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COMPUTATIONAL METHODS FOR DESIGN OF SMART MATERIAL

MORPHING STRUCTURES WITH LOCALIZED ACTIVATION AND

ACTUATION

Shuang Wang, PhD

University of Pittsburgh, 2014

There is significant ongoing interest to develop smart structure technologies, such as those

that can automatically detect their condition and/or actively change their geometry or ma-

terial behaviors to adapt to adverse conditions or otherwise improve operational efficiency.

Of the structural materials under development for smart structure applications, active smart

materials are attracting increasing attentions due to their abilities to exhibit controlled vari-

able stiffness through activation (e.g., thermal, electrical, or light activation) and experience

extremely large deformations and shape changes without damage. Active smart materials,

such as shape memory polymers, are currently being explored and show promise as morph-

ing skins, replacements to mechanical hinges, and other structural components. Moreover,

in a general sense any structure or structural component that is fully composed of active

smart materials could have limitless shape-changing functionality if provided sufficient ac-

tivation and actuation. Towards the design or control of smart structures to utilize such

functionality, it is of paramount importance to develop strategies to efficiently solve the

coupled multi-physics inverse problems of identifying the optimal activation stimulus and

mechanical actuation to achieve desired morphing processes.

The objective of the present work is to develop and investigate a computational strategy

for computationally efficient estimation of the parameters relating to the distribution and

sequencing of activation and actuation for a morphing smart material structure or structural

component to efficiently and effectively achieve a desired morphing function. This strategy
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combines a numerical representation of the morphing process with an optimization algorithm

to estimate the activation and actuation parameters that best address cost functions and

constraints relating to energy consumption, target shape change(s), morphing time, and/or

damage prevention. In particular, the strategy is presented in the context of morphing

structures or structural components composed of thermally responsive smart materials, and

with specific properties based on thermally responsive shape memory polymers.

First, as a proof of concept, an initial computational framework is presented which com-

bines a numerical representation of linear thermo-mechanical behavior of conceptual smart

material structures with a non-gradient based optimization technique to identify the activa-

tion and actuation parameters to achieve the desired morphing process. The computational

inverse mechanics approach is shown through numerical tests to provide a generalized and

flexible means to facilitate the use of smart material structures to achieve desired morphing

processes with controllable localized activation and actuation. Towards improving the com-

putational efficiency, a variation of the computational framework based on a gradient-based

optimization algorithm using the adjoint method is then presented. Numerical examples are

shown to verify and test the computational approach, in which the synchronization of mul-

tiple activation and actuation parameters is optimized with respect to the energy cost and

target shape changes in morphing skeletal structural components. The computational design

approach with the adjoint method is shown to provide the capability to efficiently identify

activation and actuation parameters to achieve desired morphing capabilities. Moreover,

the computational approach is shown to be capable of determining energy-efficient design

solutions for a diverse set of target shape changes with fixed instrumentation, providing the

potential for substantial functionality beyond what could be expected through traditional

empirical design strategies. Finally, to establish the theories and implementation aspects

that would be applicable to a variety of structural behaviors, material types and morphing

concepts, the efficient computational framework using the adjoint method is generalized to

be applicable to various thermally-responsive smart materials. Numerical tests are shown

to verify the generalized computational framework, in which the synchronization of multiple

activation and actuation parameters is optimized with respect to energy cost and target

shape changes in morphing structures with nonlinear thermo-mechanical behaviors (rather
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than the purely linear behaviors considered previously). In addition, the significant influence

of the nonlinearity in the thermal modeling on the morphing processes, and ultimately the

design solutions is explored.
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1.0 A COMPUTATIONAL FRAMEWORK FOR THE OPTIMAL DESIGN

OF MORPHING PROCESSES IN LOCALLY ACTIVATED SMART

MATERIAL STRUCTURES

1.1 ABSTRACT

A proof-of-concept study is presented for a strategy to obtain maximally efficient and ac-

curate morphing structures composed of active materials such as shape memory polymers

(SMP) through synchronization of adaptable and localized activation and actuation. The

work focuses on structures or structural components entirely composed of thermo-responsive

SMP, and particularly utilizes the ability of such materials to display controllable variable

stiffness. The study presents and employs a computational inverse mechanics approach that

combines a computational representation of the SMP thermo-mechanical behavior with a

nonlinear optimization algorithm to determine location, magnitude and sequencing of the

activation and actuation to obtain a desired shape change subject to design objectives such

and prevention of damage. Two numerical examples are presented in which the synchroniza-

tion of the activation and actuation and the location of activation excitation were optimized

with respect to the combined thermal and mechanical energy for design concepts in mor-

phing skeletal structural components. In all cases the concept of localized activation along

with the optimal design strategy were able to produce far more energy efficient morphing

structures and more accurately reach the desired shape change in comparison to traditional

methods that require complete structural activation prior to actuation.
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1.2 INTRODUCTION

There are a variety of engineering application areas with significant ongoing efforts towards

smart structure technologies, such as structures or structural components that can actively

change their geometry or material behaviors to adapt to and/or alleviate adverse conditions

or otherwise improve operational efficiency. For example, the concept of morphing aircraft

has been an initiative of the aerospace industry for many years, with objectives of improv-

ing a number of flight performance or mission variables. In some sense, morphing aircraft

are commonplace if one considers components such as flaps and deployable landing gear.

However, in spite of these developments and focused interest, there are a wide variety of

components or systems on aircraft that are ideal targets for improved morphing technolo-

gies, such as adaptive engine cowlings [73, 74], active clearance control for engine blades [10],

and variable geometry chevrons [27, 31].

While many applications of morphing structure technologies have seen solutions of one

form or another, the underlying approach has almost always been discretely-actuated mech-

anisms. Some mechanisms provide the perception of continuous control, in that they deform

a smooth surface with an underlying point force, but nonetheless they are still single-degree-

of-freedom devices. As such, the achievable shapes/functions are limited to the constraints

placed on the original design (i.e. there is no further adaptability beyond the design cases)

and practical ability to construct the mechanical degrees of freedom. In addition, most

designs involve an actuate-and-hold approach, in which the actuator must hold the device

against aerodynamic and/or structural loads when in its “deformed” state, requiring exten-

sive power and actuator strength. Alternatively, a continuously deformable (i.e. intrinsically

morphable) structure has conceptually limitless shape-change functionality. Moreover, if

the mechanical properties of the structure could also be modified on-demand, shape change

could be facilitated through localized softening to minimize required actuation forces or pro-

duce multiple shape changes from a single actuation pattern, and then re-hardened to “lock”

in the desired shape. This type of structure would provide the freedom of continuous de-

formability, along with practically applicable actuation forces and the ability to intrinsically

support external forces once a desired shape is reached.

2



Of the structural materials under development for intrinsic morphing technologies, shape

memory polymers (SMP) are particularly promising due to their abilities to exhibit control-

lable variable stiffness through activation and experience extremely large deformations and

shape changes without damage and with minimal actuator force requirements. Since their

introduction there has been a continual increase in research into the utilization of SMP in a

variety of fields and applications [35, 102]. For example, SMP have been used in aerospace

applications for deployable structures, morphing aircraft, and deformable wing structures

[9, 82, 91], and in medicine for both morphing sutures and stents [5, 63, 75]. There are a

wide variety of SMP compositions and properties, and they are divided into three major types

based on the stimulus used to bring a change or desired response of the polymer: thermo-

responsive [35, 50, 105], chemo-responsive [13, 14, 113], and photo-responsive [4, 8, 29].

There have been efforts to tailor the response of these smart materials, such as through tech-

niques to introduce a gradient transition temperature field [65, 102] or otherwise optimize the

distribution to improve the structure’s performance [57, 60, 103]. However, a distinguishing

feature of most of the conventional SMP devices existing in the current literature for morph-

ing applications is that the total SMP material is activated through whichever approach was

predefined as optimal in order to morph the device [40, 108, 111]. Therefore, the morphing

SMP structures are simply replacements for mechanical links, and provide minimal addi-

tional functionality (other than their inherent locking and memory ability). By contrast, the

current work intends to expand this concept of variable stiffness structural morphing control

to the more general case in which arbitrarily localized regions of a structure are softened to

enable a desired shape change with minimal effort.

This new approach to morphing structure technology similarly requires a new way of

thinking about smart materials and the design or control strategies used to employ them.

Instead of a design algorithm determining only forces to achieve desired structural positions,

the stimulus (heat in this case) applied to create local changes in the structural material

behavior must be included in the design inputs as well. Unfortunately, beyond the sim-

plest possible cases, traditional (i.e. experience-based) design strategies can be expected

to be inefficient at best and entirely intractable at worst for these continuously morphable

structures. Alternatively, computational design/control strategies that combine numerical

3



modeling with nonlinear optimization have the potential to address the challenges of this

kind of design/control problem. However, the use of these inverse problem solution methods

for shape changing structure applications have thus far been limited, and mainly seen in

the form of topology optimization and for the design of shape memory alloy (SMA) devices,

particularly actuators. Examples include the work in [70], which sought to optimize microac-

tuator geometry, [33] and [100], which sought to design actuator features such as shape and

sequencing to control morphing structures, and [47], which aimed to create a generalized

design optimization framework for SMA components.

This work presents a proof-of-concept for a new strategy to determine the optimal lo-

calized activation and actuation distributions for a morphing SMP structure or structural

component to obtain a targeted shape change subject to design objectives such as mini-

mal total required energy. This approach does not require full activation of the SMP, and

therefore can uniquely address issues of energy efficiency and efficiency in transition time

both in applying and removing activation. For simplicity, the present work focused on

thermo-responsive SMP, which is currently the most common class. However, the approach

is generalizable to all SMP classes and a wide variety of design objectives and constraints.

The general computational inverse problem approach for the continuous SMP design/control

problem combines a numerical representation of the morphing process with a nonlinear op-

timization strategy and is presented in Section 1.3. Then, two example design problems of

skeletal structural components are presented in Section 1.4 to show the implementation of

the proposed approach as well as the potential benefits and challenges in comparison to a

traditional design, followed by the concluding remarks in Section 1.5.

1.3 COMPUTATIONAL DESIGN FRAMEWORK

Figure 1.1 illustrates the general form of the morphing structure design (and analogously

control) problems to be considered here. To perform a morphing process for a structure

composed of thermo-responsive SMP, some portion of the domain is first heated (or cooled

if using a recently developed composition as shown in [21]) with a controllable transient

4



Figure 1.1: Schematic of the morphing structure design problem in which the applied acti-

vation (TA or qA) and actuation (~uA or ~τA) are to be determined to achieve a desired shape

change.

temperature distribution and/or surface heat flux (TA(~x, t) or qA(~x, t)) (boundary heating

is shown and considered in this work, but internally embedded wires have also been used

for activation purposes and could be incorporated into this approach). It is critical that

the temperature is sufficient to activate the material under the ambient conditions (i.e.,

bring the internal temperature above the transition temperature), but not so high that the

material is damaged. Once a sufficient portion of the structure is softened through activation,

mechanical actuation begins through controlled transient displacement and/or force (~uA(~x, t)

or ~τA(~x, t)) to deform the structure into the desired final shape. Note that the structure

does not necessarily need to be fully activated as in the current standard of practice, but

rather only needs to be sufficiently activated to prevent damage, limit the required actuation

forces, and ensure that the final shape is maintained once the activation is removed (i.e., the

material is cooled and thus rehardened) and actuation is relieved. Furthermore, the process

could be synchronized so that the activation proceeds simultaneously with the actuation (i.e.,

the localized activation does not need to be complete before applying actuation) allowing

for the entire process to be particularly efficient.
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The design problem to identify the activation and actuation distributions to achieve the

desired shape change with maximum efficiency can be cast in a general way in the form of

the following constrained multi-objective optimization problem:

Minimize :



‖ ~utarget − ~uapprox(TA, qA, ~uA, ~τA) ‖Ω,tF

JT (TA, qA, ~uA, ~τA)

JW (TA, qA, ~uA, ~τA)

tF (TA, qA, ~uA, ~τA)

g(TA, qA, ~uA, ~τA)

(1.1)

Subject to :

 f(σ(~x, t;TA, qA, ~uA, ~τA)) < σdamage, ∀~x ∈ Ω, t ∈ [0, tF ]

T (~x, t;TA, qA, ~uA, ~τA) < T damage, ∀~x ∈ Ω, t ∈ [0, tF ]
(1.2)

where ~x is the spatial position vector, t is the time, Ω is the spatial domain of the structure, tF

is the total time of the morphing process, ‖ · ‖Ω,tF
is any suitable metric norm with respect to

the spatial domain and time, ~utarget is the desired displacement (i.e., shape change), ~uapprox is

the approximate expected displacement given the design parameters predicted by a numerical

(or analytical) representation of the structure, JT and JW are the total thermal energy and

mechanical work, respectively, predicted by the numerical representation to perform the

morph, g represents any additional design objectives that may be desired, σ and T are the

approximate expected internal stress tensor and internal temperature, respectively, predicted

by the numerical representation throughout the structure during the morphing process, f(·)

is a suitable scalar stress transform (e.g., Tresca criterion), and σdamage and T damage are

the stress and temperature limits, respectively, to avoid damaging the material. A solution

to 1.1 and 1.2 can be obtained through a nonlinear optimization strategy to identify the

activation and actuation parameters that minimize the desired objectives while satisfying

the required constraints. Figure 1.2 shows a flow chart that describes the overall procedure

for the computational design framework. In general, given the initial structural shape,

properties, boundary conditions, and design objectives and constraints, the design problem

begins with the generation of one or more trial solutions for the design parameters (i.e.,

activation and actuation distributions). The suitability of the trials are evaluated using the

numerical representation of the structural morphing process, and based on the design criteria
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and the optimization strategy employed, the trial solution(s) are updated to better meet the

design objectives and the process is repeated. The optimization is completed once a design

solution or set of solutions is found that suitably fits the design objectives or a maximum

number of iterations is reached.

Figure 1.2: Flow chart for the generalized computational design framework.

The computational approach to design a morphing SMP structure used herein primar-

ily relies on the ability to develop a numerical representation (e.g., finite element method,

boundary element method, etc.) of the morphing structure that is a reasonably accurate

representation of the structural behavior and can predict the morphing outcome (i.e., de-

formed shape) as well as the outcome of any other design objectives (e.g., total thermal

energy input) given an activation and actuation pattern. Any preferred method can be used
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to solve the coupled thermo-mechanical SMP analysis to calculate the difference between

the desired behavior and the simulated behavior, the total energy (i.e. thermal energy and

mechanical work), the total time, and check the constraints for a given set of design param-

eters. At the continuum level the nonlinear fully coupled thermo-mechanical behavior of

thermo-responsive SMP for the vast majority of uses can be theoretically described by the

conservation of mass, linear and angular momentum, and energy. Of particular significance

to the thermo-responsive SMP case are the conservation of linear momentum and energy,

which can be written in general as:

O · σ + ρ~b = ρ~̈u (1.3)

O · ~q + ρe− ρs = σ : (O~̇u) (1.4)

where σ is the Cauchy stress tensor, ρ is the mass density, ~b is the body force vector, ~u is

the displacement vector, ~q is the internal heat flux vector, e is the internal energy per unit

mass, and s is the energy source per unit mass. Of critical importance to computational

design problems is that the forward modeling should both accurately and efficiently represent

the true physical behavior of the system. Without an accurate representation, an inverse

solution may be unattainable, or worse yet, any apparent solution may be dramatically

incorrect. Yet, while using multi-physics modeling with the highest possible resolution is

ideal from an accuracy standpoint, the resulting computational expense is expected to cause

most realistic computational design (particularly control) applications to become infeasible.

Similarly, any preferred optimization approach can be used to guide the search for the

optimal design solution. However, the optimization approach should have the capacity to

search through wide ranges of parameter values over potentially continuous search spaces

and complete the search (i.e., converge) within a reasonable computational expense (i.e.

numbers of evaluations of objective functions). In general, optimization techniques can be

divided into two major categories: gradient-based and non-gradient based methods. Typi-

cally, gradient-based methods can finish the optimization with comparatively few iterations,

but are local methods that will seldom find global minima for non-convex problems (which

are most common) unless the initial estimate is very close to the global solution. In contrast,
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non-gradient based methods, particularly the stochastic search methods such as genetic al-

gorithms, have excellent global search capabilities, but can require a relatively large number

of evaluations of the objective functions. In the cases where the systems are particular com-

plex, each numerical simulation of the system can be of great computational expense, and

the number of iterations required for convergence can be prohibitive. In order to successfully

obtain solutions for computational design problems it is often desirable to combine the two

approaches (i.e. gradient and non-gradient), such as using a stochastic non-gradient method

for a relatively small number of iterations first, and then using the obtained estimate as the

initial point of a gradient-based local search technique [107], thereby maintaining the global

search capabilities with dramatically reduced computational expense.

1.4 NUMERICAL INVESTIGATION OF OPTIMAL DESIGN PROBLEM

As an initial proof-of-concept and to test the inherent benefits and challenges of the proposed

computational design approach, a numerical investigation was performed with example de-

sign applications derived from concepts of morphing skeletal structural components (i.e.,

framing and connecting elements). First, a smart link concept was used to extensively ex-

plore the potential behavior of the inverse design problem developed herein, including the

sensitivity of the design problem to several potential design parameters and the uniqueness

of the solution process. Lastly, the example of a morphing structural backbone was consid-

ered to explore the ability to account for an indirectly controlled (i.e., not directly actuated)

feature of the target shape geometry through localized activation and the computational

design approach.

Both example cases followed a standard thermo-responsive SMP cycle for active mor-

phing, in which the structure starts in an initial (cast) configuration, the sample is heated

to reduce the stiffness, it is then deformed into a desired new configuration and when the

deformation is complete the sample is cooled to restore the stiffness and lock the shape. For

simplicity, for all test cases the time required to dissipate the heat and “lock” the struc-

ture in the deformed configuration was neglected along with any “bounce back” (i.e., return
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deformation) that may occur due to release of residual stress after deforming, removing ac-

tivation, and releasing actuation forces. However, preliminary tests (not shown for brevity)

did indicate that bounce back would likely be negligibly small.

1.4.1 Forward Problem

In all test cases to conserve computing cost the examples were scaled down and simplified

considerably so that the activation would occur more quickly and so that the mechanical

behavior was reasonably approximated in two dimensions with the plane assumptions. The

structures were considered to be composed entirely of SMP and implementation aspects, such

as actuation devices and heating elements, were not considered in the analysis beyond their

ability to apply temperature (TA(~x, t)) and displacement (~uA(~x, t)) as boundary conditions to

the structure. In addition, for simplicity the activation process was assumed to occur entirely

through a temperature dependent Young’s modulus, and the behavior of the structures

was assumed to be defined by linear transient heat transfer and linear elastic quasi-static

solid mechanics. Therefore, the only thermo-mechanical coupling was assumed to be with

respect to the Young’s modulus, and the system could be analyzed by a sequentially coupled

thermo-mechanical analysis (i.e., an uncoupled thermal analysis sequentially followed by

a temperature-dependent mechanical analysis). While these simplifications are noted to be

significant and would not be expected to be sufficient for accurately modeling the “true” finite

strain nonlinear thermo-mechanical behavior of a thermo-responsive SMP structure being

morphed [19, 50, 55, 92], the relative overall behavior and particularly the conclusions drawn

with regards to the proof-of-concept of the benefits and challenges of the design methodology

should not depend significantly on the simplifications applied herein. Furthermore, initial

tests were performed (not shown here for the sake of brevity) comparing the behavior of

some of the design solutions for the SMP structures with a simple nonlinear hyperelastic

model, as shown in [108], in comparison to the purely linear model. While the nonlinear

model showed differences in the stresses occurring during the morphing process, the relative

overall stress distributions remained nearly identical and the behaviors predicted using the

linear models were generally conservative.
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Therefore, the behavior of the SMP devices for the example problems was represented

by the following boundary value problem:

kO2T (~x, t) = ρc
∂T (~x, t)

∂t
in Ω, (1.5)

O · σ(~x, t) = ~0 in Ω, (1.6)

σ(~x, t) = CIV (E(T ), ν) : ε(~x, t), (1.7)

ε(~x, t) =
1

2
[O~u(~x, t) + O~u(~x, t)T ], (1.8)

T (~x, t) = TA(~x, t) on ΓT , (1.9)

~u(~x, t) = ~uA(~x, t) on ΓU , (1.10)

kOT (~x, t) · ~n(~x) = h(T (~x, t)− Tair) on Γ ∩ ΓT , (1.11)

where ~x is the spatial position vector, t is the time, T is the temperature, k is the thermal

conductivity, ρ is the mass density, c is the specific heat, σ is the Cauchy stress tensor, ε

is the small strain tensor, CIV is the fourth order elastic stiffness tensor, E is the Young’s

modulus, ν is the Poisson’s ratio, ~u is the displacement vector, Ω is the spatial domain of

the structure, Γ is the domain boundary, ~n is the unit outward normal vector on the domain

boundary, ΓT is the portion of the domain boundary where the temperature is specified, ΓU

is the portion of the boundary where the displacement is specified, h is the convective heat

transfer coefficient, and Tair is the temperature of the surrounding environment.
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Based on the above model, the total thermal energy (JT ) required for activation and

the total mechanical work (JW ) required for actuation can then be determined, respectively,

with the following:

JT =

∫
t

∫
ΓT

−kOT (~x, t) · ~n(~x)d~xdt (1.12)

and

JW =

∫
t

∫
ΓU

σ(~x, t) · ~n(~x) · ~̇uA(~x, t)d~xdt. (1.13)

The chosen material parameters were based on those published for the commercially

available thermo-responsive SMP Veriflex [15, 44, 53, 62]. Figure 1.3 shows the assumed

relationship between the elastic modulus and temperature, with the modulus varying between

1050MPa in the glassy (i.e., hard) state to 0.24MPa in the rubbery (i.e., soft) state when the

SMP is heated above its glass transition temperature, Tg = 62◦C or 335.15K. Furthermore,

glass transition rather than melting transition [59, 102] was considered for the present work,

and therefore issues relating to latent heat were neglected. The remaining mechanical and

thermal material parameters are shown in Table 1.1.

For all analyses (including all test cases and optimization iterations) the coupled thermo-

mechanical behavior described by 1.5 - 1.11 was simulated using the Galerkin finite element

method [90] through the commercial finite element package Abaqus [96]. Moreover, the finite

element analyses were thoroughly verified, particularly with respect to mesh convergence,

for the admissible ranges of design parameters considered in all cases.

1.4.2 Optimization Algorithm

The primary tool employed for solving the design optimization problems for the present

work was a genetic algorithm, a stochastic global search algorithm that mimics the process

of evolution in nature [36, 81]. Genetic algorithms (GAs) are heuristic optimization ap-

proaches that generally rely on three main operations to evolve a population of potential

solutions to the optimization problem parameters: survival, reproduction, and mutation. In

simple terms, survival is the decision process as to which individuals (i.e., potential solutions)

progress to the next generation (i.e., stay in the population of potential solutions) based on
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Figure 1.3: Assumed relationship between Young’s modulus and temperature for the numer-

ical study.

Table 1.1: Assumed material parameters for the numerical study.

Material Parameter Value

Poisson’s ratio 0.45

Density 920kg/(m3)

Specific heat 1800J/(kg·K)

Thermal conductivity 0.17W/(m·K)

Convective heat transfer coefficient 25W/(m2 ·K)
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their fitness (i.e., how well the individual meets the optimization objective), reproduction

combines parameters for two individuals in the population to create a new individual, and

mutation randomly changes a portion of an individual to create a new individual. The evo-

lution of the population continues through several generations until satisfactory individuals

are found. GAs have seen substantial use in recent years due to their ease of implementation

(e.g., there is no need for complicated gradient calculations), global search capabilities, and

simplicity of parallelization. Although GAs may not be ideal for many applications in com-

putational inverse mechanics due to the large number of function evaluations (i.e., numerical

simulations) that are typically required to converge to an optimal solution, the relative sim-

plicity of the modeling approach applied herein was certainly a factor in facilitating the use

of a GA. Moreover, GAs have seen use in several applications involving SMA or SMP devices

[30, 84, 85, 100]. In all example problems presented here, the optimization algorithms were

implemented utilizing the toolboxes available within the MATLAB environment [77].

1.4.3 Example 1: Smart Link

The concept of a smart structural link considered here implies a structural element that

connects other components of the structural frame (either passive or active structures them-

selves), which is capable of changing the shape of the structure by changing the positioning

of the connected elements through morphing of the link (e.g., [62]). Again note that the

design process for such smart link technologies has thus far been largely empirical, usually

involving several cycles of fabrication and testing, and the final designs entirely relied on full

activation of the SMP component. In contrast, the optimal local activation design approach

proposed here seeks to achieve the same target morphing capability more efficiently (i.e.,

without trial and error testing in the lab) to save time and money in the design process, and

create a final design for the activation and actuation process with considerable savings in

both time and energy required to morph the structural component.

As shown in Figure 1.4, a 20mm×5mm×1mm homogeneous rectangular prism composed

of thermo-responsive SMP was considered and analyzed using the plane stress assumption.

Again, note that the size was reduced with respect to in-use structures to reduce computing
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Figure 1.4: (a) Schematic of the smart link design concept, (b) two paths of applied dis-

placement considered, elliptic and rectangular, with respect to the angle of deformation, θ,

and (c) applied temperature with respect to time for Example 1: Smart Link.

costs, but the observations with respect to the inverse procedure should not be significantly

affected by the size of the structure. The morphing procedure considered involved first heat-

ing the structure in its cast configuration to initiate the activation process. After some time

of purely heating actuation would be applied to deform the structure into the desired shape.

As such, the total time to perform the structural morph, tF , was simply the summation of

the purely heating time, tD, and the actuation time, tM .

For the mechanical actuation process the bottom of the structure (Γ2) was assumed to

be fixed to a rigid support and the displacement across the top of the structure (Γ1) was

uniformly controlled to meet the target deformation (i.e., actuation was applied only to the

top surface, and the target shape change only applied to the top surface). For comparison

purposes, two different deformation paths were considered to reach the same targeted final

shape based on the change in angle along the path of an ellipse as shown in Figure 1.4: (1) a

path that followed the curve of the ellipse (referred to as the elliptic path) and (2) a purely

horizontal motion followed by a purely vertical motion (referred to as the rectangular path).

In addition, actuation was assumed to occur at a constant rate. Therefore, the actuation

process could be defined completely by the path type (elliptic or rectangular), the final angle

of deformation, θ, the starting time, tD, and the time to complete the deformation (i.e.,
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Table 1.2: Applied displacement boundary conditions for Example 1: Smart Link.

Mechanical boundary Type 0 6 t 6 tD tD 6 t 6 tF

u1(t) = 0 u1(t) = 0

Fixed boundary (Γ2) u2(t) = 0 u2(t) = 0

u1(t) = 0 u1(t) =
√

400 tan2(θ(t−tD)/tM )
4 tan2(θ(t−tD)/tM )+1

Elliptic path (Γ1) u2(t) = 0 u2(t) = 20−
√

400
4 tan2(θ(t−tD)/tM )+1

u1(t) = 0 u1(t) = 20(
√

4 tan2 θ+1+tan θ−1)(t−tD)

(
√

4 tan2 θ+1)tM

Rectangular path (Γ1) u2(t) = 0 u2(t) = 20(
√

4 tan2 θ+1+tan θ−1)(t−tD)−20 tan θ·tM
(
√

4 tan2 θ+1)tM

morph), tM , as shown in terms of the displacement boundary conditions in Table 1.2. The

remaining boundaries (Γ3, Γ4, Γ5, and Γ6) were taken to be traction free.

For the thermal activation process the entire structure was assumed to be initially at

room temperature (293K) and temperature was assumed to be controllable with a heating

element along the entire bottom (i.e., the support region) and along some portion of both

sides starting from the bottom (i.e., the height of the heating element, hT , was assumed to

be controllable). Temperature was assumed to be applied uniformly to the heating region

(Γ2, Γ3, and Γ4) and to increase linearly on that region starting from room temperature at a

fixed rate of 1.15K/s for a controllable “warm-up” duration (in effect defining the maximum

applied temperature), tT , and then held constant until morphing was completed, as shown in

Figure 1.4. The portion of the boundary not being heated (Γ1, Γ5, and Γ6) was assumed to

be exposed to air at room temperature (Tair = 293K) with a convective boundary condition

and convective heat transfer coefficient (h) of 25W/(m2 ·K).

The primary design objective of this first example was to minimize the total (thermal and

mechanical) energy to obtain the specified shape change without damaging the structure.

Based on the example concept for a smart link structure, the potential variables for optimiz-

ing the design of the thermal activation and mechanical actuation included: warm-up time

(i.e., time to increase applied temperature) (tT ), heating time prior to actuation (tD), height
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of the heating element (hT ), and actuation time (tM). As a point of comparison throughout

the example a “control” design was established based on the traditional implementation re-

sembling the current standard of practice for a thermo-responsive SMP morphing structure

concept. For the control design the heating element was applied to the maximum boundary

area and the applied temperature was raised to the maximum level. Only after the entire

volume of the structure was activated (i.e., the entire domain temperature reached a value

greater than Tg) the actuation was applied to deform the structure as quickly as possible.

Note that the variables required to fully activate the structure prior to actuating are in-

dependent of the actuation path or total deformation and the minimal morphing time was

assumed to be constant, therefore, the control design parameters remained constant for all

test cases. The parameters used for the control design were given by

tT = 100s, tD = 100s, hT = 20mm, tM = 10s. (1.14)

One last important step prior to setting up the optimization problem was to test and evaluate

the effect of the design variables on the design objectives (i.e., the sensitivity of the design

variables). In general, towards reducing the ill-posedness of the inverse design problem, the

optimization process should include only those variables that have a significant effect on the

design objectives.

1.4.3.1 Sensitivity Analysis: To test the relative effect of the four potential design

variables on the design objectives a coarse sensitivity analysis was performed in which the

parameters used for the control analysis were modified one at a time (with the other three

variables held constant at the original control design values). The morphing process was

simulated for the elliptic path with an angle of deformation of π/4 rad for each variation to

determine the relative change in the total activation and actuation energy. Each variable was

modified by two amounts, 20% and 40%, in turn, and Table 1.3 shows the relative change in

the total energy compared to the control design with respect to each design variable. Note

that the sensitivity results for the given path and angle of deformation were representative

of the behavior of the alternate path and other angles of deformation (further tests are not

shown for brevity). The results presented are fairly simple, but important, showing a high
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Table 1.3: Relative (percent) change in total energy to complete the morph for changes of

20% and 40% for each potential design variable, respectively, for the elliptic path and angle

of deformation θ = π/4 rad for Example 1: Smart Link.

Design Total energy change% Total energy change%

Parameters (20% Parameter change) (40% Parameter change)

tT 14.1 32.6

tD 9.6 14.9

hT 13.5 32.4

tM 1.3 2.4

dependence for the total energy on the warm-up time, tT , and the height of the heating

element, hT , slightly less dependence on the heating time prior to actuation, tD, and a min-

imal dependence on the actuation time, tM . One additional interpretation of the sensitivity

results is that the thermal energy dominates the efficiency of the thermo-responsive SMP

device in comparison to the mechanical actuation, which confirms an expected outcome

when considering the current literature and emphasis on applying and relieving activation

efficiently. As such, including the actuation time would only serve to “confuse” the search

process (i.e., increase the ill-posedness of the problem) by having nearly identical outcomes

for very different parameter values and would provide minimal potential benefit to the design

objective. Therefore, the actuation time was eliminated from the optimization process and

simply fixed at a value of tM = 10s, and the design optimization included the remaining

three design variables:

• Warm-up time (tT ).

• Heating time prior to actuation (tD).

• Height of the heating element (hT ).
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Table 1.4: Summary of the optimization problem and solution approach for Example 1:

Smart Link.

Objective Function f = JT + JW + Jmax ·
‖σtresca‖L∞(Ω)

σdamage
·H(‖ σtresca ‖L∞(Ω) − σdamage)

Design Parameters 0 < tT 6 100s

and Constraints 0 < tD 6 590s

0 < hT 6 20mm

Optimization Method Hybrid Genetic Algorithm − Interior Point Method

1.4.3.2 Optimization Problem: Once the sensitive design parameters were established,

the optimization approach was implemented to optimally design the thermo-responsive SMP

smart link to minimize the total activation and actuation energy to achieve the shape change

without damaging the structure. Table 1.4 shows an outline of the constrained optimization

problem constructed and the solution approach. For this first example the design objective

was cast as a single objective to minimize the total combined energy (i.e., the sum of the

thermal energy and mechanical work). The constraints included the maximum total time to

complete the morph of 600s, the maximum height of the heating element of 20mm (i.e., the

total height of the device), the maximum temperature to prevent damage of 408K, which

was implemented by constraining the warm-up time (tT ) to a maximum of 100s, and the

maximum Tresca stress (‖ σtresca ‖L∞(Ω)) to prevent damage of 11.5MPa. An additional

note is that the stress constraint was particularly challenging to implement as it was the

one constraint that did not directly relate to a design parameter. During development the

stress constraint was initially implemented as a “hard” constraint by severely and equally

penalizing all individuals that exceeded the stress limit anywhere in the domain. However,

the “hard” constraint caused the search process to be far more challenging than expected

since there was no guidance for the search to lead toward a possible optimum near to the

stress limit. To overcome this difficulty, the maximum stress constraint was incorporated as
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an additive penalty function in the objective function to improve the design optimization

search space. The penalty function was formulated as a ramp function as follows

Jmax ·
‖ σtresca ‖L∞(Ω)

σdamage
·H(‖ σtresca ‖L∞(Ω) − σ

damage) (1.15)

where H(·) is the Heaviside step function, ‖ · ‖L∞(Ω) is the L∞-norm over the domain Ω, and

Jmax is the estimated maximum possible value of total energy. This ramp function penalty

prevented solutions that violated the constraint without penalizing or even differentiating

those below the limit condition. However, the penalty function allowed the optimization

procedure to differentiate between solutions that were close to admissible versus those which

were not, thereby dramatically improving the simplicity of the design solution search space.

Initial testing (not shown here for brevity) showed that the energy functions (1.12 and

1.13) were substantially non-convex, and therefore, the selected optimization approach of a

GA was well-suited for the problems herein. Three common operators were used for the GA

in this example: stochastic uniform sampling as the selection operator, single point crossover

as the reproduction operator, and the adaptive feasible mutation operator. In addition, to

ensure that the optimization solutions were locally refined as much as possible for the first

example, the design solution provided by the GA was implemented as the initial guess in

a gradient based optimization algorithm known as the interior point optimization method

[37, 38, 68]. Specifically, the Hessian was calculated by a dense quasi-Newton approximation

in which both Newton steps and conjugate gradient steps were allowed at each iteration (i.e.

the algorithm first attempts to take a Newton step and if the algorithm cannot, a conjugate

gradient step is taken.), and the functions were scaled by their values at the initial point.

However, in general the gradient-based optimization provided minimal improvement to the

solution beyond what was provided by the GA.

1.4.3.3 Optimization Results and Discussion: Table 1.5 shows both the control and

optimized design parameter values for the warm-up time (tT ), heating time (tD), and height

of heating element (hT ), and the corresponding activation thermal energy (JT ), actuation

mechanical work (JW ), and total energy (J), and the percent difference with respect to the

control designs for the elliptic path with two angles of deformation, π/10 rad and π/4 rad.
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Table 1.5: Control and optimized (Opt) design parameters and resulting energy consumption

to perform the morph and percent difference (%Diff) with respect to the control design for

two angles of deformation with the elliptic path of deformation for Example 1: Smart Link

(σmaxtre = ‖ σtresca ‖L∞(Ω), mJ = 10−3Joule).

θ Design tD tT hT σmaxtre JT JW J

(rad) Case (s) (s) (mm) (MPa) (mJ) (mJ) (mJ)

π/10 Control 100.0 100.0 20.0 1.3 16915.0 4.0 16919.0

Opt 74.6 84.3 8.1 11.5 5900.3 18.2 5918.5

%Diff -25.4 -15.7 -59.7 +812.9 -65.1 +357.3 -65.0

π/4 Control 100.0 100.0 20.0 3.3 16915.0 42.1 16957.1

Opt 101.5 66.6 10.8 11.5 7819.0 88.9 7907.9

%Diff +1.5 -33.4 -46.2 +250.3 -53.8 +111.1 -53.4

In addition, Table 1.6 shows a representative example of the temperature at initiation of

morphing and the Tresca stress distributions and the final deformed shape of the optimized

design compared to the control design for the elliptic path with the angle of deformation

π/4 rad.

In all cases a substantial energy savings was obtained from the optimal design process,

with a reduction in total energy consumption of over 50% regardless of the angle of de-

formation in comparison to the control design. Yet, while the total energy was lower, the

mechanical work portion of the energy was much higher for all of the optimized designs

compared to the control design, with an increase of over 100% for the larger deformation

and over 300% for the smaller deformation. Furthermore, all optimal design solutions had

a maximum Tresca stress during the morphing process very near to the stress limit (i.e.,

damage stress) (shown after rounding up as the exact value). In particular, the mechanical

portion of the results further emphasizes what was noted previously that the thermal energy
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Table 1.6: Control and optimized (Opt) design solutions, resulting temperature distribution

at initiation of morphing, and Tresca stress distribution and deformed shape at completion of

morphing for angle of deformation π/4 rad with the elliptic path of deformation for Example

1: Smart Link (mJ = 10−3Joule).

Design Case Schematic Temperature Distribution (K) Stress Distribution (Pa)

Control

tD = 100.0s

tT = 100.0s

hT = 20.0mm

J = 16957.1mJ

Opt

tD = 101.5s

tT = 66.6s

hT = 10.8mm

J = 7907.9mJ
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dominated the energy consumption of the morphing process. Therefore, not surprisingly the

primary objective of the optimization naturally became identifying the applied heating to

minimally activate the structure to prevent damage during the morph.

As would be expected, the optimized design solutions and resulting improvements in

the energy consumption are noticeably different depending on the angle of deformation

and there is a nonlinear relationship between the optimized solution and the final morphed

shape. However, the optimized design solutions and resulting improvements in the energy

consumption are nearly identical for different actuation paths (elliptic or rectangular), hence

only one set of results are presented. The path results can in part be explained by the

relative path independence as well as the relative insignificance of the mechanical work to

the total energy requirement. Moreover, testing showed that in many instances different

design parameter combinations resulted in nearly identical total energy solutions, which

further highlights the ill-posedness that creates a challenge for the inverse problem.

To explore the relative uniqueness of the potential design solutions and in some sense the

ill-posedness of the inverse problem in a simple way, several additional optimization tests

were performed to identify alternate solutions near to the optimal total energy requirement,

but with varying design parameters. Table 1.7 shows examples of design solutions with

similar total energy consumption as the previous optimized solutions for the elliptic actuation

path, but with disproportionately different design parameter values. Of note is that in the

elliptic path with θ = π/10 rad the thermal energy was higher while the mechanical work

was lower in comparison to the original optimal solution, which may be a critical difference

depending on the specifics of the application such as a preference for lower mechanical energy

consumption regardless of increases to thermal cost. Fortunately, the computational design

strategy is such that emphasis could easily be placed on either cost functional component

(mechanical or thermal) with weighting functions if the user had priority on minimizing the

mechanical work more so than thermal or vice versa. Furthermore, to create a comprehensive

view of the design options one could systematically vary the weighting on the cost functional

components or employ some other variant of a multi-objective optimization approach to

obtain the spectrum of potential design solutions (i.e., Pareto surface) with respect to energy

(or any other design target) tradeoffs. Overall though, these results clearly show the impact
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Table 1.7: Comparison of two trials of the optimized (Opt) design parameters and resulting

energy consumption to perform the morph and percent difference (%Diff) for two angles

of deformation with the elliptic path of deformation for Example 1: Smart Link (σmaxtre =

‖ σtresca ‖L∞(Ω), mJ = 10−3Joule).

θ Deisgn tD tT hT σmaxtre JT JW J

(rad) Case (s) (s) (mm) (MPa) (mJ) (mJ) (mJ)

π/10 Opt1 74.6 84.3 8.1 11.5 5900.3 18.2 5918.5

Opt2 92.0 61.0 8.8 11.5 5906.1 16.6 5922.7

%Diff +23.2 -27.6 +9.0 0.0 +0.1 -8.8 +0.1

π/4 Opt1 101.5 66.6 10.8 11.5 7819.0 88.9 7907.9

Opt2 118.3 64.4 10.6 11.5 7877.3 89.7 7967.0

%Diff +16.5 -3.3 -1.2 +0.0 +0.7 +0.9 +0.7

of the computational design approach to significantly improve the efficiency of potential

morphing devices.

Lastly, based on the premise that in practice a design solution that produces internal

stresses near to damaging the structure (which was the case for all optimized solutions)

would be undesirable, an additional set of tests were performed in which the stress limit was

reduced and the optimization repeated. Table 1.8 shows the results of the design optimization

process with the maximum Tresca stress set to a value of 10MPa instead of the 11.5MPa

used previously. Similarly to the previous results all of the optimal design solutions had

a maximum Tresca stress during the morphing process very near (exact after rounding) to

the new stress limit. The results imply that at least for the present example the optimal

design will generally yield a stress near to the maximum stress constraint, which again is

largely based on the dominance of the thermal energy in the overall efficiency of the device.

Moreover, the solution design parameters were again quite different than the previous test

cases further emphasizing the diversity of the potential design solutions.
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Table 1.8: Control and optimized (Opt) design parameters and resulting energy consumption

to perform the morph and percent difference (%Diff) with respect to the control design

for two angles of deformation with the elliptic path of deformation with the stress limit

reduced to σdamage = 10.0MPa for Example 1: Smart Link (σmaxtre = ‖ σtresca ‖L∞(Ω), mJ =

10−3Joule).

θ Design tD tT hT σmaxtre JT JW J

(rads) Case (s) (s) (mm) (MPa) (mJ) (mJ) (mJ)

π/10 Control 100.0 100.0 20.0 1.3 16915.0 4.0 16919.0

Opt 95.8 63.3 8.7 10.0 6089.7 14.5 6104.2

%Diff -4.2 -36.7 -56.6 +693.9 -64.0 +264.4 -63.9

π/4 Control 100.0 100.0 20.0 3.3 16915.0 42.1 16957.1

Opt 142.6 59.1 12.3 10.0 8611.8 80.4 8692.2

%Diff +42.6 -40.9 -38.6 +204.6 -49.1 +91.0 -48.7
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Figure 1.5: (a) Schematic of the morphing structural backbone design concept and (b)

schematic of the parameterization to calculate the curvature deviation design objective for

Example 2: Morphing Structural Backbone.

1.4.4 Example 2: Morphing Structural Backbone

In contrast to the smart link, the concept of the morphing structural backbone considered

here implies a structural element that is more directly connected to the exposed surface

of the structure, and therefore, the overall shape of the backbone, not just the positioning

of endpoints, affects the functional shape of the structure. For example, such a morphing

component could be installed in the edge of an aerodynamic structure such as a wing, in

which it may be desirable to use the component to prescribe both the size as well as the

shape (e.g., curvature) of the edge surface. The structural backbone considered for the

second example is shown in Figure 1.5. The structure was taken to be a homogeneous half-

circular prism with 20mm outer radius, 15mm inner radius, and 200mm length composed of

thermo-responsive SMP, and the structure was analyzed using the plane strain assumption.

The morphing procedure applied followed a nearly identical sequencing pattern as the

first example, with the exception that the warm-up duration (tT ) was eliminated and the

applied temperature was assumed to be instantaneously fixed at the start of activation as

the maximum value of 408K. Similarly to the previous example, the time to complete the

26



deformation (tM) did not have a significant effect on the design objectives and was again fixed

at a value of 10s. For the mechanical actuation process the two ends of the structure (Γ1 and

Γ4) were assumed to be constrained in the horizontal direction and the vertical displacement

was uniformly controlled to deform each end toward the centerline of the structure (effectively

reducing the height of the structures profile). For the thermal activation process the entire

structure was assumed to be initially at room temperature (293K) and a portion of the

outer and inner surface of the structure defined by the angle α (Γ2 and Γ3) was heated with

the fixed temperature of 408K. The remaining (unheated) boundaries of the structure were

assumed to be insulated. Therefore, the variables to optimize the design of the morphing

backbone included:

• Heating time prior to actuation (tD).

• Angle of the heating element (α).

Due to the symmetry of the structure, all analyses were performed considering only the top

half of the morphing backbone.

Two design objectives were considered for this second example in addition to the con-

straint to prevent damage: (1) minimize the total energy required to perform the morphing

process (identically to the first example through the sum of 1.12 and 1.13) and (2) maintain a

curvature over the outer surface as close to circular as possible (i.e., to maintain the half circle

shape). Figure 1.5 shows a schematic for the approach used to parameterize the curvature

objective. For simplicity, the curvature objective calculation divided the outer surface of the

structure into three equal sections: AB, BC and CD. Then the relative difference between

the achieved curvature after morphing and that of a circle (referred to as the “curvature

deviation” (d)) was defined as the relative difference between the intersection points of the

perpendicular bisectors of AB and BC (~c1) compared to BC and CD (~c2) with respect to

the average of the corresponding radii of curvature for ABC (r1) and BCD (r2), given by:

d =

√
(c1x − c2x)

2 + (c1y − c2y)
2

0.5(r1 + r2)
. (1.16)
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Again, for a point of comparison throughout the second example a control design was

established based on complete activation of the structure prior to actuation. For the control

design, the entire outer and inner surfaces of the structure were heated and actuation was ap-

plied after the entire volume was activated, yielding the following control design parameters:

tD = 25s, α = π/2 rad. (1.17)

1.4.4.1 Optimization Problem: Table 1.9 shows an outline of the constrained multi-

objective optimization problem for the morphing backbone. Again, a GA was employed

to solve the optimization problem, but in this case with a multi-objective approach to ad-

dress the two competing objectives and without the additional gradient based algorithm

at completion. The multi-objective GA applied used a Pareto-based ranking scheme with

the tournament selection operator, single point crossover, and adaptive feasible mutation to

identify a set of design solutions along the Pareto front representing the spectrum of optimal

combinations of total energy and curvature deviation. An important note is that for this ex-

ample it was necessary to implement the ramp function stress penalty on both optimization

objectives (energy and curvature), otherwise solutions that violated the stress limit would be

admissible on the Pareto surface. For the curvature deviation penalty dmax is the estimated

maximum possible value of curvature deviation.

1.4.4.2 Optimization Results: Figure 1.6 shows the Pareto surface of the optimal so-

lutions obtained for the morphing backbone. As can be seen, every optimized solution had

improvement in both objectives, using less total energy and achieving a smaller curvature

deviation in comparison to the control design case. In addition, the Pareto surface shows a

nearly linear tradeoff relationship between the total energy and the curvature. Table 1.10

shows the optimized design solutions, the corresponding temperature distributions at the

initiation of morphing, the final Tresca stress distributions, and the final deformed shapes

for the two limit points on the Pareto surface (i.e., absolute minimum energy and minimum

curvature deviation) compared to the control design. Similar to the first example, consider-
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Table 1.9: Summary of the optimization problem and solution approach for Example 2:

Morphing Structural Backbone.

Objective Functions f1 = JT + JW + Jmax ·
‖σtresca‖L∞(Ω)

σdamage
·H(‖ σtresca ‖L∞(Ω) − σdamage)

f2 = d+ dmax ·
‖σtresca‖L∞(Ω)

σdamage
·H(‖ σtresca ‖L∞(Ω) − σdamage)

Design Parameters 0 < tD 6 590s

and Constraints 0 < α 6 π/2 rad

Optimization Method Multi-objective Genetic Algorithm

ably less heat was applied in the optimized solutions compared to the control design, and a

locally activated solution was optimal in all cases. It is of particular interest that regardless

of the energy consumption, local activation is necessary to accurately achieve the desired

shape change, and the computational approach is particularly well suited to determine this

activation in contrast to intuitive design approaches. Again, the only drawback of the local

activation might be the relatively high stress distributions that occur during morphing in

comparison to the control design. Although, in all cases the stress occurring for the optimized

cases was within the reasonable range assumed to not cause damage.

1.5 CONCLUSION

A strategy for utilizing synchronized and localized activation and actuation for optimally

efficient morphing smart material structures was presented and analyzed. For context the

presentation focused on thermo-responsive shape memory polymer structures and structural

components, and a computational inverse mechanics methodology was proposed for deter-

mining the parameters defining the necessary applied thermal activation and mechanical

actuation to optimally design morphing processes for such structures. The inverse solution
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Figure 1.6: Total energy consumption and final curvature deviation after morphing for the

control and Pareto surface of optimal design solutions for Example 2: Morphing Structural

Backbone.

approach included a computational representation of the coupled thermo-mechanical behav-

ior during the morphing process and a nonlinear optimization algorithm to identify the design

parameters that yield a morphing process that best approximates the desired shape change

subject to design objectives such as minimal morphing time, energy costs, and damage pre-

vention. Then a numerical study was shown consisting of two example design concepts based

on simplified morphing skeletal structural components with temperature-dependent elastic

moduli (representing thermo-responsive SMP) as a proof of concept to analyze the effec-

tiveness of the smart structure concept and design strategy. The finite element method was

employed to simulate the thermo-mechanical morphing processes and a genetic algorithm

combined (when possible) with an interior point method was used to identify the applied

thermal activation and mechanical actuation to optimally approximate the desired shape

change and minimize the total combined applied thermal and mechanical energy without

damaging the material. Through the numerical study, the framework was shown to pro-

vide a generalized and flexible means to dramatically improve efficiency of a shape-changing
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Table 1.10: Control and optimized (Opt) design solutions, corresponding resulting temper-

ature distribution at initiation of morphing, and Tresca stress distribution and deformed

shape at completion of morphing for the two limit cases on the Pareto surface (minimum

energy and minimum curvature deviation) for Example 2: Morphing Structural Backbone

(mJ = 10−3Joule).

Design Case Schemetic Temperature Distribution(K) Stress Distribution(Pa)

Control

tD = 25s

α = π/2

J = 4321.2mJ

d = 1.5

Opt1

tD = 49.4s

α = π/5

J = 2257.0mJ

d = 0.9

Opt2

tD = 57.6s

α = π/4

J = 2903.6mJ

d = 0.1
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structure over more traditional (and intuitive) approaches that require full activation of the

structure prior to actuation. However, some challenges were also identified for the solution

strategy including substantial non-convexity of the optimization search spaces and solution

non-uniqueness, which significantly hinder the efficiency of the solution process and with-

out further developments may limit the practical applicability of these strategies to more

elaborate structures and more realistic representations of the smart material behavior that

demand far more computing power.
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2.0 A COMPUTATIONALLY EFFICIENT APPROACH FOR OPTIMAL

DESIGN OF SMART MATERIAL MORPHING STRUCTURES USING THE

ADJOINT METHOD

2.1 ABSTRACT

A computational strategy is presented for computationally efficient estimation of the opti-

mal parameters relating to the distribution and sequencing of activation and actuation for

a morphing smart material structure or structural component to efficiently and effectively

achieve a desired morphing function. The strategy was presented in the context of structures

or structural components composed entirely of thermally responsive shape memory polymer,

and combines a numerical representation of the morphing process with a nonlinear optimiza-

tion algorithm to estimate the activation and actuation parameters that best address cost

functions and constraints relating to energy consumption, target shape change(s), morph-

ing time, and/or damage prevention. In particular, a formulation of the adjoint method is

presented to be utilized to estimate the gradient of the objective function(s) with respect

to the activation and actuation parameters with minimal computational expense within a

gradient-based optimization strategy, which then provides an optimization process that is

substantially computationally efficient overall.Two numerical examples are presented to ver-

ify and test the computational approach, in which the synchronization of multiple activation

and actuation parameters was optimized with respect to the energy cost and target shape

changes in morphing skeletal structural components. Overall, the computational optimal

design approach with the adjoint method was shown to provide the capability to efficiently

identify activation and actuation parameters to achieve desired morphing capabilities.
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2.2 INTRODUCTION

Morphing structure technologies have a myriad of potential applications in the realm of

reconfigurable and/or adaptable structures. Examples of such technologies include: trans-

formable structures, which may conform to uncertain and emergent situations by changing

according to occupant demand or energetic considerations [18, 41, 83]; deployable struc-

tures, which may change configurations depending on the service requirement [2, 46, 104];

and morphing aircraft, which may allow an aircraft to adapt in flight to meet changing mis-

sion objectives or environments [7, 23, 54]. There is a broad range of research efforts seeking

solutions for the implementation of these morphing structure concepts described, including

efforts relating to mechanisms to facilitate morphing as well as the manufacturing processes

to build such structures. Concomitantly, a large amount of current research focuses on the

integration of new materials into morphing structure concepts. Of particular interest have

been smart active materials that have intrinsically controllable material properties. Such

materials could conceptually provide for infinite possibilities in the types of structures that

could be created and the morphing capabilities they could employ.

Among the smart materials being developed, Shape Memory Polymers (SMPs) are a

particularly promising class of structural materials that have the ability to exhibit variable

stiffness and experience extremely large deformations and shape changes without damage

and with minimal actuator force requirements. There are a wide variety of SMP compositions

and properties, and they can typically be divided based on the stimulus used to bring about

a change or desired response of the polymer. The most common is the thermally responsive

SMP [26, 118], followed by electrically responsive [109, 112], light responsive [39, 58], and

chemically responsive [11, 12]. SMPs have already seen utilization in some of the aforemen-

tioned morphing technologies, including deployable structures [42, 116], morphing aircraft

[69, 115, 117], as well as in medicine, for both morphing sutures and stents [64, 110], among

other applications [66, 67].

The design space for morphing structures composed of smart materials is truly open-

ended. Unfortunately, beyond the simplest possible cases, traditional (i.e., experience-based)

design strategies can be expected to be inefficient and likely ineffective, and alternative tools
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for implementing these technologies have not yet been extensively explored. A potential

strategy to overcome these design challenges is to use a computational inverse mechanics

approach. For a typical computational inverse mechanics approach, a numerical represen-

tation (e.g., finite element model) of the smart material system under consideration is first

created. An objective function and corresponding set of constraints are then defined that

measure the difference between the numerically approximated response given a set of un-

known variables and the system behavior that is desired. Lastly, a nonlinear optimization

algorithm is applied to find the variables that optimize the objective function(s), subject to

the constraints. There is no theoretical limit to the capabilities of computational inverse

approaches to provide quantitative inverse solutions, as long as the physical processes can

be modeled computationally and there is the sensitivity with respect to the desired system

features to be identified. Yet, for smart material shape changing structure applications, the

use of these inverse methods have thus far been limited, and mainly seen in the design of

shape memory alloy devices, particularly actuators [34, 71, 101]. In addition, one previous

study by the authors [94] presented a proof-of-concept on using the computational inverse

mechanics approach for the optimal design of morphing processes in locally activated smart

material structures. The computational inverse mechanics approach was shown through

numerical tests to provide a generalized and flexible means to facilitate the use of smart ma-

terial structures to achieve desired morphing processes with controllable localized activation

and actuation; however, the results were preliminary.

As discussed, there are three key components to be addressed for a typical computational

inverse mechanics approach, the numerical representation, the objective function, and the

optimization algorithm. Numerically representing the morphing process for a smart material

structure accurately can be a potentially complicated process [20, 51, 56].However, in terms

of the inverse solution process, the numerical representation component is relatively straight-

forward, in that standard methods, such as finite element analysis, can often be employed,

and the accuracy of this forward modeling has a clear and direct effect on the accuracy of

the inverse solution. Alternatively, the issues of selecting an appropriate objective functional

and optimization algorithm, which is the focus of the work herein, are intimately linked and

have significantly less obvious implications. While much of the objective function and con-
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straints are defined by the specifics of the application of interest, the specific form, such as

the type of norm used (e.g., L1 or L2), affects the nature of the search space, and therefore,

the ability of a particular optimization algorithm to traverse this search space to identify a

solution estimate. Furthermore, depending on the optimization technique employed, other

issues, such as differentiability of the objective and/or constraints may also need to be consid-

ered. In terms of the optimization algorithm selection, algorithms are often divided into two

categories: non-gradient-based and gradient-based. Non-gradient-based algorithms, such as

genetic algorithms [28, 72], which were used in the previous study by the authors [94], typi-

cally include some type of stochastic component in the search process to provide some degree

of global search capabilities. Non-gradient-based algorithms are often easier to implement as

well, being comparatively insensitive to the form of the objective functional and constraints.

However, non-gradient-based algorithms can be prohibitively computationally expensive, re-

quiring a comparatively large number of functional evaluations to estimate a solution. In

contrast, gradient-based algorithms, such as Newton’s methods [48, 49], can only be ex-

pected to converge to local solution estimates (unless the search space is convex, which is

not often the case), but are computationally inexpensive, requiring substantially fewer func-

tion evaluations compared to non-gradient-based algorithms. In addition, gradient-based

algorithms are not nearly as affected by the dimensionality of the problem (i.e., the number

of system parameters to be determined), with most non-gradient-based algorithms becoming

disproportionately more computationally expensive with increased problem dimensionality.

It was noted in the previous study [94] that while the genetic algorithm provided a means to

investigate the potential for computational design of smart material morphing structures as

a proof-of-concept with the low-dimensional example cases considered therein, more signifi-

cant and realistically applicable higher-dimensional examples would require a substantially

more computationally efficient optimization approach to allow for a thorough investigation

of the potential capabilities and to move towards potential implementation. Moreover, as is

often the case with design or control-type inverse problems, many applications of the type

of smart material morphing structure technology considered here would not require unique

and/or (near)-global solutions, and a gradient-based optimization approach would be clearly

preferable.
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Naturally, the key to utilizing a gradient-based optimization method is to develop an

approach to calculate the gradient of the objective functional with respect to the unknown

parameters. One simple method to implement to approximate the gradient of the objective

functional is to use a finite difference method. However, finite difference methods are limited

in that they require the evaluation of the objective functional, which involves the solution of

a computationally expensive boundary value problem in the case herein, a number of times

on the order of the number of unknown parameters (e.g., N + 1 for forward or backward

finite difference methods, where N is the number of design parameters to be determined).

Direct differentiation of the objective functional can improve the accuracy of the gradient

calculation compared to finite difference, but does not necessarily improve the computa-

tional expense, requiring N evaluations of the differentiated boundary value problems, and

is considerably more difficult to implement. Generally, for problems with even a moderately

large number of unknown design parameters to be determined, both finite difference and

direct differentiation can be computationally prohibitive. Alternatively, adjoint methods,

which have seen increasing use in a variety of computational inverse mechanics applications,

are capable of evaluating the gradient of an objective functional involving a boundary value

problem with a cost equivalent to only 2 boundary value problem evaluations, regardless of

the number of design parametersN . While substantially more computationally efficient than

the other two techniques, one particular challenge of adjoint methods is that they require the

derivation and implementation of an adjoint boundary value problem. Applications of com-

putational inverse mechanics using the adjoint method have included characterization and

design/control problems in elasticity [6], electromagnetics [25], aerodynamics [45], acoustics

[32], and heat conduction [114], among others.

The current work presents an efficient computational inverse mechanics strategy using

the adjoint method for the design or control of locally activated and actuated smart mate-

rial morphing structures. This work extends the previous proof-of-concept study to not only

address computational efficiency, but to also further explore the potential capabilities of this

smart material structure concept to achieve diverse morphing targets with energy efficiency

through controllable distributed activation and actuation. As previously, for simplicity, the

present study focused on thermally responsive SMP, but the approach is generalizable to a
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wide variety of smart materials, design objectives, and constraints. The general computa-

tional inverse problem solution approach for the design or control of smart material morphing

structures is presented in Section 2.3. The forward boundary value problem describing the

morphing process of a thermally responsive smart material structure given a prescribed ac-

tivation and actuation and the algorithm to determine the optimal activation and actuation

parameters to achieve a desired morphing process based on the adjoint method are presented

in Sections 2.4 and 2.5, respectively. Then, two design/control example problems of skeletal

structural components are presented in Section 2.6 to show the capabilities of the proposed

approach, which is followed by the concluding remarks in Section 2.7.

2.3 COMPUTATIONAL DESIGN/CONTROL FRAMEWORK FOR

MORPHING STRUCTURES

The general active morphing concept considered in this work for a structure composed of

thermally responsive smart materials followed the same overall format as the previous study

[94]. In this concept, the morphing process begins with some portion of the domain heated

with a controllable transient temperature distribution and/or surface heat flux (TA(~x, t) or

qA(~x, t)). Once a sufficient portion of the structure is softened through activation, mechanical

actuation begins through controlled transient displacement and/or force (~uA(~x, t) or ~τA(~x, t))

to deform the structure into a desired shape. Therefore, the design/control problem to

identify the activation and actuation distributions to achieve the desired shape change can

be cast in a general way in the form of the following constrained optimization problem:

Minimize :



‖ starget − sapprox(TA, qA, ~uA, ~τA) ‖Ω,tF

JT (TA, qA, ~uA, ~τA)

JW (TA, qA, ~uA, ~τA)

tF (TA, qA, ~uA, ~τA)

w(TA, qA, ~uA, ~τA)

(2.1)

Subject to :

 σ̃(σ(~x, t;TA, qA, ~uA, ~τA)) < σdamage, ∀~x ∈ Ω, t ∈ [0, tF ]

T (~x, t;TA, qA, ~uA, ~τA) < T damage, ∀~x ∈ Ω, t ∈ [0, tF ]
(2.2)
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where ~x is the spatial position vector, t is the time, Ω is the spatial domain of the structure,

tF is the total time of the morphing process, ‖ · ‖Ω,tF
is the metric norm with respect to

the spatial domain and time, starget is the desired shape change, sapprox is the approximate

expected shape change given the design parameters predicted by a numerical representation

of the structure, JT and JW are the total thermal energy and mechanical work, respectively,

predicted by the numerical representation to perform the morph, w represents additional

design objectives that may be desired, σ and T are the approximate expected internal stress

tensor and internal temperature, respectively, predicted by the numerical representation

throughout the structure during the morphing process, σ̃(·) is a suitable scalar stress trans-

form (e.g., von Mises criterion), and σdamage and T damage are the stress and temperature

limits, respectively, to avoid damaging the material. As discussed in the Introduction, the

constrained optimization problem (Eqns. 2.1 - 2.2) will be solved through a computational

inverse problem solution approach that combines a numerical representation of the mor-

phing system (i.e., forward problem) and a nonlinear optimization strategy to identify the

parameters that minimize the desired objectives while satisfying the required constraints, as

detailed in the following.

2.4 FORWARD PROBLEM

The structures considered here were assumed to be composed entirely of thermally respon-

sive SMP subject only to applied thermal activation and mechanical actuation. At the

continuum level the nonlinear coupled thermo-mechanical behavior of smart materials can

be theoretically described by the conservation of mass, linear and angular momentum, and

energy. However, for simplicity the activation process was assumed to occur entirely through

a temperature-dependent Young’s modulus, and the behavior of the structures was assumed

to be defined by linear transient heat transfer and linear elastic quasi-static solid mechan-

ics. Therefore, the only thermo-mechanical coupling was assumed to be with respect to

the Young’s modulus, and all morphing processes were simulated with sequentially cou-

pled thermo-mechanical analyses (i.e., uncoupled thermal analysis sequentially followed by
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a temperature-dependent mechanical analysis). While these simplifications are noted to be

significant and would not be expected to be sufficient for accurately modeling the finite

strain nonlinear thermo-mechanical behavior of SMP structures, the relative overall behav-

ior should not depend significantly on the simplifications applied herein. Furthermore, tests

were performed throughout the previous studies comparing the pure linear model with a sim-

ple nonlinear hyperelastic model, which showed that although there were differences in the

stresses occurring during the morphing process for the two models, the relative overall stress

distributions remained nearly identical and the behaviors predicted using the linear models

were generally conservative. Therefore, the morphing process of a smart material structure

for the present work was represented by the following initial boundary value problem:

kO2T (~x, t) = ρc
∂T (~x, t)

∂t
, ∀ ~x ∈ Ω, t ∈ [0, tF ], (2.3)

O · σ(~x, t) = ~0, ∀ ~x ∈ Ω, t ∈ [0, tF ], (2.4)

T (~x, 0) = T0, ∀ ~x ∈ Ω, t = 0, (2.5)

T (~x, t) = TA(~x, t), ∀ ~x ∈ ΓT , t ∈ [0, tF ], (2.6)

−kOT (~x, t) · ~n(~x) = qA, ∀ ~x ∈ Γq, t ∈ [0, tF ], (2.7)

~u(~x, t) = ~uA(~x, t), ∀ ~x ∈ ΓU , t ∈ [0, tF ], (2.8)

σ(~x, t) · ~n(~x) = ~τA(~x, t), ∀ ~x ∈ Γ~τ , t ∈ [0, tF ], (2.9)

σ(~x, t) = CIV (E(T ), ν) : ε(~x, t), ∀ ~x ∈ Ω, t ∈ [0, tF ], (2.10)

ε(~x, t) =
1

2
[O~u(~x, t) + O~u(~x, t)T ], ∀ ~x ∈ Ω, t ∈ [0, tF ], (2.11)
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Figure 2.1: The assumed relationship between Young’s modulus and temperature for the

numerical study

where k is the thermal conductivity, ρ is the mass density, c is the specific heat, σ is the

Cauchy stress tensor, ε is the small strain tensor, CIV is the fourth order elastic stiffness

tensor, E is the Young’s modulus, ν is the Poisson’s ratio, ~u is the displacement vector, Ω is

the spatial domain, Γ is the domain boundary, ~n is the unit outward normal vector on the

boundary. ΓT is the portion of the domain boundary where the temperature is specified, Γq

is the portion of the domain boundary where the heat flux is specified, ΓU is the portion

of the domain boundary where the displacement is specified, and Γ~τ is the portion of the

domain boundary where the traction is specified.

The chosen material parameters were based on those published for the commercially

available thermally responsive SMP Veriflex [15, 44, 53, 62]. Figure 2.1 shows the assumed

relationship between the elastic modulus and temperature, with the modulus varying between

1050MPa in the glassy state to 0.24MPa in the rubbery state when heated above the glass

transition temperature (Tg = 62◦C or 335.15K). The remaining mechanical and thermal

material parameters are shown in Table 2.1.
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Table 2.1: The assumed material parameters for the numerical study.

Material Parameter Value

Poisson’s ratio 0.45

Density 920kg/(m3)

Specific heat 1800J/(kg·K)

Thermal conductivity 0.17W/(m·K)

Convective heat transfer coefficient 25W/(m2 ·K)

2.5 OPTIMIZATION OBJECTIVES AND SOLUTION ALGORITHM

The design/control objectives for the present study were assumed to be minimizing the total

energy of the morphing process (J = JT + JW ) and/or achieving a desired shape change by

minimizing a measure of morphing error (S). Based on the forward model formulated in

Section 2.4, the total thermal energy (JT ) required for activation and the total mechanical

work (JW ) required for actuation can be determined, respectively, through:

JT =

∫
t

∫
Ω

ρc[T (~x, t)− T0]δ(t− tF )d~xdt (2.12)

and

JW =

∫
t

∫
Γ

σ(~x, t) · ~n(~x) · ~̇u(~x, t)d~xdt, (2.13)

where δ is the Dirac delta function. In addition, the morphing error was defined as the

difference between a desired displacement field and the displacement field predicted by the

forward problem simulation at the completion of the morphing process, as:

S =

∫
t

∫
Ω

M∑
m=1

[
~u(~x, t)− ~utarget(~x, t)

]2
δ(~x− ~x∗m)δ(t− tF )d~xdt, (2.14)

where ~u and ~utarget are the predicted and desired (i.e., target) displacement fields, respec-

tively, {~x∗m}
M
m=1 is the set of M discrete spatial locations where the target displacement is
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desired to be achieved by the morph, and tF is the time at the completion of the mor-

phing process. Although addressing both the energy and morphing error constitutes a

multi-objective optimization problem, as is commonly done, for the present work the multi-

objective optimization problem was transformed into a single objective problem by simply

using a weighted sum of the two objectives. As such, the final objective function for the

design/control optimization utilized herein can be shown as:

f(~p) = J(~p) + C · S(~p) (2.15)

where ~p is the vector of unknown design parameters to be determined through the optimiza-

tion (i.e., activation and actuation parameters) and C is the scalar weighting constant (note

that the specific value of the weighting constant allows emphasis of the optimization effort

to be placed on a specific objective, energy or shape, depending on the relative importance

for a particular application).

While a genetic algorithm (as used in [94]) was applied to a portion of the examples

considered herein to serve as a basis of comparison, the focus of the present work is on

computational efficiency through gradient-based optimization, particularly relying on the

adjoint approach to expedite gradient calculations, for the minimization of Eqn. 2.15. A

quasi-Newton gradient-based algorithm, the BFGS interior point algorithm [3, 61, 86], was

chosen for this purpose, and the details of the adjoint approach to calculate the gradient of

the objective function (f) with respect to the design parameters (~p) to drive this gradient-

based optimization process are presented in the following.

2.5.1 Gradient Calculation using the Adjoint Method

The overall key to the adjoint method is the formulation of an adjoint (initial boundary

value) problem in terms of a set of Lagrange multipliers that is derived from the objective

functional(s) and the associated forward boundary value problem(s). The first step in this

approach is to form the Lagrangian, in which the inner product is taken between a Lagrange
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multiplier and each governing equation of the forward initial boundary value problem(s)

(Eqns. 2.3 and 2.4). It is then added to the objective functional(s) (Eqn. 2.15), to obtain:

L(~p) = f(~p) +

∫
t

∫
Ω

[
λ(~x, t, ~p) · g(~x, t, ~p) + ~ϕ(~x, t, ~p) · ~h(~x, t, ~p)

]
d~xdt. (2.16)

where for the present work g and ~h are the governing equations for heat transfer (Eqn. 2.3)

and solid mechanics (Eqn. 2.4), respectively, λ is the Lagrange multiplier associated with

the heat transfer problem and ~ϕ is the Lagrange multiplier vector associated with the solid

mechanics problem. Since the governing equations are satisfied everywhere in the domain

(i.e., g(~x, t, ~p) = 0 and ~h(~x, t, ~p) = ~0, ∀ ~x ∈ Ω), the Lagrangian is equivalent to the objective

function for any arbitrary set of Lagrange multipliers. Thus, the gradient of the Lagrangian

is also equivalent to the gradient of the objective function, which can be written for the jth

design parameter as:

dL

dpj
=

∂f

∂pj
+

∫
t

∫
Ω

[
λ
∂g

∂pj
+ ~ϕ · ∂

~h

∂pj

]
d~xdt. (2.17)

After expanding and manipulating Eqn. 2.17, each term that multiplies the temperature and

displacement gradients ( ∂T
∂pj

and ∂~u
∂pj

) is set to zero (to avoid calculation of these undesirable

terms without loss of generality since the Lagrange multipliers are arbitrary) to produce the

following adjoint problem for the Lagrange multipliers:

k52 λ(~x, t) + ρc
∂λ(~x, t)

∂t
− 1

E

∂E

∂T
(5~ϕ) : σ~u = 0, ∀ ~x ∈ Ω, t ∈ [0, tF ], (2.18)

5 · σ~ϕ(~x, t) + C
M∑
m=1

2[~u− ~utarget]δ(~x− ~x∗m)δ(t− tF ) = ~0, ∀ ~x ∈ Ω, t ∈ [0, tF ], (2.19)

λ(~x, tF ) = 0, ∀ ~x ∈ Ω, t = tF , (2.20)

λ(~x, t) = 0, ∀ ~x ∈ ΓT , t ∈ [0, tF ], (2.21)
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−k5 λ(~x, t) · ~n(~x) = 0, ∀ ~x ∈ Γq, t ∈ [0, tF ], (2.22)

~ϕ(~x, t) = −~̇uA(~x, t), ∀ ~x ∈ ΓU , t ∈ [0, tF ], (2.23)

σ~ϕ(~x, t) · ~n(~x)− ~τAδ(t− tF ) +
∂~τA

∂t
= ~0, ∀ ~x ∈ Γ~τ , t ∈ [0, tF ], (2.24)

Therefore, after solving the above adjoint problem for the Lagrange multipliers, the

gradient of the Lagrangian, and by extension, the gradient of the objective function can be

calculated as:

dL

dpj
=

∫
t

∫
ΓT

(−k5 λ · ~n)
∂TA

∂pj
d~xdt−

∫
t

∫
Γq

(λ
∂qA

∂pj
)d~xdt

+

∫
t

∫
Γ~τ

(
~ϕ+ ~̇u

A
) ∂~τA
∂pj

d~xdt+

∫
t

∫
ΓU

(−σ~ϕ · ~n ·
∂~uA

∂pj
+ σ~u · ~n ·

∂~̇u
A

∂pj
)d~xdt, (2.25)

where

σ~u =
E

2(1 + ν)
[5~u+5(~u)T ] +

E

(1 + ν)(1− 2ν)
(5 · ~u)I (2.26)

and

σ~ϕ =
E

2(1 + ν)
[5~ϕ+5(~ϕ)T ] +

E

(1 + ν)(1− 2ν)
(5 · ~ϕ)I, (2.27)

and I is the identity tensor.

In summary, the algorithm for the calculation of the gradient using the adjoint method

can be summarized as follows:

(1) Solve the forward initial boundary value problem (Eqns. 2.3 - 2.11) to obtain the dis-

placement field ~u and the temperature field T .

(2) Solve the adjoint initial boundary value problem (Eqns. 2.18 - 2.24) to obtain the La-

grange multipliers λ and ~ϕ.

(3) Substitute ~u, T , λ and ~ϕ into Eqn. 2.25 to compute the gradient of the objective function.
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Similar to the forward initial boundary value problem, in the present work the adjoint

problem was solved using the traditional Galerkin finite element method. An additional

note of interest is that the adjoint problem (Eqns. 2.18 - 2.24) is of the same form as

the forward problem (Eqns. 2.3 - 2.11), but is driven/forced by the components of the

objective function (i.e., the energy and morphing objective functions). Furthermore, the

adjoint problem has conditions specified at the final time, rather than the initial time, and

the sequential coupling is reversed compared to the forward problem, with the temperature

Lagrange multiplier being dependent upon the displacement Lagrange multiplier, whereas

in the forward problem displacement is dependent upon temperature.

2.6 NUMERICAL INVESTIGATION

To test the inherent benefits and challenges of the proposed computational approach using

the adjoint method, a numerical investigation was performed with example design applica-

tions from concepts of morphing skeletal structural components (i.e., framing and connect-

ing elements). First, a smart link concept with direct shape control was tested to verify

the computational framework, as well as to compare the efficiency and effectiveness of the

computational approach using the adjoint method with a non-gradient-based approach (a

genetic algorithm in this case). Lastly, an example of a morphing structural backbone with

substantially increased complexity of design parameters and objectives compared to the first

example was considered. This second example was intended to more thoroughly explore

the capabilities of the design/control approach presented with multiple locally activated and

actuated smart material structures to uniquely facilitate complex morphing capabilities, in

terms of complex target shapes, multiple morphing targets from fixed instrumentation, and

indirectly controlled target shape changes.
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Figure 2.2: (a) Schematic of the smart link design concept, (b) the deformation path con-

sidered for the top of the structure, and (c) the applied temperature with respect to time

for Example 1: Smart Link.

2.6.1 Example 1: Smart Link

The concept of a smart structural link considered here implies a structural element that

connects other components of a structural frame, which is capable of changing the shape of

the structure by changing the positioning of the connected elements through morphing of the

link (e.g., [62]). The optimal local activation and actuation design approach here seeks to

create a design for the activation and actuation process of the link with considerable savings

in both time and energy required to morph the structural component and is compared to

a more standard implementation strategy (i.e., full activation). As shown in Figure 2.2, a

20mm × 5mm × 1mm homogeneous rectangular prism composed of thermally responsive

SMP was considered and analyzed using the plane stress assumption (note that the size was

reduced with respect to in-use structures to reduce computing costs, but the observations

with respect to the inverse procedure should not be significantly affected by the size of the

structure). The morphing procedure considered involved first heating the structure in its cast

configuration to initiate the activation process. After some time of purely heating, actuation

would be applied to deform the structure into the desired shape. As such, the total time to

perform the structural morphing, tF , was simply the summation of the purely heating time

prior to actuation, tD, and the actuation time, tM .
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Table 2.2: Applied displacement boundary conditions for Example 1: Smart Link.

0 6 t 6 tD tD 6 t 6 tF

uA1 (~x, t) = 0 uA1 (~x, t) = 0

Fixed boundary uA2 (~x, t) = 0 uA2 (~x, t) = 0

uA1 (~x, t) = 0 uA1 (~x, t) =
utarget1

tM
· (t− tD)

Actuated boundary uA2 (~x, t) = 0 uA2 (~x, t) =
utarget2

tM
· (t− tD)

For the mechanical actuation process the bottom of the structure was assumed to be

fixed to a rigid support and the displacement across the top of the structure was uniformly

controlled to meet the target deformation (i.e., actuation was applied only to the top surface,

and the target shape change only considered the top surface). In addition, actuation was

assumed to occur at a constant rate. Therefore, the actuation process could be defined

by the target displacement ,~utarget, the purely heating time prior to actuation, tD, and the

actuation time, tM , as shown in terms of the displacement boundary conditions in Table 2.2.

The remaining boundaries were taken to be traction free. Note that the desired shape

change/deformation in this example problem was directly controlled, and was not a design

variable. Figure 2.2 shows the controlled deformation path for each point across the top

surface of the structure.

For the thermal activation process the entire structure was assumed to be initially at

room temperature (293K) and the applied temperature was assumed to be controllable with

four symmetric pairs of 20mm long heating pads along both sides of the link starting from

the fixed support and separated by 30mm along the height of the link, as shown in Figure 2.2.

Temperature was assumed to be applied uniformly throughout the length of each heating

pad and to increase linearly in time on that region starting from room temperature at a

fixed rate of 1.15K/s for a controllable “warm-up” duration, tT , and then held constant

until morphing was completed, as shown in Figure 2.2. The portion of the boundary not

being heated was assumed to be insulated.
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Table 2.3: Summary of the optimization objective and constraints for Example 1: Smart

Link.

Objective Function f = J = JT + JW

Design Parameters 0 < tiT 6 100s, for i = 1, 2, 3, 4

and Constraints ‖ σvon ‖L∞(Ω) 6 11.5MPa

For this first example a single design objective was used, which was to minimize the

total combined energy (i.e., the sum of Eqns. 2.12 and 2.13). The constraints included the

maximum temperature to prevent damage of 408K, which was implemented by constraining

the warm-up time for each heating pad (tiT for i = 1, 2, 3, 4) to a maximum of 100s, and the

maximum von Mises stress (‖ σvon ‖L∞(Ω)) to prevent damage of 11.5MPa. The potential

design variables initially considered for optimizing the design of the thermal activation and

mechanical actuation included the warm-up time for each pair of heating pads, the heating

time prior to actuation, and the actuation time. However, after performing a sensitivity

analysis, the effect of the heating time prior to actuation and the actuation time on the

morphing process outcome were found to be minimal (with respect to the minimum values)

in comparison to the warm-up times. Therefore, the chosen design variables to be determined

for this example were the warm-up time for each symmetric pair of heating pads, such that

~p = [t1T , t
2
T , t

3
T , t

4
T ], and the heating time prior to actuation and the actuation time were fixed

at values of tD = 290s and tM = 10s.

Table 2.3 shows a summary of the constrained optimization problem constructed for this

first example. As stated previously, to examine the benefits and challenges of the presented

computational design/control approach using a gradient-based optimization algorithm with

the adjoint method, a non-gradient-based genetic algorithm (GA) was also applied to solve

the constrained optimization problem to provide a point of comparison. An additional so-

lution procedure note is that the gradient-based optimization was applied 10 times with
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randomly selected “initial” parameter vector values, and the best result from this set of

10 solution estimates was chosen as the “final” estimate of the gradient-based optimization

procedure. This type of “multi-start” gradient-based optimization procedure is a relatively

common approach to try to overcome some of the local search limitations of gradient-based

optimization, while not eliminating the computational efficiency benefits. Note that the

adjoint implementation was also verified by repeating the gradient-based optimization pro-

cess with a finite difference approximation of the gradient (which was feasible due to the

low-dimensionality of this first example), and the two approaches were found to produce

equivalent results (not shown here for brevity). The stopping criteria for the optimization

processes (both gradient- and non-gradient-based) was set to be a relative change in the

objective function value of 0.005% in subsequent iterations. To provide a point of reference

for both optimization procedures, a “control” design was established resembling the current

standard of practice for such a smart link concept, in which actuation was applied to deform

the structure only after the entire volume of the structure was activated (i.e., the entire

domain temperature reached a value greater than Tg).

2.6.1.1 Results and Discussion: To show the nature of the optimal design results,

Figure 2.3 shows an example of the temperature field at initiation of morphing and the

stress distribution and the final deformed shape of the optimized design using the gradient-

based algorithm with the adjoint method.

As can be seen from the representative example, the optimized design solutions had

a maximum von Mises stress during the morphing process very near to the stress limit

(i.e., damage stress). Furthermore, the thermal energy dominated the energy consumption

of the morphing process, thus, the primary objective of the optimization naturally became

identifying the applied heating to minimally activate the structure to prevent damage during

the morph. More importantly, Table 2.4 shows the control design parameters, the optimized

design parameters from the GA optimization, and the optimized design parameters from

the gradient-based optimization using the adjoint method, along with the corresponding

activation thermal energy (JT ), actuation mechanical work (JW ), and total energy (J),

and the percent difference for these energies with respect to the control design. The GA
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Figure 2.3: (a) Temperature distribution at initiation of morphing and (b) stress distribution

and final deformed shape from optimized design solution from gradient-based optimization

using the adjoint method for Example 1: Smart Link.

Table 2.4: Control, optimized design parameters from Genetic Algorithm optimization (GA

Opt), optimized design parameters from quasi-Newton gradient-based optimization using

the adjoint method (Adjoint Opt), resulting energy consumption to perform the morph, and

the percent difference (%Diff) with respect to the control design for Example 1: Smart Link

(mJ = 10−3Joule).

Design t1T t2T t3T t4T JT JW J

Case (s) (s) (s) (s) (mJ) (mJ) (mJ)

Control 80.0 80.0 80.0 80.0 14037.5 10.4 14047.9

GA Opt 44.4 42.5 41.5 69.3 9231.2 83.2 9314.5

%Diff -44.5 -46.9 -48.2 -13.3 -34.2 +704.0 -33.7

Adjoint Opt 51.0 57.3 65.6 66.7 10833.9 86.7 10920.6

%Diff -36.2 -28.4 -18.0 -16.6 -22.8 +737.1 -22.3
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results represent an approximation of the best possible results that could obtained from

the computational design procedure, yielding an energy savings of more than 30% with

respect to the control design, but required an extensive computational cost, on the order

of 104 function evaluations, to achieve convergence. Again, note that with even a relatively

small increase in complexity, and therefore, computational cost per function evaluation of

the morphing system, the amount of evaluations required by the GA to converge would

be infeasible. Alternatively, the gradient-based optimization results were able to yield less

energy savings than the GA, but still a substantial amount at over 20% with respect to the

control design, but required two orders of magnitude less function evaluations, on the order

of 102, than the GA to achieve convergence (even with the 10 runs with different initial

parameter sets). Furthermore, it is often the case for design or control problems such as this

that an approximation of the global minimum is unnecessary, and a local solution would be

sufficient. In such instances, the substantial improvement in computational savings provided

by the gradient-based approach with the adjoint method would likely outweigh the loss in

global search capabilities.

2.6.2 Example 2: Morphing Structural Backbone

The concept of a morphing structural backbone considered here implies a structural element

that is directly connected to the exposed surface of the structure, and therefore, the overall

shape of the backbone, not just the positioning of the endpoints, affects the function of the

structure. For example, this type of morphing component could be installed in the edge of

an aerodynamic structure, for which it may be desirable to use the component to prescribe

both the size as well as the shape of all or some part of the structure’s surface. A schematic

of the structural backbone considered for this second example is shown in Figure 2.4. The

structure was taken to be a homogeneous half-circular prism with a 150mm outer radius

composed of thermally responsive SMP, and the structure was analyzed using the plane

strain assumption.
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Figure 2.4: Schematic of the Morphing Structural Backbone Design Concept for Example 2.

The morphing procedure applied followed a similar sequencing pattern as the first exam-

ple. However, to provide greater degrees of freedom for the design/control of the morphing

system, several more heating pads and actuators were employed in this case compared to

the first example, with a total of nine pairs of approximately 45mm long heating pads (i.e.,

18 total heating pads) and eight approximately 15mm long actuation regions, all equally

spaced along the surface of the structure. Additionally, the operation of the structure and

the design/control objectives were assumed to be symmetric with respect to the horizontal

access. Thus, only the top half to the structure needed to be analyzed and the morphing

process of the structure was defined by 10 independent heating pads and four actuators (note

that the heating pad pairs were not linked in this example as was the case in the first ex-

ample). For the thermal activation process the entire structure was assumed to be initially

at room temperature (293K), and the 10 heating pads along the outer and inner surface

of the structure were heated independently (i.e., prescribing a different tiT for each heating

pad) following the same heating pattern as was used in the first example problem (shown

in Figure 2.2). For the mechanical actuation process the two ends of the structure were

assumed to be constrained in the horizontal direction and the amplitude of the horizontal
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Table 2.5: Applied traction boundary conditions for Example 2: Morphing Structural Back-

bone.

0 6 t 6 tD tD 6 t 6 tF

τA1 (~x, t) = 0 τA1 (~x, t) =
τ i1
tM
· (t− tD)

Actuated Boundary {Γi~τ}
4

i=1 τA2 (~x, t) = 0 τA2 (~x, t) = 0

tractions (τ i1) over each actuation region was controllable and assumed to increase linearly

in time to deform the structure, while the remaining boundaries were taken to be traction

free. The actuator traction boundary conditions that were applied uniformly over the length

of each actuation region are described in Table 2.5.

Similarly to the previous example, neither the time to complete the deformation nor the

heating time prior to actuation had a significant effect on the design objectives, and were

again fixed at values of tM = 10s and tD = 590s. Therefore, the chosen design variables to be

determined in this example were the warm-up time for each heating pad and the maximum

amplitude of the actuation force, such that ~p = [t1T , t
2
T , · · ·, t10

T , τ
1
1 , τ

2
1 , τ

3
1 , τ

4
1 ].

The overall optimal design/control objective of this second example was to identify the

multiple activation and actuation parameters to minimize both the total energy of the mor-

phing process and the morphing error (Eqn. 2.15). Table 2.6 shows a summary of the

constrained optimization problem constructed for this morphing structural backbone ex-

ample. For this example, only the gradient-based optimization algorithm with the adjoint

method was applied, again with 10 randomly selected initial parameter vector values and

selecting the best result from these 10 outcomes, and using the same stopping criteria as the

previous example. Firstly, to explore the capabilities of the computational design/control

approach for this morphing structural backbone system with the increased complexity of the

design parameters, a relatively simple elliptical target shape (as shown in Figure 2.4) was

considered. In particular, to better understand the tradeoff between the energy objective

and the morphing error objective, a variety of different weightings was considered for the
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Table 2.6: Summary of the optimization objective and constraints for Example 2: Morphing

Structural Backbone.

Objective Function f = J + C · S

Design Parameters 0 < tiT 6 100s, (i = 1, 2, 3 · · · 10.)

and Constraints 0 < τ i1 6 0.1MPa, (i = 1, 2, 3, 4.)

‖ σvon ‖L∞(Ω) 6 11.5MPa

two objectives with the optimization process repeated for each weight value considered with

C ∈ [103, 105]. Then, to further explore the ability of the proposed computational approach

to facilitate smart material structures with multiple controllable localized activations and

actuations to achieve complex morphing capabilities, a set of substantially more complex

shape targets was considered (e.g., square and step-type target shapes).

2.6.2.1 Results and Discussion: Figure 2.5 shows the separate objective function val-

ues (i.e., total energy and morphing error) for a representative set of three of the optimal

design solutions for the elliptical target shape corresponding to varying objective function

weight values (C).

Overall, all optimal designs were able to relatively accurately achieve the targeted el-

liptical shape, substantially reducing the morphing error from the starting shape (i.e. the

shape prior to applying any actuation) value of S0 = 0.38 by more than 90%. However,

there was clearly a significant tradeoff between the achievable energy savings and the mor-

phing error. For the highest weighting parameter value (i.e., more emphasis placed on the

morphing error) the required energy to achieve the morphing was approximately twice the

energy than was required with the lowest weighting parameter value. The morphing error

also changes by approximately a factor of 2 based on the weighting parameter values, but

since all designs achieved what could be considered an accurate shape change, for this shape
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Figure 2.5: Total energy consumption (J) and morphing error (S) for three optimized design

solutions with varying weighting parameters (C) for the elliptic target shape for Example 2:

Morphing Structural Backbone.

target an emphasis on energy savings would likely be preferred. It should be noted that the

minimum and maximum weighting parameter value results shown represent approximately

the two extremes of the two-objective designs (i.e., the maximum emphasis on the energy

and the maximum emphasis on the morphing error achievable).

For the remaining analyses, the weighting parameter value of C = 107 was chosen to en-

sure that the primary focus of the optimization would be on the morphing error. Table 2.7

shows the three morphing target shapes considered (elliptic, square, and step-type), the opti-

mal design solutions for each target shape, and the corresponding temperature distributions

at the initiation of morphing, final stress distributions, and final deformed shapes. All of

the optimal design solutions can be seen to have produced recognizable approximations to

the target shapes, which is particularly significant considering that each of the three shapes

is considerably different from one another and yet the morphing mechanism (i.e., activators

and actuators) used to achieve the shapes is identical. However, there was a degradation in

the morphing accuracy as the complexity of the target shape change increased, which is not
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Table 2.7: Optimized (Opt) design solutions (temperature distribution and final stress dis-

tribution) with respect to three different target shapes (ellipse, square and step-type) for

Example 2: Morphing Structural Backbone.

Target Temperature Stress
Shape Distribution (K) Distribution (Pa)
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necessarily unexpected. This morphing accuracy can be seen quantitatively through the rel-

ative difference between the optimized morphing error (Sopt) and the morphing error for the

starting shape (S0), which was approximately 90% for the elliptic shape, 40% for the square

shape, and 10% for the step-type shape. The target step-type shape was clearly the most

challenging to achieve, both intuitively and based on the optimization results, particularly

since it was the only shape that required a change from convex to concave. Furthermore, the

results would imply that to better achieve a target shape similar to the step-type the start-

ing shape or the morphing mechanisms (i.e., activators and actuators) would need further

modification. However, overall, the multiple localized activations and actuations showed the

capability to accurately and efficiently achieve a diverse set of shape changes with a fixed

set of morphing mechanisms, and the computational approach was particularly well-suited

to facilitate the implementation, particularly where intuitive design approaches would be

infeasible.

2.7 CONCLUSIONS

A computationally efficient computational mechanics-based strategy to identify the distri-

bution and sequencing of localized activation and actuation for a morphing smart material

structure or structural component to optimally obtain a target shape change or set of shape

changes was presented. The strategy combines a numerical representation of the behavior

of a smart material structure subject to an activation and actuation process with a non-

linear optimization algorithm to estimate the optimal activation and actuation parameters

that may include minimizing cost functions which address energy consumption, target shape

changes, morphing time, and/or damage. In particular, in contrast to the previous study

[94], a formulation of the adjoint method was presented to be used within a gradient-based

optimization strategy for minimally computationally expensive (i.e., expense equivalent to

only two evaluations of initial boundary value problems) computation of the gradient of

the optimal design/control objective function(s) with respect to the design/control parame-

ters, and thus, minimally computationally expensive optimization. Two numerical examples
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were used to investigate the computational approach in which the synchronization of mul-

tiple activators and actuators was optimized with respect to the energy cost and target

shape changes in morphing skeletal structural components. The computational optimal de-

sign/control approach with the adjoint method was verified with the numerical examples,

and some limitations were identified in terms of the local nature of the optimized solutions

in comparison to a substantially more computationally expensive non-gradient-based opti-

mization approach. However, in all cases the computational optimal design/control approach

with the adjoint method was shown to provide the capability to efficiently identify activation

and actuation parameters to achieve energy-efficient morphing capabilities. Moreover, the

computational approach was shown to be capable of determining design/control solutions

for a diverse set of target shape changes with fixed instrumentation, providing the potential

for substantial functionality beyond what could be expected through traditional empirical

design strategies.
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3.0 A COMPUTATIONAL INVESTIGATION OF THE EFFECTS OF

NONLINEAR THERMAL BEHAVIOR ON THE DESIGN OF LOCALLY

ACTIVATED THERMALLY RESPONSIVE SMART MATERIAL

MORPHING STRUCTURES

3.1 ABSTRACT

An investigation of the effects of nonlinear thermal behavior on the design of locally activated

thermally responsive smart material morphing structures is presented. A computational de-

sign framework was used for the investigation, which combines a numerical representation

of the behavior of a smart material structure subject to an activation and actuation process

with a nonlinear optimization algorithm to estimate the optimal activation and actuation pa-

rameters that may include minimizing cost functions addressing energy consumption, target

shape changes, morphing time, and/or damage. In particular, nonlinear thermal material

behavior, as has been observed in some thermally responsive smart materials, but not yet

addressed in this context, was included in this computational approach in the numerical rep-

resentation. Two numerical examples were used to explore and evaluate the effects of this

nonlinearity of the thermal behavior. The computational optimal design/control approach

was shown to provide the capability to efficiently identify activation and actuation param-

eters to achieve energy-efficient and accurate morphing capabilities, even when considering

the material thermal nonlinearity. More importantly, in all cases, the nonlinearity in the

thermal behavior was shown to have a significant influence on the morphing process, and

ultimately the design solutions, and should be included in the thermo-mechanical modeling

in order to achieve more accurate and better design or control of such morphing systems.
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3.2 INTRODUCTION

Overall, there is a broad range of research efforts seeking solutions for the implementation of

morphing structure concepts, such as transformable structures [18, 41, 43, 83, 83], deployable

structures [2, 24, 46, 52, 79, 104], and morphing aircraft [7, 17, 22, 23, 76, 87, 88, 89,

97, 98, 99, 106], among others. This research includes efforts relating to mechanisms to

facilitate morphing as well as the manufacturing processes to build such structures. In

particular, a great amount of research presently focuses on the integration of new materials

into morphing structure concepts. Of particular interest have been “smart” active materials

that have intrinsically controllable material properties, (e.g., materials that can be softened

or hardened on command through some input activation), with the present work focused

on thermally responsive shape memory polymers (SMP) [26, 118] or similar materials. In

a typical thermally responsive SMP cycle, a sample starts in an initial configuration, is

stimulated with some controlled thermal activation to reduce the stiffness, the sample is

then deformed into a desired new configuration, and when the deformation is complete the

stimulus is removed (i.e., the material is cooled) to restore the stiffness and lock the shape.

Previous work has developed a computational approach for the design of smart material

morphing structures and preliminarily utilized this approach to investigate the capabilities to

design locally activated thermally responsive smart material morphing structures [93, 94, 95].

In this computational approach, a numerical representation (e.g., finite element model) of the

morphing structure is first created, noting that this simulation should accurately represent

the expected behavior of the device considered in order to achieve accurate design solutions.

Moreover, modeling the morphing process for a smart material structure accurately can be

a potentially complicated process [20, 51, 56], involving multiple coupled physical processes,

nonlinearity, and/or other features that are challenging to model and address numerically.

An objective function and corresponding set of constraints are then defined that measure

the difference between the numerically approximated response given a set of unknown design

variables and the system behavior that is desired. Lastly, a nonlinear optimization algorithm

is applied to find the design variables that minimize the objective function. This computa-

tional inverse mechanics approach was shown in the previous studies through numerical tests
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to provide a generalized and flexible means to facilitate the use of smart material structures

to achieve desired morphing processes with controllable localized activation and actuation.

However, in these previous proof-of-concept numerical tests (e.g., [94]), for simplicity the

behavior of the structures was assumed to be defined by linear transient heat transfer and

linear elastic quasi-static solid mechanics, which is clearly not realistic for many foreseeable

implementation scenarios. Focusing on one particular aspect for the present work, recent

research studies have shown that the changes in the thermal properties of SMP with respect

to temperature have significant effect on the predictions of the thermal behaviors in the

activation process [16, 80]. Yet, neither the previous studies nor other works relating to

computational methods for smart material morphing structures [34, 71, 101], which have

been relatively limited in number, have considered this thermal behavior nonlinearity. Over-

all, neglecting the nonlinearity of the thermal behavior would be expected to be especially

significant in the context of designing or controlling locally activated thermally responsive

smart material structures, as this could have a substantial impact on the predicted time and

energy required to transition the material during the morphing process, both of which are

commonly considered critical design components.

To investigate the significance of the nonlinearity in the thermal material properties

of a locally activated thermally responsive smart material morphing structure, this work

presents a numerical study of the morphing behavior, and more importantly, the design

solutions achieved by a computational inverse mechanics procedure applied to such a struc-

ture, both with and without inclusion of nonlinear thermal properties. The details for the

computational design approach for such smart material morphing structures is presented in

Section 3.3. The forward model used to predict the thermally responsive smart material

structure behavior and the gradient-based optimization algorithm used within the computa-

tional design approach are presented in Sections 3.4 and 3.5, respectively. Then, two design

example problems of skeletal structural components are presented in Section 3.6 to evaluate

the effects of the nonlinearity of the thermal modeling and to investigate the capabilities of

the computational approach, which is followed by the concluding remarks in Section 3.7.
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3.3 COMPUTATIONAL DESIGN APPROACH FOR LOCALLY

ACTIVATED MORPHING STRUCTURES

Utilizing a standard computational approach, the design/control problem can be cast as a

PDE constrained optimization problem. The design/control objectives for the present study

were assumed to be minimizing the total energy of the morphing process (J = JT + JW )

and/or achieving a desired shape change by minimizing a morphing error metric (S). The

total thermal energy (JT ) required for activation and the total mechanical work (JW ) required

for actuation can be determined, respectively, through:

JT =

∫
t

∫
Ω

ρc(T )[T (~x, t)− T0]δ(t− tF )d~xdt (3.1)

and

JW =

∫
t

∫
Γ

σ(~x, t) · ~n(~x) · ~̇u(~x, t)d~xdt, (3.2)

where ρ is the mass density, c is the temperature-dependent specific heat, σ is the Cauchy

stress tensor, T is the temperature, ~u is the displacement vector, Ω is the spatial domain, Γ

is the domain boundary, ~n is the unit outward normal vector on the boundary, and δ is the

Dirac delta function. In addition, the morphing error was defined as the difference between

a desired displacement field and the displacement field predicted by the forward problem

simulation at the completion of the morphing process, as:

S =

∫
t

∫
Ω

M∑
m=1

[
~u(~x, t)− ~utarget(~x, t)

]2
δ(~x− ~x∗m)δ(t− tF )d~xdt, (3.3)

where ~u and ~utarget are the predicted and desired (i.e., target) displacement fields, respec-

tively, {~x∗m}
M
m=1 is the set of M discrete spatial locations where the target displacement is

desired to be achieved by the morph, and tF is the time at the completion of the morphing

process.

Although addressing both the energy and morphing error constitutes a multi-objective

optimization problem, as is commonly done, for the present work the multi-objective opti-

mization problem was transformed into a single objective problem by simply using a weighted
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sum of the two objectives. As such, the final objective function for the design/control opti-

mization utilized herein can be shown as:

f(~p) = J(~p) + C · S(~p) (3.4)

where ~p is the vector of unknown design parameters to be determined through the optimiza-

tion (i.e., activation and actuation parameters) and C is the scalar weighting constant (note

that the specific value of the weighting constant allows emphasis of the optimization effort

to be placed on a specific objective, energy or shape, depending on the relative importance

for a particular application). As discussed in the Introduction, this constrained optimization

problem was solved herein by using a numerical representation of the morphing system (i.e.,

forward problem) to predict the value of the design objective function given a set of design

parameter values, and then applying a nonlinear optimization strategy to identify the pa-

rameters that minimize the objective function while satisfying the required constraints, as

detailed in the following.

3.4 FORWARD PREDICTION OF MORPHING STRUCTURE BEHAVIOR

As was done in previous studies, the structures considered here were assumed to be composed

entirely of thermally responsive SMP subject only to applied thermal activation and mechan-

ical actuation. At the continuum level the coupled thermo-mechanical behavior of such a

structure could be theoretically described by the conservation of mass, linear and angular

momentum, and energy. Focusing on the effects of the nonlinearity in the thermal behavior,

the behavior of the structures considered was assumed to be defined by nonlinear transient

heat transfer coupled with linear elastic quasi-static solid mechanics, and represented by the

following initial boundary value problem:

O · [k(T )OT (~x, t)] = ρc(T )
∂T (~x, t)

∂t
, ∀ ~x ∈ Ω, t ∈ [0, tF ], (3.5)

O · σ(~x, t) = ~0, ∀ ~x ∈ Ω, t ∈ [0, tF ], (3.6)
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T (~x, 0) = T0, ∀ ~x ∈ Ω, t = 0, (3.7)

T (~x, t) = TA(~x, t), ∀ ~x ∈ ΓT , t ∈ [0, tF ], (3.8)

−k(T )OT (~x, t) · ~n(~x) = qA, ∀ ~x ∈ Γq, t ∈ [0, tF ], (3.9)

~u(~x, t) = ~uA(~x, t), ∀ ~x ∈ ΓU , t ∈ [0, tF ], (3.10)

σ(~x, t) · ~n(~x) = ~τA(~x, t), ∀ ~x ∈ Γ~τ , t ∈ [0, tF ], (3.11)

σ(~x, t) = CIV (E(T ), ν) : ε(~x, t), ∀ ~x ∈ Ω, t ∈ [0, tF ], (3.12)

ε(~x, t) =
1

2
[O~u(~x, t) + O~u(~x, t)T ], ∀ ~x ∈ Ω, t ∈ [0, tF ], (3.13)

where k is the temperature-dependent thermal conductivity, ρ is the mass density, c is the

temperature-dependent specific heat, σ is the Cauchy stress tensor, ε is the small strain

tensor, CIV is the fourth order elastic stiffness tensor, E is the Young’s modulus, ν is

the Poisson’s ratio, ~u is the displacement vector, Ω is the spatial domain, Γ is the domain

boundary, ~n is the unit outward normal vector on the boundary. ΓT is the portion of

the domain boundary where the temperature is specified, Γq is the portion of the domain

boundary where the heat flux is specified, ΓU is the portion of the domain boundary where

the displacement is specified, and Γ~τ is the portion of the domain boundary where the

traction is specified.

The specific material parameters used for the examples were chosen based on those

published for the commercially available thermally responsive SMP VeriflexE [16, 44, 78].

Figure 3.1 shows the relationship between the elastic modulus and temperature, with the

modulus varying between 3260MPa in the glassy state to 1.69MPa in the rubbery state

when heated above the glass transition temperature (Tg = 104◦C or 377.15K). Figure 3.2
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Table 3.1: The assumed material parameters for the numerical study.

Material Parameter Value

Poisson’s ratio 0.45

Density 920kg/(m3)

Convective heat transfer coefficient 25W/(m2 ·K)

shows the relationship between the thermal conductivity and temperature, with the con-

ductivity varying between 0.206 W/m · K in the glassy state to 0.234 W/m · K in the

rubbery state when heated above the glass transition temperature. Figure 3.3 shows the re-

lationship between the specific heat and temperature, with the specific heat varying between

1670 J/Kg ·K in the glassy state to 2650 J/Kg ·K in the rubbery state when heated above

the glass transition temperature. The remaining mechanical and thermal material param-

eters are shown in Table 3.1. For all forward problem analyses in this study, the coupled

thermo-mechanical behavior described by Eqns. 3.5 - 3.13 was simulated using the standard

Galerkin finite element method [90].

3.5 GRADIENT-BASED OPTIMIZATION USING ADJOINT METHOD

While a genetic algorithm (as used in [94]) was considered in past studies due to its global

search capabilities, the present work solely utilized gradient-based optimization to focus on

computational efficiency of the design/control solution procedure, particularly relying on

the adjoint approach to expedite gradient calculations, for the minimization of Eqn. 3.4.

A quasi-Newton gradient-based algorithm, the BFGS interior point algorithm [3, 61, 86],

was chosen for the gradient based optimization, and the details of the adjoint approach to

calculate the gradient of the objective function (f) with respect to the design parameters (~p)

to drive this gradient-based optimization process for the previously defined forward problem
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Figure 3.1: The assumed relationship between Young’s modulus and temperature for the

numerical study.

Figure 3.2: The assumed relationship between thermal conductivity and temperature for the

numerical study.
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Figure 3.3: The assumed relationship between specific heat and temperature for the numer-

ical study.

are presented in the following. In general, the algorithm for the calculation of the gradient

of the objective function with respect to the design parameters using the adjoint method

can be summarized as follows:

(1) Solve the forward initial boundary value problem (Eqns. 3.5 - 3.13) to obtain the dis-

placement field ~u and the temperature field T .

(2) Solve the adjoint initial boundary value problem (Eqns. 3.14 - 3.20) to obtain the La-

grange multipliers λ and ~ϕ.

(3) Substitute ~u, T , λ and ~ϕ into Eqn. 3.21 to compute the gradient of the objective function.

The overall key to the adjoint method is the formulation of an adjoint (initial boundary

value) problem in terms of a set of Lagrange multipliers that is derived from the objective

functional and the associated forward problem[6, 25, 32, 45, 114].
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For the objective function and forward problem presented, the following adjoint problem

for the Lagrange multipliers λ and ~ϕ can be derived:

k(T )52 λ+ ρc(T )
∂λ

∂t
+ ρ[

∂c

∂T
(T − T0) + c(T )]δ(t− tF )− 1

E

∂E

∂T
(5~ϕ) : σ~u = 0, (3.14)

5 · σ~ϕ(~x, t) + C

M∑
m=1

2[~u− ~utarget]δ(~x− ~x∗m)δ(t− tF ) = ~0, ∀ ~x ∈ Ω, t ∈ [0, tF ], (3.15)

λ(~x, tF ) = 0, ∀ ~x ∈ Ω, t = tF , (3.16)

λ(~x, t) = 0, ∀ ~x ∈ ΓT , t ∈ [0, tF ], (3.17)

−k(T )5 λ(~x, t) · ~n(~x) = 0, ∀ ~x ∈ Γq, t ∈ [0, tF ], (3.18)

~ϕ(~x, t) = −~̇uA(~x, t), ∀ ~x ∈ ΓU , t ∈ [0, tF ], (3.19)

σ~ϕ(~x, t) · ~n(~x)− ~τAδ(t− tF ) +
∂~τA

∂t
= ~0, ∀ ~x ∈ Γ~τ , t ∈ [0, tF ]. (3.20)

After solving the above adjoint problem for the Lagrange multipliers, the gradient of the

Lagrangian, and by extension, the gradient of the objective function can be calculated as:

dL

dpj
=

∫
t

∫
ΓT

(−k5 λ · ~n)
∂TA

∂pj
d~xdt+

∫
t

∫
ΓU

(−σ~ϕ · ~n ·
∂~uA

∂pj
+ σ~u · ~n ·

∂~̇u
A

∂pj
)d~xdt

−
∫
t

∫
Γq

(λ
∂qA

∂pj
)d~xdt+

∫
t

∫
Γ~τ

(
~ϕ+ ~̇u

A
) ∂~τA
∂pj

d~xdt, (3.21)
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where

σ~u =
E

2(1 + ν)
[5~u+5(~u)T ] +

E

(1 + ν)(1− 2ν)
(5 · ~u)I (3.22)

and

σ~ϕ =
E

2(1 + ν)
[5~ϕ+5(~ϕ)T ] +

E

(1 + ν)(1− 2ν)
(5 · ~ϕ)I, (3.23)

and I is the identity tensor. Similar to the forward initial boundary value problem, in the

present work the adjoint problem was solved using the traditional Galerkin finite element

method.

3.6 NUMERICAL INVESTIGATION

To investigate the effects of nonlinear thermal behavior on the design of locally activated

thermally responsive smart material morphing structures, a numerical investigation was per-

formed with two example morphing structure concepts. First, a relatively geometrically sim-

ple example of a morphing structural backbone was tested. Then, a more realistic example

of a morphing airfoil structure with substantially increased complexity of design parameters

compared to the first example was considered.

3.6.1 Example 1: Morphing Structural Backbone

Similar to the examples considered in the previous investigations in Section 2.6, the concept of

a morphing structural backbone considered here implies a structural element that is directly

connected to the exposed surface of the structure, and therefore, the overall shape of the

backbone, not just the positioning of the endpoints, affects the function of the structure. For

example, this type of morphing component could be installed in the edge of an aerodynamic

structure, for which it may be desirable to use the component to prescribe both the size as

well as the shape of all or some part of the structure’s surface. A schematic of the structural

backbone considered for this first example is shown in Figure 3.4. The structure was taken

to be a homogeneous half-circular prism with a 150mm outer radius, and the structure was

analyzed using the plane strain assumption.
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Figure 3.4: Schematic of Example 1: Morphing Structural Backbone.

For the morphing procedure, the total time to perform the structural morphing, tF , was

simply the summation of the purely heating time prior to actuation, tD, and the actuation

time, tM . A total of nine pairs of approximately 45mm long heating pads (i.e., 18 total

heating pads) and eight approximately 15mm long actuation regions, all equally spaced

along the surface of the structure. Additionally, the operation of the structure and the

design/control objectives were assumed to be symmetric with respect to the horizontal access.

Thus, only the top half to the structure needed to be analyzed and the morphing process

of the structure was defined by 10 independent heating pads and four actuators. The entire

structure was assumed to be initially at room temperature (293K), and the 10 heating

pads along the outer and inner surface of the structure were heated independently (i.e.,

prescribing a different tiT for each heating pad). Temperature was assumed to be applied

uniformly throughout the length of each heating pad and to increase linearly in time on

that region starting from room temperature at a fixed rate of 1.15K/s for a controllable

“warm-up” duration (in effect defining the maximum applied temperature), tT , and then

held constant until morphing was completed. The portion of the boundary not being heated

was assumed to be insulated. The two ends of the structure were assumed to be constrained
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Table 3.2: Applied traction boundary conditions for Example 1: Morphing Structural Back-

bone.

0 6 t 6 tD tD 6 t 6 tF

τA1 (~x, t) = 0 τA1 (~x, t) =
τ i1
tM
· (t− tD)

Actuated Boundary {Γi~τ}
4

i=1 τA2 (~x, t) = 0 τA2 (~x, t) = 0

in the horizontal direction and the amplitude of the horizontal tractions (τ i1) over each

actuation region was controllable and assumed to increase linearly in time to deform the

structure, while the remaining boundaries were taken to be traction free. The actuator

traction boundary conditions that were applied uniformly over the length of each actuation

region are described in Table 3.2.

For this example, neither the time to complete the deformation nor the heating time prior

to actuation had a significant effect on the design objectives, and thus were fixed at values

of tM = 10s and tD = 590s. Therefore, the chosen design variables to be determined in this

example were the warm-up time for each heating pad and the maximum amplitude of the

actuation force, such that ~p = [t1T , t
2
T , · · ·, t10

T , τ
1
1 , τ

2
1 , τ

3
1 , τ

4
1 ]. Table 3.3 shows a summary of the

constrained optimization problem constructed for this morphing structural backbone exam-

ple. The gradient-based algorithm was applied with 10 randomly selected initial parameter

vector values and selecting the best result from these 10 outcomes as the final solution esti-

mate, and using a relative change in the objective function value of 0.005% as the stopping

criteria for each trial.

Firstly, to obtain an initial understanding of the influence of the nonlinearity in the

thermal modeling on the morphing process, a comparison between the heating process of

the morphing structural backbone system with linear (i.e., constant) thermal properties and

nonlinear thermal properties (i.e., the temperature-dependent thermal properties defined

previously) was carried out. Table 3.4 shows the linear properties utilized. To make the

comparison, the same amount of thermal energy (i.e., heating flux input on the heating
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Table 3.3: Summary of the optimization objective and constraints for Example 1: Morphing

Structural Backbone.

Objective Function f = J + C · S

Design Parameters 0 < tiT 6 100s, (i = 1, 2, 3 · · · 10.)

and Constraints 0 < τ i1 6 0.1MPa, (i = 1, 2, 3, 4.)

‖ σvon ‖L∞(Ω) 6 11.5MPa

pads) was given to the same morphing systems, and the heating processes with the various

thermal properties were compared. Then, to explore the influence of the thermal nonlinearity

on the design process, a set of shape targets with varying levels of complexity was considered

(e.g., square and step-type target shapes). The optimization process was performed for

the morphing structural backbone system with both the linear and the nonlinear thermal

behaviors used, in turn, and the optimization results were compared. For all design trials,

the weighting parameter value of C = 107 was chosen to ensure that the primary focus of

the optimization would be on the morphing error.

3.6.1.1 Results and Discussion: Figure 3.5 shows the temperature distribution for the

morphing backbone with linear thermal properties and nonlinear thermal properties, both

using the same amount of thermal input energy. As can be seen, the temperature within the

Table 3.4: Assumed material parameters for linear thermal behavior.

Material Parameter Value

Thermal conductivity 0.206W/(m·K)

Specific heat 1670J/(kg·K)
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Figure 3.5: Temperature distribution (K) for the morphing system with (a) linear ther-

mal properties and (b) nonlinear thermal properties for Example 1: Morphing Structural

Backbone.

backbone increased considerably faster for the case with linear thermal properties in com-

parison to the case with nonlinear thermal properties. This heating difference is explained

by the fact that although the nonlinear behavior had a higher thermal conductivity in the

example conditions, the specific heat was higher as well, which resulted in a lower overall

thermal diffusivity within the conditions considered in this example. This significant differ-

ence in the temperature distribution between the linear and nonlinear behaviors highlights

the importance of the thermal behavior modeled. In particular, using linear thermal proper-

ties when the behavior is actually nonlinear could lead to substantial errors in the transient

temperature distribution predictions as well as the prediction of the thermal energy required

in the morphing system.

Table 3.5 shows three morphing target shapes considered (elliptic, square, and step-

type) and the corresponding optimal design solutions estimated for both the linear and

nonlinear thermal property scenarios. As can be seen, the optimal design solutions for both

the linear and nonlinear thermal property scenarios produced recognizable approximations

to the target shapes. However, there was a significant difference in the morphing errors

of the optimized design solutions between the linear and nonlinear cases. Therefore, these

example cases show how using linear thermal properties where nonlinear exist would lead to

a relatively large inaccuracy in the parameters predicted by the design optimization process,
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Table 3.5: Optimized design solutions (final stress distribution) with respect to three different

target shapes (ellipse, square and step-type) for the linear thermal property and the nonlinear

thermal property scenarios for Example 1: Morphing Structural Backbone.

Target Stress Distribution (Pa) Stress Distribution (Pa)
Shape (Linear Thermal Modeling) (Nonlinear Thermal Modeling)
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Figure 3.6: Schematic of the Morphing Airfoil Structure Design Concept for Example 2.

and thus, the actual shape that would be achieved with parameters determined from this

design process (if assumed linear) applied to the actual structure (if actually nonlinear).

Moreover, for the specific example case shown here, the optimization with linear behavior

noticeably overestimates the ability of the given morphing structure to achieve the desired

shapes (particularly the step-type shape) subject to the constraints enforced on the system.

3.6.2 Example 2: Morphing Airfoil Structures

The second numerical example focused on a more realistic case study of a morphing airfoil

structure, shown schematically in Figure 3.6. The geometry of the example was based on a

standard NACA-0012 cross section [1]. The structure was taken to be a homogeneous and

the structure was again analyzed using the plane strain assumption.

The morphing procedure applied followed a similar sequencing pattern as the first exam-

ple. However, to provide greater degrees of freedom for the design/control of the morphing

system, several more heating pads and actuators were employed in this case compared to

the first example, with a total of 16 approximately 95mm long heating pads and 14 ap-

proximately 30mm long actuation regions, all equally spaced along the inner surface of the

structure. The entire structure was assumed to be initially at room temperature (293K),

and the 16 heating pads along the inner surface of the structure were heated independently

(i.e., prescribing a different tiT for each heating pad) following the same heating pattern as

was used in the first example problem. The two ends of the structure were assumed to be
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Table 3.6: Applied traction boundary conditions for Example 2: Morphing Airfoil Structure.

0 6 t 6 tD tD 6 t 6 tF

τA1 (~x, t) = 0 τA1 (~x, t) = 0

Actuated Boundary {Γi~τ}
14

i=1 τA2 (~x, t) = 0 τA2 (~x, t) =
τ i2
tM
· (t− tD)

fully constrained and the amplitude of the vertical tractions (τ i1) over each actuation region

was controllable and assumed to increase linearly in time to deform the structure, while

the remaining boundaries were taken to be traction free. The actuator traction boundary

conditions that were applied uniformly over the length of each actuation region are described

in Table 3.6.

Similarly to the previous example, neither the time to complete the deformation nor the

heating time prior to actuation had a significant effect on the design objectives, and were

again fixed at values of tM = 10s and tD = 1190s. Therefore, the chosen design variables to

be determined in this example were the warm-up time for each heating pad and the maximum

amplitude of the actuation force, such that ~p = [t1T , t
2
T , ···, t16

T , τ
1
2 , τ

2
2 , τ

3
2 , τ

14
2 ]. The target shape

considered in the design problem for this example was to achieve 2% max camber at position

40%, as shown in Figure 3.7. Table 3.7 shows a summary of the constrained optimization

problem constructed for this morphing airfoil structure example. The optimization process

Figure 3.7: Target Airfoil Shape with 2% Max Camber at Position 40%.
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Table 3.7: Summary of the optimization objective and constraints for Example 2: Morphing

Airfoil Structure.

Objective Function f = J + C · S

Design Parameters 0 < tiT 6 100s, (i = 1, 2, 3 · · · 16.)

and Constraints 0 < τ i1 6 0.1MPa, (i = 1, 2, 3 · · · 14.)

‖ σvon ‖L∞(Ω) 6 11.5MPa

was performed for the airfoil with the same linear and the nonlinear thermal behaviors from

the first example used, in turn, and the optimization results were compared. The gradient-

based optimization algorithm with the adjoint method was again applied with 10 randomly

selected initial parameter vector values and selecting the best result from these 10 outcomes

as the final solution estimate, but the stopping criteria was changed for this example to

be a morphing error value of 5 × 10−6. Therefore, approximately the same final morphing

error could be achieved for all trials with both material behaviors, and the energy required

to perform the morphing process (i.e., efficiency) could instead be compared between test

cases.

3.6.2.1 Results and Discussion: Table 3.8 shows the optimal design solutions (tem-

perature distribution and final stress distribution) estimated for both the linear and nonlinear

thermal property scenarios. As can be seen, the optimal design solutions for both the linear

and nonlinear thermal behaviors produced almost identical approximations to the target

shape, which were nearly exact matches. However, there was a significant difference in the

thermal energy required to obtain the same morphing error (S = 5 × 10−6) between the

two material behaviors, with J = 523MJ of energy estimated to be required with the linear

thermal behavior and J = 682MJ of energy estimated to be required with the nonlinear

thermal behavior. In other words, for this example case, the analysis incorporating nonlinear
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Table 3.8: Optimized design solutions (temperature distribution and final stress distribution)

for the linear thermal property and the nonlinear thermal property scenarios for Example 2:

Morphing Airfoil Structure.

Linear Thermal Modeling Nonlinear Thermal Modeling
(J = 523MJ, S = 5× 10−4) (J = 682MJ, S = 5× 10−4)
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thermal behavior predicted an approximately 23% increase in the required thermal energy

in comparison to the prediction with linear thermal behavior. This is clearly a substantial

amount of required energy that would be underestimated if designing the system assuming

linear thermal behavior where nonlinear actually existed. Such an underestimation could

potentially even lead to a morphing system being deployed without a sufficient power supply

to perform the desired morphing behavior, or worse.
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3.7 CONCLUSIONS

The effects of nonlinear thermal behavior on the design of locally activated thermally re-

sponse smart material morphing structures were investigated using numerical case studies

and a computational design framework. The computational framework combined a numer-

ical representation of the behavior of a smart material structure subject to an activation

and actuation process with a nonlinear optimization algorithm to estimate the optimal ac-

tivation and actuation parameters that would potentially address cost functions including

energy consumption, target shape changes, morphing time, and/or damage. In particular,

in contrast to previous studies, nonlinear thermal material behavior was included in this

computational design approach to investigate the effects of the thermal nonlinearity, which

is typically ignored with thermal behavior assumed to be linear, on the design process. Two

numerical examples were used to explore and evaluate the effects of the nonlinearity of the

thermal behavior, in which the synchronization of multiple activators and actuators was

optimized with respect to the energy cost and target shape changes in morphing structural

components. In all cases, the nonlinearity in the thermal behavior was shown to have a sig-

nificant influence on the morphing process, and should be included in the thermo-mechanical

modeling in many scenarios in order to achieve design or control parameters that will produce

an accurate and functional morphing system.
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4.0 CURRENT CAPABILITIES AND FUTURE DIRECTIONS

A computational strategy for computationally efficient estimation of the parameters relating

to the distribution and sequencing of activation and actuation for a morphing smart material

structure or structural component to efficiently and effectively achieve a desired morphing

function has been developed and evaluated. This strategy combines a numerical represen-

tation of the morphing process with an optimization algorithm to estimate the activation

and actuation parameters that best address cost functions and constraints relating to en-

ergy consumption, target shape change(s), morphing time, and/or damage prevention. In

particular, the strategy was investigated in the context of morphing structures or structural

components composed of thermally responsive smart materials, and with specific properties

based on thermally responsive shape memory polymers. In all cases considered to this point,

the morphing structural response for the numerical study was assumed to be sufficiently

represented by transient linear or nonlinear heat transfer and quasi-static linear elastic solid

mechanics.

For the optimization part of the computational framework, both non-gradient based opti-

mization methods (i.e., GA) and gradient-based optimization methods (i.e., adjoint method)

were tested. The gradient-based optimization algorithm with the adjoint method was shown

to provide a more efficient optimization process comparing to the non-gradient based opti-

mization algorithm. For the forward modeling of the smart material morphing structure,

both linear and nonlinear thermal behaviors were tested. The nonlinearity in the thermal

behavior was shown to have a significant influence on the morphing process. The compu-

tational optimal design/control approach was verified with several numerical examples. In

all cases the computational optimal design/control approach with the adjoint method was

shown to provide the capability to efficiently identify activation and actuation parameters to
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achieve energy-efficient morphing capabilities. Moreover, the computational approach was

shown to be capable of determining design/control solutions for a diverse set of target shape

changes with fixed instrumentation, providing the potential for substantial functionality be-

yond what could be expected through traditional empirical design strategies.

In general, certain extensions need to be made in order for the framework to be appli-

cable to realistic scenarios. Specifically, the computational framework should ultimately be

upgraded to include both geometric and material nonlinearity (a significantly more realistic

condition considering the large strains and deformations that would be expected in a smart

material morphing structure). For example, the effect of finite strain, material phase tran-

sition, and two-way (i.e., full) coupling should be included in the future thermo-mechanical

modeling. In addition, more complex morphed structure geometries and multiple morph-

ing targets should be explored. Moreover, to improve the efficiency of the computational

framework while maintaining the accuracy of the inverse solution process, other optimization

methods, cost functions and constraint forms can be explored, and various types of reduced

order modeling could be considered to further reduce the computational cost without sacri-

ficing accuracy.
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