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Near-infrared spectroscopy (NIRS) is a non-invasive optical imaging technique that has rapidly been

gaining popularity for study of the brain. Near-infrared spectroscopy measures absorption of light,

primarily due to hemoglobin, through an array of light sources and detectors that are coupled

to the scalp. Measurements can generally be divided into measurements of baseline physiology

(related to total absorption) and measurements of hemodynamic time-series data (related to relative

absorption changes). Because light intensity drops off rapidly with depth, NIRS measurements are

highly sensitive to extracerebral tissues. Attempts to recover baseline physiology measurements of

the brain can be confounded by high sensitivity to the scalp and skull. Time-series measurements

contain high contributions of systemic physiology signals, including cardiac, respiratory, and blood

pressure waves. Furthermore, measurements over time inevitably introduce artifacts due to subject

motion.

The aim of this thesis was to develop improved analysis methods in the context of these NIRS

specific confounding factors. The thesis consists of four articles that address specific issues in

NIRS data analysis: (i) assessment of common data analysis procedures used to estimate oxygen

saturation and hemoglobin content that assume a semi-infinite, homogeneous medium, (ii) testing

the feasibility of improving oxygen saturation and hemoglobin measurements using multi-layered

models, (iii) development of methods to estimate the general linear model for functional brain

imaging that are robust to systemic physiology signals and motion artifacts, and (iv) the extension

of (iii) to an adaptive method that is suitable for real-time analysis. Overall, this thesis helps to

validate and advance analysis methods for NIRS.

iii



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 OPTICAL PROPERTIES OF TISSUES . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 INSTRUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 LIGHT PROPAGATION IN TISSUES . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Infinite Homogeneous Medium . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Semi-Infinite Homogeneous Medium . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.7 Nonlinear Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 FUNCTIONAL BRAIN IMAGING . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Spectral Estimation of Hemoglobin . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Generalized Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Adaptive Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.0 ASSESSMENTOF SEMI-INFINITEHOMOGENEOUS SLAB MODEL FOR

BASELINE PHYSIOLOGY ESTIMATION IN NEONATES . . . . . . . . . . 38

3.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



3.3.1 Simulation of measurements . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Recovery of optical properties and physiological parameters . . . . . . . . 42

3.3.4 Effects of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Simulations of varying StO2 and HbT in the brain . . . . . . . . . . . . . 45

3.3.6 Effects of increased extra-axial fluid . . . . . . . . . . . . . . . . . . . . . 46

3.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Simulations on homogeneous spheres . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Normalized partial pathlength . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Simulations of varying StO2 and HbT in the brain . . . . . . . . . . . . . 48

3.4.4 Effects of extra-axial fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Effects of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Effects of source-detector distance . . . . . . . . . . . . . . . . . . . . . . 54

3.5.3 Modulation frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.4 Effects of extra-axial fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.5 Combined effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.6 Propagation of µa errors to StO2 and HbT . . . . . . . . . . . . . . . . . 55

3.5.7 Typical errors in neonates . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.0 LAYERED INVERSE MODELS FOR BASELINE PHYSIOLOGY ESTI-

MATION IN NEONATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Inverse Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 Inverse Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Assessment of the inverse models . . . . . . . . . . . . . . . . . . . . . . 63

4.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



5.0 REDUCTION OF SYSTEMIC PHYSIOLOGY AND MOTION EFFECTS

ON EVOKED HEMODYNAMICS DETECTION . . . . . . . . . . . . . . . . . 71

5.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Summary of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.4 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.5 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.0 ROBUST ADAPTIVE ESTIMATION OF EVOKED HEMODYNAMICS . . 90

6.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 The AR-IRLS Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Linear Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.3 Proposed Adaptive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.4 Simulation and ROC Analysis . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.5 Application to Experimental Data . . . . . . . . . . . . . . . . . . . . . . 97

6.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

APPENDIX. INTERSLICE MAGNETIZATION TRANSFER EFFECTS FOR

MTR IMAGING OF THE HUMAN BRAIN . . . . . . . . . . . . . . . . . . . . 107

A.1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



A.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3.2 Ethical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.3.3 Instrumentation and Software . . . . . . . . . . . . . . . . . . . . . . . . 112

A.3.4 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.3.6 Phantom Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3.7 Comparison of Interslice and Presaturation MT Effects . . . . . . . . . . 113

A.3.8 Effects of Varying Flip Angle and Phase Encoding Order . . . . . . . . . 114

A.3.9 Comparison of bSSFP and SSFP-FID . . . . . . . . . . . . . . . . . . . . 115

A.3.10 Interslice MTR Imaging of Meningioma . . . . . . . . . . . . . . . . . . 116

A.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4.1 Phantom Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4.2 Comparison of Interslice and Presaturation MT Effects . . . . . . . . . . 117

A.4.3 Effects of Varying Flip Angle and Phase Encoding Order . . . . . . . . . 117

A.4.4 Accumulation of MT Effects from Prior Slices . . . . . . . . . . . . . . . 119

A.4.5 Effects of Varying Interslice Delay . . . . . . . . . . . . . . . . . . . . . . 120

A.4.6 Comparison of bSSFP and SSFP-FID . . . . . . . . . . . . . . . . . . . . 120

A.4.7 Interslice MTR Imaging of Meningioma . . . . . . . . . . . . . . . . . . . 122

A.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.5.1 Interslice MTR Signal Characteristics . . . . . . . . . . . . . . . . . . . . 124

A.5.2 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.5.3 Comparison with On-resonsance MTR Imaging with SSFP . . . . . . . . 125

A.6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

vii



LIST OF TABLES

3.1 Optical properties of tissues; RI = refractive index. . . . . . . . . . . . . . . . . . . . 41

3.2 The minimum percent error (MIN), maximum percent error (MAX), and mean ab-

solute percent error (MAPE) for simulations with varying StO2 with fixed HbT. . . . 49

3.3 The minimum percent error (MIN), maximum percent error (MAX), and mean ab-

solute percent error (MAPE) for simulations with varying HbT with fixed StO2. . . . 50

4.1 Optical properties of tissues; RI = refractive index. . . . . . . . . . . . . . . . . . . . 60

4.2 Summary statistics for recovered StO2 and HbT for data simulated with FEM. . . . 66

4.3 Summary statistics for recovered StO2 and HbT for data simulated with MC. . . . . 68

6.1 Sensitivity, specificity, and false positive rate are shown for varying contrast to noise

ratio (CNR) for the proposed algorithm using p̂ < 0.05 as the threshold for activation.101

A1 Two-Pool MT Parameters at 3T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



LIST OF FIGURES

2.1 Absorption spectra of components in the brain. The extinction coefficients (left

axis) are shown for oxyhemoglobin (HbO2, red) and deoxyhemoglobin (Hb, blue).

The absorption coefficients (right axis) are shown for water and brain tissue. The

absorption coefficients for brain were calculated assuming 40 µM HbO2, 20 µM Hb,

70% water content, and negligible absorption from other sources. . . . . . . . . . . . 4

2.2 Probability density functions for different anisotropic factors. Note the log scale on

the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Illustration of an interface between two optical media with different refractive indices. 7

2.4 Illustration of the different types of NIRS measurements. Note the different y-axes

pertaining to the input (left) and output (right). . . . . . . . . . . . . . . . . . . . . 8

2.5 (left) Techen CW6 CW-NIRS system with 32 avalanche photodiode detectors and 32

lasers (center) Imagent ISS FD-NIRS system with 4 photomultiplier tube detectors

and 32 lasers. (right) Techen wireless CW-NIRS system with 6 photodiode detectors

and 8 lasers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 A bifurcated source fiber that achieves overlapping measurements at two wavelengths. 11

2.7 (a) An example CW-NIRS probe designed for functional brain imaging. (b) The

source-detector geometry. Measurements have the same source-detector distance,

and the probe layout was designed for the desired spatial coverage. . . . . . . . . . . 12

2.8 A simple FD-NIRS probe. (a) The outside of the probe. (b) The skin side of the

probe. (c) The sources and detectors are arranged such that there are 8 unique

distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 Illustration of fluence field for an infinite, homogeneous medium. The intensity is

shown on a linear scale (left) and log scale (center), and the phase is also shown

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



2.10 Illustration of extrapolated boundary. A sink is placed equidistant from the extrap-

olated boundary so that fluence is zero everywhere on the boundary due to symmetry. 21

2.11 Illustration of fluence field for a semi-infinite, homogeneous medium. The intensity

is shown on a linear scale (top) and log scale (center), and the phase is also shown

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 Illustration of derivative calculations for absorption based on the adjoint method.

The source field (Φs) and adjoint field (Φs) are shown. The product of the two fields

gives the derivative of the source-detector measurement with respect to absorption

at every position in the volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 Illustration of different basis functions commonly used in the GLM for to fNIRS data. 33

2.14 Example power spectrum from fNIRS data. . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 (a) Sample segmentation results. The layers from outer to inner are scalp (blue),

skull (purple), cerebrospinal fluid (green), gray matter (yellow), and white matter

(red). (b) The optical probe used to simulate data. The blue dot in the center was

the source position, while the red dots were detector positions. . . . . . . . . . . . . 45

3.2 Recovered absorption (a-d) and scattering (e-h) coefficients for data simulated on ho-

mogeneous spheres of varying radius. The solid and dashed lines show the simulated

values for 690 nm and 830 nm, respectively. Source-detector separation increases

with each column from left to right. Modulation frequency was 100 MHz. . . . . . . 47

3.3 Recovered StO2 (O’s) and HbT (X’s) values for data simulated on homogeneous

spheres of varying radius. The solid and dashed lines show the simulated values for

StO2 and HbT, respectively. Source-detector separation increases with each column

from left to right. Modulation frequency was 100 MHz. . . . . . . . . . . . . . . . . . 47

3.4 Normalized partial pathlength of light through a neonate head model with 70% StO2

and 60 µM HbT as a function or source-detector distance for 690 nm (a) and 830

nm (b). Modulation frequency was 110 MHz. . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Recovered absorption (a-d) and scattering (e-h) coefficients for data simulated on

a neonate head model for varying StO2 with fixed HbT in the brain. The solid

and dashed lines show the simulated values for 690 nm and 830 nm, respectively.

Source-detector separation increases with each column from left to right. Modulation

frequency was 100 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



3.6 Recovered StO2 (O’s) and HbT (X’s) values for data simulated on neonate head

model for varying StO2 with fixed HbT in the brain. The solid and dashed lines show

the simulated values for StO2 and HbT, respectively. Source-detector separation

increases with each column from left to right. Modulation frequency was 100 MHz. . 51

3.7 Recovered absorption (a-d) and scattering (e-h) coefficients for data simulated on

a neonate head model for varying HbT with fixed StO2 in the brain. The solid

and dashed lines show the simulated values for 690 nm and 830 nm, respectively.

Source-detector separation increases with each column from left to right. Modulation

frequency was 100 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Recovered StO2 (O’s) and HbT (X’s) values for data simulated on neonate head

model for varying HbT with fixed StO2 in the brain. The solid and dashed lines show

the simulated values for StO2 and HbT, respectively. Source-detector separation

increases with each column from left to right. Modulation frequency was 100 MHz. . 52

3.9 Selected simulations showing the effects of varying modulation frequency. (a) Re-

covered StO2 for simulations with varying StO2 with fixed HbT in the brain. (b)

Recovered HbT for simulations with varying HbT with fixed StO2 in the brain. (c)

and (d) recovered µa values for 690 and 830 nm, respectively, for simulation of vary-

ing HbT with fixed StO2 in the brain. The points were plotted as box plots showing

the distribution of recovered values due to Monte Carlo noise. The red horizontal

lines indicate the target value that was simulated. Source-detector separtion was

25-40 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 The effects of increased CSF on recovered µa (a-d) and StO2/HbT (e-h). Source-

detector separation increases with each column from left to right. Modulation fre-

quency was 100 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 The relative pathlength through multi-layered concentric spheres of varying radius

and layer thicknesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Box plots showing the distribution recovered StO2 values for data simulated with

FEM for all seven candidate inverse geometries. . . . . . . . . . . . . . . . . . . . . . 65

4.3 Box plots showing the distribution of recovered HbT values for data simulated with

FEM for all seven candidate inverse geometries. . . . . . . . . . . . . . . . . . . . . . 65

4.4 Box plots showing the distribution of recovered StO2 values for data simulated with

MC for all seven candidate inverse geometries. . . . . . . . . . . . . . . . . . . . . . . 67

xi



4.5 Box plots showing the distribution of recovered HbT values for data simulated with

MC for all seven candidate inverse geometries. . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Comparison of simulated measurements from Monte Carlo and finite element meth-

ods on a concentric sphere model. For the left column (a-b), the sphere was homo-

geneous. In the center column (c-d), a CSF layer was inserted at a depth of 7 mm,

in which the scattering coefficient for MC/FEM was 0.01/0.3 mm−1. In the right

column (e-f), the scattering coefficient of CSF for the MC simulation was increased

to match that of the FEM data (0.3 mm−1). . . . . . . . . . . . . . . . . . . . . . . 69

5.1 A simulated fNIRS signal generated from an AR(5) process with simulated motion

artifacts is shown in (a). After generating an optimal pre-whitening filter via fitting

an AR(2) model, the whitened signal (b) has significantly reduced autocorrelations

(c). An experimental fNIRS signal is shown in (d). After generating an optimal pre-

whitening filter via fitting an AR(2) model, the whitened signal (e) has significantly

reduced autocorrelations (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Examples of recovered hemodynamic response functions for simulated block design

(a-c) and event-related (d-f) design using the experimental data as baseline physiol-

ogy/noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Partial AUC (AUC0.05) for detection of evoked responses with a deconvolution/FIR

model for simulated block (a) and event (b) tasks using an AR model as baseline

signal with no artifacts (AR/None), spike artifacts (AR/Spike), or shift artifacts

(AR/Shift) or with experimental data as a baseline signal containing motion artifacts.

Error bars indicate 99% confidence interval. . . . . . . . . . . . . . . . . . . . . . . 84

5.4 False positive rate of detection as a function of estimated p-value (i.e., estimated

false positive rate) with the deconvolution/FIR model for simulated block (top row)

and event (bottom row) tasks using a simulated AR model as baseline signal with

no artifacts (AR/None), spike artifacts (AR/Spike), or shift artifacts (AR/Shift) or

with experimental data as a baseline signal containing motion artifacts. . . . . . . . 85

5.5 Partial AUC for detection of evoked responses with the canonical regression model for

simulated block (a) and event (b) tasks using a simulated AR model as baseline signal

with no artifacts (AR/None), spike artifacts (AR/spike), or shift artifacts (AR/shift)

or with experimental data as a baseline signal containing motion artifacts. Error bars

indicate 99% confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



5.6 False positive rate of detection as a function of estimated p-value (i.e., estimated

false positive rate) with the canonical regression model for simulated block (top row)

and event (bottom row) tasks using a simulated AR model as baseline signal with

no artifacts (AR/None), spike artifacts (AR/spike), or shift artifacts (AR/shift) or

with experimental data as a baseline signal containing motion artifacts. . . . . . . . 86

6.1 Schematic of the adaptive estimator illustrating the low of information between two

linear Kalman filters. Filter 1 estimates the model and passes the prediction error

to Filter 2, which estimates an AR model and passes AR coefficients to Filter 1. . . 96

6.2 (a) An example of simulated fNIRS data from resting-state data and synthetic hemo-

dynamic response. (b) Weights calculated by the algorithm. Artifactual time points

are down weighted. (c) The predicted evoked response (solid green) is shown over

the simulated evoked response (dashed red). (d) Evolution of the t-statistic over time. 99

6.3 Receiver operating characteristic (ROC) curves are shown for 1, 2, 3, 4, and 5 min

of data. The proposed adaptive method converges rapidly to the analogous offline

AR-IRLS method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Sensitivity (a), specificity (b), and false positive rate (c) are shown for simulated

data using p̂ < 0.05 as the threshold for activation. . . . . . . . . . . . . . . . . . . . 100

6.5 T-statistic evolution for HbO2 for an example subject at 1 min intervals and T-

statistics from offline analysis via AR-IRLS (bottom). R = right; L = left; T =

T-statistic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Comparison of T-statistics for offline (AR-IRLS) and online analysis methods across

all channels of HbO2 for all subjects using the full time-series data. . . . . . . . . . 102

6.7 Group level statistics for HbO2 using subject level statistics from the offline (AR-

IRLS) and online analysis methods. Black lines indicate failure to reject the null

hypothesis at p < 0.05 (uncorrected). . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A1 Illustration of interslice MT effects. The application of a gradient varies the Larmor

frequency f(z) linearly in space (z). During excitation, the slice of interest (slice 0)

receives on resonance excitation. With a positive gradient polarity and descending

slice order (shown above), the next slice to be acquired (slice -1) receives off-resonance

irradiation at a frequency offsets of 3840 Hz. . . . . . . . . . . . . . . . . . . . . . . . 110

A2 MTR images of a 10% agarose phantom (left) and saline phantom (right). . . . . . . 117

xiii



A3 Comparison of MTR images generated with interslice MT effects and with presatu-

ration. Offset irradiation frequencies of the presaturation pulses corresponded to the

offeset frequencies of the first (+3200 Hz), second (+6400 Hz), and third (+9600 Hz)

prior slices of the interslice method. Average RF-power of saturation was equivalent

in both methods. Baseline and MTR images (a) from a representative subject are

shown. Both MTR (b) and SNR (c) were calculated for white matter. Error bars

show the 95% confidence interval of the group average. . . . . . . . . . . . . . . . . 118

A4 Center slices of MTR images from a representative subject are shown for varying flip

angles and for linear phase encoding (top) and centric phase encoding (bottom). . . 119

A5 Mean MTR values across subjects from regions of interest for white (a) and gray

matter (b). Predicted values from simulating the two-pool model (solid lines) with

parameters from the literature show close agreement with the in vivo values. Centric

phase encoding shows substantially better SNR (c) than linear phase encoding. Error

bars show the 95% confidence interval of the group average. . . . . . . . . . . . . . . 120

A6 Saturation of the longitudinal magnetization accumulates over multiple

prior slices with the majority of saturation due to the first prior slice. For

white (a) and gray (b) matter, simulations show the longitudinal magnetization as

a function of the number of prior slices for varying number of phase encoding steps

per slice and for varying flip angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A7 Simulated MTR values for white (solid line) and gray matter (dashed line) for varying

interslice delay time for reference image acquisition. Simulations were performed

using sequence parameters that matched the bSSFP acquision for images in Fig. A8. 121

A8 Comparison of interslice MTR imaging with bSSFP and SSFP-FID sequences. The

SSFP-FID sequence significantly reduced banding artifacts in slices 3-5, but SNR

was 22% lower than with bSSFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A9 Interslice MTR images of a brain tumor (meningioma). Distinct signal characteristics

in the MTR images were visible in the brain tumor regions. . . . . . . . . . . . . . 123

xiv



A10 Interslice MTR images with short interslice delay times. Matrix size = 128 × 128,

FA = 60◦, TR/TE = 4.15/2.08 ms, RF-pulse duration = 1.24 ms, slice thickness =

5 mm, number of slices = 24 (excluding 6 dummy slices), total scan time = 56 s (0.7

s delay) and 87 (2.0 s delay). Two scans (each with 12 number of slices excluding

3 dummy slices) were spatially interleaved, in order to provide near whole brain

coverage with no gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xv



1.0 INTRODUCTION

Near infrared spectroscopy (NIRS) is a non-invasive method for measuring brain physiology and

hemodynamics that has rapidly been gaining popularity. Near infrared spectroscopy measures

optical absorption, primarily due to hemoglobin, from an array of light sources and optical detectors

coupled to the scalp. Applications of NIRS to the brain are generally divided into two goals: (i)

estimation of baseline physiology, such as oxygen saturation, hemoglobin content, or blood flow

and (ii) analysis of hemodynamic time-series data, such as with functional brain imaging or resting

state connectivity. This body of work will examine data analysis issues within the context of both

of these goals.

Near-infrared spectroscopy instruments are relatively portable compared to other modalities

such as MRI or PET. This makes NIRS especially useful to applications where portability is an

advantage. In the context of physiological measurements, NIRS is especially suitable for bedside

monitoring. Several previous studies have shown promising results in applications to monitoring

cerebral physiology during cardiac surgery [1, 2], detecting hypoxic or ischemic brain injuries in

neonatal populations [3, 4]. Approximately 40% of patients experience long-term post-operative

cognitive decline after cardiopulmonary bypass surgery [5], and approximatey 25% of neonates with

hypoxic-ischemic brain injury will suffer from long-term neurological disorders, including behavioral

deficits, mental impairment, visual dysfunction, hyperactivity, cerebral palsy, and epilepsy [6].

Bedside monitoring with NIRS has potential to make a significant impact in patient care.

Light in the visible range has poor penetration into tissues due to especially high absorption by

hemoglobin. Infrared light exhibits very high absorption by water. Light between 650-900 nm is

often called the optical window, where absorption of light by tissues is a few orders of magnitude

lower, which allows light to penetrate a few centimeters into tissues, reaching the outer portion

of the cortex; however, light intensity falls off rapidly with depth, which can make NIRS analysis

challenging, and NIRS measurements are significantly influenced by extracerebral tissues. In the
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context of baseline physiology estimation, it can be difficult to separate absorption due to the scalp

and skull from absorption in the brain.

For functional brain imaging, the portability of NIRS allows it to be used where other modalites,

such as functional MRI are not practical, such as walking [7, 8], balance [9, 10, 11], and social

interaction [12]. However, the high sensitivity to superficial tissues introduces high contributions

of systemic physiology, including cardiac, respiratory, and blood pressure waves, to the NIRS time-

series data. Additionally, motion can cause slippage of the probe from scalp causing sharp artifacts

in the data. Together these sources of noise deteriorate the performance of analysis methods

that aim to detect evoked hemodynamic changes that are related to task performance or stimulus

conditions.

The main goal of this thesis was to develop improved analysis methods for both estimation of

baseline physiology and the detection of evoked hemodynamic changes. The main contributions

of this work to the field are: (i) assessment of common data analysis procedures used to estimate

oxygen saturation and hemoglobin content that assume a semi-infinite, homogeneous medium, (ii)

testing the feasibility of improving oxygen saturation and hemoglobin measurements using multi-

layered anatomical models, (iii) development of methods to estimate the general linear model for

functional brain imaging that are robust to systemic physiology signals and motion artifacts, and

(iv) the extension of this method to an adaptive estimator that is also robust to motion and systemic

physiology and is suitable for real-time analysis.

The contents of this thesis are as follows: Chapter 2 gives an overview of background informa-

tion, including an overview of light interactions with tissue, the physics governing light propagation

through tissues, solutions to light propagation in simple geometries, numerical methods for com-

putation of light propagation, and an introduction to functional NIRS analysis. Chapter 3 gives

an assessment of the use of a semi-infinite, homogeneous slab model of the head for estimation of

oxygen saturation and total hemoglobin content in a neonate model using FD-NIRS. Chapter 4 in-

vestigates multi-layered models for improved estimation of tissue hemoglobin in neonates. Chapter

5 develops a new method for fNIRS data analysis that is robust to systemic physiology and motion

artifacts. Chapter 6 extends the work from chapter 5 to an adaptive algorithm that is suitable for

real-time fNIRS analysis. Finally, chapter 7 concludes the thesis.
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2.0 BACKGROUND

This chapter covers the background behind NIRS measurements and data analysis. Section 2.1

reviews the interactions of light with tissue. Section 2.2 discusses the materials and instruments

used to obtain NIRS measurements. Section 2.3 gives a detailed overview of the models governing

light propagation through tissues, including an overview of numerical techniques. Finally, section

2.4 discusses the methods used for modeling evoked hemodynamics in the context of functional

brain imaging.

2.1 OPTICAL PROPERTIES OF TISSUES

2.1.1 Absorption

Absorption is a physical process in which the energy of a photon is taken up by matter. For media

without scattering, the probability of photon absorption per unit distance travelled is given by the

absorption coefficient µa. Thus, the attenuation of light follows the following differential equation:

dI

dℓ
= −µa I , (2.1)

whose solution gives the Beer-Lambert law:

I = I(0) e−µaℓ , (2.2)

where ℓ is the distance traveled through the medium. The absorption coefficient can be parame-

terized in terms of the concentration of chromophores in the medium:

µa =
∑

j

ǫjcj , (2.3)

where cj is the concentration of chromophore j, and ǫ is the extinction coefficient.
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The main sources of absorption (chromophores) in tissues are melanin, water, lipid, hemoglobin,

myoglobin, and cytochromes [13]. The interval of wavelengths between approximately 650-900

nm (the optical window) allows light to penetrate tissue and be used for non-invasive optical

spectroscopy. Wavelengths below this range are in the visible spectrum, in which absorption by

hemoglobin and other chromophores is very high. Wavelengths above this range are in the infrared

region where absorption by water dominates. Figure 2.1 illustrates main components contributing

to the absorption spectrum for brain tissue.
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Figure 2.1: Absorption spectra of components in the brain. The extinction coefficients (left axis)

are shown for oxyhemoglobin (HbO2, red) and deoxyhemoglobin (Hb, blue). The absorption coeffi-

cients (right axis) are shown for water and brain tissue. The absorption coefficients for brain were

calculated assuming 40 µM HbO2, 20 µM Hb, 70% water content, and negligible absorption from

other sources.

2.1.2 Scattering

Scattering describes the change in direction of photons due to collisions with matter. Mie scattering

theory describes the scattering of photons off of a sphere [14]. In the limit that the radius of the

sphere is much smaller than the wavelength of light, this reduces to Rayleigh scattering. Thus,

scattering off of particles smaller than the wavelength of the light is typically referred to as Rayleigh

scattering, and scattering off of particles on same order or larger than the than the wavelength is

referred to Mie scattering, although Mie scattering theory generally describes both cases [14]. In
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biological tissues, only very small structures, such and microtubules and filaments will exhibit

Rayleigh scattering in the near-infrared region [13]. Scattering off of larger structures, such as

whole red blood cells, large organelles (mitochondria, lysosomes, etc.), and myelin sheathes will

exhibit Mie scattering [13]. Other structures, such as centrioles, the Golgi apparatus, and the

endoplastic reticulum, may be somewhere between the Rayleigh and Mie scattering regimes.

Single scattering events are probabilistic with the probability of a photon traveling a distance

x before scattering given by an exponential distribution:

p(x) = µs e
−µs x , (2.4)

where µs is the scattering coefficient. In tissues, scattering is highly anisotropic, favoring only small

deflections from the forward direction. Often, the Henyey-Greenstein function [15] is used to model

the probability of the polar scattering angle:

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos(θ))3/2
, (2.5)

where g is the anisotropy factor. Figure 2.2 illustrates the probability density functions for different

values of g.
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Figure 2.2: Probability density functions for different anisotropic factors. Note the log scale on the

y-axis.
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In tissues, the photons undergo many scattering events, in which the light behaves much like

a diffusion process (see section 2.3.2). In this case, we are typically interested in the reduced

scattering coefficient:

µ′s = (1− g) µs (2.6)

g = 〈cos θ〉 , (2.7)

where the angle brackets denote the mean value. The reduced scattering coefficient gives the

scattering coefficient of a an equivalent isotropic scattering process for modeling light propagation

through tissue that is valid when scattering is much greater than absorption.

From Mie scattering theory, we can model the wavelength dependence of the scattering coeffi-

cient as

µ′s = a

(

f

(

λ

500 nm

)−4

+ (1− f)

(

λ

500 nm

)−b
)

, (2.8)

where the left term models Rayleigh scattering with the fraction of Rayleigh scattering components

given by f ; a is an overall scaling term that gives µ′s at 500 nm; and b is the exponent associated with

Mie scattering off of large particles. The rapidly decaying λ−4 dependence of Rayleigh scattering

shows that Mie scattering may often dominate the scattering interactions in tissues, unless f is

particularly high.

The high degree of scattering increases the average pathlength of detected photons, introducing

correction terms to the Beer-Lambert law:

I = I(0) e−µaℓ·DPF+G , (2.9)

where DPF is the differential pathlength factor, and G is a term associated with geometry [16].

This equation is often referred to as the modified Beer-Lambert law (MBLL).

2.1.3 Refractive Index

The third major property of tissues is refractive index. Refractive index governs the speed of light

propagating through a medium, the reflection and transmittance of light through a boundary, and

the change of direction of light transmitted through a boundary (refraction). The speed of light

through a medium is given by

ν =
c

n
, (2.10)
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where n is the refractive index, and c is the speed of light in a vacuum (2.998 × 1011 mm/s). The

interface between two media is illustrated in Fig. 2.3. For reflected photons, the angle of incidence

(θi) equals the angle of reflection (θr). Transmitted photons change direction according to Snell’s

law:

ni sin θi = nt sin θt . (2.11)

The fraction of reflected photons is given by R, referred to as reflectance, reflectivity, or reflection

coefficient. According to Fresnel’s law, the reflection coefficient for s-polarized (Rs, perpendicular

to the plane in Fig. 2.3) and p-polarized (Rp, parallel with the plane in Fig. 2.3) are given by

Rs =

(

ni cos θi − nt cos θt
ni cos θi + nt cos θt

)2

(2.12)

Rp =

(

ni cos θt − nt cos θi
ni cos θt + nt cos θt

)2

, (2.13)

and the relection coefficient for unpolarized light is simply given by

R =
1

2
(Rs +Rp) . (2.14)

In the context of NIRS, reflection is important to consider at the tissue/air interface and also

at the interface of two tissues with significantly different refractive indices, such as the interface

between the brain and cerebrospinal fluid (CSF). These equations can either be applied directly

when simulating photons propaging through a medium, such as with Monte Carlo methods, or to

derive appropriate boundary conditions when computing light propagation via other methods.

θr

θi

θt

ni nt

Figure 2.3: Illustration of an interface between two optical media with different refractive indices.
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2.2 INSTRUMENTATION

There are three main types of NIRS measurements: continuous wave (CW), frequency-domain

(FD), and time-resolved (TR). These measurements are illustrated in Fig. 2.4. Continuous wave

NIRS uses light sources that are constantly on and measures the attenuation of the light. Often,

CW-NIRS measurements are only used to investigate the temporal changes in the signal due to

physiology, such as task-evoked changes or resting state dynamics. The main advantage of CW-

NIRS is that it has the least stringent requirements for light sources, detectors, and on-board

signals processing hardware. Thus, many CW systems combine a large number of inexpensive laser

diode light sources with photodiode detectors to achieve many measurement channels in a relatively

inexpensive system.
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Figure 2.4: Illustration of the different types of NIRS measurements. Note the different y-axes

pertaining to the input (left) and output (right).

Frequency domain systems use a light source that is sinusoidally amplitude modulated. Thus,

the light intensity is given by

I(r , t) = D(r) +A(r) sin (ωst+ φ(r)) , (2.15)

where D is the DC amplitude; A is the AC amplitude; ωs is the modulation frequency of the

source; and φ(r) is the phase. In general, D, A, and φ depend on the position (r), the geometry of

the optical medium, and optical properties of the medium. The modulation frequency is typically

around 100 MHz, which prevents wrapping of the phase offset. In order to measure the AC and

phase terms, the output signal is converted to a lower frequency via a heterodyne system, in
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which the signal from the detector is modulated at another frequency ωd. The mixing of the two

frequencies is given by

Ĩ(rd, t) = [D(r d) +A(rd) sin (ωst+ φ(rd))]× [B + C sin (ωdt))] , (2.16)

where B and C are the DC and AC amplitudes of the signal being mixed with the output of the

detector, and rd is the position of the detector. Using a trigonometric identity this can be rewritten

as

Ĩ(rd, t) = BD(rd)−
1

2
CA(rd) sin ((ωs − ωd)t+ φ(r d))

+
1

2
CA(rd) sin ((ωs + ωd)t+ φ(rd))

+ CD(rd) sin (ωdt))

+BA(rd) sin (ωst+ φ(rd)) . (2.17)

Thus, if we choose the modulation frequencies appropriately, we can now extract A and φ from a

much lower frequency signal equal to the difference between the modulation of frequencies (ωs−ωd).
For example, the Imagent ISS system modulates the sources at 110 MHz and the detectors at

110.005 MHz, producing a 5 kHz signal. The last three terms in the result above can be removed

by low pass filtering in hardware. Many FD-NIRS analysis methods rely on the changes in these

values over multiple source-detector distances. Thus, these systems have more strict technical

requirements in terms of dynamic range for the detectors. Furthermore, the light sources must

be capable of amplitude modulation at ∼100 MHz, and additional on-board hardware is necessary

to perform the signal processing necessary to extract the DC, AC, and phase values at specified

sampling rate (∼2 Hz). Therefore, FD-NIRS hardware is usually more expensive than CW.

Time-resolved NIRS systems use a very short laser pulse (on the order of 100s of femtoseconds),

followed by measurement of the arrival time of a single photon (if a photon reaches the detector).

Light pulses are sent into the tissue at a rate of ∼100 MHz, and a histogram of the photon time-of-

flight measurements is estimated (see [17] for a review of TR-NIRS). Because TR-NIRS has high

technical requirements for hardware, it is typically the most expensive of the three techniques.

In the context of baseline physiology estimation, CW-NIRS measurements do not give any direct

information about optical pathlength. This makes accurate quantification of hemoglobin difficult

without making assumptions about scattering. The FD-NIRS systems obtain direct information

about optical pathlength by measuring the phase change over multi-distance measurements. The
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larger the phase offset, the longer it took light to reach the detector and the longer the optical path-

length. This information improves the quantification of tissue hemoglobin. The FD-NIRS signal is

related to the TR-NIRS signal by a discrete Fourier transform at a particular modulation frequency.

Thus, we can view TR-NIRS measurements as having the same information as if we had obtained

FD-NIRS measurements at all modulation frequencies. Therefore, TR-NIRS measurements should

contain the most information for quantification of hemoglobin. However, the hardware requirements

for obtaining TR-NIRS measurements make the instruments more expensive than other CW-NIRS

or FD-NIRS instruments. Furthermore, TR-NIRS systems are less portable and are currently not

as widely available as CW or FD systems.

Figure 2.5 shows three examples of NIRS systems. The Techen CW6 system shown is a CW

system with 32 photodiode detectors and 32 lasers (16 × 690 nm and 16 × 830 nm). The Imagent

ISS is a FD-NIRS system that is modulated at 110 MHz. It offers 4 photomultiplier tube detectors

and 32 lasers. The particular system shown in Fig. 2.5 offers 7 wavelengths between 690 nm and

830 nm, although more common setups have only 690 nm and 830 nm lasers. While the CW6 and

ISS systems fit onto a cart and are portable, the subjects are still restricted to the length of the

fiber optics connected to the system. The Techen system shown on the right in Fig. 2.5, run the

fiber optics to a small box that the subject attaches to their waist via a belt. Data is then sent from

the system to a computer via Bluetooth, allowing subject to move freely within a range of 75 m.

The design constraints of the portable instrument restricts the system to 6 photodiode detectors

and 8 lasers (4 × 690 nm and 4 × 830 nm).

Techen CW6 (CW) Imagent ISS (FD) Techen Wireless System (CW)

Figure 2.5: (left) Techen CW6 CW-NIRS system with 32 avalanche photodiode detectors and 32

lasers (center) Imagent ISS FD-NIRS system with 4 photomultiplier tube detectors and 32 lasers.

(right) Techen wireless CW-NIRS system with 6 photodiode detectors and 8 lasers.
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The NIRS instruments are coupled to the subject via fiber optic cables that are arranged in a

specific layout or probe design, depending on the purpose of the measurement. Source fibers are

often bifurcated so that lasers of two wavelengths can output light to the same optode (the end

of the fiber that is placed on the skin). Figure 2.6 shows an example of a bifurcated source fiber.

An example CW probe is shown in Fig. 2.7. Because the probe was used for functional brain

imaging, the layout was designed for spatial coverage of the brain regions of interest, with all of

the measurements at the same source-detector distance. Figure 2.8 shows an example of a simple

FD-NIRS probe that was designed for maximum number of source-detector distances.

690 nm 830 nm 690 & 830 nm

Optode

Figure 2.6: A bifurcated source fiber that achieves overlapping measurements at two wavelengths.
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D5 D6 D7

a)

b)

Figure 2.7: (a) An example CW-NIRS probe designed for functional brain imaging. (b) The source-

detector geometry. Measurements have the same source-detector distance, and the probe layout

was designed for the desired spatial coverage.

D1

D2

S1 S2 S3 S4

a)

b)

c)

Figure 2.8: A simple FD-NIRS probe. (a) The outside of the probe. (b) The skin side of the probe.

(c) The sources and detectors are arranged such that there are 8 unique distances.
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2.3 LIGHT PROPAGATION IN TISSUES

2.3.1 Radiative Transfer Equation

Light propagation through tissue can be modeled as particles (photons) transported through a

medium via the radiative transfer equation (RTE), which can be derived from conservation of

energy [18]. The photon density L(r , Ω̂, t) at a position r , solid angle Ω̂, and at time t is given by:

1

ν

∂

∂t
L(r , Ω̂, t) =− Ω̂ · ∇L(r , Ω̂, t)− (µa + µs) L(r , Ω̂, t)

+ µs

∫

L(r , Ω̂
′
, t) f(Ω̂, Ω̂

′
) dΩ̂

′
+ S(r , Ω̂, t) , (2.18)

where ν is the speed of light in the medium determined by the refractive index; f(Ω̂
′
, Ω̂) is the

probability density of scattering from a direction Ω̂ to a new direction Ω̂
′
; µa and µs are the

absorption and scattering coefficients; and S(r , Ω̂, t) defines contributions from a light source. Note

that in heterogeneous media, µa and µs are generally a function of position (r). The RTE can be

solved generally using Monte Carlo methods to simulate photons propagating through a medium

with scattering and absorption, but at high computational expense with current computers.

2.3.2 Diffusion Approximation

Under certain assumptions, the RTE can be reduced to a simpler diffusion equation. First, some

integrals that come up repeatedly are
∫

dΩ̂ = 4π (2.19)
∫

Ω̂ dΩ̂ = 0 (2.20)
∫

(A · Ω̂) Ω̂ dΩ̂ =
4π

3
A , (2.21)

where in the last expression, A is independent of Ω̂. The results above can be derived by writing

out the terms for Ω̂ and dΩ̂ in terms of Cartesian coordinates:

Ω̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ (2.22)

dΩ̂ = sin θ dθ dφ (2.23)

where θ is the polar angle, and φ is the azimuthal angle, integrated from 0 to π and from 0 to 2π,

respectively. A first order expansion of radiance can be written as

L(r , Ω̂, t) ≈ L0(r , t) + L1(r , t) · Ω̂ . (2.24)
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This expression is equivalent to a first degree approximation of L using spherical harmonics (i.e.,

see [19]). Next, we will assume an isotropic light source:

S(r , Ω̂, t) =
1

4π
S0(r , t) , (2.25)

where the 1/4π has been added for convenience. Lastly, we will assume that distribution of scat-

tering angles f only depends on the angle between Ω̂ and Ω̂
′
.

f(Ω̂, Ω̂
′
) = f(Ω̂ · Ω̂′

) (2.26)

A first order expansion of f around (Ω̂ · Ω̂′
) = 0 is given by

f(Ω̂ · Ω̂′
) ≈ f0 + f1 (Ω̂ · Ω̂′

) (2.27)

f(cos γ) ≈ f0 + f1 cos γ , (2.28)

where γ is the angle between Ω̂ and Ω̂
′
. Using a coordinate system that points in the direction

of Ω̂, such that γ is the polar angle, we can find the coefficients f0 and f1. The first coefficient is

found evaluating the following integral:

f(cos γ) = f0 + f1 cos γ (2.29)
∫ 2π

0

∫ π

0
f(cos γ) sin γ dγ dφ =

∫ 2π

0

∫ π

0
(f0 +✘✘✘✘f1 cos γ) sin γ dγ dφ (2.30)

1 = 4π f0 (2.31)

f0 =
1

4π
(2.32)

where we have used the fact that f(cos γ) is a probability distribution over all 4π steraradians and

must integrate to one. We can find the coefficient f1 by multiplying by both sides of the equation

cos γ and integrating:

f(cos γ) cos γ = f0 cos γ + f1 cos
2 γ (2.33)

∫ 2π

0

∫ π

0
f(cos γ) cos γ sin γ dγ dφ =

∫ 2π

0

∫ π

0
(✘✘✘✘f0 cos γ + f1 cos

2 γ) sin γ dγ dφ (2.34)

〈cos γ〉 = 4π

3
f1 (2.35)

f1 =
3

4π
〈cos γ〉 = 3

4π
g (2.36)

where the angle brackets indicate the expectation of the enclosed quantity. Thus, the anisotropy

factor g is given by the average of the cosine of the scattering angle. The final expression for f is

given by

f(Ω̂ · Ω̂′
) ≈ 1

4π
+

3g

4π
(Ω̂ · Ω̂′

) . (2.37)
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Two defined quantities of interest are fluence rate (Φ(r , t)) and current density (J (r , t)) given

by the following definitions:

Φ(r , t) ≡
∫

L(r , Ω̂, t) dΩ̂ (2.38)

J (r , t) ≡
∫

L(r , Ω̂, t) Ω̂ dΩ̂ . (2.39)

If we plug our approximation in Eq. 2.24 into the definitions above for fluence rate and current

density, we can find their relationship to L0(r , t) and L1(r , t):

Φ(r , t) =

∫

L0(r , t) dΩ̂ +

∫

(L1(r , t) · Ω̂) dΩ̂

= L0(r , t)

∫

dΩ̂ + L1(r , t) ·
✚
✚
✚
✚

∫

Ω̂ dΩ̂

= 4π L0(r , t) (2.40)

J (r , t) =

∫

L0(r , t) Ω̂ dΩ̂ +

∫

(L1(r , t) · Ω̂) Ω̂ dΩ̂

= L0(r , t)
✚
✚
✚
✚

∫

Ω̂ dΩ̂ +
4π

3
L1(r , t)

=
4π

3
L1(r , t) , (2.41)

for which we have used the results in Eqs. 2.19-2.21 to perform the integrals. Thus, we can rewrite

Eq. 2.24 as

L(r , Ω̂, t) ≈ 1

4π
Φ(r , t) +

3

4π
J (r , t) · Ω̂ . (2.42)

Using our first order expansions for f (Eq. 2.37) and L (2.42), we can now simplify the integral

term in the RTE (Eq. 2.18):

∫

L(r , Ω̂
′
, t) f(Ω̂, Ω̂

′
) dΩ̂

′
=

∫ (

1

4π
Φ(r , t) +

3

4π
J (r , t) · Ω̂′

) (

1

4π
+

3g

4π
(Ω̂ · Ω̂′

)

)

dΩ̂
′

=
3

16π2
Φ(r , t)

∫

dΩ̂
′

+
3g

16π2
Φ(r , t) Ω̂ ·

✟
✟
✟
✟✟

∫

Ω̂
′
dΩ̂

′

+
3

16π2
J (r , t) ·

✟
✟
✟
✟✟

∫

Ω̂
′
dΩ̂

′

+
3g

16π2
Ω̂ ·
∫

(J (r , t) · Ω̂′
) Ω̂

′
dΩ̂

′

=
1

4π
Φ(r , t) +

3g

4π
J (r , t) · Ω̂ , (2.43)
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again using the results in Eqs. 2.19-2.21 to perform the integrals. Thus, Eq. 2.18 can be rewritten

as

1

ν

∂

∂t
L(r , Ω̂, t) =− Ω̂ · ∇L(r , Ω̂, t)− (µa + µs) L(r , Ω̂, t)

+ µs

(

1

4π
Φ(r , t) +

3g

4π
J (r , t) · Ω̂

)

+
1

4π
S0(r , t) . (2.44)

We can get a scalar differential equation by integrating both sides of the equation over all 4π

steraradians:

1

ν

∂

∂t

∫

L(r , Ω̂, t) dΩ̂ =−∇ ·
∫

Ω̂ L(r , Ω̂, t) dΩ̂

− (µa + µs)

∫

L(r , Ω̂, t) dΩ̂

+ µs
1

4π
Φ(r , t)

∫

dΩ̂

+ µs
3g

4π
J (r , t) ·

✚
✚
✚
✚

∫

Ω̂ dΩ̂

+
1

4π
S0(r , t)

∫

dΩ̂ (2.45)

where we have used the indentity Ω̂ · ∇L(r , Ω̂, t) = ∇ · (Ω̂L(r , Ω̂, t)) − L(r , Ω̂, t)∇ · Ω̂, noting that

∇ · Ω̂ = 0. This simplifies to

1

ν

∂

∂t
Φ(r , t) = −∇ · J (r , t)− µa Φ(r , t) + S0(r , t) . (2.46)

Next, we multiply both sides of Eq. 2.44 by Ω̂ and integrate over all 4π steraradians to obtain a

vectorial differential equaiton:

1

ν

∂

∂t

∫

Ω̂L(r , Ω̂, t) dΩ̂ =− 1

4π

∫

(Ω̂ · ∇Φ(r , t)) Ω̂ dΩ̂

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

− 3

4π

∫

(Ω̂ · ∇(J (r , t) · Ω̂) Ω̂ dΩ̂

− (µa + µs)

∫

Ω̂L(r , Ω̂, t) dΩ̂

+ µs
1

4π
Φ(r , t)

✚
✚
✚
✚

∫

Ω̂ dΩ̂

+ µs
3g

4π

∫

Ω̂(J (r , t) · Ω̂) dΩ̂

+
1

4π
S0(r , t)

✚
✚
✚
✚

∫

Ω̂ dΩ̂ (2.47)
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where the second term can be shown to cancel to zero by writing out all the terms using Eqs. 2.22

and 2.23 and showing that each term integrates to zero. The equation above simplifies to

1

ν

∂

∂t
J (r , t) = −1

3
∇Φ(r , t)− (µa + (1− g)µs)J (r , t)

= −1

3
∇Φ(r , t)− (µa + µ′s)J (r , t) , (2.48)

where the quantity µ′s = (1−g)µs is the reduced scattering coefficient. After making the assumption

that left-hand side goes to zero, we get

J (r , t) = − ∇Φ(r , t)

3(µa + µ′s)
= −D ∇Φ(r , t) , (2.49)

where the term D = 1/(3µa + 3µ′s) is the diffusion coefficient. Finally, plugging Eq. 2.49 into Eq.

2.46, we get the diffusion approximation in the time domain:

1

ν

∂

∂t
Φ(r , t)−∇ · (D ∇Φ(r , t)) + µa Φ(r , t) = S0(r , t) . (2.50)

Applying a Fourier transform to both sides, we get the final result

−∇ · (D ∇Φ̃(r , ω)) +

(

µa +
iω

ν

)

Φ̃(r , ω) = S̃0(r , ω) , (2.51)

using the property that the Fourier transform of the derivative of a function is the Fourier transform

of the function multiplied by iω. The diffusion approximation can be solved analytically for a few

simple geometries and numerically using finite element methods.

2.3.3 Infinite Homogeneous Medium

The diffusion approximation can be solved analytically for an infinite, homogeneous medium [20].

Starting with Eq. 2.51, we can expand the first term and simplify:

✭✭✭✭✭✭✭✭✭−∇Φ(r , ω) · ∇D −D∇2Φ(r , ω) +

(

µa +
iω

ν

)

Φ(r , ω) = S(r , ω) (2.52)

∇2Φ(r , ω)−
(

µa
D

+
iω

νD

)

Φ(r , ω) = −S(r , ω)
D

, (2.53)

where ∇D = 0 in a homogeneous medium. Note that we have dropped the tilde notation and

subscript zero on the source term. Making a substitution for constants in the second term gives

(∇2 + κ2)Φ(r , ω) = −S(r , ω)
D

(2.54)

κ2 = −
(

µa
D

+
iω

νD

)

, (2.55)
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which is the inhomogeneous Helmholtz equation. Noting that (∇2 + κ2) is translation invariant,

Eq. 2.54 can be solved for any arbitrary function on the right-hand side using the Green’s function

G(r , ω) as follows:

(∇2 + κ2)Φ(r , ω) = F (r , ω) (2.56)

Φ(r , ω) =

∫

F (r ′, ω) G(r − r ′, ω) d3r ′ (2.57)

where G(r , ω) is given by the solution to the following equation:

(∇2 + κ2)G(r , ω) = δ3(r) . (2.58)

Applying a Fourier transform to the equation above gives

∫

(∇2 + κ2)G(r , ω) e−is·r d3r =

∫

δ3(r) e−is·r d3r (2.59)

which can be solved algebraically to find the Green’s function as a function of spatial frequency s :

(−s2 + κ2)G̃(s , ω) = 1 (2.60)

G̃(s , ω) =
1

κ2 − s2
, (2.61)

where s is the length of the vector s . Now, we can invert the Fourier transform to get back to the

spatial domain:

G(r , ω) =
1

8π3

∫

1

κ2 − s2
eis ·r d3s . (2.62)

We can evaluate this integral by choosing a coordinate system with the polar axis along s:

G(r , ω) =
1

8π3

∫ 2π

0

∫ π

0

∫ ∞

0

eisr cos θ

κ2 − s2
s2 sin θ ds dθ dφ

=
1

4π2

∫ 1

−1

∫ ∞

0

eisru

κ2 − s2
s2ds du

= − i

4π2r

∫ ∞

0

s

κ2 − s2
(eisr − e−isr) ds

=
i

8π2r

∫ ∞

−∞

s

s2 − κ2
(eisr − e−isr) ds , (2.63)

where r = |r |. The last integral above can be performed using Cauchy’s integral formula [21],

giving the final result for the Green’s function:

G(r , ω) = −e
iκr

4πr
. (2.64)
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The Green’s function can be used to solve Eq. 2.54 for any arbitrary source distribution by

evaluating the integral in Eq. 2.57. Often, the light source is modeled as an isotropic point source

defined by

S(r , ω) = A δ3(r) , (2.65)

where A is the amplitude of a light source that is intensity-modulated at an angular frequency ω.

Plugging Eq. 2.65 into Eq. 2.57 and evaluating the result gives the final solution for an isotropic

light source in an infinite, homogeneous medium:

Φ(r , ω) =

∫

(

− eiκ|r−r ′|

4π|r − r ′|

)

(

−A δ3(r ′)

D

)

d3r ′

=
A

4πD

eiκr

r
, (2.66)

where r = |r | is the distance from the point source. The real and imaginary parts of κ are given by

ℜ(κ) = −
√

µa
2D

(

−1 +

√

1 +
ω2

ν2µ2a

)1/2

(2.67)

ℑ(κ) =
√

µa
2D

(

1 +

√

1 +
ω2

ν2µ2a

)1/2

, (2.68)

which can be used to write expressions for the amplitude and phase:

|Φ(r , ω)| = A

4πD

e−rℑ(κ)

r
(2.69)

arg(Φ(r , ω)) = rℜ(κ) . (2.70)

Note that we have chosen the proper root of κ such that |Φ(r , ω)| goes to zero as r goes to infinity.

Also, note that phase is decreasing with distance (ℜ(κ) < 0) as the signal at a position r 6= 0

“lags” the intensity-modulated light source; however, much of the literature uses a reversed sign

convention for the phase. An illustration of the fluence field in an infinite homogeneous medium is

shown in Fig. 2.9.

2.3.4 Semi-Infinite Homogeneous Medium

Near-infared spectroscopic measurements are typically made on the surface of the scalp or skin.

Thus, the infinite medium solution is not appropriate for modeling NIRS measurements; however,

measurements on the surface of the scalp or skin can be approximated as measurements at the
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Figure 2.9: Illustration of fluence field for an infinite, homogeneous medium. The intensity is shown

on a linear scale (left) and log scale (center), and the phase is also shown (right).

boundary of a semi-infinite, homogeneous medium (i.e., the “slab model”). An analytical solution

to diffusion approximation equation in the frequency domain can be derived using the method of

images [20], in which the fluence goes to zero at an extrapolated boundary at a distance b above the

infinite slab. The position of the extrapolated boundary is determined based on Fresnel reflection

giving the following expression according to [20]:

b =

(

1 +Reff
1−Reff

)

2

3
ℓ (2.71)

where Reff is the effective reflection coefficient (∼0.4-0.5 for tissue [20]), and ℓ is the mean free

path length given by 1/(µ′s + µa).

A beam of light incident onto the surface of a medium can be approximated as an isotropic

point source located one mean free path inside the medium [20]. Thus, a negative source (sink) can

be placed 2b+ ℓ above the boundary, causing the fluence to be zero everywhere on the extrapolated

boundary due to symmetry. This configuration is illustrated in Fig. 2.10.

The source function is modeled as

S(r , ω) = A δ3(rs)−A δ3(ri) , (2.72)

where A gives the amplitude of the light source. The solution for the fluence in a semi-infinite,
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Figure 2.10: Illustration of extrapolated boundary. A sink is placed equidistant from the extrapo-

lated boundary so that fluence is zero everywhere on the boundary due to symmetry.

homogeneous slab is found simply by integrating the source function above with the the Green’s

function in Eq. 2.64:

Φ(r , ω) =

∫

(

− eiκ|r−r ′|

4π|r − r ′|

)

(

−A δ3(r ′ − rs)−A δ3(r ′ − ri)

D

)

d3r ′ , (2.73)

This gives the following simple expression for the fluence in a semi-infinite, homogeneous medium:

Φ(r , ω) =
A

4πD

(

eiκ|r−rs|

|r − rs|
− eiκ|r−ri|

|r − ri|

)

, (2.74)

We are typically only interested in the fluence at the boundary, in which the distance to the

source and sink can be written as:

|r − rs| =
√

ℓ2 + ρ2 (2.75)

|r − ri| =
√

(2b+ ℓ)2 + ρ2 . (2.76)

Substituting the above expressions into Eq. 2.74 gives

Φ(ρ, z = 0, ω) =
A

4πD

(

eiκ
√
ℓ2+ρ2

√

ℓ2 + ρ2
− eiκ

√
(2b+ℓ)2+ρ2

√

(2b+ ℓ)2 + ρ2

)

. (2.77)
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We can simply this expression by taking the Taylor expansion of the first term around ℓ and the

second term around 2b+ ℓ:

Φ(ρ, 0, ω) =
A

4πD

[(

eiκρ

ρ3
+
eiκρ

ρ3
(1− iκρ) ℓ2

)

−
(

eiκρ

ρ3
+
eiκρ

ρ3
(1− iκρ) (2b+ ℓ)2

)]

, (2.78)

which simplifies to

Φ(ρ, 0, ω) =
A

4πD

eiκρ

ρ3
(1− iκρ) (4bℓ− 4b2) . (2.79)

We can write the complex numbers eiκρ and 1− iκρ in exponential form in terms of amplitude and

phase:

eiκρ = e−ℑ(κ)ρeiℜ(κ)ρ (2.80)

1− iκρ = [(1 + ℑ(κ)ρ)2 + (ℜ(κ)ρ)2]1/2 ei tan
−1

(

ℜ(κ)ρ
1+ℑ(κ)ρ

)

, (2.81)

which allows us to write the following expression for the amplitude and phase of the of the fluence

at the surface:

|Φ(ρ, 0, ω)| = A

4πD

e−ℑ(κ)ρ

ρ3
[(1 + ℑ(κ)ρ)2 + (ℜ(κ)ρ)2]1/2(4bℓ− 4b2) (2.82)

arg(Φ(ρ, 0, ω)) = ℜ(κ)ρ + tan−1

( ℜ(κ)ρ
1 + ℑ(κ)ρ

)

. (2.83)

Light propagation through a semi-infinite, homogeneous slab is illustrated in Fig. 2.11. Rearranging

the terms and taking the log of the first expression gives

ln

( |Φ(ρ, 0, ω)|ρ3
[(1 + ℑ(κ)ρ)2 + (ℜ(κ)ρ)2]1/2

)

= −ℑ(κ)ρ+ ln

(

A

4πD
(4bℓ− 4b2)

)

(2.84)

arg(Φ(ρ, 0, ω)) − tan−1

( ℜ(κ)ρ
1 + ℑ(κ)ρ

)

= ℜ(κ)ρ , (2.85)

which gives two linear equations in ρ. The slopes of these equations can be determined from

experimental measurements and used to recover the absorption and reduced scattering via algebra.

Note that the position of the extrapolated boundary ends up in the intercept term, in which the

actual value is unimportant for data analysis.

2.3.5 Monte Carlo Methods

With the exception of very simple geometries, such as infinite or semi-infinite media discussed above,

deriving analytical expression for light propagation in tissue is generally not feasible. This has led

to the development of several numerical methods to solve for light propagation through complex
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Figure 2.11: Illustration of fluence field for a semi-infinite, homogeneous medium. The intensity is

shown on a linear scale (top) and log scale (center), and the phase is also shown (bottom).
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heterogeneous media. The two major computation methods that have been used are Monte Carlo

simulations and finite element methods (section 2.3.6). Monte Carlo methods are conceptually

very simple, in which photon propagation through a volumetric discretization of the medium is

simulated directly.

Photon scattering events are simulated as stochastic events using a probabilistic functions.

Three random numbers are needed per scattering event: (i) to determine the distance to the next

scattering event, (ii) polar scattering angle, and (iii) azimuthal scattering angle. The distance to

the next scattering event is given by an exponential distribution parameterized by the scattering

coefficient (Eq. 2.4). The polar scattering is often modeled using the Henyey-Greenstein phase

function (Eq. 2.5). Lastly, the azimuthal angle is a uniformly distributed number between 0

and 2π. Photon absorption can be treated as a stochastic event; however, photons are typically

simulated as “photon packets”, in which the weight of the photon is decreased deterministically

along the path between scattering events. This improves the convergence and reduces the total

number of photons that must be simulated.

Because Monte Carlo methods simulate the physical process of photon propagation, they can

solve the RTE without assumptions or approximations. This typically makes Monte Carlo the “gold

standard” for comparison and validation other methods. Unfortunately, many photons (∼107)

are needed to reach an acceptable level of accuracy, which is very computationally expensive on

traditional CPU hardware. A number of researchers have implemented Monte Carlo solvers on

GPU hardware [22, 23, 24, 25], which can speed up computations by a factor of more than 300 [25].

2.3.6 Finite Element Methods

Finite element methods (FEM) are another popular method for solving the forward problem [26].

The finite element approach is based on solving the weak form of the diffusion approximation given

in Eq. 2.51. In the weak formulation, Eq. 2.51 is multiplied by a suitable “test function” and

integrated over the problem domain giving

∫

Ω

[−v(r) ∇ · (D(r) ∇Φ(r , ω)) +v(r )

(

µa(r) +
jω

ν

)

Φ(r , ω))

]

dΩ

=

∫

Ω

v(r) S(r , ω) dΩ , (2.86)
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where v(r) is an arbitrary test function that also satisfies the boundary conditions. Applying

integration by parts to the first term on the left-hand side gives

∫

Ω

D(r) ∇v(r) · ∇Φ(r , ω)) dΩ+

∫

∂Ω

v(r) D(r) ∇Φ(r , ω)) · n̂ d(∂Ω)

+

∫

Ω

v(r )

(

µa(r) +
jω

ν

)

Φ(r , ω)) dΩ =

∫

Ω

v(r) S(r , ω) dΩ , (2.87)

where ∂Ω indicates an integration over the boundary.

There are several ways to implement boundary conditions, which are explored by Schweiger et.

al. [27] including Dirichlet conditions on the boundary, Dirichlet conditions on an extrapolated

boundary, and Robin boundary conditions. The Robin boundary condition is given by

Φ(r , ω) + 2D(r)A ∇Φ(r , ω) · n̂ = 0 (2.88)

where n̂ is a unit vector normal to the boundary, and A is a constant. This expression effectively

says that the exitance at the boundary is proportional to the fluence on the boundary, adjusted for

reflection at the boundary. The constant A is given by

A = (1 +R)/(1−R) (2.89)

R ≈ −1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n , (2.90)

where n is the refractive index mismatch, and R is from a phenomenological model fit to experi-

mental data [28]. Alternatively, A can be specified by

A =
2/(1 −R0)− 1 + | cos(θc)|3

1− | cos(θc)|2
(2.91)

R0 = (n− 1)2/(n + 1)2 (2.92)

θc = arcsin(1/n) , (2.93)

which is derived from Fresnel’s law in [29]. In either case, rearranging the terms in Eq. 2.88 and

substituting into the third term in Eq. 2.87 gives final expression for the global weak form:

∫

Ω

D(r) ∇v(r) · ∇Φ(r , ω)) dΩ−
∫

∂Ω

1

2A
v(r) Φ(r , ω)) d(∂Ω)

+

∫

Ω

v(r )

(

µa(r) +
jω

ν

)

Φ(r , ω)) dΩ =

∫

Ω

v(r) S(r , ω) dΩ . (2.94)

In order to numerically solve the global weak formulation, the tissue volume is discretized into

a mesh, given by a set of nodes with very structured connectivity, usually in the form of tetrahedral
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units. This allows a function to be determined at any point based on an interpolation defined by

a set of basis functions on the enclosing nodes. Thus, the fluence can be expanded in terms of

compactly supported basis functions uj(r):

Φ(r , ω) =
∑

j

φj uj(r) , (2.95)

where φj are the nodal fluence values. Substituting this expression into Eq. 2.94 gives

∑

j

[

∫

Ω

D(r) ∇v(r) · ∇uj(r) dΩ

+

∫

Ω

v(r)

(

µa(r) +
jω

ν

)

uj(r) dΩ

−
∫

∂Ω

1

2A
v(r) uj(r ) d(∂Ω)

]

=

∫

Ω

v(r) S(r , ω) dΩ . (2.96)

We can choose the test function v(r) from the basis functions giving

∑

j

[

∫

Ω

D(r) ∇ui(r) · ∇uj(r) dΩ

+

∫

Ω

ui(r)

(

µa(r) +
jω

ν

)

uj(r) dΩ

−
∫

∂Ω

1

2A
ui(r) uj(r) d(∂Ω)

]

=

∫

Ω

ui(r) S(r , ω) dΩ . (2.97)

We can do this for every function uj(r) giving a system of linear equations which can be written

in matrix form as

(K +B)φ = s , (2.98)

where φ is a vector containing the nodal fluence values, and the entries of K, B, and s are given by

Kij =

∫

Ω

D(r) ∇ui(r ) · ∇uj(r) dΩ+

∫

Ω

ui(r)

(

µa(r) +
jω

ν

)

uj(r) dΩ (2.99)

Bij = −
∫

∂Ω

1

2A
ui(r) uj(r) d(∂Ω) (2.100)

si =

∫

Ω

ui(r) S(r , ω) dΩ . (2.101)
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Because the basis functions have compact support, the matrices K and B are sparse, giving a linear

system that can be solved very efficiently using iterative methods, such as biconjugate gradient.

Compared to Monte Carlo methods, the finite element approach is much more computationally

efficient. This is true even when comparing to Monte Carlo implementations on GPU hardware,

since a full simulation must to be carried out for every source position (and detector position for

Jacobian calculations) at each wavelength. For the finite element method, once the matrices K and

B are formed (and a factorization of K+B computed for preconditioning), the system can be solved

for any arbitrary number of sources (or detectors) with only a minimal increase in computational

time.

2.3.7 Nonlinear Inversion

We have examined ways to calculate the forward problem, in which we are interested in finding

the fluence as a function of space given optical properties. The more clinically important process

involves reversing this procedure. In other words, in the clinic we can make measurement of the light

intensity on the scalp and try to estimate the optical properties that generated these measurements

(this is called the inverse problem). We have already discussed how to do this with the semi-

infinite, homogeneous slab model; however, we may wish to use a more complicated geometry

that incorporates anatomical information, such as with a segmented MRI. In this case, the inverse

problem is typically solved iteratively, in which we attempt to minimize the sum of squared errors

of the residuals:

C(x ) =
1

2
(y − f(x ))TΣ−1(y − f(x )) , (2.102)

where y is a vector of measurements; Σ−1 is the inverse of the covariance matrix of the measure-

ments; and f(x ) are the predicted measurements by solving the forward problem given a set of

parameters in the vector x . In the context of NIRS, y may contain measurements from a list

of source-detector pairs and f(x ) is computed using finite element methods using absorption and

scattering coefficients as the parameters in x . The solution is found by finding a solution where

gradient of C(x ) is zero.
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Since f is nonlinear, we take the first two terms of a Taylor expansion around x which gives

C(x ) =
1

2
(y − f(x )− J∆x )TΣ−1(y − f(x )− J∆x ) , (2.103)

where J is the Jacobian matrix containing the partial derivatives of f with respect to x . Taking

the derivative of with respect to ∆x and setting it to zero gives

− JTΣ−1(y − f(x )− J∆x )T ) = 0 , (2.104)

Solving this expression for ∆x gives

∆x = (JTΣ−1J)−1JTΣ−1(y − f(x )) , (2.105)

which is the update step for an iterative Gauss-Newton method. In many cases, this inversion may

be poorly conditioned, and we may wish to add a regularization term to the cost function at each

step form of λ ∆xT∆x/2, in which λ is a regularization parameter. Repeating the derivation gives

the update rule

∆x = (JTΣ−1J + λI)−1JTΣ−1(y − f(x )) , (2.106)

which is the Levenberg-Marquadt update rule [30]. Lastly, we may also consider scaling the mag-

nitude of each parameter by the inverse of the magnitude of diag(JTΣ−1J), in which we get the

final update rule for the Levenberg-Marquadt algorithm:

∆x = (JTΣ−1J + λ diag(JTΣ−1J))−1JTΣ−1(y − f(x )) . (2.107)

In order to perform any type of iterative regression, we need an efficient method to calculate

the derivatives. The naive approach would be to perturb the optical properties at every point in

our discretized tissue volume and recalculate the fluence. Clearly, this approach is not feasible if

the discretization of the tissue volume includes tens to hundreds of thousands of points. In the

case of multi-layered models, in which the optical properties are homogeneous within each layer,

this procedure may be feasible, but a direct calculation using the adjoint method described below

is more efficient.

The quantity we are interested in can be written as

ys,d =

∫

Ω

Φs(r) δ(r − rd) dΩ , (2.108)

where ys,d is the fluence at the detector position rd, and Φs(r) represents the fluence field from

a light source. The key to the adjoint method is simply to consider expressing the delta function

above as a point source obeying the diffusion approximation (Eq. 2.51) with its respective fluence
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field denoted as Φd(r). Under this consideration, we can plug the entirety of the left-hand side of

Eq. 2.51 into the integral above to give the expression

ys,d = −
∫

Ω

Φs(r)

[

∇ · (D ∇Φd(r)) +

(

µa +
iω

ν

)

Φd(r)

]

dΩ . (2.109)

Using the integration by parts on the first term gives

ys,d =

∫

Ω

D(r) ∇Φs(r) · ∇Φd(r) dΩ +

∫

Ω

µa(r) Φ
s(r) Φd(r) dΩ+ ... (2.110)

where we have left out the terms that do not depend on D(r) or µa(r). Remember that substitution

of the boundary conditions in section 2.3.6 removed the dependence on D(r) from the boundary

integral. We can find the functional derivative with respect to absorption by directly evaluating

the definition of a functional derivative:

δys,d
δµa(r)

= lim
ǫ→0

1

ǫ

(

ys,d
[

µa(r
′) + ǫ δ(r ′ − r)]− ys,d

[

µa(r
′)
])

= lim
ǫ→0

1

ǫ

∫

Ω
ǫ δ(r ′ − r) Φs(r ′) Φd(r ′) dΩ

= Φs(r) Φd(r) . (2.111)

Performing the exact same procedure for D(r) gives

δys,d
δD(r )

= ∇Φs(r) · ∇Φd(r) . (2.112)

The significance of this result is quite profound in that we can calculate the derivatives with

respect to the optical properties everywhere by only performing two forward model calculations.

This process is illustrated in Fig. 2.12. For further discussion of this result see [31].

2.4 FUNCTIONAL BRAIN IMAGING

Functional NIRS acquires measurements (usually with a CW system) over time while a subject

performs a task or responds to a stimulus. The investigator is interested in relative absorption

changes that are related to the task or stimulus. Typically, the investigator uses the stimulus

timing to generate a linear model of the evoked hemodynamics. The linear model is then inverted

to recover information about the evoked response (e.g., the magnitude of the response). This can

be done for each channel and for all subjects. Finally, the subject level statistics are passed to a
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Figure 2.12: Illustration of derivative calculations for absorption based on the adjoint method. The

source field (Φs) and adjoint field (Φs) are shown. The product of the two fields gives the derivative

of the source-detector measurement with respect to absorption at every position in the volume.

statistical analysis to make inferences about the population level response. This section reviews

the basics of subject level analysis. Group level analyses can differ depending on the experiment,

and specific knowledge of group level analyses is not necessary to review the works in chapters 5

and 6, which focus on subject level analysis.

2.4.1 Spectral Estimation of Hemoglobin

The modified Beer-Lambert law [16] is used to model the light intensity for functional imaging:

I = I(0) exp



−DPF · d ·
∑

j

εjcj +G



 , (2.113)

where cj is the concentration of chromophore j; εj is the extinction coefficient relating absorption to

chromophore concentration; and d is the source-detector distance. Equation 2.113 can be rewritten

in terms of optical density giving

OD = − ln

(

I

I(0)

)

= DPF · d ·
∑

j

εjcj +G . (2.114)

For fNIRS, the chromophores of interest are typically oxy-hemoglobin (HbO2) and deoxy-hemoglobin

(Hb).

30



Brain activity perturbs the chromophore concentration in the cortex because of localized changes

in blood flow and oxygen metabolism. Thus, functional studies are typically only interested in

changes in chromophore concentration from the baseline:

∆OD = − ln

(

I

〈I〉

)

= DPF · d ·
∑

j

εj∆cj , (2.115)

where 〈I〉 denotes the mean intensity over time. Because the hemodynamic changes may be focal

in nature, an additional correction factor, partial pathlength factor (PPF), is introduced to account

for the fraction of optical pathlength that is affected by the evoked activity:

∆OD = − ln

(

I

〈I〉

)

= PPF · DPF · d ·
∑

j

εj∆cj . (2.116)

The correction factor DPF can be determined with reasonable accuracy given probe geometry, head

geometry, and baseline optical properties using numerical simulations; however, accurate calculation

of PPF would require a priori knowledge of the spatial extent of the hemodynamic activity. This

inherently limits the quantification of chromophore changes (see [32] for further discussion). If the

ultimate goal of the analysis is calculate t-statistics and no dependence of the optical pathlength

on wavelength is modeled, then the actual values of DPF and PPF are irrelevant as they will scale

both the numerator and denominator of the t-statistic. In any case, once some assumptions are

made about DPF and PPF, the changes in chromophore concentration can be estimated by making

measurements at multiple wavelengths:

1

PPF ·DPF · d ∆ODi =
∑

j

εij∆cj , (2.117)

where the subscript i denotes the wavelength index and j denotes the chromophore index. Provided

there are at least as many wavelengths as chromophores, this gives a system of equations that can

easily be solved for chromophore concentrations using matrix algebra.
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2.4.2 Generalized Linear Model

Once the fNIRS time-series data has been preprocessed, either by conversion to either optical

density for single wavelength of light or ∆HbO2 and ∆Hb in the case of multiple wavelengths, the

time-series data can be modeled using a generalized linear model [33]:

y = Xβ + ǫ (2.118)

E[ǫ] = 0 (2.119)

cov[ǫ] = Σ , (2.120)

where X is the design matrix with regressors in each column; β is a vector of model parameters;

and ǫ is the error term.

In the context of fNIRS, there are generally two approaches to assembling X: finite impulse

response (FIR) models and canonical hemodynamic response function (HRF) models [34]. Finite

impulse response models attempt to fit the shape of the evoked hemodynamic response to a set

of temporally lagged basis functions at each stimulus onset. Some examples of basis functions

that can be used include delta functions, mini box-car functions, gamma functions, or Gaussian

functions. Choosing a basis function other than delta functions can impose smoothness on the

resulting evoked HRF. Figure 2.13 illustrates some examples of basis functions.

In the case of the canonical HRF model, for each stimulus condition a vector containing values

of one during periods of task and zero during rest is convolved with a canonical HRF function

to generate the predicted shape of the evoked hemodynamic response. This model makes several

assumptions: (i) the hemodynamic response can be modeled as a linear time-invariant process, and

(ii) assumptions are made about the shape of impulse response, such as time to onset, time to

peak, width (dispersion), etc. The introduction of these assumptions reduces the model to a single

regressor per stimulus condition (plus nuisance regressors), which increases statistical power when

the canonical model is close to the true model.

Once the model is chosen for the fNIRS time-series, the generalized least squares (GLS) solution

[33] is given by

β = (XTΣ−1X)−1XTΣ−1y (2.121)

cov(β) = (XTΣ−1X)−1 . (2.122)
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Figure 2.13: Illustration of different basis functions commonly used in the GLM for to fNIRS data.

While the solution is easy to write, implementation is not trivial as the covariance matrix Σ is

generally unknown. There are several sources of noise that contribute to the error term in Eq.

2.118 for fNIRS, including instrumentation noise, ambient light, motion artifacts, and systemic

physiology. Instrumentation noise is typically dominated by other sources of noise, and ambient

light can be controlled through careful experimental conditions or by including an ambient light

sensor; however, motion artifacts and systemic physiology, such as Mayer waves (blood pressure),

cardiac, and respiratory oscillations, must be carefully accounted for in estimated Eq. 2.118 in

order to produce reliable results. Figure 2.14 shows an example power spectrum from fNIRS data.

Estimating the GLM in the context of these noise sources is an active area of research, including

the developments in chapter 5, which deal with specifically with motion artifacts and systemic

physiology.

Once the model is estimated, t-statistics can be estimated for the regressor(s) of interest in

order to make statistical inferences about which channels contained evoked brain activity. We can

define a contrast vector c, such that cTβ gives a linear combination of the regressors. The t-statistic

is then given by

t =
cTβ

√

cT cov(β)c
. (2.123)

For example, to test the statistical significance of the first regressor, we would define c = [1 0 0 ...]T .

If we wanted to test the difference between regressor 1 and regressor 2, we would define c =

[1 − 1 0 ...]T .
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Figure 2.14: Example power spectrum from fNIRS data.

2.4.3 Adaptive Estimation

In some cases, we may wish to perform model estimation recursively, updating the model estimate in

real time as new data is acquired. This could be done for a number reasons from simply wanting to

give feedback to the investigator as data is acquired to the development of brain machine interfaces.

Naively, we could simply update the measurement vector y and regression matrix X and perform

the full model estimation procedure; however, current hardware is often not fast enough to perform

these calculations at a high sampling rates (10 − 50+ Hz in NIRS). Furthermore, as the y and X

grow, the computational requirements for inversion continues to grow.

The linear Kalman filtering algorithm is an efficient way to recursively update model estimates

using the previous model estimate and the new data only. The model that the Kalman filter solves

is given by

Model

β{t} = A{t}β{t − 1} +B{t}u{t} + q{t} (2.124)

q{t} ∼ N(0, Q{t}) (2.125)

y{t} = X{t}β{t} + r{t} (2.126)

r{t} ∼ N(0, R{t}) , (2.127)

where β{t} describes the “state” of the system; A{t} is the state transition matrix; B{t} is the
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control input matrix; u{t} is the control input vector; q{t} is the process noise with covariance Q{t};
y{t} contains observed measurements; X{t} is the observation matrix; r{t} is the measurement

noise with covariance R{t}. The quantities A{t}, B{t}, u{t}, X{t}, and y{t} are known quantities,

while β{t} is estimated. In many cases, such as the methods developed in chapter 6, A{t}, is an

identity matrix, and B{t} and u{t} are discarded (set to zero). In this case, we have essentially

have a linear model with time-varying coefficients when Q{t} is non-zero.

The estimation procedure for the linear Kalman filter is given by the following equations:

Prediction Step

β̂{t|t− 1} = A{t}β̂{t− 1|t− 1} +B{t}u{t} (2.128)

C{t|t− 1} = C{t− 1|t− 1} +Q{t} (2.129)

Prediction Error

r̂{t} = y{t} −X{t}β̂{t|t− 1} (2.130)

Update Step

S = X{t}C{t|t− 1}XT {t}+R{t} (2.131)

K = C{t|t− 1}XT {t}S−1 (2.132)

C{t|t} = C{t|t− 1} −KX{t}C{t|t− 1} (2.133)

β̂{t|t} = β̂{t|t− 1}+Kr̂{t} , (2.134)

where C is the covariance matrix of β. Here, the notation {m|n} denotes the quantity at time m

given the measurements up to time n. The process noise covariance Q{t} is generally set a priori.

Given the previous estimate of β, we can simply take the expectation to predict the next value

of β:

β̂{t|t− 1} = E[β{t}|β̂{t− 1|t− 1}]

= A{t}β̂{t− 1|t− 1}+B{t}u{t} , (2.135)
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where we have used the fact that q{t} is mean zero. Using the properties of covariance, we can

estimate the covariance matrix of our predicted β:

C{t|t− 1} = cov(β{t} − β̂{t|t− 1})

= cov(β{t}) + cov(A{t}β̂{t|t− 1})

= Q{t}+A{t}C{t− 1|t− 1}AT {t} . (2.136)

The prediction error is simply given by

r̂{t} = y{t} −X{t}β̂{t|t− 1} . (2.137)

Again, we can simply use the properties of covariance to derive an expression for the covariance of

the prediction error:

S = cov(r̂{t})

= cov(y{t}) + cov(X{t}β̂{t|t− 1})

= R{t}+X{t}C{t|t− 1}XT {t} . (2.138)

We will assume an update of model states given by

β̂{t|t} = β̂{t|t− 1}+Kr̂{t} , (2.139)

where K is referred to as the Kalman gain. The Kalman filter minimizes the mean squared error

(MSE) given by

MSE = ||β{t} − β̂{t|t− 1}||2 = tr(C{t|t}) , (2.140)

where the MSE is simply the sum of the diagonal elements of the covariance matrix (trace). The

covariance can be expanded as

C{t|t} = cov
(

β{t} − β̂{t|t}
)

= cov
(

β{t} − β̂{t|t− 1} −Kr̂{t}
)

= cov
(

β{t} − β̂{t|t− 1} −K(y{t} −X{t}β̂{t|t− 1})
)

= cov
(

β{t} − β̂{t|t− 1} −K(X{t}β{t} + r{t} −X{t}β̂{t|t− 1})
)

. (2.141)

Collecting the terms and using the properties of covariance gives

C{t|t} = cov
(

(I −KX{t})(β{t} − β̂{t|t− 1}) −Kr{t}
)

= (I −KX{t})C{t|t − 1}(I −KX{t})T +KR{t}KT , (2.142)
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which gives an update rule for the covariance given an arbitrary Kalman gain. This result can be

expanded to

C{t|t} = C{t|t− 1} −C{t|t− 1}XT {t}KT −KX{t}C{t|t− 1}

+KX{t}C{t|t− 1}XT {t}KT +KR{t}KT

= C{t|t− 1} −C{t|t− 1}XT {t}KT −KX{t}C{t|t− 1}

+K(X{t}C{t|t − 1}XT {t}+R{t})KT

= C{t|t− 1} −C{t|t− 1}XT {t}KT −KX{t}C{t|t− 1}+KSKT . (2.143)

Finally, we can take the derivative with respect to K and set it to zero to find the optimal Kalman

gain:
∂

∂K
tr(C{t|t}) = −2C{t|t− 1}XT {t}+ 2KS = 0 , (2.144)

which has the solution

K = C{t|t− 1}XT {t}S−1 . (2.145)

From the above, it is easy to see that KSKT = C{t|t − 1}XT {t}KT , which cancels the last two

terms in Eq. 2.142, giving the simplified update rule for covariance:

C{t|t} = C{t|t− 1} − C{t|t− 1}XT {t}KT . (2.146)

Note that Eq. 2.127 assumes that the prediction error is independent of the previous time

points. In the previous section we discussed the sources of noise in NIRS and showed that this

assumption is clearly not true. Chapter 6 modifies this procedure to account for the sources of

noise in NIRS.
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3.0 ASSESSMENT OF SEMI-INFINITE HOMOGENEOUS SLAB MODEL FOR

BASELINE PHYSIOLOGY ESTIMATION IN NEONATES

The semi-infinite, homogeneous slab model is commonly used for analysis of FD-NIRS data due to

its ease of implementation and the availability of an analytic solution to the diffusion approxima-

tion. This chapter attempts to thoroughly investigate the accuracy of these estimates in neonates.

The work presented in this chapter has been published in Biomedical Optics Express [35], and

is available online at http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-5-12-4300

( c©2014 Optical Society of America).

3.1 ABSTRACT

Frequency domain near-infrared spectroscopy (FD-NIRS) is a non-invasive method for measuring

optical absorption in the brain. Common data analysis procedures for FD-NIRS data assume the

head is a semi-infinite, homogeneous medium. This assumption introduces bias in estimates of

absorption (µa), scattering (µ′s), tissue oxygen saturation (StO2), and total hemoglobin (HbT).

Previous works have investigated the accuracy of recovered µa values under this assumption. The

purpose of this study was to examine the accuracy of recovered StO2 and HbT values in FD-NIRS

measurements of the neonatal brain. We used Monte Carlo methods to compute light propagation

through a neonate head model in order to simulate FD-NIRS measurements at 690 nm and 830 nm.

We recovered µa, µ
′
s, StO2, and HbT using common analysis procedures that assume a semi-infinite,

homogeneous medium and compared the recovered values to simulated values. Additionally, we

characterized the effects of curvature via simulations on homogeneous spheres of varying radius.

Lastly, we investigated the effects of varying amounts of extra-axial fluid. Curvature induced

underestimation of µa, µ
′
s, and HbT, but had minimal effects on StO2. For the morphologically
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normal neonate head model, the mean absolute percent errors (MAPE) of recovered µa values were

12% and 7% for 690 nm and 830 nm, respectively, when source-detector separation was at least 20

mm. The MAPE for recovered StO2 and HbT were 6% and 9%, respectively. Larger relative errors

were observed (∼20-30%), especially as StO2 and HbT deviated from normal values. Excess CSF

around the brain caused very large errors in µa, µ
′
s, and HbT, but had little effect on StO2.

3.2 INTRODUCTION

Near-infrared spectroscopy (NIRS) is a non-invasive method for measuring the optical absorption

of cerebral blood due to hemoglobin [36]. Measurements acquired at multiple wavelengths of light

can be used for spectral estimation of both oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb),

which subsequently provide estimates of tissue oxygen saturation (StO2) and total hemoglobin

(HbT). Because NIRS is portable, non-ionizing, and non-restraining, it is an attractive technique

for bedside measurements of cerebral physiology in neonates with applications in assessing brain

development [37], detecting hypoxic-ischemic brain injuries [3, 4], and monitoring during pediatric

cardiac surgery [2].

Current clinical NIRS systems use continuous wave (CW-) light sources, in which light intensity

is constant. These systems have shown promising evidence in monitoring trends in cerebral physi-

ology, but lack quantitative accuracy in absolute estimates of baseline physiology [38]. Frequency

domain (FD-) NIRS systems use a light source that is modulated in intensity by a sinusoidal func-

tion, which provides measurements of both amplitude and phase of the modulated light. The phase

measurement contains information about the optical pathlength, which improves quantification.

A common method for analysis of FD-NIRS data assumes a homogeneous, semi-infinite medium

[39]. The existence of an analytical solution to light propagating in such a medium provides a

convenient and computationally efficient method for data analysis, but introduces bias in recovered

absorption values due to curvature/finite volume and the heterogeneous structure of tissues in the

head. Dehaes et. al. investigated the accuracy of recovered optical absorption coefficients using

this model by simulating FD-NIRS measurements on one-, two-, and three-layered segmentations

of structural magnetic resonance images (MRI) and comparing recovered absorption coefficients to

simulated values [40]. They found typical errors of 8-24% in recovered absorption coefficients in
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neonates. Based on the errors in absorption, they predicted errors of 8% and 11% in StO2 and

HbT, respectively.

In this work, we used simulations of light propagation through tissue to directly investigate

the accuracy of StO2 and HbT estimates in neonates. We used a four-layer segmentation of a

structural MRI from a full term, 24 day old neonate to simulate FD-NIRS measurements. We used

literature values for the scalp, skull, and cerebrospinal fluid (CSF) and parameterized the brain

properties in terms of StO2 and HbT. Simulations were performed for varying StO2 (30-100%) and

HbT (15-120 µM) in the brain layer. Recovered StO2, HbT, µa, and µ
′
s values were compared to

the simulated values. Additionally, we characterized the effects of curvature on recovered values

via simulations on homogeneous spheres of varying radius (30-120 mm). Lastly, we examined the

effects of extra-axial fluid increasing the thickness of the CSF layer.

3.3 METHODS

3.3.1 Simulation of measurements

Simulated NIRS measurements were obtained by computing light propagation through volumet-

ric images via the Monte Carlo Extreme software (MCXLAB 0.7.9 [25]). The volumetric images

contained tissue labels, specifying the optical properties compiled in Table 3.1. Simulations were

performed using reduced scattering coefficients with anisotropy factor set to zero (isotropic scatter-

ing). For all simulations, wavelengths of 690 nm and 830 nm were used according to the findings in

[32]. The optical properties of the brain were calculated based on tissue oxygen saturation (StO2)

and total hemoglobin (HbT) content. Normal baseline values of 70% StO2 and 60 µM HbT were

assumed for the brain. Additionally, background absorption from 70% water content was assumed

for the brain voxels. The time-domain signal output from MCXLAB was converted to a frequency-

domain measurement via discrete Fourier transform at a modulation frequencies of 50 MHz, 100

MHz, 150 MHz, and 200 MHz.

3.3.2 Calibration

The simulated FD-NIRS data were calibrated in the same manner as the calibration procedure for

experimental data (e.g., [45]) by simulating an additional calibration data set on a homogeneous
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Table 3.1: Optical properties of tissues; RI = refractive index.

µa,690 (mm−1) µa,830 (mm−1) µ′s,690 (mm−1) µ′s,830 (mm−1) RI

Skin/Scalp 0.0206a 0.0122a 2.37a 1.81a 1.45b

Skull 0.0255c 0.0252c 2.35c 1.75c 1.45b

CSF 0.0004d 0.0026d 0.01d 0.01d 1.33b

Brain 0.0039-0.0285f 0.0051-0.0256f 1.44b 1.07b 1.45b

a[41]; b[14]; c[42]; d[32]; fBased on spectra from [43, 44]

slab of 180 mm × 180 mm × 100 mm with optical properties matching the brain at 70% StO2 and

60 µM HbT. The respective calibration terms for intensity and phase are calculated as

cψ = ψtheo/ψslab (3.1a)

cΦ = Φtheo − Φslab , (3.1b)

where ψtheo and Φtheo are the theoretical intensity and phase values, and ψslab and Φslab are the

intensity and phase measured on the calibration slab. The calibrated data is then given by

ψcal = cψ ψ (3.2a)

Φcal = Φ+ cΦ , (3.2b)

where ψcal and Φcal are the calibrated intensity and phase values, and ψ and Φ are the mea-

sured intensity and phase values. The calibration procedure reduces errors due to the diffusion

approximation, especially at short source-detector separation distances [40].
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3.3.3 Recovery of optical properties and physiological parameters

The solution to light propagation through a semi-infinite, homogeneous medium is described in

detail by Fantini et. al. [39]. The exact equations used in this work were as follows:

ln















ψ ρ3
[

1 + ρ
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2µa
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
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









= −ρ
( µa
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)1/2
V + + Fψ (3.3a)

Φ + arctan
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ρ
( µa
2D

)1/2
V −

1 + ρ
( µa
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]

= ρ
( µa
2D

)1/2
V − +Φ0 , (3.3b)

where ψ and Φ are the amplitude and phase measurements with angular modulation frequency of

ω; ρ is the source-detector separation; µa is the absorption coefficient; D is the diffusion constant

equal to 1/(3µa+3µ′s), in which µ′s is the reduced scattering coefficient; ν is the speed of light in the

media; Fψ is a complicated function of many variables, including ρ, µa, and D that is approximately

constant; Φ0 is the instrument phase offset. The terms V + and V − are given by

V + =





(

1 +

(

ω

νµa

)2
)1/2

+ 1





1/2

(3.4a)

V − =





(

1 +

(

ω

νµa

)2
)1/2

− 1





1/2

. (3.4b)

Note that Eq. 3.3 is an approximation of the full solution in [39]. This is often further approximated

to the following equations:

ln
(

ψ ρ2
)

= −ρ
( µa
2D

)1/2
V + + Fψ (3.5a)

Φ = ρ
( µa
2D

)1/2
V − + FΦ . (3.5b)

where FΦ replaces the additional terms in Eq. 3.3(b), and is assumed to be constant. We chose to

use Eq. 3.3 for estimation of optical properties for this work, since we found Eq. 3.3 to produce

more accurate results with uncalibrated data from simulations on a homogeneous slab than Eq.

3.5. With either set of equations, the left-hand side quantities form a linear relationship with ρ

with the following slope values:

α = −
( µa
2D

)1/2
V + (3.6a)

ϕ =
( µa
2D

)1/2
V − , (3.6b)
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for the equations for ψ and Φ, respectively. The optical absorption and scattering coefficients are

solved for algebraically in terms of the slope values:

µa =
ω

2ν

(

ϕ

α
− α

ϕ

)

(3.7a)

µ′s =
α2 − ϕ2

3µa
− µa , (3.7b)

Note that in the continuous wave case (ω = 0), Φ is a constant and solving for µa and µ′s is no

longer possible.

The regression of Eqs. 3.5(a) and 3.5(b) is straightforward. The regression of Eq. 3.3(a) and

3.3(b) is performed iteratively, starting with an initial estimate of µa and µ′s from regression of Eq.

3.5. The optical absorption coefficients recovered from Eq. 3.7(a) above are related to hemoglobin

by

µa,λ = ǫHbO2,λ[HbO2] + ǫHb,λ[Hb] +B(λ) . (3.8)

where the [HbO2] and [Hb] are the tissue concentrations of oxy-hemoglobin and deoxy-hemoglobin,

respectively; ǫHbO2,λ and ǫHb,λ are the respective extinction coefficients for HbO2 and Hb at a

wavelength of λ; B(λ) is the background absorption at the wavelength λ. In this study, background

absorption was assumed to be from 70% water content, in which B(λ) was set to 70% of the

absorption coefficient of water (absorption spectrum from [44]). With two or more wavelengths,

Eq. 3.8 can be used to form a system of linear equations, which can be organized in matrix notation

as

u
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...
...
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h
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

[HbO2]

[Hb]





, (3.9)

where u is the vector containing the absorption coefficients, corrected for background absorption;

E is the matrix gathering the extinction coefficients; h is the vector containing oxy- and deoxy-

hemoglobin concentrations. The least-squares solution to the matrix expression is given by

h = (ETE)−1ETu , (3.10)
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where the superscript T is the transpose operation. The estimated values for [HbO2] and [Hb] can

be used to calculate StO2 and HbT as follows:

[HbT] = [HbO2] + [Hb] (3.11a)

StO2 = [HbO2]/[HbT]× 100% , (3.11b)

Equations 3.10 and 3.11 give some insight into the propagation of errors from recovered µa

values to StO2 and HbT. In the limit that background absorption goes to zero (B(λ) = 0), we

find that [HbO2] and [Hb] are linear combinations of the recovered µa values with coefficients from

the matrix given by (ETE)−1ET . From Eq. 3.11, we can conclude that HbT is also a linear

combination of recovered µa values, and StO2 is a ratio with linear combinations of µa values in

the numerator and denominator. Thus, scaling all µa values by a factor, c, will scale HbT by c, but

have no effect on StO2 (when B(λ) = 0). We can use this fact to conclude that if relative errors

in µa are similar across wavelengths, the errors in HbT will be sensitive to the magnitude errors

in µa, but errors in StO2 will be minimal; however, in the case that the relative errors in µa are

dissimilar across wavelengths, the errors in StO2 can be large or unpredictable.

3.3.4 Effects of curvature

In order to examine the effects of head curvature on estimates of StO2 and HbT, data were simulated

on homogeneous spheres of varying radius from 30-120 mm, as well as a flat slab (infinite radius)

with dimensions of 180 mm × 180 mm × 100 mm. All voxels within the sphere or slab were labeled

with optical properties matching the brain at 70% StO2 and 60 µM HbT. The volumetric images

defining the optical properties were all created with 1 mm isotropic resolution. A single source

position was simulated with detectors arranged in a linear fashion along the surface at distances

from 10-40 mm in 1 mm increments. In order to decrease the effects of discretization of the spherical

geometry, the position and orientation of the probe were randomized for each iteration. A total of

128 repetitions of 107 photon packets were simulated per wavelength for each simulation. Recovery

of StO2 and HbT was performed for four subsets of the measurements based on source-detector

separation: 10-25 mm, 15-30 mm, 20-35 mm, and 25-40 mm. Recovery of µa, µ
′
s, StO2, and HbT

was performed via the methods in Section 3.3.3 and compared to the simulated values.
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3.3.5 Simulations of varying StO2 and HbT in the brain

In order to investigate the magnitude of errors in a realistic model of an infant head with normal

morphology, simulations were performed on a segmented structural MRI of a neonate (full term, 24

days old). Segmentation of gray matter, white matter, and CSF was performed via SPM8 (Wellcome

Trust Centre for Neuroimaging, London, UK) using the UNC neonate atlas [46]. Segmentation

of the scalp and skull layers was performed via manually thresholding the structural image after

masking out the brain. A sample of the segmentation results is shown in Fig. 3.1(a). The segmented

volume had a 1 mm isotropic resolution. A single source position was simulated. Detector locations

were chosen as random points on the surface of the head with uniformly distributed distances

between 10-40 mm. The source and detector locations are shown in Fig. 3.1(b).

a) b)

Figure 3.1: (a) Sample segmentation results. The layers from outer to inner are scalp (blue), skull

(purple), cerebrospinal fluid (green), gray matter (yellow), and white matter (red). (b) The optical

probe used to simulate data. The blue dot in the center was the source position, while the red dots

were detector positions.

Optical properties of the skin/scalp, skull, and CSF layers were fixed according to Table 3.1

for all simulations. The white and gray matter regions were combined to a single brain region

with optical properties based on StO2 and HbT. Simulations were performed with varying StO2

(30-100%) with fixed HbT (60 µM). A second set of simulations were performed with varying

HbT (15-120 µM) with fixed StO2 (70%). A total of 128 repetitions of 107 photon packets were

simulated per wavelength for each simulation. Recovery of µa, µ
′
s, StO2, and HbT was performed

via the methods in Section 3.3.3 for four subsets of the measurements according to source-detector

separation: 10-25 mm, 15-30 mm, 20-35 mm, and 25-40 mm. Recovered values were compared with

simulated values for the brain.
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3.3.6 Effects of increased extra-axial fluid

In order to simulate the effects of extra-axial fluid, we increased the thickness of the CSF layer by

performing a binary erosion of the brain mask with varying sized kernels and replacing the outer

brain voxels with CSF in the resulting segmented volumes. This is in-effect similar to the actual

morphological changes associated with extra-axial fluid, in which the build up of excess CSF in

the subarachnoid space pushes the brain away from the the skull. The resulting segmentations

had CSF layers that varied in thickness from approximately 1 mm to 4 mm with some spatial

heterogeneity due to anatomy. The probe shown in Fig. 3.1(b) was used for simulation as in the

previous section. Simulations were performed for varying StO2 (30-90%) with fixed HbT (60 µM).

Recovery of µa, µ
′
s, StO2, and HbT was performed via the methods in Section 3.3.3 for four subsets

of the measurements according to source-detector separation: 10-25 mm, 15-30 mm, 20-35 mm,

and 25-40 mm.

3.4 RESULTS

3.4.1 Simulations on homogeneous spheres

Figure 3.2 shows the results of simulating data on homogeneous spheres and recovering µa (top

row) and µ′s (bottom row) via the methods in Section 3.3.3. In all cases, curvature induced under-

estimation of µa and µ′s with more severe effects as radius of curvature decreased. There were no

strong trends between the magnitude of errors and source-detector separation distance. Errors in

µ′s were more severe than errors in µa. Figure 3.3 shows the results from calculating StO2 and HbT

from the recovered µa values in Fig. 3.2(a)-3.2(d). In general, curvature had little effect on StO2,

but caused significant underestimation of HbT. There were no strong trends across source-detector

distance for errors in HbT. The average circumference of the neonatal head was reported to be 343

mm [47], giving an approximate radius of curvature of 55 mm using a circular approximation. At

a radius of curvature of 60 mm, the percent errors were 5-7%, 6-7%, 7-8%, and less than 1.5% for

µa,690, µa,830, HbT, and StO2, respectively.
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Figure 3.2: Recovered absorption (a-d) and scattering (e-h) coefficients for data simulated on

homogeneous spheres of varying radius. The solid and dashed lines show the simulated values for

690 nm and 830 nm, respectively. Source-detector separation increases with each column from left

to right. Modulation frequency was 100 MHz.
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spectively. Source-detector separation increases with each column from left to right. Modulation

frequency was 100 MHz.

47



3.4.2 Normalized partial pathlength

Figure 3.4 shows the normalized partial pathlength (i.e., fraction of the total pathlength) of the

simulated photons through each tissue type in the neonate model as a function of source-detector

distance. The data shown was for 70% StO2 and 60 µM HbT in the brain. Each point on the

graph represents one of the source-detector measurements. In general, the fraction through the

brain increased as a function of source-detector distance, while the fraction through the scalp and

skull decreased with source-detector distance. There appeared to be a split between increasing

and decreasing trends in the partial pathlength through CSF with source-detector separation,

potentially due to anatomical variations in CSF across the head. Overall, the results in Fig.

3.4 suggest that longer source-distances will be more sensitive to the brain and less sensitive to

superficial layers.
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Figure 3.4: Normalized partial pathlength of light through a neonate head model with 70% StO2 and

60 µM HbT as a function or source-detector distance for 690 nm (a) and 830 nm (b). Modulation

frequency was 110 MHz.

3.4.3 Simulations of varying StO2 and HbT in the brain

Figure 3.5 shows the results of simulating data with varying brain StO2 in the neonate model and

recovering µa (top row) and µ′s (bottom row) with the slab model. There was an overall trend of

increasing accuracy with increasing source-detector distance in recovering µa. There was a relatively

large degree of underestimation of µa,690 at low StO2 where µa,690 is relatively large. Scattering

coefficients were severely underestimated. Figure 3.6 shows the results from calculating StO2 and
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Table 3.2: The minimum percent error (MIN), maximum percent error (MAX), and mean absolute

percent error (MAPE) for simulations with varying StO2 with fixed HbT.

SD: 10-25 mm SD: 15-30 mm SD: 20-35 mm SD: 25-40 mm

MIN MAX MAPE MIN MAX MAPE MIN MAX MAPE MIN MAX MAPE

µa,690 -19 34 14 -13 22 9 -6 22 9 2 32 16

µa,830 -15 -9 12 -11 -7 9 -4 -1 2 9 12 10

µ′s,690 -47 -36 43 -50 -38 45 -60 -44 54 -46 -26 40

µ′s,830 -37 -36 36 -42 -41 41 -51 -50 51 -41 -38 40

StO2 -9 21 9 -7 12 6 -6 11 5 -4 22 6

HbT -14 -12 12 -10 -9 9 -3 -1 2 10 12 11

HbT from the recovered µa values in Fig. 5(a-d). There was an overall trend of increasing accuracy

with increasing source-detector distance. A summary of the percent errors for simulations with

varying StO2 is shown in Table 3.2.

Figure 3.7 shows the results of simulating data with varying HbT in the neonate model and

recovering µa (top row) and µ′s (bottom row) via the methods in Section 3.3.3. Recovered µa values

showed an overall trend of increasing accuracy with increasing source-detector distance, especially

for high HbT values. Again, scattering coefficients were severely underestimated. Figure 3.8 shows

the results from calculating StO2 and HbT from the recovered µa values in Fig. 3.7(a-d). There was

a slight trend of increasing accuracy with source-detector distance in recovered StO2 values. There

was an overall trend of increasing accuracy in recovered HbT values with increasing source-detector

distance, especially at high HbT values. The percent errors for simulations with varying HbT is

shown in Table 3.3.

Figure 3.9 shows selected simulations from Figs. 3.6-3.8 repeated at varying modulation fre-

quency. Overall, modulation frequency had little effect on the recovery of µa, µ
′
s (not shown),

StO2, or HbT. There were no apparent trends in accuracy with regards to selection of modulation

frequency within a range of 50-200 MHz.

3.4.4 Effects of extra-axial fluid

Figure 3.10 shows the results of simulations with increased extra-axial fluid. Excess CSF caused

very large errors in recovered µa values, eventually breaking the analysis methods when CSF was
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Table 3.3: The minimum percent error (MIN), maximum percent error (MAX), and mean absolute

percent error (MAPE) for simulations with varying HbT with fixed StO2.

SD: 10-25 mm SD: 15-30 mm SD: 20-35 mm SD: 25-40 mm

MIN MAX MAPE MIN MAX MAPE MIN MAX MAPE MIN MAX MAPE

µa,690 -23 29 15 -15 21 9 -9 22 8 -8 34 13

µa,830 -34 -2 22 -25 1 15 -17 5 8 -12 21 8

µ′s,690 -51 -41 48 -53 -40 48 -61 -45 55 -43 -21 36

µ′s,830 -47 -43 45 -48 -42 46 -58 -46 53 -44 -26 37

StO2 -19 -11 13 -12 -8 9 -8 -6 7 -4 -3 4

HbT -34 1 21 -25 4 15 -17 9 8 -11 28 10

too thick (dependent on source-detector distance). The errors in µa propagated large errors in

recovered HbT values. The CSF caused similar effects on µa for 690 nm and 830 nm, which had

minimal effects on recovered StO2. This is consistent with expectations based on the discussion in

Section 3.3.3. The first three source-detector distances (10-25 mm, 15-30 mm, 20-35 mm) showed a

consistent pattern of underestimation of µa due to excess CSF, with shorter source-detector distance

being more sensitive. The longest source-detector distance (25-40 mm) showed an unusual pattern,

in which increasing CSF initially caused recovered µa values to increase before rapidly declining.

We found this behavior be related to the specific anatomy of the head model, since this behavior

was not reproducible on a regular geometry consisting of concentric spheres (data not shown). We

also performed the simulations for 30%, 50%, and 90% StO2, but the results were very similar and

are not shown.

3.5 DISCUSSION

In this study, we simulated FD-NIRS measurements to assess the magnitude of errors in recovered

StO2 and HbT values using a semi-infinite, homogeneous medium model of the head. We charac-

terized the influence of curvature on errors via simulations on spheres of varying radius. We also

simulated data on a segmented structural MRI of a full term neonate in order to estimate the mag-

nitude of errors in a realistic model of a neonate with no morphological abnormalities. Lastly, we

investigated the effects of extra-axial fluid by increasing the thickness of CSF layer surrounding the
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Figure 3.5: Recovered absorption (a-d) and scattering (e-h) coefficients for data simulated on a

neonate head model for varying StO2 with fixed HbT in the brain. The solid and dashed lines show

the simulated values for 690 nm and 830 nm, respectively. Source-detector separation increases

with each column from left to right. Modulation frequency was 100 MHz.
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Figure 3.6: Recovered StO2 (O’s) and HbT (X’s) values for data simulated on neonate head model

for varying StO2 with fixed HbT in the brain. The solid and dashed lines show the simulated values

for StO2 and HbT, respectively. Source-detector separation increases with each column from left

to right. Modulation frequency was 100 MHz.
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Figure 3.7: Recovered absorption (a-d) and scattering (e-h) coefficients for data simulated on a

neonate head model for varying HbT with fixed StO2 in the brain. The solid and dashed lines show

the simulated values for 690 nm and 830 nm, respectively. Source-detector separation increases

with each column from left to right. Modulation frequency was 100 MHz.
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brain and repeating the simulations. The results presented here help to understand the influence

of model violations on the accuracy of recovered StO2, HbT, and µa values and assess the validity

of common analysis procedures for FD-NIRS data.

3.5.1 Effects of curvature

Curvature induced underestimation of µa, µ
′
s, and HbT. The effects were more severe with decreas-

ing radius of curvature. Curvature had little effect on StO2 estimates. There did not appear to be

a strong trend with source-detector separation distance. For the neonate, head curvature can be

a potentially significant source of error in recovering µa and HbT. For older children and adults,

curvature is expected to be less influential.

3.5.2 Effects of source-detector distance

Normalized partial pathlength showed an increasing pathlength through the brain with increasing

source-detector separation. The pathlength through superficial layers showed a decreasing trend

with source-detector separation. Together these results support the use of longer source-detector

distances if signal to noise ratio (SNR) is sufficient. Simulations in the neonate model generally

showed an overall trend of increasing accuracy with increasing source-detector distance.

3.5.3 Modulation frequency

The analysis methods described in Section 3.3.3 are based on the diffusion approximation, which

is expected to break down at modulation frequencies on the order of ∼1 GHz [20]. In practice,

phase wrapping occurs at ∼250 MHz at a distance of 40 mm for the optical properties used in this

study. Our results showed only minor differences in the recovered values for modulation frequencies

ranging from 50-200 MHz, suggesting that selection of source-detector distance is more important

than selection of modulation frequency.

3.5.4 Effects of extra-axial fluid

The presence of extra-axial fluid can cause very large errors in µa and HbT, especially at short

source-detector distances. Small amounts of extra-axial fluid do not severely affect StO2 estimates;
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however, when there is too much CSF, the methods described in Section 3.3.3 will break down

resulting in negative µa values, in which case estimates of StO2 are no longer feasible.

3.5.5 Combined effects

From the results in Fig. 3.2, we expect curvature to influence underestimation of µa. Cerebrospinal

fluid mostly influenced underestimation of µa, although complicated geometries seemed to produce

varying results in some cases. The scalp and skull can influence overestimation or underestimation

depending on whether the absorption coefficient values are larger or smaller than that of the brain.

This raises the possibility of opposing influences compensating for one another when the relative

strengths of their influences are balanced. In general, the strengths of the influences of curvature,

extra-cerebral tissues, and CSF will vary with physiological state (i.e., optical properties of the

brain relative to other layers), source-detector separation distance, and thickness of extra-axial

CSF. We can compare the absorption values of the extra-cerebral tissues, such as the skull or scalp,

to the absorption value of the brain at a particular StO2 and HbT value to predict their influence on

the errors; however, estimating the overall combined effect is not intuitive and requires systematic

investigation, such as by numerical simulation.

3.5.6 Propagation of µa errors to StO2 and HbT

Examination of Eqs. 3.9-3.11, as discussed in Section 3.3.3, gave some insight into the characteristics

of errors in StO2 and HbT. Because StO2 is a ratio with µa values in both the numerator and

dominator, it is robust to error influences that act similarly on all wavelengths, such as curvature

and CSF. Conversely, the accuracy of HbT is related to the absolute accuracy of the recovered

µa values regardless of similarity across wavelengths, since HbT is effectively a weighted sum of

recovered µa values. These effects are illustrated effectively in Figs. 3.2, 3.3, and 3.10.

3.5.7 Typical errors in neonates

For neonates without morphological abnormalities, the mean absolute percent errors (MAPE) of

recovered µa values were 12% and 7% for 690 nm and 830 nm, respectively. The MAPE for recovered

StO2 and HbT were 6% and 9%, respectively. Larger relative errors were noted (∼20-30%), but

were mostly observed at more extreme physiological values (i.e., very high/low StO2 or HbT). These
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results are comparable to the findings of Dehaes et. al. of 8-24% errors in recovered absorption

coefficients in neonates [40]. While this level of error may be acceptable for some applications,

multi-layered models may offer better accuracy when physiology significantly deviates from the

normal values. For clinical populations with extra-axial fluid, advancement to more sophisticated

models is necessary to obtain reliable measurements of absorption and hemoglobin.

3.5.8 Limitations

The main limitation of this study is the reliance on a compilation of optical properties in Table

3.1. Furthermore, optical properties vary from person to person, such as with skin pigmentation.

Since we simulated data over a wide range of physiological states (i.e., optical properties), the

general results presented should represent the typical range of expected errors. Another minor

limitation of this study was the use of semi-automated segmentation, which likely produced some

misclassification of voxels; however, manual inspection ensured overall quality.
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4.0 LAYERED INVERSE MODELS FOR BASELINE PHYSIOLOGY

ESTIMATION IN NEONATES

In chapter 3, we showed that the slab model was reasonably accurate for morphologically normal

neonates; however, we also saw that excess CSF, which can occur in disease populations, caused

very large errors. This chapter attempts to evaluate the performance on non-linear inverse models

that incorporate structural information in order to improve estimation of StO2 and HbT. In addition

to potentially improving the accuracy of cerebral physiology measurements, this approach will be

more flexible in dealing with morphological abnormalities, such as extra-axial fluid, when structural

information can be accounted for in the inverse procedure.

4.1 ABSTRACT

Common data analysis procedures for frequency-domain near-infrared spectroscopy (FD-NIRS) use

a semi-infinite, homogeneous model of the head. This assumption can introduces bias in estimates

of oxygen saturation (StO2) and total hemoglobin (HbT). The purpose of this study was to assess

the feasibility of using multi-layered geometries for recovering StO2 and HbT in neonates in order

to improve estimation. We tested seven inverse models for recovering physiological parameters in

neonates, including the semi-infinite, homogeneous slab model, concentric sphere models, and real-

istic anatomical models. Except for the slab model, the inverse procedure was implemented using

finite element methods (FEM) for the forward computation. Using segmentations of structural

magnetic resonance images from 26 neonates, we simulated FD-NIRS data using both finite ele-

ment methods (diffusion approximation) and Monte Carlo methods (radiative transfer) for varying

brain StO2 and HbT. We then examined the recovered values from the seven candidate inverse

models. The realistic anatomies, including an atlas and subject-specific anatomy showed potential
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for improving recovery of StO2 and HbT; however, we failed to realize these improvements when

using more realistic simulations of data via MC methods. This may be due to errors introduced by

the diffusion approximation in FEM computations.

4.2 INTRODUCTION

Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring optical absorption

in the brain due to hemoglobin [36]. Measurements acquired at multiple wavelengths within

the optical window can be used for the spectral estimation of both oxy-hemoglobin (HbO2) and

deoxy-hemoglobin (Hb). These quantities subsequently provide measurements of tissue oxygenation

(StO2) and total hemoglobin (HbT). Near-infrared spectroscopy is relatively portable, less expen-

sive than many other modalities, such as magnetic resonance imaging (MRI) or positron emission

tomography (PET), and is non-ionizing and non-restraining, making it an attractive technology

for the development of bedside monitoring tools. Previous studies have shown promising results

in detecting hypoxic-ischemic brain injuries [3, 4] and monitoring the brain during cardiac surgery

[2].

Current clinical systems, which are based on continuous wave (CW-) light sources, have been

useful for monitoring trends in physiology, but lack quantitative accuracy [38]. A potentially more

promising approach is frequency-domain (FD-) NIRS, which uses an amplitude modulated light

source that is modulated in intensity by a sinusoidal function in the range of ∼25-200 MHz. This

technique measures both amplitude and phase of the modulated light, which improves absolute

quantification of hemoglobin by providing information about the optical pathlength via the phase.

Often, FD-NIRS data is analyzed using a semi-infinite, homogeneous model [39], because of the

existence of an analytical solution to the light propagation, which simplifies estimation of optical

properties from measurements. Previous studies have found that this approach introduces bias into

the estimates optical properties and subsequent estimates of StO2 and HbT [40, 35].

In this work, we used segmented structural MRI from neonates to simulate FD-NIRS measure-

ments. We attempted to recover StO2 and HbT values of the brain using several candidate inverse

models in order to assess the accuracy of using multi-layered models for FD-NIRS data analysis.

The candidate models included the (i) the analytical semi-infinite, homogeneous slab model, (ii)

homogeneous sphere, (iii) two-layer concentric sphere, (iv) three-layer concentric sphere with a
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fixed CSF-layer, (v) an atlas, and subject-specific anatomy using the (vi) contralateral and (vii)

ipsilateral side of the head. The analytical slab model was chosen as a baseline for comparison. The

concentric sphere models offer some modeling of curvature and layered structure, but simplify the

implementation over an atlas or subject-specific anatomy in that probe-registration is eliminated

and the geometries are easy to generate meshes for. The subject-specific anatomy model offer the

most complex implementation, since individual MRI must be acquired, segmented, meshed, and

registered to the probe geometry. We chose to use both the ipsilateral and contralateral sides of the

head to assess the sensitivity to the specific anatomical variations and probe registration errors.

4.3 METHODS

4.3.1 Data Simulation

We segmented 26 neonate T2 structural MRI (Full Term, 0-123 days, median age = 10 days)

into four layers: scalp, skull, cerebrospinal fluid (CSF), and brain. Brain and CSF segmentations

were obtained via SPM8 software (Wellcome Trust Centre for Neuroimaging, London, UK) using a

neonate atlas from the University of North Carolina [46] as a template. The segmented images were

then used to simulate FD-NIRS data using the optical properties specified in Table 4.1. The scalp,

skull, and CSF properties were fixed, while the optical properties of the brain were varies with StO2

(30-100%) and HbT (10-100 µM). The segmentation were converted to tetrahedral meshes via the

iso2mesh software package [48] for use in finite element method (FEM) computations.

We simulated the data in two different ways using two different software packages: (i) FEM

via NIRFAST software [49] and (ii) Monte Carlo (MC) methods via Monte Carlo Extreme (MCX)

software [25]. Simulating measurements via FEM (and recovering via FEM) allowed us to assess

the inverse procedure using different geometries without considering the effects of the diffusion ap-

proximation errors, meshing/discretization errors, and stochastic noise. Simulating measurements

via MC methods provides more accurate simulation of measurements, especially with respect to

CSF which violates the assumptions of the diffusion approximation, but introduces modeling er-

rors, meshing errors, and stochastic noise. Thus, by performing simulations using both methods

we can isolated the effects of geometry and also assess the accuracy of the methods under more

realistic assumptions. The NIRFAST package simulates FD measurements directly, while the MCX
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Table 4.1: Optical properties of tissues; RI = refractive index.

µa,690 (mm−1) µa,830 (mm−1) µ′s,690 (mm−1) µ′s,830 (mm−1) RI

Skin/Scalp 0.0206a 0.0122a 2.37a 1.81a 1.45b

Skull 0.0255c 0.0252c 2.35c 1.75c 1.45b

CSF 0.0004d 0.0026d 0.01d/0.3e 0.01d/0.3e 1.33b

Brain 0.0039-0.0285f 0.0051-0.0256f 1.44b 1.07b 1.45b

a[41]; b[14]; c[42]; d[32]; e[50] for FEM computations; fBased on spectra from [43, 44]

software packages simulates photon propagation in the time domain. The time-domain signals were

converted to FD measurements via discrete Fourier transform.

We used a linear probe consisting of 2 detector and 4 source positions, giving 8 unique distances

that were evenly spaced between 20-40 mm. The probe was centered on the C3 and C4 positions in

the 10/20 international system with the probe aligned in the anterior-posterior orientation. Each

source position was simulated at 690 nm and 830 nm, which is a common choice of wavelengths.

The modulation frequency was 110 MHz, which matches the Imagent ISS system FD-NIRS system.

4.3.2 Inverse Geometries

The simulated FD-NIRS data were fit to seven candidate inverse model geometries: (i) the analytical

semi-infinite, homogeneous slab model, (ii) homogeneous sphere, (iii) two-layer concentric sphere,

(iv) three-layer concentric sphere with a fixed CSF layer, (v) an atlas, and subject-specific anatomy

using the (vi) contralateral and (vii) ipsilateral side of the head. The homogeneous slab model is

described in [39], in which the optical properties are recovered from the slopes two linear regressions

based on the amplitude and phase data. This model is commonly used for FD-NIRS because it is

simple to implement and has an analytic expression. This model was considered as the baseline for

performance comparison.

All of the other geometries required iterative non-linear regression procedure described below

to fit the model. The concentric sphere models were chosen because they model the finite vol-

ume/curvature of the head and layered tissue structure and the implementation is simpler than

anatomical models. All of the spherical geometries used a sphere of 60 mm radius. The homoge-
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neous sphere consisted of a single “layer”, which was taken to be the brain. The 2-layer sphere

model consisted of an outer layer 7 mm thick, which was meant to model superficial tissues, and a

brain layer in the center. The 3-layer sphere consisted of 7 mm outer layer for superficial tissues,

a 2 mm CSF layer with fixed optical properties, and a brain layer in the center.

We chose an atlas model as the next level in complexity of implementation. This model includes

general anatomical information and requires more effort to register the NIRS probe to the volume.

The contralateral hemisphere model was chosen to add subject-specific anatomical information.

The anatomy of the contralateral hemisphere and probe registration to the opposite hemisphere

potentially introduce realistic errors due to segmentation, meshing, and probe registration. The

ipsilateral hemisphere geometry was chosen to be a model of the best possible scenario, in which

segmentation, meshing, and probe registration errors are minimized. The atlas and subject-specific

anatomical models consisted of an outer layer that combining the scalp and skull, a CSF layer with

fixed properties, and a brain layer that combined white matter and gray matter regions.

4.3.3 Inverse Procedure

The absorption coefficient can be described by

µa =
∑

j

ǫjcj , (4.1)

where cj is the concentration of chromophore j and ǫj is the molar extinction coefficient. The

chromophores of interest for this work were HbO2 and Hb. An additional fixed contribution to the

absorption coefficient from 70% water content was also assumed. From Mie scattering theory, the

reduced scattering coefficient was modeled as

µ′s = a

(

λ

500 nm

)−b

, (4.2)

where λ is the wavelength in nm, and a and b are parameters. The parameter b was fixed at a

value of 1.5. The value of a was considered a global parameter that was fit for the entire volume.

The diffusion coefficient is given by

κ =
1

3(µa + µ′s)
≈ 1

3µ′s
. (4.3)
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Given the optical properties of the head, we can predict the measurement for channel m as

ŷm
(

λm, µa(r , λm), κ(r , λm)
)

= f
(

λm, µa(r , λm), κ(r , λm)
)

+ sr(λm) + i si(λm) , (4.4)

where r is the position; f is the natural log of the measurement output from NIRFAST, in which the

real part is log amplitude and the imaginary part is the phase; and sr and si are intercept terms

for log amplitude and phase, respectively. Using the chain rule, we can calculate the following

derivatives:

∂ŷm
∂cj(r)

= ǫj
∂f

∂µa(r , λm)
(4.5)

∂ŷm
∂a(r)

= −3 κ2(r , λm)

(

λm
500 nm

)−b ∂f

∂κ(r , λm)
(4.6)

∂ŷm
∂sr(λm)

= 1 (4.7)

∂ŷm
∂si(λm)

= 1 , (4.8)

where the derivatives with respect to µa and κ are calculated via the adjoint method in NIR-

FAST. Next, we define the following two vectors for the [log of] measurements y and the predicted

measurements F (x ):

y =
[

ℜ(y1) . . . ℜ(yM ) ℑ(y1) . . . ℑ(yM)
]T

(4.9)

F (x ) =
[

ℜ(ŷ1(x )) . . . ℜ(ŷM (x )) ℑ(ŷ1(x )) . . . ℑ(ŷM (x ))
]T

, (4.10)

where the vector x is a collection of the model parameters, and ℜ(·) and ℑ(·) indicate the real and

imaginary parts. For the one-layer model (homogeneous sphere), this contains HbO2 concentration,

Hb concentration, the global scattering term a, and four intercept terms for the two different

wavelengths (7 total parameters). For the models with two-layers, x contains the same terms,

except there are two HbO2 and two Hb concentration values for each of the two layers (9 total

parameters). The derivatives are organized appropriately in the Jacobian matrix, such that

J =
∂F (x )

∂x
. (4.11)

For each iteration we can update the parameters using the Levenberg-Marquardt update step

[30]:

∆x = (JTWJ + α diag(JTWJ))−1JTW (y − F (x )) , (4.12)

where α is a regularization parameter that is increased if the step size is too large or the iteration

fails to improve the model fit, and W is a weight matrix that was proportional to inverse of the

covariance matrix of the measurements. In order to estimate an appropriate weight matrix, the

62



variance over multiple MC simulations was used. The cost function used to assess the model fit

was

C(x ) =
1

2
(y − F (x ))TW (y − F (x )) . (4.13)

Convergence was defined by choosing a step size that was too small (<0.5% of x , excluding

intercepts), failing to improve the model fit for 5 iterations, or reaching a maximum of 30 itera-

tions. Once convergence was reached, total hemoglobin concentration and oxygen saturation were

calculated as

HbT = HbO2 +Hb (4.14)

StO2 = HbO2/HbT× 100% . (4.15)

4.3.4 Assessment of the inverse models

We used two metrics to assess variance and bias of inverse procedure using different geometries.

To assess variance, we first calculated a robust estimate for the standard deviation across subjects

using the median absolute deviation at each simulated value:

σMAD,j = 1.483 median(|ẑ −median(ẑ)|) , (4.16)

where σMAD,j is the standard deviation of the jth simulated value of either StO2 or HbT, ẑ is a vector

of estimated values across subjects, and median returns the median of the argument. Once the

standard deviation was calculated for each simulated value, they were averaged across stimulated

values:

〈σMAD〉 =
1

N

N
∑

j=1

σMAD,j . (4.17)

The standard error of this metric was estimated via bootstrap sampling. The bias at the jth

simulated value was estimated using the median estimator:

biasj = median(ẑ − z) , (4.18)

where z is the true simulated value and ẑ is the estimated value for each subject. The mean of the

absolute value of the bias across simulated values was then calculated as

〈|bias|〉 = 1

N

N
∑

j=1

|biasj | . (4.19)
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Again, the standard error of these estimates were calculated by bootstrap sampling. These robust

estimators were chosen so that the summary statistics would not be excessively influenced by a few

outliers.

4.4 RESULTS

Figure 4.1 shows the relative pathlength of photons through each layer of concentric sphere models

of varying radius and layer thickness. The three spheres correspond roughly to the anatomy of a

neonate, child, and adult. The neonate shows a high proportion of the optical pathlength through

the brain at typical source-detector distances for FD-NIRS (∼20-40 mm). We can see that the

sensitivity to the brain quickly decreases as the superficial layers increase in thickness.
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Figure 4.1: The relative pathlength through multi-layered concentric spheres of varying radius and

layer thicknesses.

Figure 4.2 shows the recovered StO2 values for NIRS data simulated with FEM. The slab model

performed relatively well. The concentric sphere models, especially the 2-layered and 3-layered

models performed poorly. This may be the result of over-fitting the geometry mismatch. The

atlas, contralateral hemisphere, and ipsilateral hemisphere models all produced reasonable results

with visually better agreement between recovered and simulated StO2 as the inverse geometry more

closely matched the subjects anatomy.

Figure 4.3 shows the recovered HbT values for NIRS data simulated with FEM. Once again,

the slab model performed relatively well, and the 2-layered and 3-layered sphere models performed
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Figure 4.2: Box plots showing the distribution recovered StO2 values for data simulated with FEM

for all seven candidate inverse geometries.
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Figure 4.3: Box plots showing the distribution of recovered HbT values for data simulated with

FEM for all seven candidate inverse geometries.
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Table 4.2: Summary statistics for recovered StO2 and HbT for data simulated with FEM.

StO2 HbT

〈σMAD〉 〈 |Bias| 〉 〈σMAD〉 〈 |Bias| 〉

Slab 2.6 ± 0.2 3.6 ± 0.2 7.9 ± 0.7 4.3 ± 0.5

1-Layer Sphere 4.5 ± 0.4 4.5 ± 0.4 10.5 ± 0.9 3.5 ± 0.6

2-Layer Sphere 7.9 ± 0.7 14.9 ± 0.8 25 ± 2 11 ± 2

3-Layer Sphere 9.2 ± 1.1 6.5 ± 0.9 61 ± 6 63 ± 6

Atlas 3.5 ± 0.4 2.0 ± 0.2 8.7 ± 0.7 4.0 ± 0.7

Contralateral 3.5 ± 0.4 2.2 ± 0.2 8.7 ± 0.9 2.6 ± 0.5

Ipsilateral 1.9 ± 0.2 0.7 ± 0.1 4.2 ± 0.5 2.2 ± 0.3

poorly. The atlas, contralateral hemisphere, and ipsilateral hemisphere models all produced rea-

sonable results with visually better agreement between recovered and simulated StO2 as the inverse

geometry more closely matched the subjects anatomy.

Table 4.2 shows the summary statistics of the results shown in Figs. 4.2 and 4.3. The homoge-

neous sphere model produced poorer results than the slab model on nearly all metrics. The 2-layer

and 3-layer concentric sphere models produced very poor results in all metrics. The atlas showed

decreased bias in StO2, but no other improvements over slab model. Both the contralateral and

ipsilateral hemsiphere geometries showed decreased bias in both StO2 and HbT; however, only the

ipsilateral hemsiphere geometry showed decreased variance (in both StO2 and HbT).

Figure 4.4 shows the recovered StO2 values for NIRS data simulated with MCX. The slab

model performed worse than with data simulated by FEM with more significant bias. The data

show a distinct pattern of overestimation at low StO2 and underestimation at high StO2. This

could potentially be a result of the more realistic simulation of light propagation through CSF. The

concentric sphere models showed better results than with data simulated by FEM. It is possible

that the additional sources of error (i.e., diffusion approximation errors, stochastic noise) acted as

regularization that prevented overfitting of model geometry mismatch. However, the 2-layer and

3-layer sphere models visibly show high variance in recovered values.

Figure 4.4 shows the recovered HbT values for NIRS data simulated with MCX. All of the

models show a similar pattern of under-estimation at high HbT. Again, the 2-layer and 3-layer

sphere models show high variance in recovered values across subjects.
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Figure 4.4: Box plots showing the distribution of recovered StO2 values for data simulated with

MC for all seven candidate inverse geometries.
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Figure 4.5: Box plots showing the distribution of recovered HbT values for data simulated with

MC for all seven candidate inverse geometries.
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Table 4.3: Summary statistics for recovered StO2 and HbT for data simulated with MC.

StO2 HbT

〈σMAD〉 〈 |Bias| 〉 〈σMAD〉 〈 |Bias| 〉

Slab 3.5 ± 0.2 6.7 ± 0.3 7.1 ± 0.5 7.4 ± 0.4

1-Layer Sphere 3.2 ± 0.2 8.4 ± 0.2 8.3 ± 0.5 7.3 ± 0.5

2-Layer Sphere 4.8 ± 0.4 6.9 ± 0.3 9.7 ± 0.6 7.8 ± 0.6

3-Layer Sphere 6.9 ± 0.6 5.4 ± 0.5 10.4 ± 0.6 8.3 ± 0.7

Atlas 4.8 ± 0.3 6.9 ± 0.4 8.8 ± 0.5 6.8 ± 0.5

Contralateral 4.4 ± 0.4 6.4 ± 0.3 8.6 ± 0.6 6.9 ± 0.5

Ipsilateral 4.2 ± 0.3 6.5 ± 0.3 7.3 ± 0.5 7.3 ± 0.4

Table 4.3 shows the summary statistics of the results shown in Figs. 4.4 and 4.5. The homoge-

neous sphere model produced poorer results than the slab model on nearly all metrics. Only the

3-layered sphere model showed reduced bias in StO2; however, the significantly increased variance

in recovered HbT values is problematic in suggesting its implementation in practice.

4.5 DISCUSSION

In this study, we simulated FD-NIRS measurements from the anatomy of 26 neonates using both

finite element methods and Monte Carlo methods for varying StO2 and HbT in the brain. We then

attempted to recover the StO2 and HbT from the simulated data using seven candidate inverse

geometries, including (i) semi-infinite, homogeneous slab, (ii) homogeneous sphere, (iii) 2-layer

concentric sphere, (iv) 3-layer concentric sphere with the middle layer fixed to CSF, (v) an atlas,

and using the subject specific anatomy from the contralateral (vi) and ipsilateral (vii) hemispheres.

The first model used an analytical formula for light propagation, while the other models were

implemented as iterative non-linear regressions using FEM to perform the forward calculations and

the Levenberg-Marquardt algorithm to update the parameters.

By using data that were simulated with FEM, we were able to assume that segmentation errors,

meshing errors, and modeling errors were minimized and look at the isolated effects of inverse model
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Figure 4.6: Comparison of simulated measurements from Monte Carlo and finite element methods

on a concentric sphere model. For the left column (a-b), the sphere was homogeneous. In the center

column (c-d), a CSF layer was inserted at a depth of 7 mm, in which the scattering coefficient for

MC/FEM was 0.01/0.3 mm−1. In the right column (e-f), the scattering coefficient of CSF for the

MC simulation was increased to match that of the FEM data (0.3 mm−1).

geometry. Recovery on the atlas, contralateral hemisphere, and ipsilateral hemisphere all showed

improvements in at least some metrics. The ipsilateral hemisphere model may be viewed as the best

that can be achieved when light propagation is modeled correctly and errors from segmentation,

meshing, and probe registration are minimized. On the other hand, the contralateral hemisphere

may be a more realistic model of recovery on subject specific anatomy, since the contralateral

hemisphere may be analogous to having segmentation/meshing errors and probe registration errors.

In any case, incorporating anatomical information into the recovery process may reduce bias in

estimated values.

All of the FEM based inverse geometries failed to realize any improvements over the slab

model on data simulated with MC methods. The data simulated with MC methods contained

additional sources of errors from converting the segmentation to FEMmesh for the inverse procedure

and differences in the modeling of light propagation through CSF, which does not adhere to the

assumptions of the diffusion approximation. The visible difference in the recovered values for data
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simulated with FEM (diffusion) and MC (radiative transfer) suggests that the more pertinent issue

might be with CSF modeling.

In order to confirm this result, we performed post-hoc simulations using both MC and FEM of

data on spherical model (60 mm radius) that was either homogeneous or contained a 2 mm CSF layer

inserted at 7 mm depth. Except for the CSF region, the rest of the medium had optical properties

that match the brain at 70% StO2 and 60 µM HbT. The results are shown in Fig. 4.6. When there

was no CSF in the medium, the MC and FEM simulations agree up to an intercept. When CSF

was inserted into the medium, MC and FEM showed clear disagreements. When the scattering

coefficient in the MC was increased to match the value used in FEM, the two methods more closely

agree again. In the FEM, µ′s must be increased to ensure that the model is numerically stable. It

is clear that at least part of the error is due to the artificial increase in scattering coefficient. The

FEM is based on a first order expansion of the radiative transfer equation. This expansion results

in the assumption that µ′s ≫ µa, which does not hold for CSF. Using a higher order expansion in

the FEM calculations can potentially remove this restriction and fix issues with CSF modeling.

In conclusion, we have found simple concentric sphere models to be insufficient for modeling

the structure of the head in neonates in the context of separating absorption of the brain from the

superficial layers. More realistic geometries, such as using an appropriate atlas or subject specific

anatomy, may improve recovery of StO2 and HbT; however, we failed to realize these benefits when

simulating data using MC methods. We hypothesize that this is related to the modeling of CSF in

FEM, and that better modeling of CSF will improve results.
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5.0 REDUCTION OF SYSTEMIC PHYSIOLOGY AND MOTION EFFECTS ON

EVOKED HEMODYNAMICS DETECTION

This chapter shifts the focus from baseline physiology estimation to functional brain imaging.

The work focuses on two goals: (i) investigate the effects of NIRS specific noise sources, such as

the contributions to the NIRS signal from systemic physiology and motion, on common ordinary

least-squares estimation procedures and (ii) to mitigate the effects of these noise sources with the

development of a new algorithm for estimation of the general linear model. The work presented

in this chapter has been published in Biomedical Optics Express [51], and is available online at

http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-4-8-1366 ( c©2013 Optical Soci-

ety of America).

5.1 ABSTRACT

Systemic physiology and motion-induced artifacts represent two major sources of confounding noise

in functional near infrared spectroscopy (fNIRS) imaging that can reduce the performance of anal-

yses and inflate false positive rates (i.e., type I errors) of detecting evoked hemodynamic responses.

In this work, we demonstrated a general algorithm for solving the general linear model (GLM)

for both deconvolution (finite impulse response) and canonical regression models based on design-

ing optimal pre-whitening filters using autoregressive models and employing iteratively reweighted

least squares. We evaluated the performance of the new method by performing receiver operating

characteristic (ROC) analyses using synthetic data, in which serial correlations, motion artifacts,

and evoked responses were controlled via simulations, as well as using experimental data from

children (3-5 years old) as a source baseline physiological noise and motion artifacts. The new

method outperformed ordinary least squares (OLS) with no motion correction, wavelet based mo-
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tion correction, or spline interpolation based motion correction in the presence of physiological and

motion related noise. In the experimental data, false positive rates were as high as 37% when the

estimated p-value was 0.05 for the OLS methods. The false positive rate was reduced to 5-9%

with the proposed method. Overall, the method improves control of type I errors and increases

performance when motion artifacts are present.

5.2 INTRODUCTION

Functional near infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique that is

based on the spectroscopic measurement of the optical absorption of cerebral blood [36]. Evoked

changes in tissue hemoglobin concentrations are detected by an array of light sources and detectors

on the scalp that monitor changes in optical absorption and scattering. Both oxy-hemoglobin

(HbO2) and deoxy-hemoglobin (Hb) concentration changes can be estimated from the modified

Beer-Lambert law [16] using absorption measurements taken at multiple wavelengths of light within

the optical window (650-850 nm). In comparison to other cerebral vascular imaging methods such

as functional magnetic resonance imaging (fMRI) or positron emission tomography (PET), fNIRS

imaging is considerably lower cost and more portable. Because it is non-ionizing and non-confining,

fNIRS is particularly well suited for non-invasive studies in children or infants. In addition, the

portability of fNIRS and its ability to record brain signals during moderate subject movement has

allowed its use during various tasks such as walking [7, 8], balance [9, 10, 11], or social interaction

[12], which otherwise could not be imaged by conventional fMRI.

Functional NIRS imaging is accomplished through a set of spatially arranged optical sources and

detectors (optodes), which are often coupled through fiber optics between a head cap worn by the

participant and the fNIRS instrument. Although fNIRS can be used to image brain activity during

participant movement, fNIRS is prone to artifacts introduced by slippage of these optodes and

headcap on the surface of the scalp. These artifacts are particularly common in studies involving

children or infants where the fNIRS cap is more loosely fastened on the head to increase participant

tolerance of the method. A great deal of effort has been spent by researchers in developing better

methods for identification and removal of motion artifacts, including principal component analysis

[34], spline interpolation [52], wavelet transform [53], and Kalman filtering [54] based algorithms.

These methods were compared by Cooper et. al. [55], in which spline interpolation and wavelet
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based filtering gave the best results for two different performance metrics. As a note, these methods

are applied in pre-processing of the fNIRS data and in general have some level of subjective tuning

involved in the implementation of the algorithm. In addition to motion artifacts, fNIRS signals are

also contaminated by superficial and systemic physiological signals such as cardiac, respiratory, and

blood pressure oscillations. Because fNIRS signals are measured from sensors placed on the surface

of the scalp, these measurements have a high sensitivity to superficial changes in optical absorption.

These slow background oscillations contribute to serially correlated noise in fNIRS measurements.

This effect is increased by the high sampling rate of fNIRS instruments (∼10 Hz or more) that is

substantially faster than the underlying physiological signals.

Motion artifacts and serial correlations due to physiology violate common statistical assumptions

of the independence of repeated measurements over time. Subsequently, these sources of noise can

contribute to inaccurate estimation of type I errors. In this work, we describe an iterative algorithm

that utilizes an autoregressive model based pre-whitening filter and robust regression to reduce the

effects of physiological and motion-induced sources of noise, respectively. We demonstrated that this

algorithm has better performance than ordinary least squares with no motion correction, wavelet

based motion correction [53], or spline interpolation based motion correction [52] in the presence of

physiological noise and motion artifacts for both deconvolution (e.g., HOMER [34]) and canonical

(e.g., SPM-NIRS [56]) based regression models. Our proposed algorithm is demonstrated for both

synthetic and experimental data containing motion artifacts. In addition, we tested both short

(event-related design) and long (block design) duration tasks as well as varying magnitudes of

hemoglobin concentration changes (contrast to noise ratios).

5.3 METHODS

5.3.1 Theory

The simplest model of the observed fNIRS signal is an evoked response with a normally distributed

error term as given by

yt = ht + ǫt (5.1a)

ǫt ∼ N(0, σ2) , (5.1b)

where yt is the observed signal; ht is the evoked hemodynamic response; ǫt is the noise at time t;
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and σ2 is the variance of ǫt. The additive noise term in the fNIRS signal is often contaminated with

a high degree of physiological noise, which is sampled at the high temporal resolution of fNIRS

instruments leading to serially correlated error terms. In other words, slow physiological oscillations

are sampled rapidly causing nearby time points in the fNIRS signal to be highly correlated. The

presence of these errors can greatly affect the false positive rate (e.g., type I error) of the model

and lead to inaccurate interpretations of the data. In standard linear regression methods, serially

correlated errors are often dealt with by pre-whitening based on an autoregressive (AR) model of

the error terms. A first-order model (AR(1)) of the error terms is

ǫt = ρ1 ǫt−1 + νt (5.2a)

νt ∼ N(0, σ2) , (5.2b)

where the the error term at the current time point (t) depends on the error term from the previous

sample point (t − 1). Estimating the coefficients of the AR model and designing a filter that is

applied to both sides of the equation can remove the correlation between subsequent time points.

For the AR(1) model, a simple filter can be constructed as f = [1 − ρ1]
T and applied to equation

5.2a to produce

f ∗ yt = (yt − ρ1yt−1) = (ht − ρ1ht−1) + νt , (5.3)

where the correlated error terms have been transformed by subtraction, leaving only the white noise

term (νt = ǫt−ρ1ǫt−1). This transformation of the data (y) and model (h) using an AR(1) model of

the residual error terms is the Cochrane-Orcutt method [57], which has been used in several studies

[58, 59, 60] to remove serial correlations in fNIRS analysis. This method can easily be generalized

to any AR model order [61] as follows:

ǫt = ρ1ǫt−1 + ρ2ǫt−2 + ... + ρP ǫt−P + νt (5.4a)

f = [1 − ρ1 − ρ2 ... − ρP ]
T (5.4b)

(f ∗ yt) = (f ∗ ht) + νt . (5.4c)

In practice, the AR coefficients can be estimated by fitting an AR model to the residual errors

(ǫt) themselves. The optimal AR model order should be sufficient to remove serially correlated

errors without overfitting. The model order can be chosen objectively by minimizing an information

criterion function. For example, the Bayesian information criterion (BIC) [62] function is

BIC(P ) = −2 LL+ P ln(n) , (5.5)
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where P is the model order; LL is the log-likelihood of the model fit; and n is the number of time

points.

In the context of fNIRS brain imaging, a linear model of the evoked response [63] can be written

as

y = Xβ + ǫ , (5.6)

where X is the design matrix, and β is the estimate of the magnitude of brain activity. In the case

of a finite impulse response (FIR) model, X is given by the convolution matrix of a series of delta

functions describing the timing of the stimulus onsets [34]. The coefficients (β) then describe the

magnitude of the evoked hemodynamic response at each time point. The FIR model is equivalent

to block averaging in the case of long inter-stimulus intervals or deconvolution in the case of closely

spaced inter-stimulus intervals [64]. Note that boxcar basis functions describing the whole duration

of the task can alternatively be used in FIR models and are typically one option of basis function

in fMRI analysis; however, we chose not to investigate this option. For canonical linear models

(e.g., the statistical parametric modeling approach; SPM-NIRS [56]), X is given by the convolution

of the stimulus blocks with a canonical hemodynamic response. In this case, a limited number

of coefficients (β) are used to allow statistical testing of differences in brain activity (e.g., the

amplitude of β) between different task conditions. In both cases, additional regressors such as

the time course of systemic physiology or motion terms can also be included in the design matrix

to model nuisance terms (e.g., [65]). Regardless of whether an FIR or canonical design matrix is

assumed, the values of β (e.g., brain activity) can be estimated by the inversion of X in Eq. 5.6.

The Gauss-Markov equation for the unbiased ordinary least squares (OLS) estimator is

β = (XTX)−1XT y (5.7a)

cov(β) = σ2(XTX)−1 , (5.7b)

where cov(β) is the covariance matrix of β; σ2 is the variance of the residual (ǫ); and the superscript

T denotes the transpose. The linear model (Eq. 5.6) can be corrected for serially correlated errors

by pre-whitening with the filter f generated via Eq. 5.4b giving the expression

Fy = FXβ + Fǫ , (5.8)

where F is the convolution matrix of f and performs column-wise filtering of the measurements
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in y and of the regressors in X, leading to whitened residuals (Fǫ). The least squares solution to

this model is

β = (XTF TFX)−1XTF TFy (5.9a)

cov(β) = σ2(XTF TFX)−1 . (5.9b)

As a practical note, the matrix F is approximately the size of the vector y in both dimensions.

This is often too large to form explicitly; however, the matrix F is sparse with only entries of the

filter coefficients on the diagonals, which can be implemented as a sparse matrix. A more efficient

implementation is to employ digital filtering methods as discussed in section 5.3.2.

The methods above can correct for serial correlations due to physiology; however, motion arti-

facts also affect the error terms by producing outliers to a normal distribution. In this work, we

propose to use iteratively reweighted least squares [66] to deal with outliers caused by motion. In

this approach, the influence of each time point is weighted based on the value of the residual by a

weighting function, such as Tukey’s bisquare function [67] given by

w(r) =











(

1−
(

r
σκ

)2
)2

| rσ | < κ

0 | rσ | ≥ κ ,

(5.10)

where κ is the tuning parameter with a default value of 4.685 that preserves 95% statistical efficiency

in the case of normally distributed residuals (i.e., no outliers). Adjusting the tuning parameter

based on statistical efficiency gives an objective criteria for determining the tuning parameter.

For example, the tuning parameter could be decreased to the point of maintaining 85% statistical

efficiency if more robustness against outliers is desired. The weighted least squares (WLS) solution

is

β = (XTF TWFX)−1XTF TWFy (5.11)

where W is diagonal matrix of weights calculated from the filtered residuals as follows:

[Wii] = w ([Fy − FXβ]i) . (5.12)

Regression is done iteratively, updating the weight matrixW with each iteration until a convergence

criterion is reached. As a practical note, robust regression is implemented as part of the statistics

toolbox in Matlab (Mathworks R2012b, Natick MA) as the function “robustfit”. The iteratively

reweighted least squares estimator has an asymptotic covariance matrix given by

cov(β) = σ2
E[ψ2(Fǫ/σ)]

E[ψ′(Fǫ/σ)]2
(XTF TFX)−1 , (5.13)
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where E denotes expection, and ψ is the influence function [68], which can be specified as ψ(r) =

r w(r).

After regression, the null hypothesis that the hemodynamic response was zero (e.g., β = 0)

over a given time window or set of regressors can be tested by defining a contrast vector (c) and

calculating the t-statistic given by the expression

t =
cTβ

√

cT cov(β)c
. (5.14)

In the case of an FIR (deconvolution or block averaging) model, the contrast vector might be of

value 1 for some predefined window of time (e.g., over the expected peak of the response) and 0

otherwise. In the case of the canonical design matrix, the contrast vector would be 1 for the column

of the design matrix representing the regressor (task condition) of interest. A contrast vector can

also be defined using positive and negative terms to test differences between two conditions.

5.3.2 Summary of algorithm

For each fNIRS channel:

1. Initialize β via an OLS fit (Eq. 5.7a).

2. Fit the residual (y −Xβ) to an AR(P) model where P minimizes BIC (Eq. 5.5).

3. Generate the whitening filter f via Eq. 5.4b.

4. Apply the whitening filter to the data y and column-wise to the design matrix X.

5. Perform iteratively reweighted least squares (IRLS).

a. Solve for β by WLS (Eq. 5.11a).

b. Recalculate weight matrix W via Eq. 5.12.

c. Repeat step 5a-b until changes in β are sufficiently small (e.g., < 1% change).

6. Repeat steps 2-5 until changes in β are sufficiently small (e.g., < 1% change).

Note that it is much more computationally efficient to perform the filtering in step 4 via a

digital filtering algorithm, such as the “filter” function in Matlab, rather than explicitly forming

the convolution matrix F . The filtered data and design matrix can then be passed to any software

implementation of IRLS, such as the “robustfit” function in Matlab.

There are many approaches to estimating the AR model coefficients. The current default in

Matlab is to minimize the squared prediction errors of the forward and reversed signals. Because

motion artifacts are likely to influence the results, we modified this approach to a weighted least
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squares method, in which the weighted squared prediction errors of the forward and reversed signal

were minimized. This was performed as follows: (1) find the ordinary least squares solution, (2)

calculate weights from the Tukey’s bisquare function of the residual (i.e., Eq. 5.10), and (3) solve

the weighted least squares problem. This approach was computationally efficient enough to perform

a direct search of the AR model order that minimizes BIC. The entire algorithm ran in ∼3 s for the

canonical regression model and ∼20 s for the deconvolution model, which required a much larger

design matrix to invert, for one subject’s data (24 channels, ∼1500 data points/channel) on a single

core of a 2.9 GHz Intel Xeon E5-2690 CPU.

5.3.3 Simulated data

In order to test the performance of our proposed method under controlled noise structures, we first

applied the method to synthetic data, in which noise, motion artifacts, and evoked response were

simulated. We simulated serially correlated noise via tools in Matlab’s Econometrics toolbox with

an AR(5) model resulting in a signal with standard deviation of 0.05 µM, which was comparable

to the real data set discussed in the next section. The AR model order of 5 used for simulated data

was close to the median optimal model order of 6 for the experimental data. The AR coefficients

were taken as the median values across subjects from an AR(5) model fit to the experimental data.

Two sets of AR coefficients were used in the simulations based on AR(5) model fits to the HbO2

and Hb channels, respectively. Half of the data were simulated using the HbO2 AR coefficients,

and half of the data were simulated using the Hb AR coefficients.

Simulations were performed with and without simulated motion artifacts. Data that were

simulated with motion artifacts contained either 5-10 spike artifacts or 1-3 shift artifacts at random

times. The spike artifacts were modeled with a Laplace distribution function given by

f(t) = A exp

(

−|t− t0|
b

)

, (5.15)

with random peak amplitude, A, of 0.25-1µM and random scale parameter, b, of 0-1.5 s. Shift

artifacts were modeled as a random positive or negative change in DC value of 0.125-0.5 µM with

a linear transition lasting between 0.25-1.5 s. All random parameters described above were drawn

from uniform distributions. In order to quantify the performance of the various regression methods,

a known simulated evoked response was added to a subset (50%) of the channels. After regression,

a receiver operating characteristic (ROC) analysis was performed to quantify the true positive

rate (sensitivity) as a function of false positive rate (1-specificity). We simulated both a short
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duration task consisting of 15 trials of 1s stimuli every 20s and a long duration task of 10 trials

of 10s stimuli every 30 s. Evoked responses ranging from 0.01-0.10 µM in peak amplitude were

generated by convolving the stimulus design with the canonical hemodynamic response function

and added to the simulated noise. Evoked responses were added at half magnitude to simulated

deoxy-hemoglobin channels (∆[Hb] = ∆[HbO2]/2). We simulated >100,000 random channels of

data at each magnitude of evoked response with exactly half containing an evoked response.

5.3.4 Experimental data

In addition to the completely synthetic dataset, we used experimental “resting state” data from a

study involving 22 normal, healthy children (3-5 years old) as a source of real physiological noise

and motion artifacts. All subjects provided written parental informed consent, and this data was

collected as part of a larger study of functional brain activity [69]. Each “resting state” scan lasted

approximately three minutes and was acquired while the children watched a short video on the

computer (Disney films). Although this is not true resting state, there were no specific cued tasks

during the scan, thus serving as an effective estimate of background physiology for the purpose of

this study. The experimental data were acquired at 690 nm and 830 nm wavelengths at a sampling

rate of 4Hz with a probe consisting of 24 source-detector measurements over the prefrontal cortex.

The optical density changes were converted to oxy- and deoxy-hemoglobin prior to input into the

analysis method via the modified Beer-Lambert law. No other preprocessing was performed.

In order to test the performance of the various regression methods, a known simulated evoked

response was added to the experimental “resting state” data on a subset of the channels (50%), and

an ROC analysis was performed. Evoked responses were generated using the event-related (1 s on,

19 s off, 15 trials) and block design (10 s on, 20 s off, 10 trials) paradigms. Each channel of data was

concatenated with itself in order to accommodate the length of the experimental designs (300s).

We simulated evoked responses with amplitudes ranging from 0.01-0.1 µM on the oxy-hemoglobin

channels. Evoked responses were added at half amplitude to the deoxy-hemoglobin channels. For

each of the 22 subjects, we simulated 200 trial data sets (>100,000 channels), in which exactly

half (chosen randomly) of the source-detector pairs contained an added evoked response in order

to perform ROC analysis.
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5.3.5 Analysis methods

We tested the performance of the proposed AR(P)-IRLS algorithm as well as OLS with and without

AR(1) pre-whitening. Additionally, we tested wavelet based motion correction [53] followed by OLS

regression (Wavelet-OLS below) and spline interpolation based motion correction [52] followed by

OLS regression (Spline-OLS below) in order to validate the performance of the proposed method’s

ability to correct motion artifacts. The wavelet based motion correction was implemented using

matlab function “hmrMotionCorrectWavelet” that is included in the HOMER2 software package

(www.nmr.mgh.harvard.edu/DOT/resources/software.html) using an interquartile range of 1.5,

as suggested in the function’s documentation. The spline based motion correction was implemented

using the functions “hmrMotionCorrectSpline” and “hmrMotionArtifactByChannel” in HOMER2.

The parameters for this method were set to AMPThresh = 0.5, tMotion = 0.5s and tMask = 2s

following reference [55]. The optimal parameter for SDThresh varied from 12-20 in reference [55]

depending on the subject, thus we set SDThresh = 16. Receiver operating chararcteristic (ROC)

curves were generated for each of the tested methods by varying the estimated p-value threshold

for activation from 0 to 1 and calculating the true positive rate (sensitivity) and false positive rate

(1-specificity). Partial area under the ROC curve (AUC0.05) was used as a metric for performance,

in which the true positive rate vs false positive rate curve is integrated up to a false positive rate of

0.05. In this case, a random estimator would result in AUC0.05 = 0.00125, and a perfect estimator

would result in AUC0.05 = 0.05. Partial AUC is potentially a better indicator of overall performance

than AUC, which integrates the entire curve, since the threshold for statistical significance is often

set to 0.05 or less. Plots of false positive rate as a function of estimated p-value were generated and

examined to evaluate control of type I errors (false positive rate). We estimated standard errors

of AUC0.05 via bootstrap resampling of the data 1,000 times with replacement and calculating the

mean and standard deviation of 1,000 estimates of AUC0.05.

5.4 RESULTS

The AR model based pre-whitening filters removed serially correlated errors in the optical data.

In Fig. 5.1(a), an illustrative example of a simulated fNIRS signal with a few spike artifacts and a

shift artifact is shown. Figure 5.1(b) shows the same data after pre-whitening with an AR(2) model
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(determined optimal by BIC) generated from Eq. 5.4(b). Figure 5.1(c) shows the autocorrelation

function of the original (Fig. 5.1(a)) and whitened (Fig. 5.1(b)) signals, in which the whitened

signal showed significantly reduced signal autocorrelations. After filtering, the simulated artifacts

were visually identifiable as outliers in the whitened signal. These time points are subsequently

given little or zero weight during the iteratively reweighted least squares regression. Similarly, an

illustrative example of an experimental fNIRS signal is shown in Fig. 5.1(d). After filtering with an

AR(2) model (determined optimal by BIC), the whitened signal (Fig. 5.1(e)) showed significantly

reduced autocorrelations (Fig. 5.1(f)). For the experimental data in this study, the lower quartile,

median, and upper quartile of the AR model order chosen to minimize BIC were 5, 7, and 9 for

HbO2 channels and 3, 5, and 8 for Hb channels. In order to briefly test the model order dependence

on sampling rate, we downsampled (without filtering) the experimental data to 4/5 Hz, 1Hz, 4/3

Hz, and 2 Hz. We observed that the median optimal model order increased with increasing sampling

rate.

Figure 5.2 shows example hemodynamic response functions recovered via deconvolution anal-

ysis for the block task (a-c) and event task (d-f). These examples used the experimental data

as a baseline signal with a simulated evoked response of 0.04 µM amplitude. The first column

(Fig. 5.2(a,d)) shows examples when hemodynamic response function produced by OLS appears

to be free of artifacts. In this case, the hemodynamic response functions produced by all methods

appeared to be of high quality. The middle column (Fig. 5.2(b,e)) shows examples when the hemo-

dynamic response recovered by OLS appeared to be mildly contaminated by motion artifacts. In

this case, Wavelet-OLS and AR(P)-IRLS completely removed the suspected artifacts, while Spline-

OLS provided partial attenuation of the artifacts. The last column (Fig. 5.2(c,f)) shows examples,

in which the hemodynamic response recovered by OLS was severely corrupted by artifacts and/or

noise. Wavelet-OLS and AR(P)-IRLS showed significant improvement in the visual appearance of

the recovered hemodynamic response, while Spline-OLS failed to improve the results visually.

Figure 5.3 shows the results of ROC analysis of the deconvolution model performance for the

block task (Fig. 5.3(a)) and event tasks (Fig. 5.3(b)). The data is shown for simulated evoked

responses of 0.04 µM amplitude. In the case of synthetic data (AR(5) process) with no simulated

motion artifacts (AR/None), the performance was similar for all methods tested with AR(1)-OLS

and AR(P)-IRLS showing small, but statistically significant increases in AUC0.05 over OLS for both

the block and event task. In the case of synthetic data with simulated spike artifacts(AR/Spike),
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Figure 5.1: A simulated fNIRS signal generated from an AR(5) process with simulated motion

artifacts is shown in (a). After generating an optimal pre-whitening filter via fitting an AR(2)

model, the whitened signal (b) has significantly reduced autocorrelations (c). An experimental

fNIRS signal is shown in (d). After generating an optimal pre-whitening filter via fitting an AR(2)

model, the whitened signal (e) has significantly reduced autocorrelations (d).
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Figure 5.2: Examples of recovered hemodynamic response functions for simulated block design (a-c)

and event-related (d-f) design using the experimental data as baseline physiology/noise.

AR(P)-IRLS gave the best performance, followed by Wavelet-OLS. The AR(1)-OLS results also

showed a small, but statistically significant increase in AUC0.05 over OLS for both the block and

event task. For synthetic data with simulated shift artifacts (AR/Shift), AR(P)-IRLS showed a

much larger performance over the other methods for both block and event tasks. The Spline-OLS

method showed a small, but statistically significant increase in AUC0.05 over OLS for both the

block and event task. The AR(1)-OLS showed a statistically significant increase in performance

over OLS for the event task, but not the block task. For experimental data, only AR(P)-IRLS

showed a significant increase in performance over OLS.

Figure 5.4 illustrates the type I error control of OLS, AR(1)-OLS, and AR(P)-IRLS for the same

data as Fig. 5.3. The type I errors for Wavelet-OLS and Spline-OLS were similar to OLS and are

not shown. For all cases, OLS showed severely inflated type I errors, with false positive rates of 33-

43% when the p-value was estimated to be 0.05. In other words, false positive rates were 7-8 times

higher than predicted. Prewhitening with an AR(1) filter (AR(1)-OLS) significantly reduced type

I errors; however, false positive rates were still slightly higher than predicted for the experimental

data, in which false positive rates were 17% and 11% for the block and event task, respectively, when

the p-value was estimated to be 0.05. The AR(P)-IRLS method provided excellent type I error
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Figure 5.3: Partial AUC (AUC0.05) for detection of evoked responses with a deconvolution/FIR

model for simulated block (a) and event (b) tasks using an AR model as baseline signal with no

artifacts (AR/None), spike artifacts (AR/Spike), or shift artifacts (AR/Shift) or with experimental

data as a baseline signal containing motion artifacts. Error bars indicate 99% confidence interval.

control for the synthetic data with no artifacts and the experimental data for both the block and

event task. For synthetic data with simulated spike or shift artifacts, AR(P)-IRLS overestimated

type I errors.

Figure 5.5 shows the results of ROC analysis of the canonical regression model performance

for the block task (Fig. 5.5(a)) and event tasks (Fig. 5.5(b)). The data is shown for simulated

evoked responses of 0.04 µM amplitude. In the case of synthetic data with no simulated motion

artifacts (AR/None), the performance was similar for all methods tested. In the case of synthetic

data with simulated spike artifacts(AR/Spike), AR(P)-IRLS gave the best performance, followed

by Wavelet-OLS. For synthetic data with simulated shift artifacts (AR/Shift), AR(P)-IRLS showed

a large increase in performance over the other methods for both the block and event task, while

AR(1)-OLS showed a small increase in performance for the block task and a moderate increase in

performance for the event task. For the experimental data, AR(1)-OLS increased performance over

OLS for the event task, but decreased performance for the block task. The AR(P)-IRLS method

showed a moderate increase in performance over OLS for both the block and event task.
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Figure 5.4: False positive rate of detection as a function of estimated p-value (i.e., estimated false

positive rate) with the deconvolution/FIR model for simulated block (top row) and event (bottom

row) tasks using a simulated AR model as baseline signal with no artifacts (AR/None), spike

artifacts (AR/Spike), or shift artifacts (AR/Shift) or with experimental data as a baseline signal

containing motion artifacts.

AR/None AR/Spike AR/Shift Experimental
0

0.01

0.02

0.03

0.04

A
U

C
0

.0
5

AR/None AR/Spike AR/Shift Experimental
0

0.01

0.02

0.03

A
U

C
0

.0
5

OLS

AR(1)-OLS

Spline-OLS

Wavelet-OLS

AR(P)-IRLS

Random

a)

b)

Block Task

Event Task
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simulated block (a) and event (b) tasks using a simulated AR model as baseline signal with no

artifacts (AR/None), spike artifacts (AR/spike), or shift artifacts (AR/shift) or with experimental

data as a baseline signal containing motion artifacts. Error bars indicate 99% confidence interval.
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Figure 5.6 illustrates the type I error control of OLS, AR(1)-OLS, and AR(P)-IRLS for the

same data as Fig. 5.5. The type I errors for Wavelet-OLS and Spline-OLS were similar to OLS

and are not shown. For all cases, OLS showed severely inflated type I errors, with false positive

rates of 32-38% when the p-value was estimated to be 0.05. Prewhitening with an AR(1) filter

(AR(1)-OLS) significantly reduced type I error estimation. The AR(P)-IRLS method provided

slightly better type I error estimation than AR(1)-OLS for the synthetic data with no artifacts or

with spike artifacts. For the case of synthetic data with shift artifacts, the AR(P)-IRLS method

overestimated type I errors. For the experimental data, AR(1)-OLS and AR(P)-IRLS performed

similarly in terms of type I error estimation.
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Figure 5.6: False positive rate of detection as a function of estimated p-value (i.e., estimated false

positive rate) with the canonical regression model for simulated block (top row) and event (bottom

row) tasks using a simulated AR model as baseline signal with no artifacts (AR/None), spike

artifacts (AR/spike), or shift artifacts (AR/shift) or with experimental data as a baseline signal

containing motion artifacts.

The results shown in Figs. 5.3-5.6 were for one magnitude of evoked response (∆[HbO2] =

0.04 µM, ∆[Hb] = 0.02µM). We tested a range of evoked response magnitudes (∆[HbO2] = 0.01-

0.10 µM). In general, the false positive rates were not dependent on the magnitude of the evoked

response, but on the underlying noise structure. The gain in performance (AUC0.05) by using

AR(P)-IRLS over OLS was dependent on the amplitude of the evoked response, or more specifically

the contrast to noise ratio (CNR), in which all methods approach random performance (AUC0.05 =

0.00125) as CNR decreases and ideal performance (AUC0.05 = 0.05) as CNR increases. In general,
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correcting for motion artifacts will offer the most benefits in the middle range of CNR. The CNR

of a typical NIRS experiment will vary greatly by experimental paradigm, number of trials, and

design and location of the probe; however, for all of the simulations tested in this work, the AUC0.05

for AR(P)-IRLS was greater than or equal to AUC0.05 of OLS.

5.5 DISCUSSION

In this study, we demonstrated a general algorithm for solving the GLM in the context of de-

convolution (FIR) and canonical regression models for fNIRS that combines two well established

statistical methods: AR model based data transformations (filtering) and iteratively reweighted

least squares. These techniques were combined in a simple, computationally efficient algorithm to

correct for two major sources of confounding noise in fNIRS analyses: serial correlations caused by

systemic physiology and large outliers caused by motion artifacts, respectively. Furthermore, we

rigorously tested the algorithm by performing ROC analysis using synthetic data, in which serial

correlations, motion artifacts, and evoked responses could be controlled via simulations. Finally, we

validated our simulation results by using experimental data as a source of real baseline physiological

noise and motion artifacts.

Although this approach to pre-whitening via an AR model based transformation is common

practice in linear regression, this exact approach is not widely used in neuroscience applications.

In fMRI analysis (which typically deals with data sets on the order of 64x64x30 = 122,880 voxels)

the estimation of an AR model for each voxel is not practical due to the high computational time

required. For example, in the fMRI analysis program SPM8 [63] a global estimate of an AR(1)

model is included in the parameterization of the covariance matrix in the context of restricted

maximum likelihood (ReML) rather than fitting each voxel independently. In fMRI analysis, this

approximation is justified because the time between subsequent measurements is much longer (∼2-3

s) than fNIRS, such that serial correlations are less of a concern. In the case of fNIRS data, which

has both higher sample rates and lower number of time series measurements, these approximations

are no longer appropriate.

The use of simulated AR noise with simulated artifacts allowed us to control the type, number,

and amplitude of motion artifacts. The simulated artifacts were relatively large compared to exper-

imental data and provided a good test of the AR(P)-IRLS method’s ability to correct for motion
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artifacts. The AR(P)-IRLS method outperformed spline interpolation based motion correction [52]

and wavelet based motion correction [53] methods when motion artifacts were present. Despite

showing visual improvements in the recovered hemodynamic response functions, such as in Fig.

5.2, Wavelet-OLS and Spline-OLS did not offer any statistical advantage in the ROC analysis with

the experimental data. It is possible that the parameters used for these methods were not optimal

for the experimental data set in this study. Further ROC analyses should be performed for data

collected under a wide range of experimental conditions and subject populations to validate and

generalize the comparison of these methods.

In simulations without artifacts the algorithm did not negatively affect the analyses. The

practical implication of this is that the algorithm can be applied to every data set without making

a subjective judgment about whether artifact correction is needed or not. The method will improve

performance when data is contaminated by motion and preserve normal performance when data

are free of artifacts. Overall, our results suggest that application of robust regression methods after

pre-whitening represents a reliable method for correction of motion artifacts.

An AR(1) model of the errors was insufficient for controlling type I errors in some cases. This

effect is likely to be a greater issue at higher sampling rates than in this study (>4Hz). Using an

adaptive AR model order for pre-whitening is simple to implement and computationally efficient

enough to be added to standard fNIRS analysis methods to improve type I error control.

For the deconvolution model, AR(P)-IRLS method provided accurate estimation of false positive

rates for the synthetic data with no artifacts and the experimental data, while overestimating type

I errors for synthetic data with simulated spike or shift artifacts. For the canonical regression

model AR(P)-IRLS method provided accurate estimation of false positive rates for the synthetic

data with no artifacts or spike artifacts and the experimental data, while overestimating type I

errors for synthetic data with shift artifacts. While it is potentially better to overestimate than

underestimate type I errors, this may lead to reduced sensitivity near the threshold of statistical

significance (estimated p-value < 0.05). This overestimation is possibly related to violation of

stationariy (assumed by AR models) caused by severe motion artifacts, especially shift artifacts,

or to the breakdown of the asymptotic covariance estimate in Eq. 5.13. This issue did not appear

to be a problem for the simulations using experimental data with real motion artifacts, in which

the estimated p-values were relatively accurate. The statistics may potentially be improved if shift

artifacts can be removed or identified during preprocessing.
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5.6 CONCLUSIONS

In conclusion, we have developed a general algorithm for both the deconvolution (FIR) and canon-

ical regression analysis models that is robust to two major sources of noise in fNIRS: systemic

physiological signals and motion artifacts. The algorithm preserves the performance of standard

OLS methods when data are free of motion artifacts, thus freeing the user from making a subjective

choice about artifact correction. Lastly, the algorithm contains a single tuning parameter for the

weighting function used in IRLS that can be set objectively.
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6.0 ROBUST ADAPTIVE ESTIMATION OF EVOKED HEMODYNAMICS

The work in chapter 5 made significant progress in mitigating the effects of systemic physiology

and motion on the estimation of evoked brain activity and control over false positives; however, the

algorithm presented in chapter 5 is not suitable for real-time data analysis. This chapter extends the

same concepts of prewhitening and robust regression to mitigate the effects of systemic phyiology

and motion artifacts in order to modify the Kalman estimator. The resulting algorithm is suitable

for adaptive estimation in real-time.

6.1 ABSTRACT

Two majors sources of noise in functional near-infrared spectroscopy (fNIRS) are systemic phys-

iology and motion artifacts. These sources of noise manifest as serial correlations and outliers,

respectively, which can inflate false positive rates and reduce sensitivity of detecting evoked hemo-

dynamic activity. In previous work, we showed that these sources of noise can be mitigated via

application of autoregressive (AR) model based pre-whitening followed by the application of it-

erative re-weighted least squares (IRLS). In this work, we extend these ideas to modifications of

the linear Kalman filter to develop an algorithm for adaptive estimation that is robust to systemic

physiology and motion artifacts and can be applied in real-time. We evaluated the performance of

the proposed method via simulations of evoked hemodynamics that were added to real resting-state

data, which provided realistic fNIRS noise. Lastly, we applied the method post-hoc to a choice

reaction time (CRT) task data set. The method showed very similar performance to the analogous

offline method, in which both methods show better control over false positive and higher sensitivity

to detection of brain activity that ordinary least squares (OLS) methods.
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6.2 INTRODUCTION

Near-infrared spectroscopy (NIRS) is a non-invasive technique that can monitor changes in the

optical absorption of cerebral blood to detect evoked brain activity [36]. Measurements are made

by an array of light sources and detectors that are coupled to the scalp through fiber optics between

a head cap worn by the subject and the NIRS instrument. Spatially overlapping measurements

that are made at multiple wavelengths within the optical window (650-900 nm) can allow for spec-

troscopic estimation of both oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) via the modified

Beer-Lambert law [16]. The nature of the evoked changes in NIRS have been shown to be related to

the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging (fMRI)

[34]. Compared to fMRI, functional NIRS (fNIRS) offers lower spatial resolution, but much higher

temporal resolution (>10 Hz). This characteristic makes fNIRS suitable for studying the temporal

characteristics of the hemodynamic signal. Furthermore, fNIRS is non-restraining, making it suit-

able for infants and small children and for various tasks, such as walking [7, 8], balance [9, 10, 11],

and social interaction [12], where fMRI is not practical.

Two major sources of confounding noise that affect the analysis and interpretation of fNIRS

signals are serially correlated errors due to systemic physiology, such as cardiac, respiratory, and

low frequency Mayer waves (related to blood pressure auto-regulation), and motion artifacts due to

the movement or slippage of the head cap. Both of these sources of noise violate assumptions of the

general linear model (GLM) and can contribute to inaccurate control of type I error (false positives)

and reduced performance of the GLM estimator. In a previous publication, we have shown that

the effects of these sources of noise on the regression model can be dealt with by incorporating

autoregressive (AR) based filtering and robust regression methods in an iterative offline algorithm

[51]. The algorithm is simple conceptually and was shown to be robust to the effects of motion and

systemic physiology.

Adaptive methods offer advantages over static offline methods in that they can be used for

processing in real time, in which the parameters of the model are updated as data is acquired.

Potential applications of real-time imaging include the development of brain machine interfaces

[70, 71], monitoring attentional states (e.g., [72]), providing bedside feedback in clinic (e.g., [73]),

and the investigation of neurofeedback [74].

In this study we extended the ideas of [51] to develop an adaptive algorithm based on the

linear Kalman filter. We validated the method by performing receiver operating characteristics
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(ROC) analysis on simulations using simulated evoked hemodynamics added to real resting-state

NIRS data. The resting-state NIRS data acted as real noise with contributions from physiology,

motion, and instrument noise. Lastly, we applied the proposed method post-hoc to a choice reaction

time (CRT) task dataset. Overall, the algorithm offers adaptive estimation of fNIRS data that is

suitable for real-time application and is robust to serial correlations from physiology and outliers

from motion.

6.3 METHODS

6.3.1 The AR-IRLS Approach

A common approach to analyzing fNIRS data implements a general linear model (GLM) given by

y = Xβ + ǫ , (6.1)

where y is a vector containing the preprocessed fNIRS time-series measurement; X is the design

matrix with each column containing a regressor; β is a vector of parameters to be estimated; and ǫ

is the residual error. The contents of design matrix X will vary depending on the desired model to

be estimated. One approach that is commonly used is to first create a stimulus matrix with blocks

(of value 1) marking the presence of a task. The stimulus matrix is convolved with a canonical

hemodynamic response function to provide a predicted hemodynamic signal for each stimulus. The

magnitude of the response to each stimulus condition is then given by the estimated coefficients β.

Another approach uses a finite impulse response (FIR) basis set, in which the onset of a task and

a predetermined number of lags are marked by delta functions. The resulting coefficients in β give

the hemodynamic response function.

As written, the error term ǫ in Eq. 6.1 typically contains physiological “noise” and potentially

motion artifacts, making a standard ordinary least-squares estimator inappropriate due to the

presence of serial correlations and outliers. In [51], this model is modified by prewhitening with a

linear filter F , represented as a matrix notation as

Fy = FXβ + Fǫ , (6.2)

where F is a convolution matrix that simply performs column-wise FIR filtering based on an auto-

regressive (AR) model of the error terms. The new residual errors Fǫ are decorrelated, but still
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contain outliers due to motion. To deal with motion artifacts, Eq. 6.2 is solved via iterative

reweighted least squares estimation [66], which employs a weighted least squares solution given by

β = (XTF TWFX)−1XTF TWFy , (6.3)

whereW is a diagonal matrix containing weights determined by an appropriate weighting function,

such as Tukey’s bisquare function [67]. The AR-IRLS algorithm is initialized with an OLS fit of

the model. Each iteration of the algorithm then proceeds as follows: (i) estimate an AR model

based on residual error, (ii) calculate the whitened data vector Fy and design matrix FX, and (iii)

perform iterative reweighted least squares (IRLS) on the whitened data and design matrix.

The weight matrix can be factored applied to Eq. 6.2 giving a weighted model,

√
WFy =

√
WFXβ +

√
WFǫ , (6.4)

in which the square root denotes an element-wise square root applied to the weights on the diagonal

of W . The estimation to Eq. 6.4 gives exactly the solution shown in Eq. 6.3, and this model is

used for formulating the adaptive estimator in the following section.

6.3.2 Linear Kalman Filter

The linear Kalman filter [75] is a recursive linear estimator that solves the following model:

β{t} = A{t}β{t − 1} +B{t}u{t} + q{t} (6.5)

q{t} ∼ N(0, Q{t}) (6.6)

y{t} = X{t}β{t} + r{t} (6.7)

r{t} ∼ N(0, R{t}) (6.8)

where β{t} describes the “state” of the system; A{t} is the state transition matrix; B{t} is the

control input matrix; u{t} is the control input vector; q{t} is the process noise with covariance Q{t};
y{t} contains observed measurements; X{t} is the observation matrix; r{t} is the measurement

noise with covariance R{t}. The quantities A{t}, B{t}, u{t}, X{t}, and y{t} are known quantities,

while β{t} is estimated.

The estimation procedure is typically broken into two steps: (i) the prediction step and (ii) the

update step. The prediction step is given by

β{t|t− 1} = A{t}β{t − 1|t− 1} +B{t}u{t} (6.9)

C{t|t− 1} = C{t− 1|t− 1} +Q{t} (6.10)
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where C is the covariance matrix of β. Here the notation {t|t − 1} denotes the quantity at time

t given the measurements up to time t − 1. The process noise covariance Q{t} is generally set a

priori. The prediction or residual error is given by

r{t} = y{t} −X{t}β{t|t − 1} . (6.11)

The update step of the linear Kalman filter is given by

S = X{t}C{t|t− 1}XT {t}+R{t} (6.12)

K = C{t|t− 1}XT {t}S−1 (6.13)

C{t|t} = C{t|t− 1} −KX{t}C{t|t− 1} (6.14)

β{t|t} = β{t|t− 1}+Kr{t} , (6.15)

which gives the updated “states” (β{t|t}) and covariance matrix (C{t|t}) given the new observations

y{t}. The residual covariance matrix R{t} can be set a priori if the noise characteristics are well

known, or as is done in this work, estimated recursively.

6.3.3 Proposed Adaptive Algorithm

So far we have only discussed the Kalman filter in general terms. In this work, we investigated the

case where β contains the coefficients of regressors in the design matrix X{t}. As such, A{t} is an

identity matrix, and B{t} and u{t} are eliminated. This gives

β{t} = β{t− 1}+ q{t} (6.16)

q{t} ∼ N(0, Q{t}) (6.17)

y{t} = X{t}β{t} + r{t} (6.18)

r{t} ∼ N(0, R{t}) , (6.19)

in which Q{t} is effectively a tuning parameter that is set beforehand. In the case that Q{t} = 0

the Kalman filter equations reduce to recursive least squares estimation. The residual variance

R{t} is handled by modeling r{t} as an AR process:

r{t} =
P
∑

i=1

αi{t} r{t− i} + u{t} (6.20)

u{t} ∼ N(0, σ2u) , (6.21)
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in which αi are the AR coefficients and u{t} is normally distributed white noise. The measurements

and design matrix are thusly whitened by

yf{t} = y{t} −
P
∑

i=1

αi{t}y{t− i} (6.22)

Xf{t} = X{t} −
P
∑

i=1

αi{t}X{t − i} , (6.23)

which is effectively convolution with an FIR filter. Note that we have introduced an a assumption

that β varies sufficiently slowly over P time steps, such that Eq. 6.23 is valid. This assumption

is justifiable given the relatively slow dynamics of hemodynamic signals. The AR coefficients are

estimated using a separate Kalman filter which takes the model prediction error r{t} as observations
and uses the previous P residual errors (r{t− 1} to r{t− P}) as the entries to X{t}.

The whitened model gives the following whitened prediction error:

u{t} = yf{t} −Xf{t}β{t|t − 1} , (6.24)

which is used to calculate a weight value for the new data point. The weighting function used in

this work is given by

w(u) =











1−
(

u
σκ

)2 |uσ | < κ

0 |uσ | ≥ κ ,

(6.25)

which is simply the square root of Tukey’s bisquare function [67]. The tuning constant κ is typically

set to 4.685, and σ is the standard deviation of the input u. We chose to estimate the standard

deviation of the whitened model error using a recursive mean absolute deviation estimator given

by

σu{t} =
t− 1

t
σu{t− 1}+ 1.253

t
|u{t}| , (6.26)
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in which 1.253 is a constant relating the standard deviation to the mean absolute deviation. Thus,

the final weighted and whitened prediction error and model at time t are given by

uw{t} = w(u{t}) u{t} (6.27)

Xw{t} = w(u{t}) Xf{t} , (6.28)

which are fed into the update step of the Kalman filter equations giving

S = Xw{t}C{t|t− 1}XT
w{t}+ σ2u{t} (6.29)

K = C{t|t− 1}XT
w{t}S−1 (6.30)

C{t|t} = C{t|t− 1} −KXw{t}C{t|t− 1} (6.31)

β{t|t} = β{t|t− 1}+Kuw{t} . (6.32)

The entire algorithm is shown schematically in Fig. 6.1, which illustrates the relation between the

two Kalman filters used for estimating the hemodynamic and AR models, respectively.
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Figure 6.1: Schematic of the adaptive estimator illustrating the low of information between two

linear Kalman filters. Filter 1 estimates the model and passes the prediction error to Filter 2, which

estimates an AR model and passes AR coefficients to Filter 1.

6.3.4 Simulation and ROC Analysis

A resting state fNIRS data set that was acquired as part of a larger study in adults (age 18-50,

N = 34) was used for simulation and evaluation of the proposed method’s performance. For each

subject, 5 min of resting state data were acquired at 10 Hz sampling frequency. The probe consisted

of 35 source-detector pairs acquired at 690 nm and 830 nm (70 channels of data) over the motor
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and somatosensory cortices. The data were converted to ∆HbO2 and ∆Hb via the modified Beer-

Lambert law and low signal to noise ratio (SNR) channels were discarded. No other preprocessing

was performed.

Simulations were performed by adding a simulated evoked response to the real “noise” from

the resting state data. An evoked response was simulated for a task consisting of a single event

every 15 s for 20 trials. A block stimulus vector was generated for this task and convolved with

a canonical hemodynamic response function (HRF) and scaled based on contrast to noise ratio

(CNR). We performed simulations at CNR levels of 0.5, 1.0, and 2.0, in which CNR was defined as

the peak magnitude of the response divided by the standard deviation of the whitened resting state

data. For each set of simulations, data were generated as follows: (i) choose a random channel of

resting state data from the pool of all HbO2 and Hb channels; (ii) add a random delay time before

the start of the task periods; (iii) add a simulated evoked response to resting state data if desired;

(iv) pass data and design matrix to estimators for assessment of estimated values and statistics.

An equal number of simulations were performed on channels with an without adding an evoked

response, such that exactly half of all simulations contained a simulated evoked response.

As benchmarks for comparison, the simulated data were also analyzed with two static offline

methods: AR-IRLS [51] and OLS with AR(1) prewhitening. Comparison with OLS allowed for

testing of performance gains over typical OLS-based estimators and comparison with AR-IRLS

allowed for investigation of convergence with the analogous offline method. To evaluate the perfor-

mance of the estimators, receiver operating characteristic curves (ROC) were generated using the

t-statistic output of the estimators, in which true positive rate (TPR) is plotted vs false positive rate

(FPR) as a function the t-statistic threshold for “detection” of an evoked hemodynamic response.

In addition, we compared estimated p-values (p̂) with actual false positive rates (FPR). Lastly, we

looked at sensitivity, specificity, and FPR when using p̂ < 0.05 as the threshold for significance for

activation. The simulations were repeated for CNR values of 0.5, 1.0, and 2.0. For estimation with

the proposed adaptive method, the process noise covariance Q{t} was set to zero and an AR(30)

model was used.

6.3.5 Application to Experimental Data

We applied the proposed method to experimental data (N = 6, age 25-47) involving a choice reaction

time (CRT) task with and without sway referencing as a final demonstration of the proposed
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method. The task involved an arrow presented on either the left or right side of a screen that

could point in the left or right direction. Subjects were given two response buttons for the left and

right hands and were asked to press the button corresponding to the direction of the arrow. The

paradigm included 10 blocks of 15 s of CRT task followed by 15 s of no task. During the task blocks,

new arrows were presented with random direction and location immediately after responding to

the previous stimulus until 15 s had elapsed. Each subject performed the task once while standing

on a solid platform and once while sway referencing.

The NIRS data were acquired at 20 Hz on a Techen CW6 system using an 16 channel (8 × 690

nm and 8 × 830 nm), bilateral probe covering the frontal regions. The data were then analyzed

post-hoc using the proposed adaptive method and the offline AR-IRLS method for comparison.

6.4 RESULTS

6.4.1 Simulation Results

An example of the simulated data (CNR = 1.0) is shown in Fig. 6.2(a), which contains several

visible motion artifacts. Figure 6.2(b) shows the weights given to each time point. When there are

sharp changes in the time-series data due to motion, the weight decrease accordingly. Figure 6.2(c)

shows the predicted hemodynamic response (solid green line), which closely matches the simulated

response (dashed red line). Figure 6.2(d) shows the evolution of the t-statistic, which appropriately

increases as more data is acquired.

Figures 6.3(a)-6.3(e) show the ROC curves at different snapshots in time, and Figures 6.3(f)-

6.3(j) show FPR as a function of p̂. The proposed adaptive method shows similar performance to

the analogous offline AR-IRLS method. Both of these methods show performance improvements

over the OLS method. Figures 6.4(a)-6.4(c) show the sensitivity, specificity, and FPR using p̂ < 0.05

as a threshold for detection of an evoked response. Again the proposed adaptive method shows

similar performance to the analogous AR-IRLS method for offline processing, and both methods

show better sensitivity, specificity, and control over false positives.

Table 6.1 shows the sensitivity, specificity, and FPR using p̂ < 0.05 as a threshold for detection

for repeated simulations at CNR values of 0.5, 1.0 and 2.0. As to be expected, specificity and FPR
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Figure 6.2: (a) An example of simulated fNIRS data from resting-state data and synthetic hemo-

dynamic response. (b) Weights calculated by the algorithm. Artifactual time points are down

weighted. (c) The predicted evoked response (solid green) is shown over the simulated evoked

response (dashed red). (d) Evolution of the t-statistic over time.
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Figure 6.3: Receiver operating characteristic (ROC) curves are shown for 1, 2, 3, 4, and 5 min of

data. The proposed adaptive method converges rapidly to the analogous offline AR-IRLS method.
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Figure 6.4: Sensitivity (a), specificity (b), and false positive rate (c) are shown for simulated data

using p̂ < 0.05 as the threshold for activation.
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were independent of CNR and only depend on the noise characteristics of the data. Higher CNR

led to higher sensitivity to detection, especially at early time points in the data (e.g., at 1 min).

Table 6.1: Sensitivity, specificity, and false positive rate are shown for varying contrast to noise

ratio (CNR) for the proposed algorithm using p̂ < 0.05 as the threshold for activation.

Time 1 min 2 min 3 min 4 min 5 min
Sensitivity

CNR = 0.5 10.8% 28.4% 40.1% 49.3% 56.0%
CNR = 1.0 29.5% 57.7% 71.6% 79.4% 84.0%
CNR = 2.0 57.9% 82.6% 91.7% 95.1% 96.5%

Specificity
CNR = 0.5 97.6% 97.9% 97.4% 97.3% 97.2%
CNR = 1.0 97.6% 97.7% 97.3% 97.3% 97.1%
CNR = 2.0 97.5% 97.7% 97.3% 97.3% 97.2%

False Positive Rate
CNR = 0.5 2.4% 2.1% 2.6% 2.7% 2.8%
CNR = 1.0 2.5% 2.3% 2.7% 2.7% 2.9%
CNR = 2.0 2.5% 2.3% 2.7% 2.7% 2.8%

6.4.2 Experimental Results

Figure 6.5 shows an example of the channel-wise t-statistic evolution over time for HbO2 for a single

subject. In addition the channel-wise statistics for the offline AR-IRLS are shown. The t-statistics

showed relatively quick convergence, with not much visible difference between the estimates at 2

min and 5 min. The online channel-wise t-statistics at the end of the scan (5 min) were visibly

similar to the results obtained from AR-IRLS.

Figure 6.6 shows a scatter plot of all channel-wise t-statistics at the end of scan from all subjects

for HbO2 for the proposed method vs. AR-IRLS. In addition, a total least squares regression line

is shown. The proposed online method shows good agreement with the analogous offline method,

although a few points show a large deviation from the trend. It is unclear what the explanation is

for this result, other than the obvious differences in the estimation procedures. The slope of the

regression line suggests there are no systematic differences between the two estimators.

Figure 6.7 shows the results for group level analysis using the subject level results from the

proposed online method as well as the offline AR-IRLS method. Both methods show similar

patterns of activation for HbO2, in which activation was primarily seen on the right frontal region

for the CRT task under both the fixed platform and sway referencing conditions. This is consistent

lesion studies showing the right dorsolateral prefrontal cortex to affect performance in Stroop tasks
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[76] and with fMRI findings showing bilateral activation in the frontal areas [77]. There was no

statistically significant differences detected for performing the task while sway referencing that

might have been expected from dual task interference.
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Figure 6.5: T-statistic evolution for HbO2 for an example subject at 1 min intervals and T-statistics

from offline analysis via AR-IRLS (bottom). R = right; L = left; T = T-statistic.
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Figure 6.6: Comparison of T-statistics for offline (AR-IRLS) and online analysis methods across

all channels of HbO2 for all subjects using the full time-series data.

6.5 DISCUSSION

In this study, we have developed methods for adaptive estimation of the GLM based on using

two Kalman filters: one to estimate the model and one to estimate an AR model of the residual
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Figure 6.7: Group level statistics for HbO2 using subject level statistics from the offline (AR-IRLS)

and online analysis methods. Black lines indicate failure to reject the null hypothesis at p < 0.05

(uncorrected).

error. Before the update step of the first Kalman filter, the model is whitened based on the AR

coefficients of the second Kalman filter and weighted by a weighting function. This mitigates the

effects of serial correlations and outliers on the estimator. The proposed method was compared to

an analogous offline algorithm that implements the same concepts. The proposed online method

showed very similar performance to the analogous AR-IRLS method for offline processing. Lastly,

we demonstrated the method on an experimental data set, in which the online and offline methods

showed good agreement.

One significant difference between the online and offline algorithms is that the AR-IRLS method

employs a model selection step using Bayesian information criteria (BIC) [62] to choose an optimal

AR model order. However, our simulation results show that choosing an appropriate model order

beforehand did not significantly degrade the performance. If model selection is desired, one can

simply keep a recursive estimate of a handful of AR models and calcululate their BIC as

BIC(P ) = −t ln
(

σ2r (P )
)

+ P ln(t) , (6.33)

where P is the model order, and σ2r(P ) is a recursive estimate of the residual prediction error from

the Kalman filter estimating an AR(P) model. For example, if the sampling frequency is 10 Hz,

one could keep estimates of P = {1, 5, 10, 20, 30} and choose the model with the lowest BIC to

perform the pre-whitening at each time point.
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In this work, we only tested the case where the process noise Q was set to zero in order to

demonstrate the methods and compare to the analogous offline algorithm. In the case where Q = 0

the Kalman filter acts like an iterative least squares estimate, in which the new model estimate can

be interpreted as an improved estimate of a static model. However, the Kalman filter framework

allows for time-varying “states” when Q is non-zero. This may be useful for investigating inter-

trial variance or for applications where the evoked response is expected to be modulated, such

as by learning or habituation. One issue with attempting to model time-varying parameters is

determining an appropriate process noise. If process noise is too large, the Kalman filter will

overfit noise in the time-series, and if the process noise is too small, it may not capture all of the

characteristics of the temporal changes in the model states. Care must be exercised in setting a

non-zero process noise. Future studies should investigate objective methods for setting the process

noise.

In conclusion, we developed a new method for adaptive estimation of the GLM based that is

robust to motion artifacts and systemic physiology. The new method showed similar performance

to the offline AR-IRLS algorithm. The method shows better performance than OLS type methods

in both sensitivity and type I error control. Finally, since the method is adaptive, it is suitable for

real-time analysis of fNIRS data.
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7.0 CONCLUSIONS

The aim of this thesis was to develop methods for NIRS data analysis that mitigates major con-

founding factors in recovery of cerebral physiology and hemodynamics. Baseline physiology esti-

mation suffers from rapidly decreasing sensitivity as a function of depth. This leads to to difficulty

in separation of physiological parameters, such as oxygen saturation and hemoglobin content, from

that of the superficial layers. Measurements over time suffer from high contributions of systemic

physiological signals, such as cardiac, respiratory, and blood pressure waves. Furthermore, as mea-

surements are made over an extended period of time, the subjects inevitably introduce artifacts to

the time-series data when moving. These sources of “noise” degrade the performance of analyses

and reduce the sensitivity of NIRS.

The most common analysis method for FD-NIRS assumes that the head is a semi-infinite,

homogeneous structure. In chapter 3, we showed that this model is somewhat biased, even for a

morphologically normal neonate. The attemps to used layered models to perform the recovery of

StO2 and HbT in chapter 4 showed some promising results suggesting that bias can be reduced by

using an atlas or acquiring subject-specific anatomical information; however, the study in chapter

4 also showed that when more realistic computation of light propagation were used, the advantages

of incorporating anatomical information were lost. This is possibly related to the treatment of

CSF, which does not adhere to the assumptions of the diffusion approximation. Future work

should confirm this hypothesis and attempt to mitigate the issue using more accurate forward

model computations, either by solving the issues with stochastic noise in Monte Carlo methods or

incorporating higher order spherical harmonics terms into the finite element methods.

The inverse problem in FD-NIRS in inherently ill-conditioned due to the high sensitivity of the

superficial layer and high attenuation of light before it reaches the brain. Future studies can also

work to improve the conditioning of this problem by optimizing the measurement procedure. In this

work, we only used two wavelengths, but it is possible to make measurements at more wavelengths.
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Furthermore, modulation frequency and the number of source-detector distances can also be varied.

Incorporation of priors or various regularization techniques may also yield improved results. Lastly,

we tested these methods in neonates, in which NIRS has substantially greater sensitivity to the

brain than in adults due to thinner scalp and skull layers. Extension of FD-NIRS measurements

for adults will be a challenging problem for future studies.

The methods in chapters 5 and 6 resulted in signicant improvements in the sensitivity of NIRS

to detect brain activity and control false positives in the analysis of functional NIRS studies. The

method is based on the simple principle of pre-whitening the time-series based on an autoregressive

model of the errors. This conveniently turned motion artifacts into sharp outliers in an otherwise

uncorrelated, normally distributed residual, which were easy to account for with robust regression

methods. The methods are based on sound principles and relativley hands-off for the user, which

avoids subjective input by the researcher in adjusting tuning parameters. In chapter 5, we saw that

in the cases where motion caused a shift in the mean of the signal caused systematic underestima-

tion t-statistics. Furthermore, slow non-oscillatory drifts in the signal also break the stationarity

assumptions of autoregressive models. Future work should investigate the best way to fix these

issues.

Although the methods developed in chapters 5 and 6 correct for serial correlations due to

systemic physiology, there is an implicit assumption that the physiology is independent of the

task. For example, a task that incorporated walking, stopping, walking, stopping, etc. can induce

physiological changes that are correlated with the task. On one hand, measurement of systemic

effects and the development of filtering/regression methods to remove these effects are an open

area of current research in the field. On the other hand, even with a measurement of systemic

physiology, when the task is correlated to physiology, this represents an issue with collinearity (i.e.,

the inversion is ill-conditioned) that might be better dealt with by better experimental design. This

is another interesting area for future methods development research.

The work presented in chapter 6 on the development of adaptive methods based on the linear

Kalman filter only investigated the case when the states are stationary. While this is certainly

useful for many applications, the methods were developed in a general Kalman filter framework

that allows for non-stationary states. This many be useful for developing analysis methods for offline

analyis that investigate time-varying hemodynamics. For example, the investigation of single-trial

variability or evoked hemodynamics that are modulated by learning effects may be two simple

applications for future studies.
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APPENDIX

INTERSLICE MAGNETIZATION TRANSFER EFFECTS FOR MTR IMAGING

OF THE HUMAN BRAIN

This work was completed during my graduate studies before joining the lab of Dr. Huppert. Thus,

it is unrelated to the main topic of the disseratation, but is included here as part of my graduate

work.

A.1 ABSTRACT

We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires

no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-

state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-

weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain.

The effects of varying flip angle and phase encoding (PE) order were investigated experimentally

in normal, healthy subjects. Values of up to ∼50% and ∼40% were observed for white and gray

matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and

gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR

values. Simulations were also used to investigate the effects of varying acquisition parameters,

and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we

demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary

results of interslice MTR imaging of meningioma.
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A.2 INTRODUCTION

Protons that are bound to macromolecules can exchange magnetization with free water protons

leading to magnetization transfer (MT) phenomena [78]. Macromolecular protons cannot be ob-

served directly with magnetic resonance imaging (MRI) because of fast transverse relaxation (T2

∼ 10 µs); however, macromolecular protons can be preferentially saturated by off-resonance (with

respect to free water) radio frequency (RF) irradiation, since the absorption spectrum of macro-

molecular protons is much broader than that of free water. Exchange between the two pools of

protons can transfer an observable decrease in magnetization to the free water pool. The percent

signal decrease due to MT is called the magnetization transfer ratio (MTR). Changes in MTR can

often give information about the macromolecules involved in generating the MT effects. One of

the major applications of MTR imaging has been the evaluation of white matter (WM) integrity

in multiple sclerosis [79], in which myelin content has been found to be significantly correlated

with MTR [80]. Other applications include imaging articular cartilage of the knee [81, 82, 83],

intervertebral disc degeneration [84], and characterization of brain tumors [85, 86].

Interslice MT effects that are inherent to sequential multi-slice acquisitions [87, 88, 89, 90]

have been used to generate contrast for MT asymmetry imaging without a separate saturation

pulse in the alternate ascending/descending directional navigation (ALADDIN) pulse sequence

[91]. The same approach may be used for MTR imaging with an additional acquisition of reference

images without MT weighting. The purpose of this work was to demonstrate the feasibility of

MTR imaging in the brain using interslice MT effects to generate MT contrast and to investigate

the characteristics of interslice MTR image acquisition with multi-slice balanced steady state free

precession (bSSFP) imaging.

In this study, we validated the source of image contrast using a 10% agarose phantom (high

MT effects) and saline phantom (no MT effects) and by comparing in vivo MTR images of the

brain acquired with the proposed interslice method to MTR images acquired with conventional

presaturation pulses. We compared in vivo MTR values for gray matter (GM) and WM at varying

flip angle and phase encoding (PE) order with predictions from numerical simulations of the two-

pool model using tissue parameters from the literature. Simulations were also used to investigate the

effects of varying the number of PE steps, flip angle, and interslice delay as well as the accumulation

of MT effects over multiple slices. Lastly, we demonstrate reduced banding with non-balanced SSFP

and applied the proposed interslice MTR imaging method to a meningioma patient. Overall, the
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technique offers an efficient method for MTR acquisition without the need for a separate saturation

pulse.

A.3 METHODS

A.3.1 Theory

In 2D sequences, slice-selection is achieved by applying a linear gradient perpendicular to the slice

plane causing the Larmor precession frequency to vary as a function of position. Excitation of a

slice of interest is achieved by adjusting RF-pulse frequency to the Larmor frequency of the desired

plane. The slice of interest receives on-resonance excitation; however, the rest of the volume receives

off-resonance irradiation. During acquisition of one slice, excitation pulses are effectively a series

of off-resonance saturation pulses to future slices (Fig. A1). The off-resonance frequency received

by neighboring slices is given by

δn = −BW ·
(

1 +
GAP

THK

)

· n · sign(GRAD) · ORD , (.1)

where BW is the bandwidth of the RF-pulse, GAP is the interslice gap; THK is the slice thickness;

n is the slice index with positive indices indicating slices superior to the acquisition slice, and

negative indices indicating slices inferior to the acquisition slice; sign(GRAD) is the sign of the

gradient; ORD is +1 if ascending slice order and -1 if descending slice order. The off-resonance

irradiation received by neighboring slices can saturate macromolecular protons leading to interslice

MT effects. This idea is illustrated in Fig. A1.

Interslice MT effects can be enhanced as a mechanism for generating contrast by the use of

bSSFP acquisition, in which high flip angle and short repetition time (TR) lead to high saturation

of the macromolecular pool. The interslice gap is set to a high value (e.g. 140% the slice thickness)

to avoid crosstalk caused by overlapping slice profiles and so that interleaving two acquisitions

gives a full set of images at typical gap size (e.g. 20% the slice thickness) [91]. For imaging in

the brain, descending slice order is preferred to ascending slice order, in order to suppress signal

contributions from blood perfusion. Because MT effects can accumulate over multiple slices, a few

extra “dummy” slices must be collected in the MT-weighted image sets to ensure homogeneous MT

contrast across slices. These slices can be positioned outside the imaging volume of interest (e.g.,

above the head) and discarded during reconstruction. Reference images without MT-weighting
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Figure A1: Illustration of interslice MT effects. The application of a gradient varies the Larmor

frequency f(z) linearly in space (z). During excitation, the slice of interest (slice 0) receives on

resonance excitation. With a positive gradient polarity and descending slice order (shown above),

the next slice to be acquired (slice -1) receives off-resonance irradiation at a frequency offsets of

3840 Hz.

can be acquired by adding an interslice delay sufficient for T1 recovery. The MTR value, which

measures the percent signal decrease, can be calculated pixel by pixel as follows:

MTR = (IRef − IMT )/IRef × 100% , (.2)

where IMT and IRef are the signal intensities of corresponding pixels in the MT-weighted and

reference images, respectively.

The modified two-pool model [92] can be used to quantitatively model MT effects generated

by sequential 2D bSSFP acquisitions. In this model, a free liquid pool (subscript f) exchanges

longitudinal magnetization with a restricted macromolecular pool (subscript r). Using an RF-

pulse given by

B1(t) = b1(t) cos ((ωRF − ω0,f) t) x̂+ b1(t) sin ((ωRF − ω0,f ) t) ŷ , (.3)

where ωRF is the angular frequency of the RF pulse, ω0,f is the angular frequency at free water

resonace, and b1(t) is the magnitude of the RF pulse, the two pool model can be described
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mathematically in a frame rotating at ω0,f using the Bloch equations with additional terms for

exchange of longitudinal magnetization between the proton pools:

dMx,f

dt
= γb1(t) Mz,f sin ((ωRF − ω0,f ) t)−

Mx,f

T2,f
(.4)

dMy,f

dt
= γb1(t) Mz,f cos ((ωRF − ω0,f ) t)−

My,f

T2,f
(.5)

dMz,f

dt
= − γb1(t) Mx,f sin ((ωRF − ω0,f ) t) (.6)

− γb1(t) My,f cos ((ωRF − ω0,f ) t)

− Mz,f −M0,f

T1,f
−Mz,f F kr +Mz,r kr

dMz,r

dt
= − Mz,r −M0,r

T1,r
+Mz,f F kr −Mz,r kr −Mz,r W (t) , (.7)

with z denoting the longitudinal component, and x and y denoting transverse components of

magnetization. The longitudinal and transverse magnetization decay constants are given by T1 and

T2, respectively. The ratio of the fully-relaxed longitudinal magnetizations gives the ratio of pool

sizes (F =M0,r/M0,f ), and kr is the pseudo-first-order exchange rate constant. The saturation rate

of the restricted pool is proportional to the square of the RF-pulse amplitude and to the absorption

lineshape, G(ω):

W (t) = π γ2 b21(t) G(ωRF ) . (.8)

A super-Lorentzian lineshape has been found to model tissues well [93] and is defined by the

following integral:

G(ω) = T2,r

√

2

π

∫ 1

0

1

|3u2 − 1| exp

(

−2

(

(ω − ω0,r) T2,r
3u2 − 1

)2
)

du , (.9)

where the term ω0,r is the peak of the absorption spectrum of the macromolecular pool, which

can account for MT asymmetry when ω0,r 6= ω0,f [94]. For this study, MT asymmetry was not

considered (ω0,r = ω0,f ). On-resonance MT effects [95] were simulated for WM and GM by setting

G(0) = 1.4× 10−5 s−1 according to Gloor, Scheffler, and Bieri [96].

A.3.2 Ethical considerations

All imaging experiments were approved by the Institutional Review Boards at the University of

Pittsburgh and Seoul National University and written informed consent was obtained from all

participants.

111



A.3.3 Instrumentation and Software

The experiments were performed on Siemens 3T Trio systems (Siemens Medical Solutions, Erlangen,

Germany), and a 12-element head matrix coil was used for reception with body coil transmission

for all data acquisitions. All simulations and analyses were performed with Matlab (Mathworks,

Natick, MA).

A.3.4 Image Reconstruction

Baseline images were reconstructed by the MR scanners. Dummy slices in the MT-weighted images

were discarded prior to MTR calculation. The number of MTR slices was equal to the the number

of reference image slices for all acquisitions described below. Calculation of MTR images consisted

of creating either a whole head or brain mask and calculating MTR pixel by pixel inside the masked

region according to Eq. .2. Brain masks were created from segmentations generated using SPM8

software (Wellcome Trust Centre for Neuroimaging, London, UK), whereas whole head masks were

generated simply by thresholding based on intensity.

A.3.5 Simulations

Computer simulations were performed using the parameters summarized in Table A1 for GM and

WM. We considered six prior slices of off-resonance saturation for MT-weighting (e.g., 23040 Hz,

19200 Hz, 15360 Hz, 11520 Hz, 7680 Hz, 3840 Hz). For reference image signal, the acquisition

slice was simulated with no prior slices of off-resonance saturation (i.e., full T1 recovery from prior

slices), except when specifically investigating the effects of varying interslice delay. We modeled

excitation with a Gaussian windowed sinc pulse. Other simulation parameters were taken to match

acquisition parameters, such as flip angle, number of PE steps, TR, and RF duration. The set

of differential equations .4-.7 were solved using the 4th/5th order Runge-Kutta algorithm. For

analysis, we calculated MTR values using the magnitude of the transverse magnetization at the

center line of k-space for MT-weighted and reference signal simulations. In addition to comparing

simulations with in vivo data, we used simulations to investigate the dependence of MT contrast

on the number of preceding slices for varying flip angles and number of PE steps. Lastly, we

112



investigated the effects of varying the interslice delay from 0-8 s by simulating reference image

acquisition with 6 prior slices of off-resonance irradiation with a specified delay time between each

slice.

Table A1: Two-Pool MT Parameters at 3T

T1,f T2,f T1,f T2,f kr F

White Matter 1.1 s 85 ms* 1 s 13 µs 23 s−1 0.14

Gray Matter 1.8 s 99 ms 1 s 9 µs 40 s−1 0.05

*Measured in this study. All other values from Stanisz et. al. [97].

A.3.6 Phantom Imaging

A cylindrical 10% agarose phantom with a diameter of 140 mm and height of 180 mm was imaged

for initial assessment of interslice MTR imaging. Additionally, a cylindrical saline phantom with a

diameter of 120 mm and height of 195 mm was imaged with the same acquisition parameters as a

negative control. The MTR images were reconstructed from baseline bSSFP images according to

Eq. .2. Centric PE order was used for acquisition. Other acquisition parameters were as follows:

slice order = descending; slice-select gradient polarity = positive; readout gradient polarity =

positive; TR/TE = 4.56/2.28 ms; matrix size = 256 × 256; field of view = 256 × 256 mm2; flip

angle = 50◦; slice thickness = 4 mm; interslice gap = 5.6 mm (0.8 mm after interleaving); scan

direction = axial; PE direction = anterior-posterior; dummy PE steps = 30; phase oversampling =

50%; number of averages = 1; RF-pulse BW = 1600 Hz; acquisition BW = 501 Hz/pixel; number

of slices = 19 and 18 for each interleaved MT-weighted image set (including dummy slices) and 25

for reference images; interslice delay = 0 s for MT-weighted images and 6 s for reference images.

A.3.7 Comparison of Interslice and Presaturation MT Effects

For three normal, healthy subjects (age 21-40), MTR images were acquired using the proposed

interslice method and using conventional presaturation pulses with an identical bSSFP readout

(single slice; no interslice MT effects), in order to confirm the source of image contrast in vivo.

Three different off-resonance irradiation frequencies were used for the presaturation pulses corre-

sponding to the offset frequencies of the first (3200 Hz), second (6400 Hz), and third prior (9600 Hz)
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slices of the interslice method. The average RF-power off-resonance irradition of the two methods

were equivalent (94 µT). The following parameters of the bSSFP readout were the same for both

acquistion methods: TR/TE = 4.15/2.08 ms; matrix size = 128 × 128; field of view = 220 × 220

mm2; flip angle = 60◦; slice thickness = 5 mm; phase partial Fourier = 6/8; scan direction = axial;

PE direction = right-left; initial dummy PE steps = 30; centric PE order; phase oversampling =

0%; RF-pulse BW = 1333 Hz; and acquisition BW = 592 Hz/pixel.

The interslice MTR images were acquired with descending slice order and positive slice-select

gradient. The rest of the imaging parameters for the proposed interslice method were as follows:

gap = 7 mm; number of average = 1; number of slices = 19 (including dummy slices) for MT-

weighted images and 13 for reference images; interslice delay = 0 s for MT-weighted images and 5 s

for reference images; nominal scan time of 10 s for MT-weighted images and scan time of ∼1.1 min

for reference images. The off-resonance irradiation condition of the interslice method was: pulse

width = 1.2 ms; inter-pulse interval = 4.15 ms (∼29% duty cycle); and average RF power = 0.94

µT.

For the images acquired with presaturation, both MT-weighted and reference images were

acquired with number of slices = 1, number of averages = 1, and a sufficient acquisition delay

time of 5 s to get rid of any residual signals prior to each measurement. A pulse train of 75

Gaussian pulses were used for off-resonance irradiation with the following saturation condition: flip

angle = 578.4◦; pulse width = 20 ms; inter-pulse interval = 40 ms (50% duty cycle); total saturation

duration = 3 s; average RF power = 0.94 µT (equivalent to interslice method above); off-resonance

irradiation frequencies = +3200 Hz, +6400 Hz, and +9600 Hz.

Regions of interest (ROI) for the data were created manually for WM. Mean MTR values were

computed for the WM ROI for each subject, and the results were averaged across subjects. Signal

to noise ratio (SNR) was estimated from the difference image (IRef − IMT ) as the mean of the

signal in the WM ROI divided by the standard deviation of a large region in the difference image

containing only noise.

A.3.8 Effects of Varying Flip Angle and Phase Encoding Order

For six normal, healthy subjects (age 24-39), MTR images were reconstructed from baseline bSSFP

images acquired at varying flip angles from 15◦ to 90◦ in 15◦ intervals with descending slice order

and positive slice-select gradient. Additional scan parameters were as follows: TR/TE = 4.11/2.06
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ms; matrix size = 128 × 128; field of view = 230 × 230 mm2; slice thickness = 5 mm; interslice gap

= 7 mm; scan direction = axial; PE direction = anterior-posterior; initial dummy PE steps = 10/30

for linear/centric PE order; phase oversampling = 50%; number of averages = 1; RF-pulse BW =

1067 Hz; acquisition BW = 673 Hz/pixel; number of slices = 15 for MT-weighted images (including

dummy slices) and 7 for reference images; interslice delay = 0 s for MT-weighted images and 8 s for

reference images. Scan time for MT-weighted images was 13 s and scan time for reference images

was ∼1 min. Lastly, we measured the observed T2 value of the center slice using a multi-contrast

spin echo sequence with echo times varying from 30 ms to 300 ms in 30 ms intervals.

Regions of interests for the data were created by automatic segmentation of GM and WM via

SPM8 software. Segmentation results were checked manually to ensure quality. Mean MTR values

were computed for the WM and GM ROIs as a function of flip angle for each subject, and the

results were averaged across subjects. Signal to noise ratio was estimated from the difference image

(IRef − IMT ) as the mean of the signal in the combined WM and GM ROI divided by the standard

deviation of a large region in the difference image containing only noise.

A.3.9 Comparison of bSSFP and SSFP-FID

For five normal, healthy subjects (ages 24-49), MTR images were acquired for near full brain

coverage using a bSSFP sequence. Two of the subjects were also imaged with a SSFP-FID sequence.

Common acquisition parameters for both sequences were as follows: slice order = descending; slice-

select gradient polarity = positive; readout gradient polarity = positive; matrix size = 256 × 256;

field of view = 256 × 256 mm2; flip angle = 50◦; slice thickness = 3 mm; interslice gap = 4.2

mm (0.6 mm after interleaving); scan direction = axial; PE direction = anterior-posterior; dummy

PE steps = 30; phase oversampling = 50%; number of averages = 1; RF-pulse BW = 1600 Hz;

acquisition BW = 501 Hz/pixel; number of slices = 19 and 18 for each interleaved MT-weighted

image set (including dummy slices) and 25 for reference images; interslice delay = 0 s for MT-

weighted images and 6 s for reference images. For the bSSFP sequence, TR/TE = 4.56/2.28 ms

and total scan time = 4.36 min (1.17 min for MT-weighted images and 3.18 min for reference

images). For the SSFP-FID sequence, TR/TE = 4.31/2.21 ms and total scan time = 4.24 min

(1.10 min for MT-weighted images and 3.14 min for reference images).
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For each subject ROIs were created manually for WM. Mean MTR and SNR for the WM ROI

were estimated for each subject, and the results were averaged across subjects. The MTR and SNR

values were compared for the bSSFP and SSFP-FID sequences.

A.3.10 Interslice MTR Imaging of Meningioma

For a meningioma patient, MTR images were acquired with full brain coverage using acquisition

parameters: PE order = centric; slice order = descending; slice-select gradient polarity = positive;

readout gradient polarity = positive; TR/TE = 4.15/2.08 ms; matrix size = 128 × 128; field of

view = 220 × 220 mm2; flip angle = 60◦; slice thickness = 5 mm; interslice gap = 7 mm; scan

direction = axial; PE direction = right-left; initial dummy PE steps = 30; phase oversampling =

0%; phase partial Fourier = 6/8; number of averages = 1; RF-pulse BW = 1333 Hz; acquisition

BW = 592 Hz/pixel; number of slices = 18 and 19 for each interleaved MT-weighted image set

(including dummy slices) and 19 for reference images; interslice delay = 0 s for MT-weighted images

and 5 s for reference images. The total scan time was 2.1 min (0.4 min for MT-weighted images

and 1.7 min for reference images).

For comparison with the proposed method, T2-weighted images were acquired using a Turbo

Spin Echo (TSE) sequence with imaging parameters: number of slices = 25; TR = 6000 ms; TE =

93 ms; echo train length = 18; matrix size = 640 × 520; field of view = 220 × 178 mm2; number

of acquisitions = 1; slice thickness = 5 mm; flip angle = 120◦; and scan time = ∼1.2 min.

A.4 RESULTS

A.4.1 Phantom Imaging

Figure A2 shows the resulting MTR images of the 10% agarose phantom and saline phantom. The

MTR images of the agarose phantom (left) showed relatively homogeneous MTR values with the

exception of dark spots caused by air bubbles trapped in the phantom. The saline phantom (right),

which was expected to have no MT effects, was free from extraneous signals (note the scale differ-

ence between the two images). Together, the agar and control phantom images strongly support

MT effects as the source of image contrast.
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Figure A2: MTR images of a 10% agarose phantom (left) and saline phantom (right).

A.4.2 Comparison of Interslice and Presaturation MT Effects

Figure A3 shows the representative MTR images using the interslice method and using conventional

presaturation with a bSSFP readout for different offset irradiation frequencies corresponding to the

offset frequencies of the first, second, and third prior slices of the interslice method. Visually, the

signals in WM were higher than GM for all MTR images (Fig. A3a). The MTR images acquired

with presaturation showed decreasing MTR and SNR for increasing offset irradiation frequencies.

The average SNR and MTR values from the proposed interslice method were similar to those

with presaturation at an offset irradiation frequency corresponding to the first prior slice of the

interslice method (Fig. A3b-c), indicating that contribution of the first prior slice is dominant in

the interslice MTR method and that the saturation efficiency of the interslice method is comparable

to conventional method.

A.4.3 Effects of Varying Flip Angle and Phase Encoding Order

Figure A4 shows the center slice images for varying flip angle and for linear and centric PE from a

representative subject. Centric PE images showed better GM and WM contrast, suggesting that

relaxation effects influenced image contrast with linear PE.

Figures A5a and A5b show the results of ROI analysis along with two-pool model simulations

of the acquisition protocol. Overall, MTR and SNR values increased with flip angle within the

117



0

10

20

30

40

50

60

70

P
re

sa
t.
 

(+
3
2
0
0
 H

z)
P

re
sa

t.
 

(+
6
4
0
0
 H

z)
P

re
sa

t.
 

(+
9
6
0
0
 H

z)
In

te
rs

lic
e

S
N

R

0

5

10

15

20

25

30

35

M
T

R

P
re

sa
t.
 

(+
3
2
0
0
 H

z)
P

re
sa

t.
 

(+
6
4
0
0
 H

z)
P

re
sa

t.
 

(+
9
6
0
0
 H

z)
In

te
rs

lic
e

MTR

0

10

20

30

50

40

Presat. 

(+3200 Hz)

Presat. 

(+6400 Hz)

Presat. 

(+9600 Hz) Interslice
M

T
R

B
a

s
e

lin
e

a)

b)  c)

Figure A3: Comparison of MTR images generated with interslice MT effects and with presatura-

tion. Offset irradiation frequencies of the presaturation pulses corresponded to the offeset frequen-

cies of the first (+3200 Hz), second (+6400 Hz), and third (+9600 Hz) prior slices of the interslice

method. Average RF-power of saturation was equivalent in both methods. Baseline and MTR

images (a) from a representative subject are shown. Both MTR (b) and SNR (c) were calculated

for white matter. Error bars show the 95% confidence interval of the group average.
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tested range. Centric PE images showed higher MTR values and substantially higher SNR than

linear PE images (Figure A5c). Simulated MTR values using tissue parameters from the literature

agreed well with the in vivo values. Substitution of the observed T2 value of 85 ms (from fitting the

T2 map to a single-exponential function) for the literature value (69 ms [18]) produced simulated

MTR values in closer agreement with in vivo results.
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Figure A4: Center slices of MTR images from a representative subject are shown for varying flip

angles and for linear phase encoding (top) and centric phase encoding (bottom).

A.4.4 Accumulation of MT Effects from Prior Slices

Figure A6 shows simulations of the longitudinal magnetization (Mz,f ) for WM and GM for varying

number of PE steps (RF-pulses) per slice, and two different flip angles. In agreement with the

results in Fig. A3, the majority of saturation was generated by the first prior slice; however, a few

dummy slices are needed to account for the contributions of earlier (2nd, 3rd, etc.) prior slices to

reach a steady value of longitudinal magnetization across slices. More dummy slices are needed for

lower flip angles and for lower number of PE steps per slice. The value of magnetization reached

depended on the number of PE steps per slice and appeared to asymptotically approach true

steady-state MT effects (i.e., the state that would be achieved after an infinite chain of saturation

pulses at off-resonance frequency δ−1). For 128 PE steps, 5-6 dummy slices should be included to

reach steady MT effects. For 256 or more PE steps, 3-4 dummy slices appeared to be sufficient.
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Figure A5: Mean MTR values across subjects from regions of interest for white (a) and gray matter

(b). Predicted values from simulating the two-pool model (solid lines) with parameters from the

literature show close agreement with the in vivo values. Centric phase encoding shows substantially

better SNR (c) than linear phase encoding. Error bars show the 95% confidence interval of the

group average.

Including more dummy slices than needed would have minimal impact on scan time (∼1-3 s per

dummy slice).

A.4.5 Effects of Varying Interslice Delay

Figure A7 shows simulations with varying interslice delay time for acquisition of reference images.

In general, the MTR asymptotically increased with interslice delay time at rate that is dependent

on the T1 value of the tissue, with longer T1 values requiring a longer interslice delay to recover.

An interslice delay time of 3-4 s (rather than 8 s) for acquisition of reference images would still

maintain most of the MT contrast, indicating that the scan time for the acquisition of reference

images could be reduced accordingly (3-5 s per slice).

A.4.6 Comparison of bSSFP and SSFP-FID

Figure A8 shows representative images using the interslice MTR imaging method with bSSFP

and SSFP-FID sequences. The SSFP-FID sequence is a non-balanced SSFP sequence that is less

sensitive to banding artifacts in regions of high susceptibility. Regions near the sinuses in slices

3-5 were corrupted by banding artifacts with the bSSFP, but no artifacts were present in the same
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Figure A6: Saturation of the longitudinal magnetization accumulates over multiple

prior slices with the majority of saturation due to the first prior slice. For white (a) and

gray (b) matter, simulations show the longitudinal magnetization as a function of the number of

prior slices for varying number of phase encoding steps per slice and for varying flip angles.
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Figure A7: Simulated MTR values for white (solid line) and gray matter (dashed line) for varying

interslice delay time for reference image acquisition. Simulations were performed using sequence

parameters that matched the bSSFP acquision for images in Fig. A8.
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slices acquired with the SSFP-FID sequence. The mean MTR values of WM were 32% and 33% for

bSSFP and SSFP-FID, respectively. The SNR in WM was 19.5 and 15.2 for bSSFP and SSFP-FID

respectively. Overall, the SSFP-FID sequence eliminated banding artifacts, but reduced SNR by

22%.
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Figure A8: Comparison of interslice MTR imaging with bSSFP and SSFP-FID sequences. The

SSFP-FID sequence significantly reduced banding artifacts in slices 3-5, but SNR was 22% lower

than with bSSFP.

A.4.7 Interslice MTR Imaging of Meningioma

Figure A9 shows the MTR images acquired over the brain tumor region. The T2 images showed

higher signal in the tumor region compared to normal tissue. The MTR images from the interslice

method showed distinct signal characteristics in the brain tumor regions, different from the T2

images.

A.5 DISCUSSION

In this study, we demonstrated the feasibility of using interslice MT effects to generate contrast

for MTR imaging. Furthermore, we validated the source of contrast as MT with phantoms and by
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Figure A9: Interslice MTR images of a brain tumor (meningioma). Distinct signal characteristics

in the MTR images were visible in the brain tumor regions.
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comparing interslice MT effects with contrast generated from conventional presaturation pulses. We

investigated effects of varying flip angle, number of PE steps, number of prior slices, and interslice

delay. We showed that banding artifacts could be reduced by using a non-balanced SSFP sequence

with no modifications to the acquisition strategy. Finally, we demonstrated the proposed method

in a meningioma subject, in which the interslice MTR images showed distinct contrast.

A.5.1 Interslice MTR Signal Characteristics

In the interslice method, data are acquired during the transient period of bSSFP acquisition. The

magnetization state at the start of acquisition of the imaging slice (partially saturated for MT-

weighted, relaxed for reference images) will move towards the steady state of the bSSFP readout,

determined by the dynamics of bSSFP with contributions from on-resonance MT effects. This

explains why lower MTR values were seen with linear PE. With a sufficiently large number of TRs

before the acquisition of the center of k-space, no contrast is expected between the MT-weighted

and reference image acquisitions. Centric PE mitigates this issue by capturing the MT contrast

at the beginning of the acquisition in the low spatial frequencies. Despite this limitation, we have

validated the image contrast as MT effects in phantoms (Fig. A2), shown that the contrast was

predictable based on quantitative models of MT (Fig. A5), and generates distinct contrast in

preliminary imaging of a meningioma subject (Fig. A9).

The results in Fig. A3 showed that the contributions from the second and third prior slices

were minor compared to the first prior slice. The contributions are futher reduced in the interslice

method due to nominal delay times of ∼0.65 s and ∼1.3 s for the second and third prior slices,

respectively, in contrast to the first prior slice which has a nominal delay time of 0 s.

A.5.2 Potential Applications

The results from imaging of the meningioma patient showed that MTR images can be acquired in

a relatively short period (e.g. ∼2.1 min) over the whole brain region using the proposed interslice

method. Assessment of brain tumor tissue is difficult, and the distinct MTR contrast as shown in

Fig. A9 may reflect unique metabolic information of the tumor region.

The interslice MTR method may offer some advantage in terms of SAR compared to other

methods, such as gradient echo methods, which rely on a separate pulse for saturation, or on-

resonance MTR imaging [98, 99], which relies on a short RF-pulse duration to generate MT effects.
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The SAR levels for the images acquired in Fig. A8 ranged from 37-56% of the scanner limit during

acquisition of MT-weighted images with a 1 ms RF-pulse; however, we have shown that high MTR

values can be achieved with a longer 1.5 ms RF-pulse (Fig. A5). Since SAR levels have a quadratic

dependence on RF-pulse amplitude, the interslice MTR method may be optimized for low SAR

applications or high field applications by increasing the RF-pulse duration.

In the ALADDIN sequence, sequential multi-slice bSSFP acquisitions with alternating slice

order and slice-select gradient polarity, as well as alternating readout gradient polarity [100] are

used for interslice MT asymmetry [91] and perfusion imaging [101]. The ALADDIN sequence can

be modified by adding acquisition of a set of reference images to calculate MTR images. This

would allow for simultaneous acquisition of four different image contrasts: baseline, perfusion, MT

asymmetry, and MTR images.

The MTR is considered a semi-quantitative measurement, since the value is dependent on scan

parameters. In quantitative MT imaging, the two-pool model is fit to multiple MT-weighted ac-

quisitions, in which parameters such as bound pool fraction (F ) and magnetization exchange rate

(kr) may offer better insight into tissue characteristics. Agreement of the data and two-pool model

simulations in this study suggest the possibility for developing quantitative MT methods using in-

terslice MT effects. Saturation power and off-resonance frequency can be controlled simultaneously

by changing excitation pulse duration, which is inversely proportional to off-resonance frequency δ

and inversely proportional to the square of saturation power (W ). The technique shows potential

as a novel method for fast quantitative MT, since a full set of MT-weighted images can be collected

in less than 1 min.

A.5.3 Comparison with On-resonsance MTR Imaging with SSFP

Another SSFP based method for MTR has previously been developed using the difference in on-

resonance MT effects of long and short RF-pulse duration acquisitions [98, 99]. Thus, it is worth

briefly comparing the proposed method to the on-resonance MTR method. The off-resonance

signal responses of bSSFP are periodic as a function of the off-resonance frequencies and the TR

of the bSSFP sequence. The on-resonance MTR method is based on the assumption that both

MT-weighted (short RF-pulse) and reference (long RF-pulse) images are acquired on the pass-

band region of the bSSFP off-resonance responses. This assumption seems reasonable for normal

brain regions; however, the assumption may not hold under pathological conditions, such as brain
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tumors or hemorrhages that can cause high susceptibility effects. Because of using different TR

values between MT-weighted and MT free imaging, the on-resonance MTR method also shows

significantly reduced MTR in relatively short T2 components, as demonstrated 40% reduction of

MTR in 4% agar phantom with T1 = 1960 ms and T2 = 43 ms [99]. In contrast, the interslice

MTR method uses the same scan parameters for acquisition of MT-weighted and references with

only the addition of an interslice delay time, which does not affect off-resonance responses of bSSFP

and also provides high MTR values in relatively short T2 components as demonstrated in the 10%

agar phantom with T1 = 1.7 s and T2 = 36 ms (Fig. A2). The interslice method may potentially

offer more reliable MTR measurements in brain lesions.

In terms of sensitivity, the 3D on-resonance MTR method can provide higher SNR because

of volumetric averaging effects. The proposed interslice method may be implemented in 3D as

multiple overlapping thin slab acquisition, which can improve spatial resolution and SNR and

requires further evaluation. Also, the availability of higher flip angle and longer data sampling time

due to no restrictions on RF duration and TR in the interslice MTR method can further improves

its MTR (as shown in Figs. A4 and A5) and SNR (lower acquisition BW), respectively. These

factors of the interslice method can partly compensate for the volumetric averaging effects of the

on-resonance MTR method.

In terms of scan time, both the interslice and on-resonance MTR methods require covering

the region of interest using bSSFP acquisitions twice (MT-weighting and MT-free). If the TR of

the interslice method (e.g. 4 ms) is the same as the average of the short and long TRs of the

on-resonance method (e.g. 3 ms and 5 ms [102]), the time for actual data acquisition will be

similar between the two methods, except for the interslice delay required by the interslice method.

Data from a single subject (Fig. A10) showed preliminary evidence that good MTR maps can be

acquired with near whole brain coverage with very short interslice delay times (0.7-2.0 s), which

makes the total scan time of the interslice method (1-1.5 min) about 50% longer than the on-

resonance method, depending on in-plane matrix size. Note that while a short interslice delay

does not provide completely MT-free reference images, the long TR (5 ms) acquisiton for the on-

resonance method also does not provide completely MT-free conditons. Scan time and SNR are

related to each other and thus should be systematically evaluated together, but this is beyond the

scope of the current study.
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Figure A10: Interslice MTR images with short interslice delay times. Matrix size = 128 × 128,

FA = 60◦, TR/TE = 4.15/2.08 ms, RF-pulse duration = 1.24 ms, slice thickness = 5 mm, number

of slices = 24 (excluding 6 dummy slices), total scan time = 56 s (0.7 s delay) and 87 (2.0 s delay).

Two scans (each with 12 number of slices excluding 3 dummy slices) were spatially interleaved, in

order to provide near whole brain coverage with no gap.

A.6 CONCLUSIONS

We demonstrated the feasibility of MTR imaging using interslice MT effects generated from sequen-

tial multi-slice bSSFP acquisition. The technique provides a method for MTR imaging without

additional saturation pulses. Centric PE provided higher MTR values, higher SNR, and better im-

age contrast. Linear PE images showed image contrast influenced by relaxation effects. Simulation

of the two-pool model with parameters from the literature agreed well with in vivo data and pro-

vided a useful tool for investigating the characteristics of interslice MT effects. The new technique

could provide MTR images covering the whole brain of a tumor patient within a clinically feasible

scan time of ∼2 min (or less with sequence optimization). Potential unique applications include

optimization for low SAR imaging and simultaneous MTR, MT asymmetry, and perfusion imaging.

Further work is needed to systematically compare the proposed method with on-resonance MTR

method and evaluate clinical usefulness of the proposed method.
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