9524 0.9286

AR (rotation) CHP 88.64% 0.8000 0.9583

Histogram CMNC 86.67% 0.9167 0.8333

AR (rotation) CMNC 83.33% 0.8333 0.8333

Baseline Methods

Histogram (raw intensities) CHP 72.73% 0.6316 0.8000

Ciliary beat frequency CHP 52.27% 0.3500 0.5833

Table 3: AR results.

q d Dataset Accuracy Sensitivity Specificity

10 5 CHP (rotation) 88.64%1 0.8000 0.9583

10 1 CHP (deformation) 86.36% 0.7619 0.9565

19 1 CNMC (rotation) 83.33%1 0.8333 0.8333

1 2 CNMC (deformation) 70.00% 0.5909 1.0000

1 See Table 2.

62



Table 4: Histogram results using CHP dataset.

α1 (RFH) α2 (RMH) β1 (DFH) β2 (DMH) σ κ Accuracy Sensitivity Specificity

1.0 0.0 0.0 0.0 2.4 20 72.73% 0.6667 0.7586

0.0 1.0 0.0 0.0 2.4 5 93.18% 0.8500 1.000

0.0 0.0 1.0 0.0 0.0 15 75.00% 0.6364 0.8636

0.0 0.0 0.0 1.0 0.0 5 88.64% 0.8333 0.9231

0.5 0.5 0.0 0.0 7.2 15 93.18% 0.8500 1.0000

0.5 0.0 0.5 0.0 0.0 15 77.27% 0.7059 0.8148

0.5 0.0 0.0 0.5 6.8 15 90.91% 0.8421 0.9600

0.0 0.5 0.5 0.0 0.4 5 90.91% 0.8421 0.9600

0.0 0.5 0.0 0.5 0.8 5 90.91% 0.8421 0.9600

0.0 0.0 0.5 0.5 0.0 20 90.91% 0.8421 0.9600

0.33 0.34 0.33 0.0 0.0 15 93.18% 0.8889 0.9615

0.33 0.34 0.0 0.33 0.8 5 90.91% 0.8421 0.9600

0.33 0.0 0.33 0.34 0.0 15 90.91% 0.8421 0.9600

0.0 0.34 0.33 0.33 0.8 5 90.91% 0.8421 0.9600

0.25 0.25 0.25 0.25 3.6 15 93.88%1 0.9524 0.9286

1 See Table 2.

63



Table 5: Histogram results using CNMC dataset.

α1 (RFH) α2 (RMH) β1 (DFH) β2 (DMH) σ κ Accuracy Sensitivity Specificity

1.0 0.0 0.0 0.0 0.4 20 73.33% 0.8000 0.7000

0.0 1.0 0.0 0.0 0.0 5 83.33% 0.8462 0.8235

0.0 0.0 1.0 0.0 0.0 10 73.33% 0.7143 0.7500

0.0 0.0 0.0 1.0 0.0 5 83.33% 0.8462 0.8235

0.5 0.5 0.0 0.0 6.4 10 80.00% 0.8333 0.7778

0.5 0.0 0.5 0.0 0.8 10 73.33% 0.7500 0.7222

0.5 0.0 0.0 0.5 1.6 15 76.67% 0.8182 0.7368

0.0 0.5 0.5 0.0 5.2 5 86.67%1 0.9167 0.8333

0.0 0.5 0.0 0.5 0.0 5 83.33% 0.8462 0.8235

0.0 0.0 0.5 0.5 0.0 10 83.33% 0.8462 0.8235

0.33 0.34 0.33 0.0 7.2 10 80.00% 0.8333 0.7778

0.33 0.34 0.0 0.33 6.8 5 83.33% 0.8462 0.8235

0.33 0.0 0.33 0.34 0.8 5 76.67% 0.8182 0.7368

0.0 0.34 0.33 0.33 0.8 5 83.33% 0.8462 0.8235

0.25 0.25 0.25 0.25 7.2 15 83.33% 0.8462 0.8235

1 See Table 2.

64



using the first three principal components to observe the motion of cilia in three dimensions,

we observe a wider range of motion for normal CM (blue) than abnormal CM (red). For vi-

sual clarity, the distributions of x, y, and z values in each of the three dimensions of Fig. 21B

are plotted as histograms. There is a large amount of overlap in the movement of the CM

in the first dimension (Fig. 21C), but even with two or three dimensions (Fig. 21D,E) we

observe a noticeable divergence in trajectories separating normal from abnormal: the former

has much more freedom of movement than the latter.

The few misclassifications made by our framework, particularly on the CNMC set, could

be attributed to poor sample and video quality. Shifts in focal plane and other motion

artifacts were particularly problematic, resulting in deleterious effects on optical flow com-

putation. The consensus diagnosis step (Fig. 20) enhanced robustness to noise; while some

ROIs could be misclassified, the framework would still predict the CM of the patient cor-

rectly provided enough ROIs were chosen from videos of sufficient quality to represent that

patient. We found that, beyond a minimum number of roughly three ROIs per patient, the

overall quality of the ROIs (and, by proxy, the video samples) was much more important

than quantity of ROIs. In the CHP cohort (Fig. 22A,B), there is a slight correlation between

number of ROIs per patient, and subsequent average classification accuracy for that patient.

In the CNMC cohort, however, there is no noticeable correlation (Fig. 22C,D), suggesting

that ROI quality is more important than quantity.

One weakness pertains to the optical flow computations. Specifically, any defects in the

pixel intensities of the original grayscale videos (e.g., recording artifacts, lack of contrast)

will persist in some form through the optical flow and elemental components. Videos with

a significant amount of particulate matter and recording artifacts were most consistently

misclassified, suggesting that even while the optical flow computations involve smoothing

and filtering input, the artifacts still persist when digital signatures are computed, ultimately

confusing the framework. Careful and deliberate ROI selection can minimize this issue, but

even more effective is the use of high-quality biopsies and videos.

To further elucidate the reasons behind systemic mistakes made by our framework, we ex-

amined several videos that were consistently misclassified by our algorithm. We note amongst

both data cohorts, the PCD controls were consistently identified as exhibiting abnormal CM

65



Figure 21: CM AR model representations. (A) Coefficients of the AR model for normal

(top) and abnormal (bottom) CM, represented as heatmaps. For this system, d = 5 as

indicated by the number of coefficients for each ROI, and q = 10, specifying the square

dimensions of each coefficient matrix. (B) CM is visualized in q = 3 CM subspace of the

AR model for normal (blue) and abnormal (red) CM. This motion is governed by the AR

coefficients. (C, D, E) Histograms show the distributions of values taken by normal (blue)

and abnormal (red) AR motion in these dimensions, as depicted in (B).

66



Figure 22: Classification accuracy as a function of ROIs per patient. While the

overall classification accuracy for each method is specified in Table 2, these plots provide

some intuition into how the number of ROIs per individual affected how accurately the CM

for that individual was identified. 1.0 indicates the CM of that particular individual was

always identified correctly; conversely, 0.0 indicates our framework consistently misclassified

the CM of that individual. (A) Classification accuracy for each patient in the CHP cohort

using the histogram method. (B) Classification accuracy for each patient in the CHP cohort

using AR rotation models. (C) Classification accuracy for each patient in the CNMC cohort

using the histogram method. (D) Classification accuracy for each patient in the CNMC

cohort using AR rotation models.

67



by both quantitative methods; these were among the CM instances our framework classified

with the greatest confidence. The histogram method, especially in the CHP cohort, was

extremely confident in all the predictions it made, whether those predictions were correct

or not. This is alluded to in Fig. 22, where the accuracy for each patient tends to be either

0% or 100% with few in between. The patients that were exclusively misclassified almost

always had associated videos with recording artifacts such as a shaking stage or camera, or

changes in the plane of focus. These artifacts introduced a significant amount of spurious

motion, which when converted to rotation and deformation took the form of highly complex

AR coefficients (Fig. 21A, top), wide magnitude histograms (Fig. 18A-B, blue), and narrow

frequency histograms (Fig. 18C-D, blue). These closely mimicked the digital signatures gen-

erated by normal CM; this effect is particularly prevalent in the CNMC dataset where the

data are noisier, explaining the lower specificity values (Table 2). However, aside from videos

with recording artifacts, a small number of patients were consistently misclassified in both

directions (healthy as having abnormal CM, and vice versa), and closer inspection revealed

that these patients were potentially assessed incorrectly when establishing the ground truth.

Our ground truth method relied on the review of multiple experts, in which a majority

vote among the experts established the ground truth CM for each patient. In examining

the patients that were 1) consistently misclassified, and 2) did not have videos with sub-

stantial recording artifacts, these were patients for whom the majority vote in establishing

ground truth CM was not unanimous. This highlights the primary benefit of this framework:

eliminating reviewer subjectivity and uncertainty.

3.7 UNSUPERVISED DISCOVERY OF NOVEL MOTION PHENOTYPES

Our classification framework, while recapitulating expert review to a high degree of accuracy,

is fundamentally limited in its expressive power. For instance, while it can identify motion

as either normal or abnormal, it cannot answer the question as to whether or not there

exist other more subtle ciliary motion phenotypes, or if the ground truth as established by

manual review is even correct. Addressing these questions requires a shift to unsupervised

68



approaches. Our goal is to create a quantitative library of ciliary motion phenotypes, building

a graph of these phenotypes linked by their similarities to one another.

3.7.1 Automated region selection

One of the biggest drawbacks in our classification framework was that it required manual

selection of ROIs to focus the analysis. While this functioned perfectly well, particularly

for establishing a robust baseline, this inherently limited the degree of automation and

objectivity in the framework. As part of our efforts to develop a fully automated, high-

throughput, and objective framework for evaluating ciliary motion, we first developed a

completely automated method for selecting patches for analysis.

Building on our findings from our classification framework, we used rotation data only

in determining patches of interest, and for analysis using the AR framework mentioned

previously. In classification, we found rotation was the most predictive property of CM and

the most robust to sources of noise. Additionally, its property of orientation-invariance made

it the perfect candidate for use in unsupervised discovery of novel motion patterns.

For each video, we created a two-dimensional map of rotation amplitudes at each pixel

location, and ignored all locations whose amplitudes fell below some threshold of interest.

The remaining pixel locations showed a significant amount of rotation relative to the rest

of the video, theoretically identifying objects in motion. However, we found this was not

sufficient for isolating cilia; particulate matter and even background medium subject to the

inertia generated by beating cilia tended to have high rotation amplitudes.

To address this, we used texture filters on the regions we had so far identified. For

regions that were monotonic or otherwise not textured, the output of the filter was very low.

However, in regions with a significant amount of texture, i.e., regions with cilia, the output

was very high. This allowed us to differentiate between cilia and background motion with

a high degree of accuracy. Using the outputs of the filter to guide our selection process, we

identified pixels of interest and expanded 15 × 15 patches around them, ensuring they did

not overlap. This process is shown in Fig. 23.

Below is the full procedure for processing the videos and identifying patches.

69



Figure 23: Automated patch selection. Starting with the initial video (left column), we

identified pixels of interest through a combination of rotation amplitude at each pixel and a

texture filter, with the larger values of the output corresponding to regions of cilia (middle

column). Using these positions as “seeds,” we expanded boxes around each to identify

patches to be used in analysis (right column).

70



1. Compute rotation using the optical flow of the video (see the previous sections).

2. Raster scan the rotation video, resulting in each row identifying a pixel, and each column

corresponding to a frame. Formally, we define the video V ∈ Rn×f , where n is the number

of pixels, and f is the number of frames in the video.

3. Compute the amplitude at each pixel i, computing the difference in its min and max

across all frames.

~ai = max(Vi)−min(Vi),∀i ∈ [1, n]

4. Run a two-dimensional median filter over the amplitudes to smooth out noise (we used

a kernel of size 25). Clamp the vector of magnitudes ~a at the 80-percentile, discarding

all pixels whose amplitude falls below.

5. Run a texture filter over the remaining pixels to differentiate background from cilia. In

our case, we used a Gaussian gradient magnitude filter with σ = 2.5.

6. Sort the gradient filter values in descending order. Starting from the largest value, expand

a patch around the “seed” pixel. Repeat until the desired number of patches have been

selected, or no more patches can fit without overlapping.

Once the patches were identified and extracted, we computed their AR parameters using

the methods stated previously. We were able to identify more than 3, 500 patches across all

videos in our two data cohorts. Each patch was 15× 15 in height and width, and 250 frames

in length. As per the process for determining the low-dimensional AR representation of the

CM, we raster-scanned all the patches into 225×250 matrices and stacked them horizontally,

resulting in a representative CM structure space with dimensions 225 × 900, 250, a dense

matrix with over 200 million floating-point elements. While this was not outside the scope

of conventional linear solvers, it pushed their limits noticeably and nonetheless proved to be

the bottleneck in this project.

3.7.2 Spectral clustering of AR parameters

After computing the AR parameters B = {B1, B2, ..., Bd} for each patch, we built a pairwise

affinity matrix A and subsequent normalized graph Laplacian L in accordance with the spec-

tral clustering machinery outlined in Chapter 2. However, rather than using the traditional

71



RBF kernel for pairwise affinities, we used an approach that is common for discriminating

between parameters of linear dynamics systems: Martin distance [93]. It is based on the

subspace angles between two systems, and while we have empirical evidence that all CM

exists in the same subspace (Fig. 17), we found the Martin distance metric significantly

outperformed RBF in terms of identifying potential CM subtypes.

The Martin distance is defined over both the subspace of the system C and the motion

parameters B. Specifically, we have

BTPB = −CTC, (3.17)

where, for two patches vi and vj and some number of subspace dimensions q,

P =

P11 P12

P21 P22

 ∈ R2q×2q,

B =

Bvi 0

0 Bvj

 ∈ R2q×2q,

C =
[
C C

]
∈ R225×2q.

Once we have found P by solving the above Lyapunov equations (Eq. 3.17), we construct

a symmetric matrix of the constituent components of P and perform an eigendecomposition.

Specifically, each eigenvalue λi of this matrix is the cosine of the subspace angle θi.

cos2θk = ktheigenvalue(P−111 P12P
−1
22 P21)

Finally, we can use the eigenvalues of this matrix to compute the Martin distance dM

between patches vi and vj:

dM(vi, vj)
2 = − ln

q∏
k=1

cos2θk. (3.18)

Throughout the literature, when dynamic textures as represented by linear dynamics sys-

tems are compared using the Martin distance, C is often composed of two distinct subspaces,

C1 and C2. However, as we mentioned previously, all CM is hypothesized to occupy the same

72



subspace C, thus C is therefore composed of the same subspace horizontally stacked. Fur-

thermore, due to time constraints, we could only use this formulation of the Martin distance

when systems were of first order, or d = 1. Future work will generalize the above discrete

Lyapunov equations to work for higher order AR processes.

The resulting pairwise Martin distance matrix for all patches resembled Fig. 24 on the left.

After sparsifying this matrix (eliminating all edges with weights under a certain threshold)

and performing spectral biclustering [97], we found very good alignment with four distinct

clusters of motion phenotypes that provided interesting results when annotated with existing

ground-truth information.

We found the four clusters in the right panel of Fig. 24 correlated well with the ground-

truth identification from our expert collaborators. Specifically, each patient was assigned a

number 1-4, 1 indicating completely normal and 4 indicating completely abnormal. Labels 2

and 3 built some uncertainty into this scale, and this clustering recapitulated those readings.

Cluster C correlated very well with patients rated 1, or completely normal; most of the

patients identified this way were constituents of our health controls in cohort 1 (Fig. 11).

By contrast, Cluster B was almost exclusively PCD patients; all nine PCD controls from

both data cohorts were recognized in this cluster, in addition to a few of the heterotaxy

patients. Clusters A and D showed combinations of both, with Cluster A showing more

normal phenotypes and Cluster D more abnormal phenotypes. Some of the patients we

consistently misclassified in our first approach were placed in either Cluster A or D, signifying

a somewhat more ambiguous motion phenotype.

This spectrum of motion phenotypes is more fully visualized in Fig. 25. Here, after

computing the graph Laplacian L from the affinity matrix of Martin distances, we used the

leading eigenvectors of L to embed each patch in a low-dimensional subspace spanned by

the principal components of L.

Visually, we observe what we intuited from the biclustering of the affinity matrix: there

exists a spectrum of ciliary motion phenotypes, ranging from abnormal (Fig. 25, red) to nor-

mal (Fig. 25, blue). While we can and have achieved a high level of accuracy in distinguishing

normal from abnormal ciliary motion, it is an oversimplification to group all phenotypes into

this binary system.

73



Figure 24: CM subtypes. The dense pairwise Martin distance matrix is shown on the left.

On the right is the sparsified and biclustered matrix, showing four distinct clusters of CM

phenotypes, identified as such with A, B, C, and D.

74



Figure 25: 3D space of CM subtypes. Each patch is represented by a dot. Red indicates

the patch came from a patient whose diagnosis was abnormal; blue denotes patches from

healthy patients. Each panel shows the same data, with the viewing angle rotated 90 degrees.

75



3.7.3 Large-scale analysis

The patch selection strategy enumerated in the previous section is the final step in a fully

autonomous, high-throughput analysis framework. Coupled with a web front-end (Fig. 12),

clinicians and researchers need only upload video data. This opens the door for very large-

scale analysis of ciliary motion phenotypes, in particular for latent pattern discovery.

There are two operations that potentially require new techniques to allow for such large-

scale analysis. The first is the PCA step in deriving the ciliary motion subspace component

of the AR process (C in Eq. 3.14). This subspace is computed from all available data. The

videos we used in these studies were 200 fps, and we typically truncated each video at 250

frames, thereby capturing a little over 1 second of ciliary motion. In our unsupervised pattern

discovery, we sampled 3, 600 patches. This equates to computing the principal components of

a data structure with nearly 1 million columns. While still feasible using traditional methods,

this represents only a small sampling of available video data. Even with the 291 videos in

both datasets used here (Table 1), sampling 100 patches from each video would result in a

dense matrix with over 72 million columns, well beyond the capabilities of traditional linear

solvers.

However, we found evidence that a full principal component analysis of all available

video data may be unnecessary for deriving a representative subspace (Fig. 17). In lieu of

such a computationally expensive step, a sophisticated sampling method could be used to

drastically reduce the amount of data needed to compute a ciliary motion subspace while still

offering a robust low-dimensional representation of the manifold occupied by ciliary motion

patterns. Thus, this particular bottleneck is potentially avoidable.

The second operation that absolutely necessitates new analysis techniques is the identifi-

cation of latent motion patterns. We demonstrated the use of spectral biclustering (Fig. 24),

a technique that examines the spectral embeddings of the AR parameters for each patch

to discover clusters with similar motion phenotypes. Determining this spectral embedding

an extremely expensive process, and for more than roughly 10, 000 patches, would require a

distributed implementation. We discuss such an implementation in Chapter 5.

76



3.8 CONCLUSIONS

The innovative framework described here can be deployed in a clinical setting, helping estab-

lish objective standards for the diagnosis of CM defects and facilitating cross-institutional

collaborations in multi-center trials through quantitative analyses of ciliary biopsies. Our

framework improves on the current methods for ciliary beat pattern analysis by developing

quantifiable digital signatures of the CM and replicating expert CM assessment to a high

level of accuracy.

The few misclassifications made by our framework are elucidated further with our un-

supervised clustering analysis for discovering novel ciliary motion phenotypes. We have

compelling quantitative evidence grouping ciliary motion into one of two phenotypes, nor-

mal or abnormal, is an oversimplification that ignores a smoother spectrum of phenotypes.

In particular, we have painted a picture with no fewer than four distinct motion phenotypes,

with the likely possibility of more given additional data.

Future work on this project will include the acquisition of additional data; ideally, we will

collect and generate roughly five to 10 times the number of patches extracted in this study,

putting the SVD step of generating AR parameters well out of reach of conventional linear

solvers. While Martin distance proved extremely useful for comparing AR parameters, it was

limited to comparing only one parameter from each patch. We will generalize this process

to handle an arbitrary number of parameters per patch, particularly given our finding in the

classification framework that multiple parameters provide a higher classification accuracy,

therefore more readily recognizing the underlying CM and theoretically providing a more

accurate quantitative description.

While the quantity of data used here does not qualify as large enough to necessitate

more scalable analysis techniques, some slight modifications were necessary to guarantee

a reasonable runtime. Furthermore, while these initial results were compelling, we were

left to conclude that more data was required to tease out additional potential ciliary motion

phenotypes. We pushed our conventional computational machinery to its limits in conducting

the spectral analysis required to uncover these insights; in the next chapter, we discuss a

project for which more scalable techniques were no longer a luxury, but a necessity.

77



4.0 LEARNING PERCEPTUAL OLFACTORY DIMENSIONS

4.1 INTRODUCTION

For most sensory modalities, basic stimulus dimensions are mirrored in the organization and

topography of neural circuits, and in turn define important perceptual axes [98,99]. In several

well-known cases, simple heuristics can describe this mapping from stimulus space to percep-

tual space, with the correspondence between the wavelength and color of light providing the

prototypical example [99,100]. In the case of olfaction, the details of this mapping are much

less clear, being complicated principally by the high dimensionality of odor stimuli (odor-

ants). Whereas color is effectively a readout of a single, continuous stimulus dimension by a

handful of narrowly tuned receptor types [101,102], odor quality is determined by the com-

binatorial activation of many dozens to hundreds of broadly tuned receptor types [103–107].

Simply put, there are too many ways for molecules to vary for any single physicochemical

feature to uniquely determine odor quality [108,109]. Rather, the space of molecules is high-

dimensional, discrete, and intermittently occupied, and olfaction must employ a strategy to

match.

The goal of this case study was to gain insight into this strategy by establishing a

correspondence between the physicochemical space of odorants, and the space of olfactory

percepts. More specifically, we sought to develop a metric for odorant comparison that both

recapitulates perceptual judgements of pairwise similarity, and provides a basis for accu-

rate odor classification. Several recent studies have reported important successes on the

first front, using principal component analysis (PCA) to identify “molecular compactness”

as a candidate stimulus dimension [110–113]. Here, we sought to build on this foundation

by using machine-learning (ML) based strategies for discovering an odorant metric. The

78



key potential advantage of ML is that it explicitly folds in perceptual similarity data to

guide and constrain the discovery of the metric. In other words, ML seeks the combina-

tion of physicochemical features (and their relative couplings) that best explain similarity

judgments, whereas correlative methods are constrained by the assumption that olfactory

perception latches onto the most salient structure in the world. Arguments against the latter

type of model include the well-known observation that compounds deemed similar by the

obvious criteria (chain length, functional group, etc.) need not smell similar [106, 107], as

well as the fact that judgments of odor similarity are highly species specific, and driven by

organisms’ unique ecological needs [114,115].

Our contributions in this study are threefold. First, using methods from Xing et al [116],

we derive a novel metric for computing pairwise odorant similarity. This metric is generaliz-

able to the form of similarity information, and can readily accommodate most odor discrim-

ination data: it can be obtained from human psychophysical experiments [117], or as in this

study, from computational similarity predictions, such as Euclidean distance [118]. We build

the metric by enumerating all combinatorial pairs of odorants, and separating them into

nonoverlapping sets of similar and dissimilar odors, defined using results from our previous

work in Castro et al [5]. The metric reveals a low-dimensional embedding of the odorants

in the physiochemical space, providing rules for mapping physiochemical properties to odor

percepts.

Second, we use the metric in conjunction with statistical machine learning techniques

to implement a classication scheme for scalable and automated percept prediction. By

exploiting the structure of the underlying manifold as defined by the similarity metric, we

achieve an unprecedented level of accuracy in classifying odorants into one of 10 discrete

perceptual categories. We demonstrate how the metric can be used to achieve state-of-the-

art odorant categorization with a relatively small number of odorant dimensions.

Third, we exploit the standalone formulation of the metric to investigate semi-supervised

methods of predicting the perceptual categories of novel, unobserved odorants. Using the

original metric as a kernel, and employing a distributed computational framework, we can

computationally predict the perceptual categories of odorants from databases such as Pub-

Chem using only their physiochemical descriptors. Furthermore, odorants with perceptual

79



labels can be used to update our learned metric to provide more accurate predictions.

4.2 DRAVNIEKS ODOR PROFILE AND PHYSIOCHEMICAL

DESCRIPTORS

For this study, we use 141 of the 144 odorants defined in the Dravnieks odor database [119,

120]. We used Molecular Modeling Pro (MMP) to compute the physiochemical properties

from [111]; three of the compounds were omitted from this study, as these compounds (either

at higher or lower concentrations) cannot be represented in our analysis. Of the list of 126

descriptors used by Koulakov et al [111], we chose the 78 properties that could be computed

with MMP. These properties included atom counts, molecular mass, size, hydrophobicity,

solubility, QSAR properties, dipole moments and charges, connectivity indices, thermody-

namics, and properties of polymer and surfactants. The complete list of these 78 properties

is included in the Appendix; the relative distributions these properties take are shown in

Fig. 26. The heatmap of odorants and their physiochemical properties are shown in Fig. 27.

We normalized the descriptors according to the methods described in [111]. In particular,

for properties that took values ≤ 0, we used the z-score (z = x−µx
σx

) [110]. Properties that

took values > 0 often had log-normal distributions, precluding the use of z-scores. For these

properties, if the standard deviation of the logarithm was ≥ 1, we used the z-score of the

logarithm. For properties with a standard deviation < 1 and for those with some negative

values, we used the direct z-score.

4.2.1 Nonnegative matrix factorization to determine ground-truth odor per-

cepts

Our previous work [5] demonstrated a computational method for elucidating a low-dimensional

representation of the odor perceptual space by decomposing the Dravnieks odor profile

database [119, 120] using nonnegative matrix factorization (NMF) [121–124]. NMF and

PCA are similar in that both methods attempt to capture the low-dimensional structure of

80



Figure 26: Histograms of the physiochemical properties used across all 141 Dravnieks odor-

ants used this study.

81



Figure 27: In this study, we use 141 of the 144 odorants in the Dravnieks odor profile

database [119]. Rather than using the psychophysical descriptors from that experiment, we

use physiochemical properties derived from Koulakov et al [111], the general types of which

are listed. The 10 perceptual categories are derived from the methods in Castro et al [5].

This is the format of the odorants we use here.

82



data; they differ, however, in the conditions that drive dimensionality reduction. Whereas

components obtained from PCA are chosen to maximize variance, those obtained from NMF

are constrained to be nonnegative. This constraint has proven especially useful in the analy-

sis of documents and other semantic data where data are intrinsically nonnegative [124,125],

a condition that is met by the Dravnieks database. NMF factorizes a matrix subject to the

constraints of returning nonnegative and near-orthogonal component vectors of the form

D = WH

where D is the Dravnieks profile database, W describes patterns in the physiochemical space

and H provides pattern affinities of all odorants. Each odorant is assigned the perceptual

category for which its coefficient is the largest. Fig. 27 depicts the results of the NMF

decomposition and the number of odorants assigned to each category. Three of the highest-

ranked perceptual labels within each category are also listed. These categories were shown

to be near-orthogonal in the perceptual space, providing strong evidence for the existence of

independent odor categories populated by constituent odorants.

4.2.2 Software

Python 2.7 was used to implement the analysis pipeline. We used the scientific computing

packages NumPy and SciPy, and the plotting package Matplotlib. Statistical analysis and

classification was performed using the Python scikit-learn machine learning library [81],

which uses the popular libsvm implementation for support vector machines. All of these

packages are publicly available under open source licenses. The only exception was the

derivation of the NMF coefficients, which was performed according to the methods described

in our previous work [5].

83



4.3 DERIVATION OF A GENERALIZED ODORANT SIMILARITY

METRIC

Suppose we are given three odorants as described by their physiochemical properties: ~x, ~y,

and ~z. We are also given information that ~x and ~y are “similar,” but ~x and ~z are not. Using

this information, we want to define a distance metric d(~x, ~y) that encodes this similarity,

such that d(~x, ~y) is small, and d(~x, ~z) is large.

Our proposed similarity metric takes the form of a matrix G, formulated according to

Xing et al [116],

d(~x, ~y) = dG(~x, ~y) = ||~x− ~y||G =
√

(~x− ~y)TG(~x− ~y). (4.1)

Setting G = I, where I is the identity matrix, results in unweighted Euclidean distance.

If we define G as a diagonal matrix, this results in a weighted Euclidean distance, where

each physiochemical property has its own weight in the distance computation. Deriving

a full G matrix allows the metric to incorporate complex interactions between multiple

physiochemical properties, most completely representing the physiochemical space.

The process of deriving, or learning, the metric G is an iterative optimization problem.

In each iteration, a series of constraints is enforced to guide the subsequent iterations, and

to guarantee that the final G is a valid metric (see Materials and Methods). As a result

of these constraints, G is symmetric and positive semi-definite, implying its eigenvalues and

eigenvectors exist and are real numbers. Fig. 28 depicts the first six iterations in learning the

metric G; its property of symmetry can be observed in each step. We can use the eigenvectors

of G to embed the odorants into a low-dimensional space, implementing PCA. However, by

performing PCA on the metric G instead of directly on the odorants, the low-dimensional

embedding of the odorants incorporates pairwise similarity information. Intuitively, G has

the effect of reorganizing the arrangement odorants in this low-dimensional space while

maintaining pairwise similarity constraints.

These constraints take the form of two distinct sets of odorant pairs: S, the set containing

all pairs of odorants (~x, ~y) that are “similar,” and D, the set containing all pairs of odorants

(~x, ~z) that are “dissimilar” (or, more simply, the pairs of odorants not in S). In this study, we

84



Figure 28: First six iterations of the learning algorithm to derive the similarity metric G.

Each entry in G captures quantitative correlation between physiochemical properties; these

correlations are plotted as a histogram beneath each heatmap.

85



claimed a pair of odorants were “similar” if their perceptual categories as defined using the

methods in Castro et al [5] were identical; if not, the odorants were considered “dissimilar.”

Like the Castro et al study, we used the odorants from the Dravnieks study; however, in lieu

of the psychophysical data used in Dravnieks and Castro et al, we used the physiochemical

properties from Koulakov et al [111] (property types shown in Fig. 27). In populating the

sets S and D, we based our results on full combinatorial enumerations of all possible odorant

pairs.

To learn G, we iterate over the following constraints until they are satisfied:

min
G

∑
(x,y)∈S

‖~x− ~y‖2G, (4.2)

s.t.
∑

(x,z)∈D

‖~x− ~z‖G ≥ 1, (4.3)

G � 0. (4.4)

In the first step, we minimize the distance dG(~x, ~y) between pairs of odorants in S, or those

that are similar. Since this can be trivially solved with G = 0, we have to enforce another

constraint. In the second step, we enforce the constraint that the distances between pairs of

odorants in D, or those that are dissimilar, are ≥ 1. The choice of the constant 1 is arbitrary

and can be replaced by any positive constant a, as long as G is replaced with a2G. In the

second step, one could consider squaring the quantity as in the first step, as it would result

in a simple linear constraint. However, this would ultimately cause G to be rank 1, meaning

the odorants would always be projected on a line.

Finally, we enforce the property of positive semi-definiteness in G in the last step. This

is critical to guarantee that G is a valid metric, satisfying nonnegativity and the triangle

inequality (technically, it is a pseudo-metric, in that dG(~x, ~y) = 0 does not imply ~x = ~y). It

can be shown that these steps result in a convex optimization problem, guaranteeing that

there is a global minimum [116]. We iterate these steps until G converges.

Using the specified formulation, the metric can take two distinct forms. The first is a

simpler, diagonal metric, that independently weights each physiochemical property. The

second is a full, more complex metric, which is more difficult to derive but can represent

86



complex linear correlations between physiochemical properties, resulting in a much richer

characterization of the physiochemical space. In this study, we use both forms, as the

diagonal version is extremely simple to derive, and the full version converges much faster

when initialized with the diagonal version (as opposed to a random initialization).

4.3.1 Diagonal Metric

In our programmatic implementation, we first learned a diagonal version of the metric G,

where G = diag(G11, G22, ..., Gnn). We defined

g(G) = g(G11, G22, ..., Gnn) = g(Gii) =
∑

(x,y)∈S

||~xi − ~yi||2G − log

 ∑
(x,z)∈D

||~xi − ~zi||G

 (4.5)

As shown in [116], this is equivalent to the formulation we specified in Eq. 4.2-4.4 up to a

multiplication of G by a positive constant. Each term Gii can be solved for in parallel, and

Newton-Raphson can be used to find the terms very efficiently. The result of this was our

diagonal matrix, G0. We did not find any discernible improvement in classification accuracy

using the diagonal metric, but we did observe a significant improvement in convergence for

the full metric, whose formulation is given next.

4.3.2 Full Metric

The second step of our programmatic implementation used the diagonal matrix G0 to ini-

tialize the following algorithm, which is qualitatively different from the formulation given

in Eq. 4.1 as the Newton-Raphson optimization method becomes prohibitively expensive to

run over n2 parameters.

max
G
g(G) =

∑
(x,z)∈D

‖~x− ~y‖G, (4.6)

s.t.f(G) =
∑

(x,z)∈S

‖~x− ~z‖2G ≤ 1, (4.7)

G � 0. (4.8)

87



This process consisted of two nested loops. The inner loop contained Eq. 4.7 and 4.8,

iteratively enforcing these constraints until G converged and the inner loop finished. Eq. 4.7

involved minimizing a quadratic objective subject to a linear constraint. Eq. 4.8 enforced

positive semi-definiteness by diagonalizing G = UΛUT , where Λ = diag(λ1, λ2, ..., λn) are

the eigenvalues of G, and U are the column eigenvectors. We replaced G with G′ = UΛ′UT ,

where Λ′ = diag(max{0, λ1}, ...,max{0, λn}), guaranteeing the resulting matrix is positive

semi-definite.

Once G converged and the inner loop broke, we performed a gradient ascent step ac-

cording to Eq. 4.6. We performed the update G := G + α(∇g(G)) (we set α = 0.0001, but

included a momentum term to further increase convergence speed). Since g(G) is a function

of the set of dissimilar odorant pairs D, we wish to maximize this function (thereby making

the resulting distance between odorant pairs in D as large as possible), hence we take a step

up the gradient ∇g(G). If G had not converged after this gradient step, the inner loop began

again.

If G had converged, the algorithm ended. Convergence was defined as a Frobenius norm

|| • ||F below some threshold (we used ||G − G′||F ≤ 1). However, we found that after this

condition was reached, we needed to perform one final application of the Eq. 4.8 constraint,

as the gradient step appeared to break the positive semi-definiteness of G.

4.3.3 Populating constraint sets S and D

Our approach to defining the pairs of similar odorants S and the pairs of dissimilar odorants

D made use of the 10-category classification in [5]. For each of the 141 Dravnieks odorants

used in this study, a pair of odorants ~x and ~y were similar if they were assigned to the same

perceptual category, and dissimilar if they were assigned to different perceptual categories.

Referencing the data breakdown in Fig. 27, we enumerated all combinatorial pairings to

compute the metric G. To that end, set S contained 978 pairs of odorants, and set D

contained 17,772 pairs of odorants.

88



4.4 USING THE SIMILARITY METRIC TO IMPROVE ODORANT

CLASSIFICATION

The formulation for defining G in Eq. 4.1 lends itself to the task of supervised classification,

an area of machine learning concerned with learning a rule that can be used to predict the

class, or category, of unobserved data. The rule often takes the form of a line or plane that

splits data in such a way as to have the largest number of odorants from a single perceptual

category on the same side of the plane. Thus, new odorants are categorized, or classified,

based on which side of the plane they fall.

To perform classification, we used a family of machine learning algorithms called Support

Vector Machines (SVM) [95, 126], which are particularly effective when the data are sparse

and high-dimensional, as with odorant similarity information. We used both linear and

nonlinear formulations of the SVM, and detail the results of both where applicable. To tune

the classifier, we used k-fold cross-validation. It is a verification process for classification

algorithms to estimate their performance against new data. The odorants were split into k

groups, or folds, each containing roughly the same number of odorants. In this study, we set

k = 5; therefore, with 141 odorants, each fold contained 28 odorants, with one fold containing

29. In the first iteration, the first four folds are used to train the algorithm, meaning that the

odorants in those folds and their assigned perceptual categories are provided to the algorithm

to learn the quantitative associations. The fifth fold is explicitly held out, filling the role of

unobserved data. The fifth fold is then used to test the algorithm, whereby the odorants in

that fold are provided to the algorithm without their assigned perceptual categories, and the

algorithm must predict the categories given what it learned in training. The predictions are

then compared to the actual percepts, and a percentage accuracy is computed. The process

then moves to the second iteration, whereby the fifth fold becomes one of the four training

folds, and the next fold in line becomes the testing fold. This continues until all five folds

have been used exactly once as the testing fold.

We took myriad approaches to maximizing classification accuracy, exploiting the struc-

ture revealed by the similarity metric in numerous ways. These are detailed in the following

sections. In addition to these methods, we also implemented other pairwise similarity met-

89



rics and classification schemes used in olfaction research to compare the performance of our

metric.

4.4.1 Substituting each odorant ~x with G1/2~x

Our first approach was to replace each odorant ~x with G1/2~x, enforcing similarity constraints.

This has the effect of rearranging each odorant to be closer to those they are “similar” to,

and farther away from those they are “dissimilar” from.

4.4.2 Projecting each odorant ~x using leading eigenvectors of G

Our next approach was to use the leading eigenvectors of G as principal components, em-

bedding the odorants in a low-dimensional space spanned by these eigenvectors. Thus, by

diagonalizing G = UΣUT , where U are the eigenvectors and Σ is the diagonal matrix con-

taining the eigenvalues, we replace each odorant ~x with Σ̂−1/2ÛT~x, where Σ̂−1/2 are the

leading τ eigenvalues of G, and ÛT are the corresponding leading τ eigenvectors. In this

way, we can vary τ to determine the optimal number of principal components to use.

4.4.3 Baseline methods for comparison to G

Our final approach involved a handful of baseline methods from previous studies to compare

against our metric. First, we computed the principal components of the odorants directly us-

ing Singular Value Decomposition (SVD) and embedded the odorants in the low-dimensional

space spanned by these principal components [110–112] in the same way as our method used

the eigenvectors of G; these methods both attempt to maximize the variance captured along

each principal axis (Fig. 29a-b). Resulting embeddings of the odorants in a 3D space using

the first three principal components are shown in Fig. 29c-d, and the histograms of pairwise

Euclidean distances between odorants in these spaces are shown in Fig. 29e.

In our second baseline method, we used feature selection methods to identify the subset

of physiochemical properties that maximized classification performance [126–129]. We em-

ployed two feature selection strategies for identifying the subset of physiochemical properties

90



Figure 29: Outcome of PCA on metric G versus directly on odorants. (a, b) Cumulative

sums of the variances explained by each subsequent principal component of the metric G and

of the odorants, respectively. (c, d) 3D projections of the 141 odorants using the first three

principal components of the metric G and of the odorants, respectively. Each sprite type

indicates an odorant of a specific perceptual category as defined in Fig. 27. (e) Distribution

of pairwise Euclidean distances between odorants in Fig. 29c (black) and Fig. 29d (gray).

91



best suited for classification, based on the classification method we used. The first strategy,

used when performing classification with a linear SVM, was recursive feature elimination

cross-validation (RFECV) [126]. The formulation of most linear classifiers involve assign-

ing weights specific features, ranking their relative importances in correctly predicting the

category of new input. In this case, RFECV conducts a series of recursive cross-validations

in which physiochemical properties are iteratively eliminated from classification based on

weights, until only the optimal properties remain. However, RFECV does not work for

nonlinear classifiers, as per-feature weights cannot be computed. This was the case with

our nonlinear SVM. Instead, we used an iterative method called sequential feature selection

(SFS) [127]. This method has been used in previous olfaction studies [128, 129]. In this

process, subsets of properties were created and tested against the classifier; the properties

which attained the highest accuracy or improved accuracy the most were retained. These

features were then included by default in subsequent iterations. This process continued until

none of the remaining unselected properties improved classification performance.

In our third method, we performed odorant classification with all available physiochemi-

cal properties as outlined in Fig. 27. No PCA embeddings or feature selection methods were

used.

In our final baseline method, we developed a null model, which entailed random “scram-

bling” of the physiochemical properties for each odorant [5].

4.4.4 Classification results

All results using the linear SVM are shown in Table 6, and the results for the nonlinear

SVM are in Table 7. For methods that involved parameter scans, only the optimal result

and number of associated dimensions used to obtain the result is shown. Our first approach,

replacing each odorant ~x with G1/2~x, outperformed all others with an average accuracy of

52.48% (± 2.3%), surpassing a five-fold increase over random chance. All other methods still

exceeded a four-fold improvement over random chance. Fig. 30a shows the full parameter

scan over τ , the number of principal components, of G (black) and the odorants directly

(gray). The rows of subsequent subpanel pairs in Fig. 30 depict a confusion matrix on

92



the left, and per-odor percept accuracy on the right, for our G1/2~x approach (top row),

principal components embedding of G (middle row), and principal components embedding

using the odorants directly (bottom row). The confusion matrix is a convenient way to

represent the predictions made by a classifier: for a given odorant ~x with true perceptual

category yt ∈ [1, ..., 10] as indicated by the row number, the count for the corresponding

column is incremented based on the predicted category yp. Therefore, zeros everywhere

except the diagonal would indicate a perfect classifier, where yt = yp for all odorants ~x. In

this way, the confusion matrix is a visual representation of where and how the classifier made

mistakes. The per-percept plots in the right column show how effective each technique was

for recognizing odorants in specific perceptual categories.

More generally, with this metric we require significantly fewer dimensions than previ-

ous studies to characterize the principal components of the odorant space. The principal

components of our metric G explain a significantly larger percentage of the variance in the

odorant data than the principal components of the odorants directly (Fig. 29a-b). Our clas-

sifier achieves optimal performance with only six principal components of G, as compared

to 40 with the principal components of the odorants. Furthermore, while the first three to

four principal components of the odorants explain 80% of the variance (confirming what

previous studies have shown), the first principal component of G alone accounts for 80% of

the variance, and the first three to four account for over 95%.

The efficacy of the feature selection techniques–RFECV for the linear SVM, and SFS

for the nonlinear SVM–are also shown. RFECV achieved a maximum accuracy of 44.09%

(± 2.71%) using a subset of 60 physiochemical descriptors (Table 6). The second technique,

sequential feature selection (SFS) [127], achieved a maximum accuracy of 47.55% (± 2.64%)

using a subset of 13 physiochemical descriptors (Table 7). It should be noted that this is

the only instance in which the nonlinear SVM outperformed the linear SVM. Of particular

interest is the fact that, using feature selection, the nonlinear SVM required substantially

fewer physiochemical descriptors (13 out of 78) to attain its maximum accuracy than did the

linear SVM (60 out of 78). Tables 8 and 9 detail out the physiochemical properties and their

respective categories that resulted in the optimal linear and nonlinear SVM performances,

respectively, using these feature selection techniques.

93



f(~x) Accuracy Dimensions

G1/2~x 52.48% (± 2.3%) 78

Σ̂−1/2ÛT~x 49.55% (± 1.95%) 6

Ŝ−1/2V̂ T~x 45.77% (± 2.36%) 40

~̂x 44.09% (± 2.71%) 60

~x 42.14% (± 2.48%) 78

X∗row 12.1% (± 2.2%) 78

X∗col 9.5% (± 1.9%) 78

X∗both 8.9% (± 2.1%) 78

Table 6: Classification results for the linear SVM. Rows indicate how each odorant ~x was

represented in the classification scheme, and the subsequent results. 1st row: Replace each

odorant with G1/2~x, where G is the similarity metric. 2nd row: Replace each odorant

with Σ̂−1/2ÛT~x, where Σ̂−1/2ÛT are the leading eigenvectors and eigenvalues of G. 3rd

row: Replace each odorant with Ŝ−1/2V̂ T~x, where Ŝ−1/2V̂ T are the leading singular values

and principal components of the odorants. 4th row: Replace each odorant with a smaller

number of physiochemical descriptors ~̂x, as found using feature selection (RFECV). 5th

row: Use all available physiochemical properties ~x. 6th-8th rows: Variations of a null

model X∗, depicting the results of scrambling the odorants X by row, column, and both,

respectively.

94



f(~x) Accuracy Dimensions

G1/2~x 42.40% (± 2.79%) 78

Σ̂−1/2ÛT~x 46.02% (± 2.39%) 5

Ŝ−1/2V̂ T~x 41.06% (± 2.75%) 30

~̂x 47.55% (± 2.64%) 13

~x 41.16% (± 2.54%) 78

X∗row 17.2% (± 1.8%) 78

X∗col 13.9% (± 2.2%) 78

X∗both 15.5% (± 1.8%) 78

Table 7: Classification results for the nonlinear SVM. Each row indicates how each odorant ~x

was represented in the classification scheme, and the subsequent results. 1st row: Replace

each odorant with G1/2~x, where G is the metric. 2nd row: Replace each odorant with

Σ̂−1/2ÛT~x, where Σ̂−1/2ÛT are the leading eigenvectors and eigenvalues of the metric. 3rd

row: Replace each odorant with Ŝ−1/2V̂ T~x, where Ŝ−1/2V̂ T are the leading singular values

and vectors of the odorant-descriptor matrix X. 4th row: Replace each odorant with a

smaller number of physiochemical descriptors ~̂x, as found using feature selection (SFS). 5th

row: Use the full 78-element descriptor vector ~x. 6th-8th rows: Variations of a null model

X∗, depicting the results of scrambling the odorant-descriptor matrix X by row, column,

and both, respectively.

95



Figure 30: Classification results. (a) Classification accuracy as a function of τ (x-axis),

the number of principal components used in G (black line) and the odorants (gray line).

(b, c) Confusion matrix and average per-category classification accuracy, respectively, af-

ter replacing each odorant ~x with G~x. (d, e) Confusion matrix and average per-category

classification accuracy, respectively, using the optimal number of eigenvectors of G (6, from

Fig. 30a). (f, g) Confusion matrix and average per-category classification accuracy using

the optimal number of principal components of the odorants (33, from Fig. 30a).

96



Top Linear SVM Features Feature Set

surface tension in water Polymer and surfactant properties

valence index 4 Connectivity indices

viscosity (cp) at 25C Polymer and surfactant properties

surface area Mass and size

Critical pressure (bar) Thermodynamics

Normal freezing point (K) Thermodynamics

boiling point Thermodynamics

Enthalpy of fusion (kJmole) Thermodynamics

Heat capacity change at boiling (JK mole) Thermodynamics

molecular weight Mass and size

C Atom count

T sub g (C) Polymer and surfactant properties

O Atom count

molecular volume Polymer and surfactant properties

kappa 2 Connectivity indices

Log P Partition coefficients, hydrophobicity, and solubility

vapor pressure Thermodynamics

dipole moment Dipole moment and other charge properties

valence 2 Connectivity indices

molecular depth Mass and size

Hydrogen bond number Dipole moment and other charge properties

N Atom count

water content 100% RH (moles) Polymer and surfactant properties

connectivity index 4 Connectivity indices

van Krevelen Z (chain length) Polymer and surfactant properties

H bond donor Dipole moment and other charge properties

water content 90% RH (moles) Polymer and surfactant properties

Hansen polarity Polymer and surfactant properties

molecular length Mass and size

Gibbs energy of formation ideal gas at 298 K (kJmole) Thermodynamics

Liquid viscosity (N sm2) Thermodynamics

HLB Partition coefficients, hydrophobicity, and solubility

CIM 10 Connectivity indices

entropy of boiling (JK mole) Thermodynamics

I Atom count

T sub m (C) Polymer and surfactant properties

Normal boiling point (K) Thermodynamics

LogP - Crippen Partition coefficients, hydrophobicity, and solubility

water solubility Partition coefficients, hydrophobicity, and solubility

solubility parameter Polymer and surfactant properties

connectivity 3 Connectivity indices

surface tension Polymer and surfactant properties

Critical Temperature (K) Thermodynamics

mean water of hydration Partition coefficients, hydrophobicity, and solubility

Hansen dispersion Polymer and surfactant properties

Enthalpy of vaporization at the boiling point (kJmole) Thermodynamics

molecular width Mass and size

H bond acceptor Dipole moment and other charge properties

valence 3 Connectivity indices

Effective number of torsional bonds Thermodynamics

Enthalpy of formation ideal gas at 298 K (kJmole) Thermodynamics

CIM 4 Connectivity indices

percent hydrophilic surface Polymer and surfactant properties

water content 70% RH (moles) Polymer and surfactant properties

connectivity 2 Connectivity indices

density Mass and size

connectivity 1 Connectivity indices

Heat capacity ideal gas (J mole K) Thermodynamics

Hansen hydrogen bonding Polymer and surfactant properties

CIM 9 Connectivity indices

Table 8: List of the top 60 physiochemical features, ranked by weight from RFECV [126],

when using Linear SVM for classification, as well as the feature sets they are included in

from Koulakov et al [111].

97



Top Nonlinear SVM Features Feature Set

CIM 6 Connectivity indices

Gibbs energy of formation ideal gas at 298 K (kJmole) Thermodynamics

Log P Partition coefficients, hydrophobicity, and solubility

kappa 2 Connectivity indices

solubility parameter Polymer and surfactant properties

T sub g (C) Polymer and surfactant properties

Liquid viscosity (N sm2) Thermodynamics

surface area Mass and size

surface tension Polymer and surfactant properties

dipole moment Dipole moment and other charge properties

Cl Atom count

Hydrogen bond number Dipole moment and other charge properties

Normal freezing point (K) Thermodynamics

Table 9: List of the top 13 physiochemical features, ranked by SFS [118], for nonlinear SVM

classification, as well as the feature sets they are included in by Koulakov et al [111].

98



Figure 31: Classification accuracy using feature selection techniques for the linear (dotted)

and nonlinear (solid) SVMs, as a function of the number of descriptors used. Descriptors

were added according to selection criteria (RFECV for linear, SFS for nonlinear).

99



Downsampled Accuracy

25% 51.68% (± 1.92%)

50% 51.50% (± 2.08%)

75% 46.31% (± 2.07%)

Table 10: Effects of downsampling the similarity constraints when constructing the metric

G on subsequent classification using f(~x) = G1/2~x. The percentage indicates the proportion

of pairs that are discarded at random when constructing S and D.

4.4.5 Effects of downsampling S and D on classification

We also experimented with downsampling the constraint sets S and D to observe the effect

of discarding pairwise information on the integrity of the metric G and the subsequent

classification accuracy. We performed three experiments, wherein 25%, 50%, and 75% of

the pairs in each set were randomly discarded, resulting in set sizes (|S|, |D|) of roughly

(733, 13329), (489, 8886), and (244, 4443), respectively. These represent averages, as our

procedure for discarding data was random. For each pair of odorants under consideration

for either S or D, we drew a random number from a uniform [0, 1] distribution. If that

number did not exceed our discard threshold (0.25, 0.5, and 0.75, respectively), the current

pair was discarded. Otherwise, the pair was included. We attempted discard rates over 90%,

however in these cases the metric failed to converge due to lack of sufficient data to test the

constraints.

The results of our downsampling experiments on the pairwise similarity information in

the constraint sets S and D strongly suggest the metric is robust to discarding a significant

amount of similarity information. Fig. 32 shows that the metric retains its ability to explain

much of the variance in the data with only a few dimensions. Retaining between 50% and

100



Figure 32: Effects of downsampling the sets S and D by 25% (left column), 50% (middle

column), and 75% (right column), as reflected in the 3D distribution of centroids (top row)

and variance contributed by each eigenvector (bottom row).

101



Figure 33: Classification accuracy as a function of number of principal components of the

metric G, after downsampling the constraint sets to create G by 25% (black), 50% (dark

gray), and 75% (light gray).

102



75% of all possible pairings of odorants provided a robust similarity metric that generalized

well. As shown in Table 10, there is not a noticeable drop in classification performance

until only 25% of the original quantity of similarity information remains in S and D. This

behavior is recapitulated in Fig. 33, wherein only the first few principal components of the

metric are required to attain optimal classification accuracy, even after having discarded half

of the pairwise similarity information.

4.5 COMPARISON TO OTHER METRICS

4.5.1 Euclidean distance

One closely related distance measure is pairwise Euclidean distances between odorants. For

two odorants ~x and ~y, the Euclidean distance is d(~x, ~y) =
√

(~x− ~y)T (~x− ~y), which is equiv-

alent to setting our metric G = I, where I is the identity matrix. Computing unweighted

pairwise Euclidean distances between odorants in the Dravnieks odor profile database yielded

the distribution of values in Fig. 29e (gray). The multimodal nature of the histogram makes

it difficult to identify a similarity threshold. Furthermore, it is not clear that odorants,

as described by physiochemical properties, exist in a space where small Euclidean distance

correlates with perceptual similarity [117].

4.5.2 Cosine angle

Snitz and Yablonka et al [117] found a strong correlation between odor percept and angles

between odorants as described by their physiochemical properties. Given a pair of odorants

~x and ~y, one can compute the angle θ~x,~y between these vectors θ~x,~y = arccos
(

~x·~y
|~x||~y|

)
. We com-

puted pairwise angles between physiochemical properties and plotted those angles against a

quantity ε derived from our metric. We define the “energy” between a pair of odorants in S

or D to be ε = (~x − ~y)TG(~x − ~y). For the pairs in S, r = 0.503 (p < 0.0001), and for the

pairs in D, r = 0.474 (p < 0.0001), strongly suggesting a correlation (Fig. 34).

103



Figure 34: Energy ε (y-axis) is plotted against angle θ (x-axis) for odorant pairs in S (left)

and D (right). The correlation coefficients are r = 0.503 (left) and r = 0.474 (right). In

both cases, p < 0.0001.

104



4.5.3 Alternative descriptor sets

Finally, we also took into account the metric proposed by Haddad et al [118]. While the study

by Castro et al [5] concluded that 10 perceptual categories existed, the same method could be

used to categorize odorants into two percepts, theoretically aligning with the “pleasant” and

“unpleasant” axes of odor perception. We ultimately converted the number of perceptual

categories to a parameter c ∈ [2, 25] to observe the classification accuracy as it compared to

random chance, and in the binary case, to the metric proposed by Haddad et al. Our binary

classification averaged just over 70%, comparable to the r = 0.69 obtained by Haddad et al.

4.5.4 Alternative models of olfaction

A recent study [130] posited that humans can discriminate well over one trillion odor per-

cepts using a sphere-packing approach to identifying percepts. However, serious concerns

have been raised over the implicit assumptions made in this study; in particular, that the

sphere packing relies on an implicit nearest-neighbor approach that gives rise to a funda-

mentally flawed conclusion [131]. The analysis method appears not to adequately consider

the domain to which it is applied, and thus the intrinsic failures of the method misleads the

authors. In particular, the authors attempt to quantify the threshold at which two distinct

odorants become imperceptibly similar to human olfaction, and use this “distance” to reduce

the original question to a hypersphere-packing problem. Once the authors determine the dis-

tance d at which 50% of the pairs of odorants are indiscriminable to human subjects, the

authors use combinatorics to arrange the maximum number of hyperspheres (representing

odorants) in the original high-dimensional olfactory space while constraining the diameter

of the hyperspheres to be less than d. The number of spheres, then, is the number used in

the paper: more than one trillion.

A simple counterexample is provided in [131]. Using the methods proposed in [130],

an example bacterium with only three true percepts is seen to discriminate well over 100

million. This suggests the model proposed in the original paper vastly overestimates the

number of discriminable percepts, and that the discrimination data could be explained by a

much smaller number of percepts. Given the sphere-packing method, the implicit assumption

105



made is that all the spheres within the diameter d must be assigned different percepts, when

the only requirement of the method is that neighboring spheres have different percepts. In

the trivial example of packing circles on a two-dimensional plane, the diameter d could

be made infinitely large, and yet only three unique percepts are needed such that no two

neighboring circles are assigned the same percept. Several other a priori assumptions about

the olfactory space are made, such as that it is at least 128-dimensional. To satisfactorily

develop this method, one needs to find the largest set of stimuli to olfaction such that every

percept can be discriminated from every other percept, not just from its nearest neighbors.

To avoid brute forcing O(n2) psychophysical comparisons between every pair of n odorants,

a low-dimensional representation of the olfactory space is required. This is the approach we

take.

Our method more closely aligns with another recent study [132] in which the authors

employ a multivariate regression to correlate physiochemical descriptors of odorants with one

of the 146 different odor descriptors from the Dravnieks odor profile database. The resulting

framework is a straightforward classification scheme, where each odorant is represented by

an 18-dimensional vector of physiochemical descriptors, and the output is one of 146 possible

percepts. While the methods are sound and the work in odor stenography are particularly

compelling, the method did not explore the low-dimensional embedding of the perceptual

space. The authors used a regularization parameter to maintain sparsity in the statistical

computations, but no further elucidation of low-dimensional spaces was performed. In this

way, our work fulfills one of Markus Meister’s closing statements in [131]: “...knowing that

there are > 1 million distinct color percepts is a minor advance. Similarly, finding a low-

dimensional basis set for odors would be truly profound.”

4.6 PHYSIOCHEMICAL SIGNATURES UNIQUELY IDENTIFY ODOR

PERCEPTS

A particularly exciting application of the metric was deriving “physiochemical signatures,”

or small subsets of physiochemical properties, that most affect overall classification accuracy,

106



and influence each discrete odor percept the most.

For a pair of odorants ~x and ~y, let ε = (~x − ~y)TG(~x − ~y), where ε is defined as the

“energy.” We iterated over each physiochemical property xi, setting that descriptor to 0

for all odorants and recomputing the energies ε0 for all pairs of odorants. We converted

these energies to z-scores, where z = |ε−ε0|
ε

. The resulting z-scores provided a measure

of which physiochemical descriptors most perturbed the similarity constraints encoded in

G, and therefore which had the heaviest influence on general classification performance

and in forming each distinct perceptual category (Fig. 35). The physiochemical properties

whose z-scores exceeded 2.0 for each perceptual category are listed in Table 12; those that

exceeded 1.0 for general classification (as very few exceeded 2.0) are listed in Table 11. The

physiochemical properties that have z-scores of more than 2.0 for each perceptual category

are shown in Fig. 36 with representative odorants from that category.

We observed that each percept emphasized a different combination of physiochemical

properties (Fig. 35); the unique combinations and associated weightings of these properties

drives the accuracy of classification. This reinforces the findings of previous studies that

suggest while odor percepts inhabit a low-dimensional space, this space cannot be reduced

to only one or two indicator dimensions. Fig. 37 visualizes the odorants in three dimensions

to provide an intuition. The three dimensions used to visualize the odorants were those

with the highest z-scores for that percept, in theory representing the three physiochemical

properties that most accurately characterize that specific percept. In comparing the 3D

projections of Fig. 37 with the percept-specific classification accuracies in Fig. 30c, we note

a qualitative correlation: the categories on which we perform better (e.g. 3, 5, 7, and 10)

appear to be distributed more evenly across the three dimensions. Conversely, the categories

in which we performed worse (e.g. 1, 6, 8, and 9) do not appear to be spread as uniformly,

in fact resembling the direct PCA projections of the odorants in Fig. 29d.

Although the physiochemical signatures indicate that the thermodynamic aspects dom-

inate each discrete odor percept, we note that molecular topology and structural features

such as connectivity indices and atom counts (such as number of Carbon, Nitrogen, Oxy-

gen, and Sulphur atoms) contribute significantly in improving the accuracy of the classifier.

Within the individual percepts we can observe that molecular volume, depth, and width

107



Figure 35: Z-scores of each physiochemical property for all perceptual odor categories. This

effectively forms a physiochemical signature of each individual percept, highlighting distinct

features that are more heavily represented in certain odor percepts versus others.

108



Figure 36: Each perceptual category, the physiochemical descriptors associated with it for

which their z-scores exceeded 2.0, and example odorant molecules, indicated by their indices

from the Dravnieks database. The overall distributions of these physiochemical properties

among all odorants and how these compare to the distributions within each perceptual

category are shown in Table 12.

109



Descriptors

molecular width

molecular depth

vapor pressure

T sub g (C)

T sub m (C)

surface tension in water

Critical pressure (bar)

CIM 1

CIM 2

CIM 3

CIM 4

CIM 5

CIM 6

CIM 7

CIM 8

CIM 9

CIM 10

Table 11: The properties listed are those that have a z-score of at least 1.0.

110



Perceptual Category Descriptors Overall Distribution Category Distribution

1

molecular volume 102.62 (± 39.57) 149.34 (± 54.53)
molecular width 7.39 (± 1.37) 8.91 (± 1.77)
molecular depth 5.53 (± 1.23) 6.84 (± 1.51)
surface area 13.55 (± 4.94) 19.35 (± 6.63)
vapor pressure 3.78 (± 13.57) 8.81 (± 31.73)
surface tension in water 26.42 (± 0.80) 27.22 (± 1.02)

2 molecular depth 5.53 (± 1.23) 5.76 (± 1.27)

3

molecular width 7.39 (± 1.37) 7.26 (± 1.22)
molecular depth 5.53 (± 1.23) 5.91 (± 1.20)
vapor pressure 3.78 (± 13.57) 1.57 (± 3.33)
T sub g (C) -29.69 (± 55.78) -42.44 (± 41.35)
T sub m (C) 178.21 (± 108.21) 165.71 (± 86.81)
surface tension in water 26.42 (± 0.80) 26.33 (± 0.71)
Critical pressure (bar) 31.26 (± 10.09) 29.49 (± 5.57)

4
O 0.12 (± 0.09) 0.18 (± 0.11)
Critical pressure (bar) 31.26 (± 10.09) 36.95 (± 9.06)

5 Critical pressure (bar) 31.26 (± 10.09) 35.00 (± 6.82)

6

C 0.84 (± 0.11) 0.88 (± 0.07)
O 0.12 (± 0.09) 0.12 (± 0.08)
molecular depth 5.53 (± 1.23) 6.18 (± 0.98)
solubility parameter 20.26 (± 3.05) 19.16 (± 2.56)
H bond donor 0.24 (± 0.18) 0.16 (± 0.15)
entropy of boiling (J/K mole) 96.28 (± 6.11) 95.28 (± 4.94)

7

O 0.12 (± 0.09) 0.20 (± 0.07)
molecular width 7.39 (± 1.37) 7.39 (± 1.00)
vapor pressure 3.78 (± 13.57) 0.51 (± 1.43)
surface tension in water 26.42 (± 0.80) 26.37 (± 0.49)
Critical pressure (bar) 31.26 (± 10.09) 36.87 (± 6.21)

8
N 0.02 (± 0.05) 0.11 (± 0.11)
T sub g (C) -29.69 (± 55.78) -12.24 (± 60.36)
T sub m (C) 178.21 (± 108.21) 242.70 (± 124.32)
Critical pressure (bar) 31.26 (± 10.09) 35.30 (± 6.88)

9

Cl 0.0006 (± 0.007) 0.006 (± 0.02)
Critical pressure (bar) 31.26 (± 10.09) 41.92 (± 15.79)
CIM 1 2.64 (± 0.78) 1.02 (± 1.37)
CIM 2 2.49 (± 0.73) 0.95 (± 1.28)
CIM 3 2.32 (± 0.70) 0.85 (± 1.15)
CIM 4 2.18 (± 0.66) 0.79 (± 1.07)
CIM 5 2.04 (± 0.64) 0.75 (± 1.01)
CIM 6 1.89 (± 0.62) 0.68 (± 0.92)
CIM 7 1.78 (± 0.60) 0.60 (± 0.83)
CIM 8 1.63 (± 0.59) 0.53 (± 0.74)
CIM 9 1.48 (± 0.63) 0.44 (± 0.64)
CIM 10 1.31 (± 0.63) 0.37 (± 0.54)

10

molecular width 7.39 (± 1.37) 7.83 (± 1.57)
molecular depth 5.53 (± 1.23) 6.40 (± 0.85)
vapor pressure 3.78 (± 13.57) 0.21 (± 0.72)
T sub g (C) -29.69 (± 55.78) -77.80 (± 46.99)
T sub m (C) 178.21 (± 108.21) 79.09 (± 86.34)
surface tension in water 26.42 (± 0.80) 26.90 (± 0.54)

Table 12: For each perceptual category, the descriptors listed are those that have a z-score

of at least 2.0 (Fig. 35), indicating descriptors that play a significant role in quantitatively

defining that category (Fig. 36). We list each descriptor, its overall distribution of values

across all odorants used in this study, and its distribution of values in odorants within the

specific perceptual category. In many cases, we find the overall distribution lies far outside

the category-specific distribution.
111



(which are purely molecular topology descriptors) dominate in four out of 10 categories;

similarly, thermodynamic features such as vapor pressure, surface tension, and critical pres-

sure dominate in five out of 10 categories. Only in category 9 we observe that the chemical

intuitive molecular (CIM) indices play a role in quantitatively defining that class, perhaps

as a consequence of the linear connectivity between atoms represented in this class.

To further quantitate this association between classification accuracy and specific phys-

iochemical property subsets, we used the same scheme as our best performing classifier

(Table 6, top row) and re-learned our metric G leaving out atom count information. Re-

sulting odorant classification accuracy fell to 48.47% (± 2.37%). We repeated the process,

excluding only thermodynamics properties. We observed a considerable drop in accuracy,

to 41.93% (± 2.31%). We note that, when performing classification using the metric that

omitted thermodynamics properties, a substantial shift occurred in some of the perceptual

categories’ physiochemical signatures. While per-category accuracy dropped across all per-

cepts relative to the original metric (Fig. 30c), perceptual categories 3 and 9 in particular

fell precipitously to near-random performance. We found that the z-scores of the CIM in-

dices had dropped considerably, suggesting a correlation between thermodynamics and CIM

properties that the metric captured (Fig. 38). We would also like to point out that in our

study we did not incorporate any specific inputs regarding the diverse odor receptors that

play a role in recognizing specific classes of odors. As previous studies have shown, the

incorporation of both receptor diversity (odorants are chemically recognized by more than

one class of odor receptors) and specificity can play an important role in giving rise to a

particular odor percept.

4.7 QUANTITATIVE EVIDENCE FOR 10 PERCEPTUAL CATEGORIES

While the choice of 10 perceptual categories was not arbitrary, the same NMF method

could be used to reclassify the Dravnieks odorants into different numbers of categories. The

method for doing so remained the same: decomposition of the Dravnieks data using NMF

yields a certain number of nonnegative basis vectors. The number of basis vectors indicates

112



Figure 37: 3D projections of all 141 odorants, using the three physiochemical properties

for each discrete odor percept that had the highest energy z-scores for that percept. The

odorants that belong to the specified percept (numbered in upper right corner of each panel)

are highlighted as yellow markers.
113



Figure 38: Submatrix of G containing only the rows and columns corresponding to CIM

(left-hand block) and thermodynamics properties (right-hand block). The off-diagonal blocks

(lower left, upper right) are nonzero, indicating crosstalk between the thermodynamics and

CIM properties, providing quantitative support for the observed drop in CIM efficacy when

thermodynamics properties were eliminated entirely.

114



the number of perceptual categories, and the largest element in the respective odorants’

descriptor set indicates the category to which it belongs. The motivation for applying this

method was twofold: on one hand, we wished to compare our correlation results to studies

which identified only two perceptual categories of odorants (pleasant and unpleasant); on

the other, since we were using a different feature set (physiochemical properties) from our

previous work (psychophysical odor percepts), we wished to observe classification accuracy

as a function of the number of perceptual categories in this new physiochemical space.

To this end, we performed NMF and and scanned over the number of discrete perceptual

categories from 2 to 25, reassigning odorants for each number of categories. For each as-

signment of perceptual categories, we performed the same supervised classification method

using linear and nonlinear SVMs as our baseline method. In this way, we could compare

the baseline classification accuracy for each number of categories to the expected random

accuracy (e.g., 50% for two categories, 33% for three categories).

The full results of the parameter scan over c are shown in Fig. 39. These results pro-

vide additional quantitative evidence to support the findings of our previous work: that

there exist more than two perceptual odor categories [5]. In comparing our metric to other

pairwise similarity metrics in the literature, we made use of the method in our previous

work to perform a parameter scan over a range of possible odor percepts. In performing

baseline odorant classification, after having assigned each odorant to one of [2, 25] possible

perceptual categories, we found a discernible peak in the classification accuracy around 10-15

perceptual categories (Fig. 39) as compared to random chance. This is significant for two

reasons. First, it aligns with the conclusions of our previous work. Second, this alignment

appears despite not using the psychophysical descriptors from the Dravnieks study to quan-

titatively describe the odorants and perform classification. Rather, we used the Koulakov

physiochemical properties, which are completely distinct from our previous work.

115



Figure 39: Baseline classification accuracy with all 78 physiochemical properties (solid) com-

pared to random classification accuracy (dotted) against the specified number of perceptual

categories, as found using the methods in Castro et al [5].

116



4.8 SEMI-SUPERVISED PROPAGATION OF ODOR PERCEPTS TO

UNOBSERVED ODORANTS

We have demonstrated the efficacy of incorporating pairwise similarity and dissimilarity

information into a formal classification framework for the purpose of automated odorant

categorization. By encoding this information in an analytical framework, we reveal a phys-

iochemical space that can be accurately characterized using very few dimensions. The re-

sulting similarity metric is an inductive model, capable of predicting the perceptual category

of any unobserved odorant as described by its physiochemical properties.

The single most important limitation of this method is the relatively small quantity of

data used to train and test our metric. Our data (Fig. 27) was a matrix with dimensions

141 odorants ×78 physiochemical properties. While we have employed statistical techniques

to provide results that are as robust to the choice of odorants as possible, this study would

benefit significantly from a larger odorant database. However, one of the many advantages

of the proposed method is that the trained metric can be used in-place to classify arbitrary

odorants; it need not be recomputed from scratch when a new query odorant is introduced.

We employ a semi-supervised learning (SSL) approach to discover potential structure in

odor space. SSL refers to a suite of statistical techniques that perform clustering and cate-

gorization on data that are partially labeled [133]. Formally, this problem can be addressed

by constructing a graph kernel [134] that defines a distance between individual data points,

incorporating label information from the few data points that have labels. Acquiring labeled

instances, such as associating descriptors to chemicals, can often be difficult, expensive,

error-prone, and time consuming. However, unlabeled data may be relatively easy to collect.

SSL bridges this gap between labeled and unlabeled datasets. One recent notable success of

SSL was work by Fergus et al which showed object recognition on an internet-sized image

database [135]. In our case, the challenge is to construct a graph kernel on the structural

and physiochemical odor space that respects label information (“floral,” “fruity,” etc.) and

allows for quantification of molecular characteristics that define the odor space. The kernel

learns how to categorize the labels, and this knowledge can be propagated across the space of

all odor compounds lacking known percepts. Critically, the approach is agnostic about what

117



features are the most important criteria for classification, making no a priori assumptions

about which chemical features should define perceptual similarity.

Traditionally, structure-percept mappings in olfaction have been sought through experi-

ments using (necessarily) small and idiosyncratic subsets of odor space. While this has had

some notable successes, in particular that of the Dravnieks experiment [120], we favor an

alternative, machine-learning approach that directly grapples with the massive dimension-

ality of olfactory stimuli. We aim to densely characterize odor space by applying SSL to a

publicly available database (PubChem) of ≈ 3 × 107 chemical compounds, with each com-

pound itself being a multi-dimensional object described by dozens to hundreds of molecular

and structural descriptors. Thus, the overarching goal of this project is to develop a SSL

framework to parse this high-dimensional chemical space into odor-quality specific domains

that recapitulate those observed in human perception.

4.8.1 Graph kernels for semi-supervised learning

Our previous work shows that the perceptual space of odors is well-organized by 10 near-

orthogonal dimensions that apply categorically. In the subset of odorspace we studied,

groups of odorants are defined by their “membership” in a given one of these dimensions

(to the exclusion of others), suggesting that a many-to-few mapping may organize olfaction.

Testing this idea on a larger and more representative set of odorspace requires a robust and

well-defined metric for quantifying odorant similarity.

We construct a marginalized graph kernel [136] using the metric we derived previously.

The metric will serve as the basis for further SSL procedures. The metric will take as

arguments two graphs (Fig. 40) (two molecules), and return a distance. In other words,

the kernel will provide a metric on odorspace, measuring how “far apart” two distinct odor

compounds are. By virtue of its construction (described below), label information about

perceptual qualities will be incorporated into this metric.

We combine a kernel based on molecular graph properties, like the marginalized graph

kernel described above, with a radial-basis function kernel, which incorporates the difference

in the vectorial physiochemical descriptors of the two input odorants. A linear combination

118



Figure 40: Odor space organization and chemical similarity. (A) Two-dimensional embedding
of 144 odors expressed in the ten-dimensional perceptual space. (B) Odor profiles for chemical
indicated in panel A, with structures for each chemical shown above the profile. (C) Marginized
graph kernel [136] to measure chemical similarity.

of two kernels is also a kernel [134]. The physiochemical descriptors, such as those generated

by E-Dragon [137], comprise a list of 1,986 properties summarizing 20 broad categories of de-

scriptors, including topological, constitutional, and connectivity measures. The weighting on

the different kernels can be optimized [138]. By using different types of kernels defined either

on the same input or heterogeneous input, one can take different aspects of the molecular

information into account.

4.8.2 Using PubChem to test large-scale odor-percept mapping

To make general claims about descriptors that apply to all of odor space (i.e., millions

of chemicals), it is necessary to have a standardized library of descriptors, and to describe

possible hierarchical relationships among descriptors that are spontaneously applied to odors;

for example, the descriptors “jasmine,” “rose,” and “sweet” might all be applied to the

same chemical compound, necessitating a statistical consideration of odor classification that

disambiguates odor descriptors, and allows hierarchical nesting or mixing of descriptive odor

terms. The current vocabulary of odor descriptors has two broad categories: a binary

delineation such as “pleasant” or “unpleasant,” and a relation that reflects similarity to

119



other odors. For example, “lime” evokes similarity to “citrus.” Koulakov et al [111] show

that the semantic space has much higher dimensionality than olfactory space and that low-

dimensionality found in the odor space of Dravniek’s database is not caused by the limited

vocabulary used to construct the odor profiles. Following Koulakov et al, we will pursue a

“bag-of-words” approach [139], in which text searches will be performed over the web using

keywords from a list of predefined odor descriptors. All the words that appear within a

contextual window of a given size (e.g., 25) around the odor descriptor in the retrieved text

are parsed to remove verb/action words and retain non-redundant nouns and adjectives.

Together, we expect the standardized list of descriptors to contain ≈ 1,000 words, each of

which is numerically encoded for SSL propagation on PubChem.

We start by constructing a network of all the chemicals from PubChem, some of which

are labeled with perceptual descriptors. Specifically, we are given a relatively small labeled

set of odorant-descriptor pairs, and a much larger unlabeled set of odorants. In order to

use the unlabeled data, we will form a network where the vertices are the odorants and the

edges are weighted by the graph kernel K defined in the previous section. While the network

will have to be sparse in order to be used effectively within our hierarchical eigensolver, the

exact level of sparsity is a heuristic that can be tuned.

4.8.3 Semi-supervised odor percept propagation

Graph-based SSL estimates a label function f on the graph that satisfies two properties: for

a labeled odorant ~xi with perceptual descriptor yi the prediction of f(~xi) is close to yi, and

that f should be smooth on the whole graph. This can be posed as a regularization problem

and solved in a linear algebra framework [135]. Let D be a diagonal matrix whose diagonal

elements are given by Dii =
∑

kKij. To measure the smoothness of label function f , we will

use the graph Laplacian: L = D −K and compute fTLf = 1
2
Kij (fi − fj)

To estimate the label function we will minimize a combination of smoothness and an

error terms: C(f) = fTLf +
∑l

i=1 γ (fi − yi)2 = fTLf + (fi − yi)T ∆ (fi − yi), where ∆ is a

diagonal matrix with elements ∆ii = γ for labeled odorants and 0 for unlabeled odorants.

The solution that minimizes this equation is given by (L+ ∆) f = ∆f . This linear algebra

120



solution is in closed form but requires solving a system of n×n linear equations. For large n,

such the size of PubChem, this poses a problem of scalability that our distributed hierarchical

eigensolver is well-suited to address.

Specifically, we will impose the constraint that the label function f has the form f = Uα,

where U is a n×k matrix whose columns are the k eigenvectors of the graph Laplacian L with

smallest eigenvalues. The error function simplifies to C(α) = αTΣα+(Uα− y)T ∆ (Uα− y),

where Σ is a diagonal matrix of generalized eigenvalues of the graph Laplacian. The solution

vector α follows from solving the k × k system of linear equations
(
Σ + UT∆U

)
α = UT∆f .

Intuitively, we return to the random walk concept of identifying discrete clusters of similar

information within a graph structure. While we have only a small quantity of odorants with

experimentally-verified perceptual information and very large quantity with no such per-

ceptual annotations, we do have the results of our similarity method which present strong

evidence for physiochemical descriptors as a method for predicting perceptual similarity.

Consequently, we can conceptualize our semi-supervised framework as a random walk across

a graph of odorants [140], linked by their physiochemical similarity into a graph structure.

In this graph, unlabeled odorants that have strong connections to labeled odorants, corre-

sponding to a high transition probability in our random walk, will intuitively have a similar

or identical perceptual descriptor. This shares a great deal of theoretical similarity with the

PageRank algorithm powering Google search. In Lin et al, this takes the form

~r = (1− d)~u+ dM~r,

where M is the Markov transition matrix for the graph, ~u is a sparse vector whose nonzero

entries correspond to labeled odorants, d is a constant damping factor, and ~r is the ranking

vector. Known as MulitRankWalk, or MRW, this algorithm conducts random walks starting

at the labeled, or “seed,” odorants in ~u and constructs candidate perceptual labels for the

unlabeled odorants it visits. The damping constant d modulates how frequently this process

restarts, effectively building a probability distribution of perceptual labels over odorants as

a consequence of the random walks. This is closely related to the methods proposed by

Macskassey et al and Zhu et al [141,142], which consider the graph as a harmonic field ; that

is, each unlabeled odorant in the graph is a harmonic (or linearly weighted) average of its

121



neighboring labeled odorants.

Yet another candidate algorithm is the Modified Adsorption algorithm, or MAD [143],

which converts the process of propagating perceptual labels to a convex optimization prob-

lem, similar to the one we used previously in this chapter. By casting this as an optimization

problem, MAD has several potent advantages, chief among them being 1) it can be solved

explicitly; put another way, the conditions under which it will converge are known, and

2) by providing an analytical form, the framework is generalizable to a number of possible

requirements.

Each of these approaches not only constitute current state-of-the-art in semi-supervised

label propagation, but are also easily parallelized. Some, such as MAD, already have a

distributed implementation1. A particularly noteworthy aspect of these methods is that none

explicitly compute the eigenvectors and eigenvalues of the underlying graph; rather, they

are inferred through iterative methods (or, in the case of MAD, solved through a separate

objective function). We are interested to determine if these methods outperform the explicit

computation of eigenvectors and eigenvalues using an efficient, distributed eigensolver.

4.9 CONCLUSIONS

We have presented a machine learning framework that, using pairwise similarity information

derived either from psychophysical experiments or computational distance metrics, can learn

a metric that is capable of generalizing to unobserved odorants. This is the first step towards

automating the process of predicting odor percept from its physiochemical properties. The

next step is to use the learned metric to define a graph kernel, which takes as input two

odorants and returns some measure of their similarity. Using this information and semi-

supervised learning techniques, we can construct a graph of odorants based in their similarity

according to the graph kernel. We can then propagate the perceptual categories of known

odorants across the graph, using the weights to measure similarity and therefore optimal

perceptual predictions. For the vast majority of odorants in the PubChem database that

1Junto for semi-supervised learning: https://github.com/parthatalukdar/junto

122



have no perceptual annotations, this will provide millions of perceptual predictions and,

therefore, potential psychophysical experiments to perform.

While this proposed methodology currently suffers due to the lack of an available method

for downloading the PubChem odorants with their associated physiochemical properties, the

technical framework is available, and serves to motivate the next chapter. The PubChem

database is comprised of millions of odorant compounds, far too many for a semi-supervised

approach, which relies on computing eigenvectors and eigenvalues of the underlying graph,

to be applied naively. For the technical framework devised here to function on such a large

graph, we need a scalable method of analyzing it.

123



4.10 APPENDIX: LIST OF PHYSIOCHEMICAL PROPERTIES USED

Atom Counts

• Carbon

• Oxygen

• Nitrogen

• Sulphur

• Iodine

• Chlorine

We include counts of heavy atoms only for this study (excluding hydrogens) mainly because

we are not aware apriori the potential protonated states of the different compounds. The

properties listed below are calculated by Molecular Modeling Pro (ChemSW, Fairfield, CA,

USA).

Mass, size

• Molecular weight

• Van der Waals volume (calculated with geometry)

• Molar volume (van Krevelen type method)

• Surface area (calculated with geometry)

• Length, width, depth (current, maximum and minimum calculated by geometry)

• Density (proprietary method for small molecules)

• Mass Percent

Partition coefficients, hydrophobicity and solubility

• Log water octanol partition coefficient (4 methods, Fragment addition generally following

the methods of Hansch and Leo, atom based generally following Ghose and Crippen,

charge and atom based, and Q Log P after N. Bodor and P. Buchwald, J. Phys. Chem.

B, 1997, 101: 3404-3412)

• HLB (hydrophilic lipophilic balance, proprietary method)

• Hydrophilic surface area (proprietary method)

• Percent hydrophilic surface area (proprietary method)

124



• Polar surface area (J. Med. Chem. 43: 3714-3717)

• Hydration number

• Water solubility (after Klopman et al. J. Chem. Inf. Comput. Sci. 32:474 and S.

Yalkowsky, J. Pharm Sci., 70:971)

• Olive oil gas partition coefficient (after Klopman et al. J. Med. Chem. 43: 3714-3717)

Note that we have excluded concentrations of compounds as part of our physiochemical

features.

Properties used in QSAR

• Sterimol properties (L1, B1, B2, B3, B4, B5 and 3 more)

• Hammett Sigma (sigma para, meta, sigma induction (SIND), sigma star)(proprietary

method)

• MR (molar refractivity after Ghose and Crippen)

Dipole moment and other charge related properties

• Dipole moment (Modified methods based on Del Re method: G. Del Re, J. Chem. Soc.

4031 (1958); D. Poland and H.A. Scheraga, Biochemistry 6: 3791 (1967); Coefficients

modified in MAP 4.0 to take into account pi contributions ; PEOE method: J. Gasteiger

and M. Marsili, Tetrahedron 36:3219 (1980); MPEOE (DQP) method: K.T. No, J.A.

Grant and H.A. Scheraga, J. Phys. Chem. 94:4732 (1990) and K.T. No, J.A. Grant, M.S.

Jhou and H.A. Scheraga, J. Phys. Chem. 94: 4740 (1990); J.M. Park, K.T. No, M.S.

Jhou and H.A. Scheraga, J. Comp. Chem. 14:1482 (1993). Semi-empirical Quantum

Mechanics methods in CNDO and MOPAC are alternative methods used by MMP to

calculate dipole moment.

• Partial charge (many methods - see Dipole moment)

• HOMO/LUMO (via CNDO or MOPAC)

• Hydrogen bond acceptor and donor from charge calculations

Connectivity indices

• Randic, Hall, Kier type connectivity indices 0-4

• Randic, Hall, Kier type valence indices 0-4

125



• Kier type Kappa shape index 2

• Wiener index

• Chemically Intuitive Molecular Index (F. Burden, Quant. Struct.-Act.Relat. 16:309-314

(1997))

Thermodynamics

• Critical temperature, pressure and volume (after Joback and Reid)

• Normal boiling and freezing point (after Joback and Reid)

• Enthalpy of formation, ideal gas at 298 K (after Joback and Reid)

• Gibbs energy of formation, ideal gas, unit fugacity at 298 K

• Enthalpy of vaporization at the boiling point (after Joback and Reid)

• Enthalpy of vaporization at the boiling point (after Joback and Reid)

• Enthalpy of fusion (after Joback and Reid)

• Liquid viscosity (after Joback and Reid)

• Heat capacity, ideal gas (after Joback and Reid)

• Effective number of torsional bonds (tau) (after S. Yalkowsky et al.)

• Hydrogen Bond Number (after S. Yalkowsky et al.)

• Entropy of boiling (after S. Yalkowsky et al.)

• Effective number of torsional bonds (tau) (after S. Yalkowsky et al.)

• Heat capacity change on boiling (after S. Yalkowsky et al.)

• Vapor pressure (after S. Yalkowsky et al.)

• Vapor pressure (after The Handbook of Chemical Property Estimation Methods)

• Boiling point (after The Handbook of Chemical Property Estimation Methods)

• Parachor (after The Handbook of Chemical Property Estimation Methods)

Polymer and Surfactant Properties

• Solubility parameter

• 3-D solubility parameters (dispersion, polarity and hydrogen bonding)

• Water content of polymers at different relative humidities

• Melt transition temperature

• Glass transition temperature

126



• Chain length (van Krevelen Z)

• Surface tension of liquids

• Surface tension in water

• Molecular weight, molar volume, van der Waals volume, surface area (listed above)

• HLB, hydrophilic surface area, % hydrophilic surface area (listed above)

127



5.0 DRAENOR: A DISTRIBUTED SCIENTIFIC COMPUTING

FRAMEWORK

5.1 INTRODUCTION

To meet the needs of biomedical community going forward, we propose a distributed scientific

computing framework with a hierarchical eigensolver at its core. It is derived from multigrid

methods, designed specifically for use in distributed environments on large, sparse graphs.

We focus on two methods, the GMG proposed by Arbeláez et al [40] and the AMG proposed

by Krishnan et al [35]. These methods both represent cutting-edge efficient hierarchical

methods for different scenarios. We have already observed in the previous two chapters that

there is a need in biomedical analysis for large-scale spectral analytics. However, this need

extends to the broader scientific community. In particular, a focus for future applications of

this work is to form the basis of the analytical engine behind the Oak Ridge Biosurveillance

Toolkit, or ORBiT [144]. Given the expansive potential applications for a highly scalable

distributed eigensolver, we opted to pursue both the GMG and AMG approaches to optimize

the frameworks as much as possible for a given category of graph structure, while also making

them as generalizable as possible to potential inputs.

5.2 DISTRIBUTED COMPUTING

Distributed computing is a branch of computer science involved in performing computing

tasks across many networked physical and virtual machines [11]. Of the many protocols

through which such a cluster of machines can communicate, MapReduce [145] is a par-

128



ticularly popular method. A well-supported, free, and open-source implementation of the

MapReduce protocol is the Apache Hadoop project [146]. Hadoop provides a baseline of

generic distributed tools and data formats that can be extended for use in specific cases.

Many sub-projects, such as Mahout [50] and Giraph [147,148], build on the Hadoop frame-

work’s scalability to facilitate the efficient implementation of new algorithms. Mahout, for

example, provides a general machine learning library that operates at scale, complete with

tools for classification, clustering, and recommendation; our group has contributed spectral

clustering algorithms to this project. Mahout includes a suite for dimensionality reduction,

and its distributed eigensolver, based on the Lanczos iterative algorithm, will be one basis

for comparison of our approach. Giraph, while not explicitly a machine learning library,

streamlines graph analytics on Hadoop and competes with other graph-based distributed

frameworks such as GraphLab [149]. For the purposes of implementing our eigensolver, we

will focus primarily on Mahout, Giraph, and GraphLab.

A relative newcomer to the field of distributed computing frameworks is Apache Spark [150,

151], a project born from the Berkeley computer science department. While Spark supports

many of the same primitives as Hadoop (map, reduce, etc), it has a couple of critical differ-

ences. First and foremost, it primarily operates in main memory rather than reading and

writing from main disk, as with Hadoop HDFS. This alone makes Spark orders of magni-

tude faster for operations that will fit within the main memory of a Spark cluster. Second,

Spark uses lazy evaluation. This enables the Spark preprocessor to optimize the command

pipeline from the user under the hood during runtime, picking the optimal route according

to hardware availability and data accessibility across the cluster. Most typical distributed

applications run several orders of magnitude faster on Spark clusters as equivalent Hadoop

clusters.

5.3 PRACTICAL DISTRIBUTED HIERARCHICAL EIGENSOLVERS

Because of their theoretical O(n) complexity guarantees, and their excellent empirical perfor-

mance [35,38,40,152], we elected to implement hierarchical methods. These come primarily

129



in two families: geometric multigrid (GMG) and algebraic multigrid (AMG). We introduced

these in Chapter 2. Here, we discuss how specifically they can be implemented efficiently in

a distributed architecture. As we mentioned before, multigrid eigensolvers focus primarily

on building successively simpler, or coarser, versions of the original graph until a threshold

is reached, at which point the graph is analyzed directly. Both of the methods we examine

here rely on this same premise but take a different approach to deciding how to coarsen the

graph.

In both cases, we used the Apache Spark framework, specifically the Python wrappers,

to implement Draenor.

5.3.1 Language and architecture

We implemented the hierarchical eigensolvers in the Apache PySpark framework [151]. Spark

is a relative newcomer to the scene of open source distributed frameworks; however, it has

already gathered an impressive following in both research and industry. It operates similarly

to Hadoop in terms of distributed architecture; however, it employs Resilient Distributed

Datasets (RDDs) [150] to back its data structures in memory, as opposed to disk as with

Hadoop’s HDFS. This makes Spark orders of magnitude faster for basic operations that will

fit in memory across all the nodes of the network, and more resilient to node failure: results

that are lost can be recomputed on the fly.

Spark is particularly advantageous in that its language is optimized internally at run-

time. It employs lazy evaluation, such that no operations are performed until absolutely

necessary, allowing Spark to find the optimal pathway to completing the requested pipeline

in terms of data availability and intercommunication. As cluster and distributed computing

becomes more ubiquitous, network latency has become the dominating bottleneck. Spark

aims to combat this through intelligent under-the-hood optimizations that minimize data

transfer. Lazy evaluation assists in this endeavor by delaying the execution of operators until

absolutely necessary.

Furthermore, we found Spark very amenable to rapid prototyping and development.

Python has been our language of choice in our other projects, and while the Spark Python

130



API lags behind its core Scala API, it is robust enough to accomplish some of our core

goals. Additionally, having the NumPy, SciPy, and scikit-learn libraries available within a

distributed environment is particularly appealing.

5.3.2 Geometric multigrid

As discussed in detail in Chapter 2, GMGs operate most effectively on graphs with regular,

predictable structures. Images, as seen in their subsequent graph matrices (Fig. 9), exhibit

such regularities. To take advantage of the structural regularities seen in graphs derived from

images, we examined one method which used a “decimation” technique for rapidly shrinking

the affinity matrix associated with the image without losing precision [40].

Our distributed implementation deviates somewhat from the the method as originally

proposed in [40] (which is reproduced here as Algorithm 1). As with most distributed

implementations, some assumptions must be made and data structures tailored specifically

to these assumptions. We have listed these assumptions and differences here, and provided

references to the specific steps in Algorithm 1 where we deviate from the original procedure.

• We implement a single, hybrid distributed matrix which contains the current graph

matrix Ad, and all the interpolator matrices C1, C2, ..., Cd. The matrix is distributed

across the cluster in such a way that each row potentially lives on a different worker.

• Subsequent to the previous point, we assume that a single row of the graph matrix A

and interpolator matrix C will fit in main memory. These rows are represented as sparse

vectors to further minimize memory usage.

• We assume the indices as specified at Step 4 will fit in main memory. As these indices

are a list of integers that can be no larger than n
2
, this is trivially held in main memory

for most modern systems. Therefore, these are broadcasted to the entire cluster for easy

and immediate access by the workers. These are also precomputed before starting the

main iterations.

• We assume that the coarsest version of the graph matrix and the resulting eigenvectors

as computed in Step 9 will fit in main memory. We use a sparse eigensolver (ARPACK)

and sparse matrix representation of the data at this level, but it is no longer distributed

131



across a cluster. Once the eigenvectors are computed, they are parallelized across the

cluster, one per worker.

• While we use sparse vector representations of the graph matrix, it is important to em-

phasize that the coarsened graph will be much less sparse than the original version. We

assume the sparse representation will still be more efficient given the size of the data,

but this is an assumption that can be tested more thoroughly.

• We changed loop conditional: rather than perform a set number of iterations D, we

instead allow the user to set a threshold t on the number of variables remaining before

the loop terminates. Therefore, the resulting graph matrix A in Step 9 will have dimen-

sions no greater than t × t, and represented using sparse matrix structures to minimize

overhead.

Every operation in this algorithm is extremely efficient. Particularly on the Apache

PySpark architecture, array indexing and slicing is O(1) time. Furthermore, the row sum

and renormalization steps can also be done very efficiently given that each worker has access

to a single row of the matrix. The most expensive operations in this routine is the matrix-

matrix multiplication. This can be done in a single map-reduce pass; in many distributed

frameworks, for performing a distributed multiplication of two distributed matrices AB, it

is implemented as follows:

1. Perform an implicit transpose on A (we use “implicit” to mean that this operation is

transparent to the end user). If, however, A is being explicitly transposed, as in ATB,

we can omit this first step, greatly improving the overall efficiency (many distributed

frameworks have an explicit method call which takes this optimization into account).

2. Conduct an inner join on the rows of A and B, joining each row vector by the row index.

3. In the map phase, loop over the nonzero values in ~a. For each nonzero value ai, compute

ai ∗~b and emit a key/value pair of the form [i, ai ∗~b].

4. In the reduce phase, given a key i, sum the list of the partial multiplications together to

form row i of the final matrix AB.

These procedures and assumptions result in the following modified distributed imple-

mentation of the original method proposed in [40], which we show as Algorithm 3.

132



Algorithm 3 Draenor: GMG

1: Input:A, t,K

2: A0 ← A

3: i = 1

4: while length(A) > t do

5: broadcast(i)

6: Ai = Ai−1.map().reduce()

7: i = i+ 1

8: end while

9: Xi ← eig(Ai, K)

10: for d = [i : −1 : 1] do

11: Xd−1 ← CdXd

12: end for

13: return whiten(X0)

Using the hybrid distributed data structure we described earlier, we could eliminate the

join step of the matrix-matrix multiplication, instead performing the decimation of the graph

matrix A (Fig. 41) and computing the interpolator matrix C row-by-row within the same

worker. Step 5 sends the current level of the hierarchy to every worker on the cluster; the

indices marked for decimation were precomputed. At Step 6, each mapper decimates the

row of the graph matrix they operate on, and from this row computes the corresponding

row of the interpolator CT . Recall that distributed matrix-matrix multiplication relies on an

implicit transpose of the left-hand operand; since Algorithm 1 specifically calls for computing

CTB, we can eliminate the implicit transpose altogether. Each mapper will therefore have

the ith row of A and the ith column of the interpolator C. These can be multiplied together as

described previously, with key/value pairs emitted to the reduce step. In this step, the partial

vectors ~a and ~c for the graph matrix and interpolator are respectively summed, resulting in

the next level’s graph matrix A and interpolator C. We store these simultaneously in our

hybrid data structure.

Once the pixel threshold was reached, we ceased decimation and performed a “collect,”

133



pulling the disparate elements of the distributed graph matrix together into a coherent

structure that resided entirely on a single node. In this way, we could directly invoke a built-

in eigensolver to efficiently solve the linear system. Once more in contrast to the original

method, we took advantage of the fact the the graph matrix A, its associated Markov

transition matrix M , and its graph Laplacian L all share the same eigenspace. To this end,

we computed the normalized graph Laplacian L = D−1/2AD−1/2, where D is the diagonal

degree matrix of A.

After finding the eigenvectors of L, we began the interpolation process, first distributing

the eigenvectors to separate workers. The interpolation step, while logically complex, was

extremely efficient. Each interpolator Cd was retained across the cluster from the decima-

tion operation; therefore, this was a simple process of multiplying each eigenvector by the

corresponding interpolator for the current level.

5.3.3 Algebraic multigrid

For any application outside image analysis, a multigrid method capable of adapting to the

algebraic structure of the underlying graph was required. To this end, we implemented a

distributed version of the AMG as proposed in [35]. As discussed in Chapter 2, AMGs

are particularly well-suited for problems whose graphs depict large spatial or structural

inhomogeneities and irregularities, in stark contrast to the graph matrices that result from

images.

As a consequence of the increased algorithmic complexity inherent to AMGs, imple-

menting an effective and efficient control flow over a distributed architecture was extremely

challenging and still represents an open problem. Several of the core operations required a

combination of distributed operators, resulting in a much lengthier average runtime for the

basic operations of the eigensolver in comparison to the distributed GMG.

Like the GMG, we make explicit the assumptions and deviations from the original

method.

• We implemented a DistributedRowMatrix native object, with all the primitives of a

typical matrix (e.g., add, subtract, multiply, transpose). Similar to the distributed GMG,

134



a single row of the matrix is assumed to fit fully in memory on a single worker. Rows are

indexed by positive integers, and the rows themselves are represented as sparse vectors

for added efficiency.

• Unlike the GMG, the data structure is not hybrid. We have explicit DistributedRowMatrix

instantiations for the current graph matrix, in addition to the computed interpolators.

• The triangle-finding sparsification step in this algorithm (Step 6 in Algorithm 2) is fully

distributed; however, the full collection of triangle instances is assumed to fit in its

entirety in local memory. This is a crucial assumption we will revisit in the discussion.

• We assume that the coarsest version of the graph matrix and the resulting eigenvectors

as computed in Step 9 will fit in main memory. We use a sparse eigensolver (ARPACK)

and sparse matrix representation of the data at this level, but it is no longer distributed

across a cluster. Once the eigenvectors are computed, they are parallelized across the

cluster, one per worker.

• While we use sparse vector representations of the graph matrix, it is important to em-

phasize that the coarsened graph will be much less sparse than the original version. We

assume the sparse representation will still be more efficient given the size of the data,

but this is an assumption that can be tested more thoroughly.

• We assume the two lists of indices (used to reorder the variables, as well as to indicate

their colors) will both simultaneously fit in main memory, and are therefore broadcasted

to the entire cluster.

Triangle-finding was particularly straightforward to parallelize. By implementing a series

of message-passing between rows of a distributed matrix, we could rapidly identify all the

triangles and their edge weights within a very large graph. Once the graph has been sparsified

and colored, nodes are shifted around to more easily identify the coarsened portion of the

graph. In particular, after identifying the coarse c and fine f nodes in the graph, the

Laplacian L can be represented as a combination of submatrices (Eq. 2.3).

This reordering operation is also extremely efficient in a distributed setting. Rows can

be swapped by simply changing their integer keys; no actual data copying or writing is

performed. Furthermore, column swapping is very efficient when the data are represented

as sparse vectors.

135



The final operation, computing the current level’s interpolator matrix and the next level’s

graph matrix, is by far the most expensive in terms of moving data across the network in a

distributed architecture. This step requires a significant amount of random access to very

specific matrix elements in order to compute the two structures needed to continue building

out the hierarchy. Each of these operations entail at least one full map-reduce pass, often

in conjunction with other distributed operators such as inner joins and filters. This step is

a major technical bottleneck in our distributed AMG, and we discuss this limitation further

at the conclusion of this chapter.

These deviations from the original algorithm result in a distributed implementation that

closely follows the original structure of Algorithm 2; however, Steps 9, 10, and 15 are per-

formed over a cluster of machines. Steps 6 and 7 are interesting cases warranting their own

description.

Rather than perform Step 6 for each vertex v ∈ A, we moved this step outside the vertex

loop, finding all the triangles in the current graph matrix A, each indexed by constituent

vertex in the triangles. In this way, we could proceed to loop over the vertices and use the

vertex index to the map, instantly obtaining all the triangles in which the current vertex

participated.

We also developed a caching mechanism for the sparsification and compensation steps.

Rather than push each sparsification update out as soon as the evaluation occurred, we

created a list of operations to perform, also indexed by vertex so as to avoid the potential

issue of compensating an edge that had already been sparsified for a previous vertex. In this

way, we could make a local list of all sparsification and compensation events, and only once

all vertices had been iterated over, make one single update push out to the graph matrix (this

is known as lazy evaluation, in contrast to eager evaluation; Spark implements the former in

the execution of its distributed operations, also as a way to optimize the analytical pipeline

as much as possible).

136



5.4 EXPERIMENTS

We will cover the empirical performance of the distributed algebraic multigrid in the Dis-

cussion section; suffice to say, results were poor enough to warrant the need for further work

on streamlining the implementation to better take advantage of the distributed architecture

and eliminate bottlenecks. Thus, the entirety of our experiments centered around the empir-

ical performance of the distributed geometric solver and its comparison to our ground-truth

method, the sparse SciPy eigensolver as backed by ARPACK.

5.4.1 Complexity analysis

Conducting a thorough complexity analysis with distributed algorithms is potentially very

tricky; network traffic and data locality are the two biggest drivers in the runtime of dis-

tributed programs. The network is by far the slowest component among the memory, disk,

and processing units (CPU and GPU); if the program is not optimized in such a way as to

exploit data locality, a great deal of time is spent shuffling the data over the network, signif-

icantly slowing the program. While this is technically an aspect of empirical performance, it

is a crucial aspect of large-scale analysis that cannot be ignored when considering the com-

plexity of distributed programs. Network speed is many orders of magnitude slower than

CPU speed; for sufficiently small n, O(n) theoretical runtime with each of the n instances

residing on n different nodes will yield a significantly slower runtime than O(n) theoretical

runtime with n
2

on two different nodes. Nevertheless, complexity analysis is a useful way of

proving that, all else being equal, the algorithm as implemented runs as expected.

5.4.1.1 Distributed geometric multigrid The GMG implementation of Draenor as

described in Algorithm 3 has a roughly linear runtime. Again, excluding empirical network

performance, the broadcast method in Step 5 is O(1). The map in Step 6 is O(n), whereby

each row of A is independently accessed and operated on. Between the map and reduce steps,

a network shuffle occurs, where the output of the former is sorted. This is done efficiently in

O(nlogn) time. The reduction is keyed; therefore, two vectors will show up in the same node

137



only if they have the same key (in this case, the row number). As Spark optimizes this to be

a rolling process, as opposed to a grouped list of all values with the same key as in Hadoop,

determining the algorithmic complexity of this step is difficult as it is nearly exclusively

based on the operations of the underlying architecture. Within the reduction itself, nothing

more complex than the addition of two vectors occurs; given their sparse construction, this is

effectively O(1). Each of these operations is invoked at each level of the hierarchy, resulting

in successively smaller definitions of n which falls as an exponential function. Therefore, at

each level, O(n) implies at least an order of magnitude speedup as coarser representations

are derived, an effect we see in empirical experiments.

Step 9 is the direct eigensolver, relying on ARPACK to perform an iterative Arnoldi

decomposition on sparse data structures. The interpolation in Step 11 is slightly more

expensive in theoretical terms than the decimation process; where previously we could use a

hybrid data structure to enforce data locality between the interpolator and the graph matrix,

we cannot maintain this same constraint here and therefore must conduct a full distributed

matrix-matrix multiplication. Additionally, we must perform an inner join by row index on

the current eigenvectors and the interpolation matrix. However, we can take advantage of

the fact that the number of eigenvectors k is significantly smaller than n, thereby resulting

in fewer intermediate values than the previous operation in Step 6. This operates the same

way otherwise, an O(n) operation on each node, before invoking a similar reduction as before

in which rows with the same key are summed.

5.4.1.2 Distributed algebraic multigrid The AMG implementation of Draenor has a

roughly quadratic runtime, which is unfortunately infeasible for large-scale computing (see

Discussion). The chief bottleneck is the coarsening process, in which the interpolation oper-

ators for the current level and graph matrix for the next level are computed from disparate

elements of the current graph matrix.

Similar to the GMG, the distributed AMG loops until a threshold of remaining coarse

variables is reached. Unlike the GMG, this convergence occurs at a rate that is less than

logarithmic; fewer than half the variables are eliminated at each level. Coupled with the

larger overall runtime, this further implicates this implementation for additional work. As

138



mentioned in the previous section, triangle-finding is a single operation performed in parallel

only once for each level, an operation in O(n). Each of these triangles is then iterated

over, and a list of sparsification and compensation updates is built and cached until all such

updates have been compiled for all vertices. These updates are then pushed out to the

cluster, another O(n) operation.

The variable coloring process involves examining the neighborhoods of all remaining un-

marked variables (often an empty set), all fine variables connected to other fine variables,

and all coarse variables connected to other coarse variables. These three operations require

a filter and map pass, two O(n) operations per coloring process for a total of O(6n). Em-

pirically, Spark performs some under-the-hood optimizations to decrease this runtime in

practice; theoretically we can say this is ultimately O(n).

Reordering the vertices based on their coloring is also an O(n) operation, and straight-

forward to implement in a distributed setting with a single map-reduce pass. The final step,

coarsening the graph matrix for the next level and computing the interpolator for the current

level, is the most expensive. This requires extracting blocks from distributed data structures

and performing three full matrix-matrix operations, pushing the empirical runtime close to

O(n2). Every effort is made to optimize these processes–for instance, eliminating the im-

plicit left-operand transpose by using Lfc in place of LTcf–however, one of the matrix-matrix

multiplications cannot utilize this optimization. While not explicitly O(n2), each of these

operations requires full map-reduce passes, equating to significant quantities of network

traffic and subsequent sorting (O(nlogn for each submatrix extraction and matrix-matrix

multiplication) prior to the next operation.

5.4.2 Image analysis

In general, we found the distributed GMG to reproduce eigenvectors of extremely high

fidelity relative to the ground truth. While we observed significant deviations in absolute

values of the eigenvectors, they still fulfilled the quantitative definition of eigenvectors of

the graph matrix. In particular, the whiten operation in the final step was crucial to

reorthonormalizing the vectors and retaining them as a true basis for the graph.

139



We conducted a series of empirical performance tests using two different images of varying

sizes. These images are described in Table 13. When using images, it is useful to consider

them in terms of the number of pixels, as this effectively determines the full dimensionality of

the linear equation the eigensolver analyzes. In this view, the smallest problem we attempted

had over 22,000 variables, resulting in a graph matrix of size 22, 000× 22, 000, well beyond

the limits of dense eigensolvers. However, because of the extremely sparse nature of image

graph matrices, these dimensions are still within the feasibility of sparse eigensolvers, such

as those in ARPACK. We used the image in Fig. 41 to establish a ground truth performance

comparison.

The results of the comparison performance for the two eigensolvers are shown in Fig. 42.

There are clear absolute differences in the resulting eigenvectors for the image; however, for

additional analytical purposes, such as image segmentation (Fig. 42, bottom row), the eigen-

vectors computed from the distributed GMG are as effective, perhaps even more effective,

than those computed from the sparse eigensolver. The ground-truth eigenvectors contain

significantly more detail, which in image segmentation could perhaps be somewhat of a hin-

drance, making the eigenvectors more sensitive to noise and artifacts. The decimation step

effectively functions as a smoothing method in this case.

Following these successful initial tests, we next tested the scalability of our distributed

GMG on larger images. We chose the cat image from Table 13 of three different sizes,

equating to problems with 300k, 700k, and 1.3 million variables, respectively. Even for

extremely large images, the decimation strategy of removing alternating pixels ensured a

rapid coarsening that rarely required storing more than three to five interpolator matrices.

In all cases, the eigenvectors were successfully computed and a resulting image segmentation

rendered (Fig. 43).

It should be noted that these images constituted systems of equations whose dimensions

far exceeded the capabilities of the sparse SciPy eigensolver, therefore eliminating the pos-

sibility of a direct performance comparison. The empirical runtimes for the two eigensolvers

on the images of varying size are shown in Table 14. With the exception of the largest image,

the distributed GMG was tested in a small two-machine Spark cluster with a combined total

of 28GB of main memory, 16 cores, and a gigabit intra-departmental ethernet connection.

140



The largest image used only a single machine; the rationale for this is described in detail in

the following section.

5.5 DISCUSSION

At a high level, it is clear that additional engineering is required on both distributed eigen-

solvers, particularly the AMG. The AMG, as currently implemented, does not fully utilize

the distributed architecture, spending significant portions of compute time and resources to

shuffling data around the cluster. Indeed, the very theoretical strength of algebraic methods–

examining the underlying structure of the graph to optimize the sparsification decisions and

preserve the coarse-level graph manifolds–are at the core of the technical pitfalls in a dis-

tributed setting, where data locality becomes the biggest challenge and random direct access

to elements of a matrix beyond a narrow window (in our case, single row vectors) are pro-

hibitively expensive. To this end, a great deal more work is required to create a competitive

distributed AMG eigensolver.

To expound further, a great deal of random access is required in the coloring phase

of the algorithm–that is, identifying which variables are coarse (to be recursed over in the

next iteration) and which are fine (sparsified and ignored in future iterations). This process

relies exclusively on examining the surrounding neighborhoods of these variables, each of

which requires two full map-reduce passes over the data. These updates cannot be fully

parallelized because of their interdependence: changing the status of a single node will

affect the neighborhood of surrounding nodes and must be accounted for in any additional

computation. This is same problem encountered with triangle-finding: while identifying and

collecting all the triangles is trivially parallelizable and done extremely efficiently, sparsifying

and compensating the triangles cannot be easily parallelized, as a single edge can participate

in multiple triangles, one of which it may be the weakest (subject to sparsification) while

in others it may not be (subject to compensation). This was the rationale behind the

assumption that the list of triangles could fit in memory; the PySpark architecture did not

provide an efficient means for sparsifying triangles in parallel while enforcing effective “locks”

141



on edges that participated in multiple triangles.

This comes down to a potential issue of architecture philosophy. PySpark is built as a

wrapper around the Scala Spark API, and while extremely efficient in terms of processing

data through the standard map-reduce pipeline, the more advanced GraphX API is not yet

available through PySpark; it is limited exclusively to Scala. GraphX is a distributed API

that is vertex-centric. This is similar to Apache Giraph and GraphLab, in which the data

primitive is the vertex, and changes are propagated in an efficient way through the edges

of the graph. This is the explicit edge-locking needed for edges that participate in multiple

triangles and for coloring variables based on their surrounding neighborhood. Therefore, we

are considering the myriad problems with the AMG technical, engineering obstacles. Spark

is still a very young architecture undergoing rapid development; further time and resources

are required to fully exploit its strengths and also compare those of other frameworks.

The distributed GMG showed promise. By virtue of its spatially homogenous sparsifica-

tion strategy, a much lesser degree of random access was required in the underlying graph.

Furthermore, the data structure we used was optimized such that the row indices of the

current graph matrix and interpolation matrix for the current level aligned, enforcing data

locality and minimizing the quantity of data being sent over the network. This effect was

particularly pronounced in the interpolation process, where even for the largest image, the

eigenvector interpolation was done on the order of seconds (Fig. 44).

However, the stage breakdown in Fig. 44 provide detailed insight into the processing

bottlenecks encountered in the distributed GMG. In both cases, a distinct bottleneck is

observed at Stage 3, which coincides with the first decimation-and-squaring step at the

finest level of the hierarchy, when the dimensionality of the problem is the largest. In the

small image (Fig. 44, top), Stage 3’s 17 minutes comprises 72.8% of the total runtime; in the

medium image (Fig. 44, bottom), Stage 3 runs for a full hour and comprises 83.4% of the

total runtime. The decimation strategy ensures the dimensionality of the problem will fall

extremely fast, requiring only a handful of such steps, but overcoming the first is clearly the

biggest hurdle and results in a bottleneck that keeps the remainder of the algorithm idle for

long periods of time.

The precise cause of this bottleneck is difficult to identify; as we mentioned in the com-

142



plexity analysis, this stage of the algorithm comprises only linear operations over sparse

data structures. However, the most likely culprit is not the algorithm itself so much as

the intervening shuffling of the underlying framework: matrix-matrix multiplication results

in an explosion of intermediate values that must be sorted in between analysis phases and

sent to the correct nodes on the cluster for further processing. In particular, in distributed

matrix-matrix multiplication, a full sparse vector is emitted for each nonzero value of each

row. Even if the number of nonzero values p is significantly smaller than the total number

of variables n, the network will receive pn intermediate values from the map phase, resulting

in a sort time of pnlogpn and subsequent network traffic proportional to pn. There is a

difference of several orders of magnitude between linearly iterating over p nonzero values of

a sparse vector in memory, and sorting pn values over a network when n is extremely large.

As we alluded to in the previous section, the empirical tests on the largest image were

performed on a single-machine “cluster.” We initially tested the algorithm on a very large

virtual cluster from the Amazon Web Services (AWS) EC2 platform. The cluster consisted

of a single master with 10 workers, each of the m3.xlarge variety, optimized specifically

for in-memory computations. However, we found that Stage 3 never completed within an

acceptable period of time; we ran the algorithm for 12 hours before terminating it. Given

that a single machine was capable of executing the algorithm on the same dataset whereas

an extremely large EC2 cluster was not, this points to network latency as the primary

bottleneck.

Perhaps with the exception of the second point, however, the primary issues were tech-

nical, not theoretical. The empirical performance observed under certain conditions point

to hierarchical solvers as a potential boon in distributed computing. Draenor is novel in

that, while not of cutting-edge performance, is the first hierarchical solver to our knowledge

to be implemented on top of an open-source general-purpose distributed computing frame-

work. With additional investigation, maturity of the Scala and Python APIs in Spark, and

additional development time, Draenor could very likely operate on par with existing solvers.

Already we have observed that the analytical performance of the resulting eigenvectors from

the distributed GMG are robust and just as useful for purposes such as segmentation as

their ground-truth counterparts (Figs. 42, 43).

143



This addresses the need in biological research for a method to analyze the corpus of data

in a way that accounts for its increasing size. We have not discussed existing parallel imple-

mentations, as these require additional and expensive hardware to scale to larger datasets;

supercomputers are an example of highly parallel but expensive resources that are difficult

for many researchers to access. By contrast, assembling a cluster of commodity hardware

for distributed computation is not only vastly cheaper but can rapidly approach supercom-

puting performance [11]. The Draenor framework is the first step in that direction: making

scientific computing readily available at a large scale.

144



(a) Original (b) Decimated

Figure 41: Decimation process. This visualizes the decimation process of the GMG

sparsification strategy, providing some intuition for how the underlying graph matrix is

simplified while still minimizing the loss of information: in the same way as one’s visual

process “fills in” the blanks to a certain extent, the subsequent squaring procedure propagates

this information and “fills in” the missing pixels.

Image Dimensions Pixels

Person 150× 150 22,500

Cat (small) 540× 720 324,000

Cat (medium) 768× 1024 786,432

Cat (large) 1024× 1365 1,397,760

Table 13: Four images used to conduct initial tests of the Draenor GMG.

145



(a) EV 1 (b) EV 1

(c) EV 4 (d) EV 4

(e) EV 5 (f) EV 5

(g) EV 6 (h) EV 6

(i) EV 7 (j) EV 7

(k) Segmentation (l) Segmentation

Figure 42: Built-in eigensolver compared to distributed GMG. Eigenvectors of the

associated graph Laplacian of the image in Fig. 41, computed from SciPy’s built-in sparse

eigensolver (ARPACK, left column) and the Draenor distributed GMG (right column). The

image segmentation results from using the depicted eigenvectors are shown in the bottom

row.

146



(a) Original (b) EV 1 (c) EV 2 (d) EV 15 (e) Segmentation

Figure 43: Large-scale GMG performance. From the original image, we computed the

top 32 eigenvectors across a cluster using the adjusted distributed GMG method. This

yielded an extremely satisfactory image segmentation.

Image SciPy Sparse Draenor GMG

Person 14s 67s (t = 1024); 57s (t = 8196)

Cat (small) n/a 1,322s (22min) (t = 8196)

Cat (medium) n/a 4,327s (72.1min) (t = 8196)

Cat (large) n/a 18,326s (5hrs, 6min) (t = 8196)

Table 14: Empirical eigensolver runtime. For four different images, we tested the efficacy

of the Draenor GMG and compared it to the built-in sparse SciPy eigensolver, insofar as

such dimensionality was feasible for a single machine.

147



Figure 44: Spark bottlenecks. Spark provides a breakdown of the various stages of the

distributed computation, with the first stages at the bottom and the final stages at the top.

The top box are the timeline statistics for the small cat image; on the bottom, the medium-

sized cat image (large breakdown not available). It is evident the bottleneck exists at the

very first level of the decimation process (Stage ID 3 in both images).

148



6.0 CONCLUSIONS

In this thesis, we have provided two concrete examples of biomedical research where large-

scale scientific computing can play a significant role in advancing the field. First, we examined

different phenotypes of ciliary motion. Ciliary beat pattern is of particular interest in diag-

nosing abnormal respiratory conditions, making an objective method for quantifying ciliary

behavior clinically compelling. We developed a novel automated classification framework

capable of recapitulating the current state-of-the-art for abnormal phenotype identification.

This led to exploring the generally held notion that cilia express a spectrum of beat patterns;

in this case, however, we sought to quantify this hypothesis using unsupervised clustering

techniques. Our classification framework revealed the efficacy of representing ciliary motion

using the autoregressive parameters of the dynamic texture, and in particular of deriving

these parameters from rotation data. However, the significant variability in the data neces-

sitated the capture and analysis large amounts of information. Spectral graph techniques

were an obvious choice for analyzing anisotropic data in high-dimensional space; however,

the bottleneck of the eigensolver lent credence to the development of more scalable analytics.

Second, we explored automated enumeration of the perceptual olfactory space from phys-

iochemical properties of odorants. Unlike most other sensory modalities, it is somewhat

unclear what the major perceptual dimensions are in olfaction; indeed, it is also unclear how

neural stimuli are interpreted to initiate perception of an odor. While an all-encompassing

model of olfaction remains elusive, we demonstrated the utility of pairwise similarity in-

formation, derived either from psychophysical experiments or computational methods, for

learning a generic metric that can be embedded within a perceptual prediction framework to

enhance its performance. We found that the low-dimensional embedding of the odorants in

this similarity space was much more informative than the equivalent embedding using only

149



psychophysics or physiochemical information. This laid the groundwork for a large-scale pre-

dictive framework, using the small amount of perceptual information we have learned from

this study to establish similarity with and propagate odor percepts to otherwise unlabeled

odorants.

In both cases, the latter in particular, scalable analysis techniques were needed. Finding

the eigenvectors and eigenvalues of a dynamic system can yield critical information about

its evolution or information propagation; however, this is typically an expensive computa-

tion to perform. Iterative and hierarchical methods abound for closely approximating the

solution with speed and accuracy tradeoffs. We focused on hierarchical methods due to their

theoretical runtime and performance guarantees. Specifically, we implemented the first-ever

distributed hierarchical eigensolver, embedded within a large-scale scientific computing plat-

form called Draenor. We found that while overall performance was not yet comparable to

other state-of-the-art distributed iterative eigensolvers such as Lanczos or stochastic SVD,

hierarchical solvers have a great deal of promise both in theory and practice.

6.1 FUTURE DIRECTIONS

There are many interesting directions to take this work, both technical and theoretical.

6.1.1 Ciliary motion analysis

We demonstrated the expressive power of autoregressive coefficients for identifying different

motion phenotypes. An intrinsic property of AR models is that they are generative, capable

of synthesizing novel sequences that adhere to certain statistical properties. This would

serve as an ideal framework for creating training videos for clinicians or synthetic data for

researchers that are from a particular motion phenotype or a combination of several.

The web front-end can be more fully developed into a complete application, packaging

the framework in a blackbox for clinicians across the world to access and analyze their

digital videos without any specialized knowledge in computer vision or machine learning.

150



This would open up many opportunities for collaboration and the acquisition of additional

data, helping tune our models further.

We have only begun to scratch the surface of the potential myriad latent motion phe-

notypes. While the manifold appears as a smooth spectrum with few discernible transition

points from one motion phenotype to the next, additional data will likely tease out these

boundaries. Furthermore, incorporating higher-order AR systems into a generalized Mar-

tin distance framework will allow for the metric to account for significantly more complex

motion.

6.1.2 Perceptual olfactory recognition

The pairwise metric we developed is significant for several reasons. First, it is novel in

its generalizability to new odorants. Previous pairwise metrics were largely specific to the

data from which they were derived. In this case, unobserved odorants as described by their

physiochemical properties can be examined and a perceptual category predicted. Second, it

is novel in its generalizability to similarity information. While the metric we proposed was

technically built from computational pairwise similarity, the original similarity information

from which the perceptual categorization was derived was from psychophysical experiments.

In this way, both computational methods and manual psychophysical experiments can yield

similarity information to be incorporated into the metric.

Third, and most significantly, this pairwise metric provides valuable similarity informa-

tion for predicting the perceptual category of unobserved odorants. We derived the machin-

ery necessary for a semi-supervised framework, in which we use a graph kernel to propagate

the perceptual labels of known odorants to those whose percepts are unknown. This process

has no theoretical bound; however, acquiring the physiochemical properties of a large enough

corpus, e.g., PubChem, has proven difficult. This would be the first area of future work to

pursue.

151



6.1.3 Large-scale scientific computing

There are many open-source large-scale scientific computing frameworks, with more con-

stantly being released. However, we found the theoretical guarantees and empirical per-

formance of hierarchical eigensolvers to be of particular interest for the purpose of further

streamlining large-scale graph analytics. Given the novelty of a distributed multigrid eigen-

solver, we implemented geometric and algebraic multigrid methods within the Apache Spark

framework. Empirical performance was not particularly impressive compared to other more

mature distributed eigensolvers; however, this was but a first pass, with much room for

improvement.

The distributed geometric solver achieved impressive performance for homogeneous prob-

lems such as image segmentation. However, the algebraic solver hit a bottleneck in the spar-

sification process. Specifically, identifying triangles in a graph and breaking them up poses

challenging theoretical and practical concerns. Even in sparsely connected graphs, trian-

gles can occur in very dense clusters, making iterative identification all but infeasible. This

process is easily parallelized, however triangles in networks can and often do share edges,

precluding eager updates of the underlying graph. There are both theoretical and practical

solutions for this problem: triangles could be sampled according to a coarse distribution of

edges that could be computed cheaply, or a graph-based distributed framework could be

used that specifically allows for concurrent updates between connected nodes.

Along those lines, there are myriad frameworks whose advantages and drawbacks must be

considered for implementation of Draenor. While Apache Spark represents one of the fastest-

growing large-scale scientific computing frameworks available, other distributed platforms

warrant testing. Apache Giraph, Apache GraphX, and GraphLab each use vertex-based

computing, propagating changes across a graph structure rather than a matrix abstraction.

While this can make certain operations such as solving linear equations more difficult in

general, certain graph-specific applications such as triangle-finding can be made substan-

tially simpler. Furthermore, we used only the Python API for Apache Spark, which lags

significantly behind the Scala API in terms of functionality. Adopting the latter may yield

significant performance gains with little changes to the core framework.

152



More generally, these techniques and frameworks will only become more relevant and

necessary to further biomedical breakthroughs. The trends are very clear: storage and pro-

cessing will continue to become cheaper and more abundant, incentivizing the casting of

extremely broad nets to capture as much data as possible for downstream analysis. Con-

sequently, scalable methods for analysis will be absolutely essential. Here we have demon-

strated two relevant biomedical use cases, both of which would greatly benefit from enhanced

data curation and analysis methods.

153



BIBLIOGRAPHY

[1] A. Ramanathan, A. Savol, V. Burger, S. Quinn, P. K. Agarwal, and C. Chennub-
hotla, “Statistical inference for big data problems in molecular biophysics,” Oak Ridge
National Laboratory (ORNL); Center for Computational Sciences, Tech. Rep., 2012.

[2] V. Emilsson, G. Thorleifsson, B. Zhang, A. S. Leonardson, F. Zink, J. Zhu, S. Carlson,
A. Helgason, G. B. Walters, S. Gunnarsdottir et al., “Genetics of gene expression and
its effect on disease,” Nature, vol. 452, no. 7186, pp. 423–428, 2008.

[3] S. Mavandadi, S. Dimitrov, S. Feng, F. Yu, U. Sikora, O. Yaglidere, S. Padmanabhan,
K. Nielsen, and A. Ozcan, “Distributed medical image analysis and diagnosis through
crowd-sourced games: a malaria case study,” PLoS One, vol. 7, no. 5, p. e37245, 2012.

[4] S. Quinn, R. Francis, C. Lo, and C. Chennubhotla, “Novel use of differential image
velocity invariants to categorize ciliary motion defects,” in Biomedical Sciences and
Engineering Conference (BSEC). IEEE, 2011, pp. 1–4.

[5] J. B. Castro, A. Ramanathan, and C. S. Chennubhotla, “Categorical dimensions of
human odor descriptor space revealed by non-negative matrix factorization,” PloS one,
vol. 8, no. 9, p. e73289, 2013.

[6] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill, R. Kania,
M. Schaeffer, S. St Pierre et al., “Big data: The future of biocuration,” Nature, vol.
455, no. 7209, pp. 47–50, 2008.

[7] E. Schadt, M. Linderman, J. Sorenson, L. Lee, and G. Nolan, “Computational solutions
to large-scale data management and analysis,” Nature Reviews Genetics, vol. 11, no. 9,
pp. 647–657, 2010.

[8] R. R. Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE, vol. 34, no. 6,
pp. 52–59, 1997.

[9] A. Sboner, X. J. Mu, D. Greenbaum, R. K. Auerbach, and M. B. Gerstein, “The real
cost of sequencing: higher than you think!” Genome biology, vol. 12, no. 8, p. 125,
2011.

154



[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[11] J. Napper and P. Bientinesi, “Can cloud computing reach the top500?” in Proceedings
of the combined workshops on UnConventional high performance computing workshop
plus memory access workshop. ACM, 2009, pp. 17–20.

[12] P. Arbenz, D. Kressner, and D.-M. E. Zürich, “Lecture notes on solving large scale
eigenvalue problems,” D-MATH, EHT Zurich, 2012.

[13] Y. Saad, Numerical methods for large eigenvalue problems. SIAM, 1992, vol. 158.

[14] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, vol. 92.

[15] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,
no. 4, pp. 395–416, 2007.

[16] M. Meila and J. Shi, “A random walks view of spectral segmentation,” in 8th Interna-
tional Conference on AI and Statistics. Citeseer, 2001.

[17] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 2, pp. 849–856,
2002.

[18] G. Strang, “Introduction to linear algebra,” Cambridge Publication, 2003.

[19] A. Cayley, “On a new auxiliary equation in the theory of equations of the fifth order,”
Philosophical Transactions of the Royal Society of London, pp. 263–276, 1861.

[20] J. Butler, “Improving coarsening and interpolation for algebraic multigrid,” Ph.D.
dissertation, University of Waterloo, 2006.

[21] W. E. Arnoldi, “The principle of minimized iterations in the solution of the matrix
eigenvalue problem,” Quart. Appl. Math, vol. 9, no. 1, pp. 17–29, 1951.

[22] J. Kuczynski and H. Wozniakowski, “Estimating the largest eigenvalue by the power
and lanczos algorithms with a random start,” SIAM journal on matrix analysis and
applications, vol. 13, no. 4, pp. 1094–1122, 1992.

[23] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method,” SIAM journal on scientific computing,
vol. 23, no. 2, pp. 517–541, 2001.

[24] S. A. Kharchenko et al., “Eigenvalue translation based preconditioners for the gmres
(k) method,” Numerical linear algebra with applications, vol. 2, no. 1, pp. 51–77, 1995.

[25] F. A. Dul, “Minres and minerr are better than symmlq in eigenpair computations,”
SIAM Journal on Scientific Computing, vol. 19, no. 6, pp. 1767–1782, 1998.

155



[26] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, “Approximate solutions and
eigenvalue bounds from krylov subspaces,” Numerical linear algebra with applications,
vol. 2, no. 2, pp. 115–133, 1995.

[27] W. Chen and B. Poirier, “Parallel implementation of efficient preconditioned linear
solver for grid-based applications in chemical physics. ii: Qmr linear solver,” Journal
of Computational Physics, vol. 219, no. 1, pp. 198–209, 2006.

[28] T. A. Davis, Direct methods for sparse linear systems. SIAM, 2006.

[29] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid. Access Online via
Elsevier, 2000.

[30] C. Chevalier and I. Safro, “Comparison of coarsening schemes for multilevel graph
partitioning,” in Learning and Intelligent Optimization. Springer, 2009, pp. 191–205.

[31] H. d. Sterck, V. E. Henson, G. Sanders et al., “Multilevel aggregation methods for
small-world graphs with application to random-walk ranking,” Computing and Infor-
matics, vol. 30, no. 2, pp. 225–246, 2012.

[32] K. Miller, “Algebraic multigrid for markov chains and tensor decomposition,” Ph.D.
dissertation, University of Waterloo, 2012.

[33] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro, “A comparison
of eigensolvers for large-scale 3d modal analysis using amg-preconditioned iterative
methods,” International Journal for Numerical Methods in Engineering, vol. 64, no. 2,
pp. 204–236, 2005.

[34] D. Krishnan and R. Szeliski, “Multigrid and multilevel preconditioners for computa-
tional photography,” in ACM Transactions on Graphics (TOG), vol. 30, no. 6. ACM,
2011, p. 177.

[35] D. Krishnan, R. Fattal, and R. Szeliski, “Efficient preconditioning of laplacian matrices
for computer graphics,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 142,
2013.

[36] R. Alcouffe, A. Brandt, J. Dendy, Jr, and J. Painter, “The multi-grid method for the
diffusion equation with strongly discontinuous coefficients,” SIAM Journal on Scientific
and Statistical Computing, vol. 2, no. 4, pp. 430–454, 1981.

[37] A. Brandt, “Algebraic multigrid theory: The symmetric case,” Applied mathematics
and computation, vol. 19, no. 1, pp. 23–56, 1986.

[38] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
“Adaptive algebraic multigrid,” SIAM Journal on Scientific Computing, vol. 27, no. 4,
pp. 1261–1286, 2006.

156



[39] A. Brandt and D. Ron, “Multigrid solvers and multilevel optimization strategies,” in
Multilevel optimization in VLSICAD. Springer, 2003, pp. 1–69.

[40] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, “Multiscale com-
binatorial grouping,” in CVPR, 2014.

[41] I. Koutis and G. L. Miller, “A linear work, o (n 1/6) time, parallel algorithm for solving
planar laplacians,” in Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics, 2007, pp. 1002–
1011.

[42] G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng, and K. Tangwongsan,
“Near linear-work parallel sdd solvers, low-diameter decomposition, and low-stretch
subgraphs,” in Proceedings of the 23rd ACM symposium on Parallelism in algorithms
and architectures. ACM, 2011, pp. 13–22.

[43] E. Romero and J. E. Roman, “Computing subdominant unstable modes of turbulent
plasma with a parallel jacobi–davidson eigensolver,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 17, pp. 2179–2191, 2011.

[44] V. Hernández, J. E. Román, and A. Tomás, “Parallel arnoldi eigensolvers with en-
hanced scalability via global communications rearrangement,” Parallel Computing,
vol. 33, no. 7, pp. 521–540, 2007.

[45] V. Hernandez, J. E. Roman, and V. Vidal, “Slepc: A scalable and flexible toolkit for
the solution of eigenvalue problems,” ACM Transactions on Mathematical Software
(TOMS), vol. 31, no. 3, pp. 351–362, 2005.

[46] U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis for billion-scale graphs: Dis-
coveries and implementation,” in Advances in Knowledge Discovery and Data Mining.
Springer, 2011, pp. 13–25.

[47] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph mining
system implementation and observations,” in Data Mining, 2009. ICDM’09. Ninth
IEEE International Conference on. IEEE, 2009, pp. 229–238.

[48] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster
computing with working sets,” in Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing, 2010, pp. 10–10.

[49] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model,” in Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2008, pp. 426–434.

[50] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in action. Manning, 2011.

157



[51] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, “Dis-
tributed graphlab: a framework for machine learning and data mining in the cloud,”
Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[52] M. Chilvers, M. McKean, A. Rutman, B. Myint, M. Silverman, and C. O’Callaghan,
“The effects of coronavirus on human nasal ciliated respiratory epithelium,” European
Respiratory Journal, vol. 18, no. 6, pp. 965–970, 2001.

[53] B. Thomas, A. Rutman, R. A. Hirst, P. Haldar, A. J. Wardlaw, J. Bankart, C. E.
Brightling, and C. O’Callaghan, “Ciliary dysfunction and ultrastructural abnormalities
are features of severe asthma,” Journal of Allergy and Clinical Immunology, vol. 126,
no. 4, pp. 722–729, 2010.

[54] C. O’Callaghan, M. Chilvers, C. Hogg, A. Bush, and J. Lucas, “Diagnosing primary
ciliary dyskinesia,” Thorax, vol. 62, no. 8, pp. 656–657, 2007.

[55] M. W. Leigh, J. E. Pittman, J. L. Carson, T. W. Ferkol, S. D. Dell, S. D. Davis,
M. R. Knowles, and M. A. Zariwala, “Clinical and genetic aspects of primary ciliary
dyskinesia/kartagener syndrome,” Genetics in Medicine, vol. 11, no. 7, pp. 473–487,
2009.

[56] J. McGrath, S. Somlo, S. Makova, X. Tian, and M. Brueckner, “Two populations of
node monocilia initiate left-right asymmetry in the mouse,” Cell, vol. 114, no. 1, pp.
61–73, 2003.

[57] A. Becker-Heck, I. E. Zohn, N. Okabe, A. Pollock, K. B. Lenhart, J. Sullivan-Brown,
J. McSheene, N. T. Loges, H. Olbrich, K. Haeffner et al., “The coiled-coil domain
containing protein ccdc40 is essential for motile cilia function and left-right axis for-
mation,” Nature Genetics, vol. 43, no. 1, pp. 79–84, 2010.

[58] A. S. Aylsworth, “Clinical aspects of defects in the determination of laterality,” Amer-
ican Journal of Medical Genetics, vol. 101, no. 4, pp. 345–355, 2001.

[59] M. Swisher, R. Jonas, X. Tian, E. S. Lee, C. W. Lo, and L. Leatherbury, “Increased
postoperative and respiratory complications in patients with congenital heart disease
associated with heterotaxy,” The Journal of Thoracic and Cardiovascular Surgery, vol.
141, no. 3, pp. 637–644, 2011.

[60] N. Nakhleh, R. Francis, R. A. Giese, X. Tian, Y. Li, M. A. Zariwala, H. Yagi, O. Khal-
ifa, S. Kureshi, B. Chatterjee et al., “High prevalence of respiratory ciliary dysfunction
in congenital heart disease patients with heterotaxy,” Circulation, vol. 125, no. 18, pp.
2232–2242, 2012.

[61] B. Harden, X. Tian, R. Giese, N. Nakhleh, S. Kureshi, R. Francis, S. Hanumanthaiah,
Y. Li, M. Swisher, K. Kuehl, I. Sami, K. Olivier, R. Jonas, C. W. Lo, and
L. Leatherbury, “Increased postoperative respiratory complications in heterotaxy
congenital heart disease patients with respiratory ciliary dysfunction,” The Journal of

158



Thoracic and Cardiovascular Surgery, vol. Available online 22 July 2013, 2013. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0022522313006697

[62] M. Zahid, O. Khalifa, W. Devine, C. Yau, R. Francis, D. M. Lee, K. Tobita, P. Wearden,
L. Leatherbury, S. Webber, and C. W. Lo, “Airway ciliary dysfunction in patients with
transposition of the great arteries,” in Circulation, vol. 126, 2012, p. A15746.

[63] A. S. Garrod, M. Zahid, X. Tian, R. J. Francis, O. Khalifa, W. Devine, G. C. Gabriel,
L. Leatherbury, and C. W. Lo, “Airway ciliary dysfunction and sinopulmonary symp-
toms in congenital heart disease patients,” Annals of the American Thoracic Society,
no. ja, 2014.

[64] J. F. Papon, I. Perrault, A. Coste, B. Louis, X. Gerard, S. Hanein, L. Fares-Taie,
S. Gerber, S. Defoort-Dhellemmes, A. M. Vojtek et al., “Abnormal respiratory cilia in
non-syndromic leber congenital amaurosis with cep290 mutations,” Journal of medical
genetics, vol. 47, no. 12, pp. 829–834, 2010.

[65] S. Dimova, F. Maes, M. E. Brewster, M. Jorissen, M. Noppe, and P. Augustijns,
“High-speed digital imaging method for ciliary beat frequency measurement,” Journal
of Pharmacy and Pharmacology, vol. 57, no. 4, pp. 521–526, 2005.

[66] M. A. Olm, J. E. Kögler, M. Macchione, A. Shoemark, P. H. Saldiva, and J. C. Ro-
drigues, “Primary ciliary dyskinesia: evaluation using cilia beat frequency assessment
via spectral analysis of digital microscopy images,” Journal of Applied Physiology, vol.
111, no. 1, pp. 295–302, 2011.

[67] G. Mantovani, M. Pifferi, and G. Vozzi, “Automated software for analysis of ciliary beat
frequency and metachronal wave orientation in primary ciliary dyskinesia,” European
Archives of Oto-Rhino-Laryngology, vol. 267, no. 6, pp. 897–902, 2010.

[68] C. O’Callaghan, K. Sikand, M. Chilvers et al., “Analysis of ependymal ciliary beat
pattern and beat frequency using high speed imaging: comparison with the photomul-
tiplier and photodiode methods,” Cilia, vol. 1, no. 1, p. 8, 2012.

[69] W. A. Stannard, M. A. Chilvers, A. R. Rutman, C. D. Williams, and C. O’Callaghan,
“Diagnostic testing of patients suspected of primary ciliary dyskinesia,” American
Journal of Respiratory and Critical Care Medicine, vol. 181, no. 4, pp. 307–314, 2010.

[70] B. Thomas, A. Rutman, and C. O’Callaghan, “Disrupted ciliated epithelium shows
slower ciliary beat frequency and increased dyskinesia,” European Respiratory Journal,
vol. 34, no. 2, pp. 401–404, 2009.

[71] C. M. Smith, R. A. Hirst, M. J. Bankart, D. W. Jones, A. J. Easton, P. W. Andrew,
and C. O’Callaghan, “Cooling of cilia allows functional analysis of the beat pattern
for diagnostic testing of temperature and ciliary function,” CHEST Journal, vol. 140,
no. 1, pp. 186–190, 2011.

159

http://www.sciencedirect.com/science/article/pii/S0022522313006697


[72] C. Clary-Meinesz, J. Cosson, P. Huitorel, and B. Blaive, “Temperature effect on the
ciliary beat frequency of human nasal and tracheal ciliated cells,” Biology of the Cell,
vol. 76, no. 3, pp. 335–338, 1992.

[73] M. Salathe, “Regulation of mammalian ciliary beating,” Annu. Rev. Physiol., vol. 69,
pp. 401–422, 2007.

[74] J. Raidt, J. Wallmeier, R. Hjeij, J. G. Onnebrink, P. Pennekamp, N. T. Loges, H. Ol-
brich, K. Häffner, G. W. Dougherty, H. Omran et al., “Ciliary beat pattern and fre-
quency in genetic variants of primary ciliary dyskinesia,” European Respiratory Jour-
nal, pp. erj00 520–2014, 2014.

[75] J. MacCormick, I. Robb, T. Kovesi, and B. Carpenter, “Optimal biopsy techniques in
the diagnosis of primary ciliary dyskinesia,” Journal of otolaryngology, vol. 31, no. 1,
pp. 13–17, 2002.

[76] J. Papon, A. Coste, F. Roudot-Thoraval, M. Boucherat, G. Roger, A. Tamalet, A. Vo-
jtek, S. Amselem, and E. Escudier, “A 20-year experience of electron microscopy in the
diagnosis of primary ciliary dyskinesia,” European Respiratory Journal, vol. 35, no. 5,
pp. 1057–1063, 2010.

[77] T. P. Plesec, A. Ruiz, J. T. McMahon, and R. A. Prayson, “Ultrastructural abnor-
malities of respiratory cilia: a 25-year experience,” Archives of pathology & laboratory
medicine, vol. 132, no. 11, pp. 1786–1791, 2008.

[78] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal of the
American Statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[79] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade feature tracker
description of the algorithm,” Intel Corporation, vol. 5, 2001.

[80] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and their prin-
ciples,” in Proceedings of the 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2010), 2010, pp. 2432–2439.

[81] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[82] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto, “Dynamic texture recognition,” in
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2001), vol. 2, 2001, pp. II–58.

[83] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,” International
Journal of Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

160



[84] J. Huang, X. Huang, D. Metaxas, and L. Axel, “Dynamic texture based heart local-
ization and segmentation in 4-d cardiac images,” in Biomedical Imaging: From Nano
to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on. IEEE, 2007, pp.
852–855.

[85] N. Brieu, N. Navab, J. Serbanovic-Canic, W. H. Ouwehand, D. L. Stemple, A. Cvejic,
and M. Groher, “Image-based characterization of thrombus formation in time-lapse dic
microscopy,” Medical image analysis, vol. 16, no. 4, pp. 915–931, 2012.

[86] M. Hyndman, A. D. Jepson, and D. J. Fleet, “Higher-order autoregressive models for
dynamic textures.” in British Machine Vision Conference (BMVC) 2007, 2007, pp.
1–10.

[87] S. F. Te Pas, A. M. Kappers, and J. J. Koenderink, “Detection of first-order structure
in optic flow fields,” Vision Research, vol. 36, no. 2, pp. 259–270, 1996.

[88] B. Brown, “Invariant properties of the motion parallax field due to the movement of
rigid bodies relative to an observer,” Optica acta, vol. 22, pp. 773–791, 1975.

[89] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary patterns
with an application to facial expressions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 915–928, 2007.

[90] Z. Lu, W. Xie, J. Pei, and J. Huang, “Dynamic texture recognition by spatio-temporal
multiresolution histograms,” in Seventh IEEE Workshop on Application of Computer
Vision (WACV/MOTIONS’05), vol. 2, 2005, pp. 241–246.

[91] J. Chen, G. Zhao, M. Salo, E. Rahtu, and M. Pietikamen, “Automatic dynamic texture
segmentation using local descriptors and optical flow,” IEEE Transactions on Image
Processing, vol. 22, pp. 326–339, 2013.

[92] S. C. Fu and P. Kovesi, “Robust extraction of optic flow differentials for surface recon-
struction,” in Digital Image Computing: Techniques and Applications (DICTA), 2010
International Conference on. IEEE, 2010, pp. 468–473.

[93] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant dynamic texture recog-
nition using a bag of dynamical systems,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1651–1657.

[94] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999.

[95] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[96] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large num-
ber of classes,” in Sixth Indian Conference on Computer Vision, Graphics & Image
Processing (ICVGIP’08), 2008, pp. 722–729.

161



[97] Y. Kluger, R. Basri, J. Chang, and M. Gerstein, “Spectral biclustering of microarray
data: coclustering genes and conditions,” Genome Res, vol. 13, no. 4, pp. 703–716,
2003.

[98] A. Arzi and N. Sobel, “Olfactory perception as a compass for olfactory neural maps,”
Trends Cogn. Sci. (Regul. Ed.), vol. 15, no. 11, pp. 537–545, Nov 2011.

[99] R. B. Lotto and D. Purves, “A rationale for the structure of color space,” Trends
Neurosci., vol. 25, no. 2, pp. 84–88, Feb 2002.

[100] P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit Rev Neurobiol, vol. 3,
no. 4, pp. 333–400, 1988.

[101] H. Lapid, S. Shushan, A. Plotkin, H. Voet, Y. Roth, T. Hummel, E. Schneidman,
and N. Sobel, “Neural activity at the human olfactory epithelium reflects olfactory
perception,” Nat. Neurosci., vol. 14, no. 11, pp. 1455–1461, Nov 2011.

[102] R. Haddad, T. Weiss, R. Khan, B. Nadler, N. Mandairon, M. Bensafi, E. Schneidman,
and N. Sobel, “Global features of neural activity in the olfactory system form a parallel
code that predicts olfactory behavior and perception,” J. Neurosci., vol. 30, no. 27,
pp. 9017–9026, Jul 2010.

[103] H. Henning, Der Geruch. Leipzig: JA Barth, 1916.

[104] J. E. Amoore, “Evidence for the chemical olfactory code in man,” Ann. N. Y. Acad.
Sci., vol. 237, pp. 137–143, Sep 1974.

[105] ——, “Specific anosmia: a clue to the olfactory code,” Nature, vol. 214, no. 5093, pp.
1095–1098, Jun 1967.

[106] A. G. Khan, M. Thattai, and U. S. Bhalla, “Odor representations in the rat olfactory
bulb change smoothly with morphing stimuli,” Neuron, vol. 57, no. 4, pp. 571–585,
Feb 2008.

[107] J. A. Gottfried and K. N. Wu, “Perceptual and neural pliability of odor objects,” Ann.
N. Y. Acad. Sci., vol. 1170, pp. 324–332, Jul 2009.

[108] R. C. Araneda, A. D. Kini, and S. Firestein, “The molecular receptive range of an
odorant receptor,” Nature neuroscience, vol. 3, no. 12, pp. 1248–1255, 2000.

[109] C. Sell, “On the unpredictability of odor,” Angewandte Chemie International Edition,
vol. 45, no. 38, pp. 6254–6261, 2006.

[110] R. M. Khan, C. H. Luk, A. Flinker, A. Aggarwal, H. Lapid, R. Haddad, and N. Sobel,
“Predicting odor pleasantness from odorant structure: pleasantness as a reflection of
the physical world,” J. Neurosci., vol. 27, no. 37, pp. 10 015–10 023, Sep 2007.

162



[111] A. A. Koulakov, B. E. Kolterman, A. G. Enikolopov, and D. Rinberg, “In search of
the structure of human olfactory space,” Front Syst Neurosci, vol. 5, p. 65, 2011.

[112] L. Secundo, K. Snitz, and N. Sobel, “The perceptual logic of smell,” Current opinion
in neurobiology, vol. 25, pp. 107–115, 2014.

[113] Y. Yeshurun and N. Sobel, “An odor is not worth a thousand words: from multidimen-
sional odors to unidimensional odor objects,” Annual review of psychology, vol. 61, pp.
219–241, 2010.

[114] R. S. Herz, “The effect of verbal context on olfactory perception.” Journal of Experi-
mental Psychology: General, vol. 132, no. 4, p. 595, 2003.

[115] W. Li, E. Luxenberg, T. Parrish, and J. A. Gottfried, “Learning to smell the roses:
experience-dependent neural plasticity in human piriform and orbitofrontal cortices,”
Neuron, vol. 52, no. 6, pp. 1097–1108, 2006.

[116] E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng, “Distance metric learning with
application to clustering with side-information,” in Advances in neural information
processing systems, 2002, pp. 505–512.

[117] K. Snitz, A. Yablonka, T. Weiss, I. Frumin, R. M. Khan, and N. Sobel, “Predicting
odor perceptual similarity from odor structure,” PLoS computational biology, vol. 9,
no. 9, p. e1003184, 2013.

[118] R. Haddad, R. Khan, Y. K. Takahashi, K. Mori, D. Harel, and N. Sobel, “A metric for
odorant comparison,” Nature methods, vol. 5, no. 5, pp. 425–429, 2008.

[119] A. Dravnieks, “Odor quality: semantically generated multidimensional profiles are
stable,” Science, vol. 218, no. 4574, pp. 799–801, Nov 1982.

[120] A. Dravnieks, Atlas of Odor Character Profiles. Philadelphia: ASTM Data Series
ed. ASTM Committee E-18 on Sensory Evaluation of Materials and Products. Section
E-18.04.12 on Odor Profiling, 1985.

[121] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values,” Environmetrics, vol. 5, pp.
111–126, 1994.

[122] P. Paatero, “Least squares formulation of robust non-negative factor analysis,” Chemo-
metrics Int. Lab. Sys., vol. 37, pp. 23–35, 1997.

[123] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct 1999.

[124] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons, “Algorithms and Ap-
plications for Approximate Nonnegative Matrix Factorization,” Computational Statis-
tics & Data Analysis, vol. 52, no. 1, pp. 155–173, 2007.

163



[125] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix
factorization,” in Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, ser. SIGIR ’03, 2003, pp. 267–
273.

[126] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classifica-
tion using support vector machines,” Machine learning, vol. 46, no. 1-3, pp. 389–422,
2002.

[127] A. W. Whitney, “A direct method of nonparametric measurement selection,” Comput-
ers, IEEE Transactions on, vol. 100, no. 9, pp. 1100–1103, 1971.

[128] P. Kain, S. M. Boyle, S. K. Tharadra, T. Guda, C. Pham, A. Dahanukar, and A. Ray,
“Odour receptors and neurons for deet and new insect repellents,” Nature, 2013.

[129] S. M. Boyle, S. McInally, and A. Ray, “Expanding the olfactory code by in silico
decoding of odor-receptor chemical space,” eLife, vol. 2, 2013.

[130] C. Bushdid, M. Magnasco, L. Vosshall, and A. Keller, “Humans can discriminate more
than 1 trillion olfactory stimuli,” Science, vol. 343, no. 6177, pp. 1370–1372, 2014.

[131] M. Meister, “Can humans really discriminate 1 trillion odors?” arXiv preprint
arXiv:1411.0165, 2014.

[132] K. R. Varshney and L. R. Varshney, “Olfactory signals and systems,” arXiv preprint
arXiv:1410.4865, 2014.

[133] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis
lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130, 2009.

[134] T. Zhang, “An introduction to support vector machines and other kernel-based learning
methods,” AI Magazine, vol. 22, no. 2, p. 103, 2001.

[135] R. Fergus, Y. Weiss, and A. Torralba, “Semi-supervised learning in gigantic image
collections,” in Advances in neural information processing systems, 2009, pp. 522–530.

[136] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between labeled
graphs,” in ICML, vol. 3, 2003, pp. 321–328.

[137] I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Pa-
lyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko et al., “Virtual computational
chemistry laboratory–design and description,” Journal of computer-aided molecular
design, vol. 19, no. 6, pp. 453–463, 2005.

[138] C. Rasmussen and C. Williams, “Gaussian processes for machine learning, ser. adaptive
computation and machine learning,” MIT Press, vol. 10, pp. 15–20, 2006.

164



[139] C. D. Manning and H. Schütze, Foundations of statistical natural language processing.
MIT press, 1999.

[140] F. Lin and W. W. Cohen, “Semi-supervised classification of network data using very
few labels,” in Advances in Social Networks Analysis and Mining (ASONAM), 2010
International Conference on. IEEE, 2010, pp. 192–199.

[141] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in ICML, vol. 3, 2003, pp. 912–919.

[142] S. A. Macskassy and F. Provost, “Classification in networked data: A toolkit and a
univariate case study,” The Journal of Machine Learning Research, vol. 8, pp. 935–983,
2007.

[143] P. P. Talukdar and K. Crammer, “New regularized algorithms for transductive learn-
ing,” in Machine Learning and Knowledge Discovery in Databases. Springer, 2009,
pp. 442–457.

[144] A. Ramanathan, L. L. Pullum, C. A. Steed, S. P. Quinn, C. S. Chennubhotla, and
T. Parker, “Integrating heterogeneous healthcare datasets and visual analytics for dis-
ease bio-surveillance and dynamics,” in IEEE Workshop on Interactive Visual Text
Analytics (Atlanta, GA, 2013.

[145] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[146] T. White, Hadoop: the definitive guide. O’Reilly, 2012.

[147] L. G. Valiant, “A bridging model for parallel computation,” Communications of the
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[148] T. Kajdanowicz, W. Indyk, P. Kazienko, and J. Kukul, “Comparison of the efficiency
of mapreduce and bulk synchronous parallel approaches to large network processing,”
in Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on.
IEEE, 2012, pp. 218–225.

[149] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed
graph-parallel computation on natural graphs,” in Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2012, pp. 17–
30.

[150] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association, 2012, pp. 2–2.

165



[151] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams:
A fault-tolerant model for scalable stream processing,” DTIC Document, Tech. Rep.,
2012.

[152] I. Koutis, G. L. Miller, and R. Peng, “A fast solver for a class of linear systems,”
Communications of the ACM, vol. 55, no. 10, pp. 99–107, 2012.

166


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Description and breakdown of datasets
	2. Classification results.
	3. AR results.
	4. Histogram results using CHP dataset.
	5. Histogram results using CNMC dataset.
	6. Classification results for the linear SVM.
	7. Classification results for the nonlinear SVM.
	8. Top 60 physiochemical features.
	9. Top 13 physiochemical features.
	10. Effects of downsampling similarity constraints.
	11. The properties listed are those that have a z-score of at least 1.0.
	12. Descriptors with z-scores of at least 2.0.
	13. Four images used to conduct initial tests of the Draenor GMG.
	14. Empirical eigensolver runtime.

	LIST OF FIGURES
	1. Era of ``Big Data.''
	2. Graphs.
	3. Undirected vs Directed graphs.
	4. Affinity matrices for corresponding 2D data.
	5. 2D random walks.
	(a). = 10
	(b). = 100
	(c). = 100,000
	6. K-means vs spectral clustering.
	7. Graph spectra.
	8. Hierarchical schematic.
	9. Pixel neighborhoods and graph structure.
	10. Properties of ciliary motion.
	11. CHP and CNMC dataset breakdowns.
	12. Website proof-of-concept.
	13. Derivation of elemental components.
	14. Basic distortion types.
	15. Atomic flow detectors.
	16. Autoregressive representation of ciliary motion.
	17. Pairwise angles between principal components of CM.
	18. CM histogram representations.
	19. Pixel selection.
	20. Classification pipeline.
	21. CM AR model representations.
	22. Classification accuracy as a function of ROIs per patient.
	23. Automated patch selection.
	24. CM subtypes.
	25. 3D space of CM subtypes.
	26. Physiochemical properties.
	27. Dravnieks odor profile database.
	28. Learning algorithm.
	29. Outcome of PCA on metric.
	30. All classification results.
	31. Classification accuracy using feature selection.
	32. Effects of downsampling.
	33. Classification accuracy with principal components.
	34. Energy vs angle.
	35. Physiochemical z-scores.
	36. Properties with significant z-scores.
	37. 3D projections of odorants.
	38. Submatrix containing CIM and thermodynamics properties.
	39. Baseline classification accuracy.
	40. Odor space organization and chemical similarity.
	41. Decimation process.
	(a). Original
	(b). Decimated
	42. Built-in eigensolver compared to distributed GMG.
	(a). EV 1
	(b). EV 1
	(c). EV 4
	(d). EV 4
	(e). EV 5
	(f). EV 5
	(g). EV 6
	(h). EV 6
	(i). EV 7
	(j). EV 7
	(k). Segmentation
	(l). Segmentation
	43. Large-scale GMG performance.
	(a). Original
	(b). EV 1
	(c). EV 2
	(d). EV 15
	(e). Segmentation
	44. Spark implementation bottlenecks.

	PREFACE
	1.0 INTRODUCTION
	1.1 Petabyte-scale biomedicine
	1.2 Contributions
	1.3 Thesis Outline
	1.4 Publications
	1.5 Mathematical Notation

	2.0 SPECTRAL GRAPH ANALYTICS
	2.1 Introduction
	2.2 Graph structures and properties
	2.2.1 Graph affinities and neighborhoods
	2.2.2 Random walks

	2.3 Spectral clustering
	2.4 Methods for finding eigenvalues and eigenvectors
	2.4.1 Direct solvers
	2.4.2 Iterative solvers
	2.4.3 Hierarchical and multigrid solvers
	2.4.4 Geometric multigrid (GMG) eigensolvers
	2.4.5 Algebraic or Combinatorial multigrid (AMG, CMG) eigensolvers

	2.5 Parallel and distributed implementations
	2.6 Conclusions

	3.0 LEARNING CILIARY MOTION PHENOTYPES
	3.1 Introduction
	3.2 Data acquisition and study design
	3.2.1 Subject recruitment and data cohort breakdown
	3.2.2 Digital video annotation and preprocessing
	3.2.3 Software

	3.3 Representing ciliary motion as dynamic textures
	3.4 Derivation of differential invariants
	3.4.1 Optical Flow
	3.4.2 Differential Invariants
	3.4.2.1 Divergence
	3.4.2.2 Curl
	3.4.2.3 Deformation

	3.4.3 Differential feature filters

	3.5 Computing digital signatures of ciliary motion phenotypes
	3.5.1 Autoregressive models
	3.5.2 Magnitude and frequency histograms

	3.6 Classification of digital signatures
	3.6.1 Structure of SVM input
	3.6.2 Classifier design for CM recognition
	3.6.3 Cross-validation and consensus diagnosis
	3.6.4 Results of CM classification

	3.7 Unsupervised discovery of novel motion phenotypes
	3.7.1 Automated region selection
	3.7.2 Spectral clustering of AR parameters
	3.7.3 Large-scale analysis

	3.8 Conclusions

	4.0 LEARNING PERCEPTUAL OLFACTORY DIMENSIONS
	4.1 Introduction
	4.2 Dravnieks odor profile and physiochemical descriptors
	4.2.1 Nonnegative matrix factorization to determine ground-truth odor percepts
	4.2.2 Software

	4.3 Derivation of a generalized odorant similarity metric
	4.3.1 Diagonal Metric
	4.3.2 Full Metric
	4.3.3 Populating constraint sets S and D

	4.4 Using the similarity metric to improve odorant classification
	4.4.1 Substituting each odorant  with G1/2
	4.4.2 Projecting each odorant  using leading eigenvectors of G
	4.4.3 Baseline methods for comparison to G
	4.4.4 Classification results
	4.4.5 Effects of downsampling S and D on classification

	4.5 Comparison to other metrics
	4.5.1 Euclidean distance
	4.5.2 Cosine angle
	4.5.3 Alternative descriptor sets
	4.5.4 Alternative models of olfaction

	4.6 Physiochemical signatures uniquely identify odor percepts
	4.7 Quantitative evidence for 10 perceptual categories
	4.8 Semi-supervised propagation of odor percepts to unobserved odorants
	4.8.1 Graph kernels for semi-supervised learning
	4.8.2 Using PubChem to test large-scale odor-percept mapping
	4.8.3 Semi-supervised odor percept propagation

	4.9 Conclusions
	4.10 Appendix: List of physiochemical properties used

	5.0 DRAENOR: A DISTRIBUTED SCIENTIFIC COMPUTING FRAMEWORK
	5.1 Introduction
	5.2 Distributed Computing
	5.3 Practical distributed hierarchical eigensolvers
	5.3.1 Language and architecture
	5.3.2 Geometric multigrid
	5.3.3 Algebraic multigrid

	5.4 Experiments
	5.4.1 Complexity analysis
	5.4.1.1 Distributed geometric multigrid
	5.4.1.2 Distributed algebraic multigrid

	5.4.2 Image analysis

	5.5 Discussion

	6.0 CONCLUSIONS
	6.1 Future Directions
	6.1.1 Ciliary motion analysis
	6.1.2 Perceptual olfactory recognition
	6.1.3 Large-scale scientific computing


	BIBLIOGRAPHY

