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GEOMETRICAL ISSUES IN THE CONTINUUM

MECHANICS OF DEFECTIVE SOLID CRYSTALS

R. NICKS AND G. P. PARRY

Abstract. We shall outline geometrical and algebraic ideas which ap-
pear to lie at the foundation of the theory of defective crystals that was
introduced by Davini [5] in 1986. The focus of the paper will be on the
connection between continuous and discrete models of such crystals, ap-
proached by consideration of the symmetries inherent in these models. To
begin with, we review briefly the results of analysis of variational problems
where relevant functionals have the symmetry of perfect (as opposed to de-
fective) crystals, in order to motivate the subsequent study of symmetry
in the case when defects are present. In the body of the paper we indicate
how the theory of Lie groups, and their discrete subgroups, relates to this
geometrical theory of defects, and discuss types of symmetry that occur.

1. Introduction

In Davini’s [5] model of defective crystals, the kinematical state of the crys-
tal corresponds to a distribution of three vector fields in a region Ω ⊆ R3.
Thus the defective crystal state, Σ say, is represented by

Σ = {ℓa(·),Ω; a = 1, 2, 3} , (1.1)

where ℓ1(·), ℓ2(·), ℓ3(·) are three ‘lattice’ vector fields defined and linearly in-
dependent at each x ∈ Ω. One imagines that these three smooth fields also
determine the local discrete structure at any point x ∈ Ω. Thus, in the partic-
ular case where the crystal is ‘perfect’, the lattice vector fields are independent
of the point x, ℓa(x) = ea say, x ∈ Ω, a = 1, 2, 3, where e1, e2, e3 is a basis of
R3, and it is common to associate the perfect crystal lattice

L ≡ {x : x = n1e1 + n2e2 + n3e3, n1, n2, n3 ∈ Z} , (1.2)

(the translational symmetries of which are e1, e2, e3) with these ‘constant’
fields. The manner in which states Σ determine corresponding discrete struc-
tures, in the general case, will be made explicit later.
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2 RACHEL NICKS AND GARETH PARRY

So far as continuum mechanical theories based on kinematical models such
as (1.1) are concerned, it is a central task to prescribe how quantities such as
stress, energy, etc., depend on the geometrical fields – this is a specification of
the constitutive behaviour of the material. We shall not be concerned here with
detailed mechanical theories, but remark that there are two experimentally
well documented types of kinematical change (i.e. change of crystal state)
which are generally reckoned to play a significant role in any mechanical theory
which purports to describe these materials. The first of these types of change
of state is elastic deformation: two crystal states, Σ and Σ′ ≡ {ℓ′a(·),Ω

′; a =
1, 2, 3} are said to be elastically related to one another if there exists a smooth
invertible mapping u : Ω → u(Ω) = Ω′ such that

ℓ′a (u(x)) = ∇u(x)ℓa(x), a = 1, 2, 3. (1.3)

It is commonly held that a change of state which is inelastic (i.e., not an elastic
deformation) is irreversible, in a thermodynamic sense. (We do not embrace
that prejudice here). The second type is a particular inelastic change of state:
in slip, or rearrangement of the lattice vector fields, thin layers of the crystal
slide one over the other with the ‘internal structure’ (i.e. the distribution
of fields in each layer) unchanged in the process. We shall not need to be
mathematically precise regarding this type of change of state in this paper
(see Chipot and Kinderlehrer [4], Fonseca and Parry [9] for such treatments).

We proceed as follows: in the next section we motivate the consideration of
symmetry in defective crystals by reviewing results for a variational problem
that corresponds to minimizing a functional which represents the energy of a
perfect crystal (in that the corresponding energy density has perfect crystal
symmetries). It turns out that the symmetry properties determine qualita-
tive properties of the set of minimizers. Subsequently we indicate how ‘elastic
invariants’ may be constructed from the lattice vector fields and their deriva-
tives – the invariants are measures of inelastic change (since they are invariant
under elastic deformation). It turns out that certain rearrangements of the
lattice vector fields also preserve the elastic invariants, so that the ‘slip’ type of
change of state has an abstract status in this kinematical theory, subordinate
to the elastic invariants.

The main part of the paper describes how one associates a discrete structure
with the continuous lattice vector fields of (1.1), how a simple constitutive as-
sumption regarding the energy density of a defective crystal leads to the theory
of Lie groups and their discrete subgroups, how perfect crystal symmetries are
generalized to the defective crystal case. It will turn out that the symmetries
with which we are concerned correspond to changes in sets of generators of
certain discrete Lie groups. We indicate, briefly, that particular symmetries
(those which extend to automorphisms of the corresponding discrete group)
extend to symmetries of the continuous model (the automorphisms of the
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ambient Lie group), following Gorbatsevich [10] in part. This last observa-
tion is important from the continuum mechanics point of view, for it shows
that certain discrete symmetries are embedded in elastic deformation, so that
these discrete geometrical changes can themselves be regarded as elastic, even
though elastic deformation is a continuum concept.

2. A variational problem for perfect crystals

In the context of elastic changes of state determined by a deformation gra-
dient F (x) ≡ ∇u(x), cf.(1.3), Chipot and Kinderlehrer [4] considered the
following variational problem: for a given non–singular 3× 3 matrix A, find

EΩ(A) ≡ inf
A(A)

∫

Ω

w (∇u(x)) dx, (2.1)

where

A(A) ≡
{

u ∈W 1,∞(Ω;R3); det∇u > 0 a.e. in Ω, u = Ax on ∂Ω
}

, (2.2)

and where the prescribed energy density function w has the properties

w(F ) ≥ 0, w(I) = 0, lim
detF→0

w(F ) = ∞, w(F ) = w(QFH), (2.3)

whenever Q is proper orthogonal, det(F ) > 0, and H is an element of a
particular group conjugate to GL3(Z). The requirement on the form of the
matrix H relates to the assumption that the material under consideration
is a perfect crystal – it derives from two facts: first that if e1, e2, e3 is an
integral basis of L, cf.(1.2), then e′1, e

′
2, e

′
3 is also a basis of L if and only if

e′a = γabeb, a, b = 1, 2, 3, where γ ≡ (γab) ∈ GL3(Z); second that the crystal
structure corresponding to deformation gradient F is a perfect lattice with
basis vectors Fe1, Fe2, Fe3. They find that:

(i) EΩ(A) = |Ω|w̃(A) whenever Ω ⊂ R3 is a bounded domain with ∂Ω of
measure zero;

(ii) w̃ is the greatest convex function less that the function φ defined by

φ(detA) = inf
detF=detA

w(F ); (2.4)

(iii) For all uniformly bounded (in L∞) minimizing sequences {∇un} of
(2.1), with corresponding Young measure {µx}x∈Ω, the average limit-
ing Cauchy stress, defined by

T (x) =

∫

M3×3

1

detF

∂w

∂F
(F )F Tdµx, (2.5)

where F T denote the transpose of F , M3×3 is the set of all 3 × 3
matrices, is a pressure i.e., T (x) = α(x)I, for some α : R3 → R, I the
3× 3 identity.
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In particular, according to (iii) the ‘perfect’ symmetry of the energy density,
expressed through the requirement w(F ) = w(QFH), cf.(2.3), implies that the
crystal cannot sustain any stress other than a pressure i.e., it cannot sustain
shear stresses in equilibrium. This result is contradicted by experiment, so
one is forced to concede that real crystals are not perfect, and one is forced to
consider what symmetry properties should apply to energy density functions
appropriate for defective crystals.

Note that Chipot and Kinderlehrer’s results were extended by Fonseca and
Parry [9] to the case where the class of competitor functions A(A) includes
rearrangements of the crystal state as well as elastic deformations.

3. Invariant integrals

Since inelastic changes of state play an essential role in the mechanics of
defective crystals, it is important to consider the following question: given two
crystal states, how does one determine whether or not those states are elas-
tically related to one another. To discuss this we construct elastic invariants,
which are unchanged in elastic deformation – then if two states are elastically
related, it is a necessary condition that these objects match in the two states.
As an example, consider the scalar fields

Sab ≡ ∇ ∧ da · db/ det ({da}) , a, b = 1, 2, 3, (3.1)

where d1(·),d2(·),d3(·) are fields dual to the lattice vector fields, and det ({da}) ≡
d1 · d2 ∧ d3. One calculates that if (1.3) holds, and if S′

ab is calculated from
the fields ℓ′a(·), a = 1, 2, 3, then

S′
ab (u(x)) = Sab(x), a, b = 1, 2, 3. (3.2)

Therefore

range
y∈Ω′

S′
ab(y) = range

x∈Ω
Sab(x), a, b = 1, 2, 3, (3.3)

and each of the nine quantities range
x∈Ω

Sab(x) is an elastic invariant. Likewise,

for example, if ζ is a circuit in Ω, one calculates that
∮

ζ

da · dx, a = 1, 2, 3,

is an elastic invariant integral. In fact, there exists an infinite number of
elastic invariant objects, there is a finite functional basis for these quantities,
see Olver [16], Davini and Parry [6], [7]. So one obtains a finite number of
conditions necessary that two crystal states be elastically related.

Consider the particular case where Σ = {ea,Ω; a = 1, 2, 3}, where e1, e2, e3
is a basis of R3 with e1 ·e2∧e3 = 1, so that the lattice vector fields are constant
in Ω. Then all of the quantities Sab, a, b = 1, 2, 3, are zero, and it turns out
that Σ′ ≡

{

ℓ′a(·),Ω
}

(we choose Ω′ = Ω for simplicity) is such that all the
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elastically invariant objects match those of Σ if and only if

d′a(x) = ∇τa(x), x ∈ Ω, a = 1, 2, 3; d1(x) · d2(x) ∧ d3(x) = 1, x ∈ Ω, (3.4)

for some potentials τ1, τ2, τ3 such that ∇τ1,∇τ2,∇τ3 are linearly independent
at each x ∈ Ω. The important point to note is that Σ and Σ′ are not elastically
related to each other, in this case. Indeed, Σ′ is elastically related to Σ̃ ≡
{ea, τ (Ω)} where τ ≡ (τa), but Σ̃ is not elastically related to Σ, because if
that were so there would exist u : Ω → u(Ω) = τ (Ω) such that ∇u = I, from
(1.3). Then we would have that u = x + c, c ∈ R3,u(Ω) = τ (Ω) = Ω + c,

which is false for general choices of τ . One says that Σ and Σ̃ are related by
slip, or rearrangement of the lattice vector fields, since Σ and Σ̃ are defined
on regions which have the same volume (because det∇τ = 1 in Ω), and the

corresponding fields ℓa(·), ℓ̃a(·) are restrictions of fields which have the same
constant values in R3. (This is just a particular example of slip).

The slip mechanism is the archetypical inelastic change of state in phe-
nomenological theories of defective crystals. The remarks above that indicate
the slips are inelastic changes of state which preserve the elastic invariants –
and this is so.

4. Energy density for defective crystals, symmetry of energy

density

We assume that point values of quantities associated with the lattice vector
fields determine the values of a corresponding energy density function w, and
we make what seems to be the simplest extrapolation of elasticity theory that
accounts for the existence of continuous distributions of defects. We assume
that

w = w ({ℓa} , S) . (4.1)

In (4.1) {ℓa} denotes a set of vectors ℓ1, ℓ2, ℓ3 ∈ R3, assumed to consist of
values of the fields ℓ1(·), ℓ2(·), ℓ3(·) at some point, the origin 0 say, and S lies
in a particular class of 3×3 matrices. The field S(·) ≡ (Sab(·)), defined through
the duals of the lattice vector fields by (3.1), measures the non–commutativity
of the fields {ℓa(·)} to some extent, so it is nonzero in the case of a defective
crystal, by definition. S(·) is called the dislocation density tensor (even though
it represents nine scalar fields). As an argument of the energy density w, we
are given just one value of the field S(·) and no information regarding any of
the derivatives of S(·) – so we make the major assumption that the field S(·)
is constant in Ω. The fact that S(·) is constant restricts the possible values
that the constant S = S(0), say, may take, but we do not make this explicit.

In different language, the arguments of the energy density are determined
by a ‘uniform crystal state’, which is a crystal state where the lattice vector
fields have constant dislocation density S, and ℓa(0) = ℓa, a = 1, 2, 3.
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In the particular case where S = 0, so the crystal is ‘perfect’, it is a
traditional a priori assumption that the symmetries of the energy density
w ({ℓa} , 0) correspond to symmetries of the perfect lattice L with integral
basis vectors ℓ1, ℓ2, ℓ3. Thus the symmetries of the continuum energy density
are derived from an associated discrete structure, L in this case. We shall
consider, in the following sections, how to associate a discrete structure, D,
say, with given arguments {ℓa} , S of the energy density, in the general case
where S 6= 0. Also, we shall take the point of view that if different arguments
({

ℓ′a
}

, S′
)

lead to the same discrete structure D, then

w ({ℓa} , S) = w
({

ℓ′a
}

, S′
)

, (4.2)

and say that such equivalent arguments, {ℓa} , S and
{

ℓ′a
}

, S′, represent ‘sym-
metries’ of the energy density (this argument mimics what is done when
S = 0). We shall also be concerned with whether or not such equivalent
arguments correspond to uniform crystal states which are elastically related
to one another, for in the case when such arguments are so related there will
be a precise sense in which particular discrete symmetries of (4.2) represent
elastic changes of state.

5. Defective analogues of perfect lattices and links to the

theory of Lie groups

We are interested in uniform defective crystal configurations where the lat-
tice vector fields {ℓa(·)} are defined in Ω ≡ R3, and are such that the disloca-
tion density tensor S(·) is constant in R3. The condition that S is constant is
an integrability condition which guarantees that for given lattice vector fields,
the partial differential system

ℓa(ψ(x,y)) = ∇1ψ(x,y)ℓa(x), a = 1, 2, 3, (5.1)

where ∇1ψ(·, ·) denotes the gradient of ψ with respect to its first argument,
has a solution for the function ψ. Moreover, the function ψ : R3×R3 → R3 can
be taken to satisfy the properties required for it to be a Lie group composition
function, i.e.

ψ(0,x) = ψ(x,0) = x, ψ(x,x−1) = ψ(x−1,x) = 0,
ψ(ψ(x,y), z) = ψ(x,ψ(y, z)),

where 0 is the group identity element and x−1 is the unique inverse of the
element x [22, 17]. Given an appropriate value of the dislocation density
tensor S one can specify a corresponding Lie group G by constructing fields
ℓa(·), a = 1, 2, 3 such that the dual fields satisfy (3.1) and then solving (5.1)
for the group composition function ψ.

Since the dislocation density tensor S is an elastic invariant, the composition
function ψ obtained from (5.1) is just one amongst the infinite number of those
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which may be found by making different choices of the lattice vector fields,
given a value of S.

Each Lie group G = (R3,ψ) has a corresponding Lie algebra g consisting
of the vector space R3, here, with Lie bracket operation [·, ·] : R3 × R3 → R3

defined by

[x,y] = Cijkxjykei, x,y ∈ R3, (5.2)

where {e1, e2, e3} is a basis of R3, x = xjej , y = yjej , Cijk are the structure
constants given by

Cijk =
∂2ψi

∂xj∂yk
(0,0)−

∂2ψi

∂xk∂yj
(0,0), (5.3)

where ψ(x,y) = ψi(x,y)ei. The structure constants with respect to the basis
{e1, e2, e3} are related to the components of the dislocation density tensor by

Ckijℓrj(0)ℓsk(0) = ǫprsSkpℓki(0), (5.4)

where ǫrij is the permutation symbol and ℓr(0) = ℓrj(0)ej , see Elzanowski
and Parry [8].

Given a value of S, for a particular choice of ψ (equivalently G), the cor-
responding geometrical structure D, which we take to be the defective crystal
analogue of the perfect lattice, is constructed as follows. Let ℓa(·), a = 1, 2, 3,
satisfy (5.1) and let ν1, ν2, ν3 be given real numbers. Define the integral curve
through x0 of the field νaℓa(·) to be the solution {x(t) : t ∈ R} of the ordinary
differential equation ẋ(t) = νaℓa(x(t)), x(0) = x0. Note that ν := νaℓa(0) de-
termines the field νaℓa(·) by (5.1). One defines the mapping exp (ν) : G→ G,

and the group element e(ν), by

exp(ν)(x0) = x(1), e
(ν) = exp(ν)(0) (5.5)

It is standard result of Lie group theory that

exp(ν)(x) = ψ(e(ν),x), (5.6)

which states that the flow along the integral curves of the lattice vector fields
corresponds to group multiplication by the group element e(ν).

The set of points of the geometrical structure D can be built through an
iteration process. One begins with the origin then adds the six points which
are reached by flowing along each of the vector fields ℓa(·), a = 1, 2, 3, forwards

and backwards one ‘unit’, i.e. e(ℓa) and e−(ℓa), a = 1, 2, 3, where ℓa = ℓa(0).
One repeats this process starting at each of these six points, and continues
in this way. By (5.6) the structure, D, that one obtains in this way is the

subgroup of G that is generated by the group elements e(ℓ1), e(ℓ2), e(ℓ3) (noting

that e−(ℓa) is the inverse of e(ℓa) in the group G).
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Remark 1. In the case of perfect crystals S = 0 and one can choose ℓa(x) ≡
ℓa(0) ≡ ℓa as a solution of (3.1) where {ℓ1, ℓ2, ℓ3} is a basis of R3. Then
ψ(x,y) = x+ y is a solution of (5.1) which has the properties of a Lie group
composition function. Flow along the lattice vector fields corresponds in this
case to translation by ℓ1, ℓ2, ℓ3. Successive translations produce the perfect
lattice L as in (1.2). Hence the geometrical structure D produced by the
iteration process described above is a generalisation of the perfect lattice L.

Let G be a three-dimensional Lie group with group multiplication ψ and
write ψ(x,y) ≡ xy as an alternative notation. Let (x,y) = x−1y−1x,y
denote the commutator of two group elements x,y ∈ G and denote by G′ the
commutator subgroup of G - that is, the group generated by all commutators
of elements of G. Notice that (e(ℓa), e(ℓb)) = e−(ℓa)e−(ℓb)e(ℓa)e(ℓb) is the group
element obtained by successive flows along the vector fields ℓb(·), ℓa(·), −ℓb(·),
−ℓa(·) so there is a clear correspondence between the commutator of group

elements e(ℓa), e(ℓb) and the construction of the Burgers vector in mechanics.

5.1. Conditions for discreteness. In general, the geometric structures gen-
erated by the iterative process outlined above are not discrete sets of points.
The structures D are discrete when D is a uniform discrete subgroup of the Lie
group G (i.e. the left coset space G/D is compact). This is a generalisation
of the requirement in the perfect crystal case that R3/L (the unit cell of the
lattice L with appropriate identification of boundary points) is compact. Ac-
cording to Auslander et al. [1] there are three classes of three-dimensional Lie
group which contain uniform discrete subgroups. These are a certain class of
nilpotent groups and two non-isomorphic classes of solvable Lie groups. Recall
that a three-dimensional Lie group G is nilpotent if (G′, G) = 0, i.e. elements
of the commutator subgroup G′ commute with elements of the group G. Also
a three-dimensional Lie group G is solvable if (G′, G′) = 0, i.e. elements of
the commutator subgroup commute with each other.

We next summarize conditions on the dislocation density tensor which guar-
antee that the structures D are discrete, and give the forms of D explicitly, in
the cases D is a uniform discrete subgroup of a three-dimensional nilpotent or
(one type of) solvable Lie group. We also discuss the symmetries of D.

6. The nilpotent case

Suppose that G is a three-dimensional nilpotent Lie group which contains
a uniform discrete subgroup D. Mal’cev [12] shows that D must be generated
by three elements and that the Lie algebra g corresponding to G must have
rational structure constants with respect to some basis. Taking an equivalent
approach, following Thurston [23], it can be shown, by assuming first that
there is a non-zero minimum distance between the points of D (generated by
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the iterative process outlined in section 2) and second that the points e(ℓa),
a = 1, 2, 3, are ‘close enough’ to the origin (see Parry [17] for details) that the
Lie group G must be nilpotent and that the dislocation density has the form

Sab = λνaνb a, b = 1, 2, 3, (6.1)

where λ ∈ Q, and ν1, ν2, ν3 are relatively prime integers [17, 3].
Now recall that given a value of the dislocation density tensor S of the form

(6.1) there are infinitely many possible choice of corresponding nilpotent Lie
groups G corresponding to different choices of ψ. We make a canonical choice
as follows. Let ψ be the group composition function for a three dimensional
nilpotent Lie group G and let e(·) : g → G be the exponential function as
defined by (5.5). The Campbell-Baker-Hausdorff formula gives an explicit ex-

pression for c in the relation e(c) = e(a)e(b) for a, b ∈ g. For three-dimensional
nilpotent Lie groups

c = a+ b+ 1
2 [a, b] , (6.2)

and c(a, b) satisfies the required conditions for it to be a group composition
function on R3. Thus for any G in the relevant isomorphism class of Lie groups
one can define a canonical Lie group J by taking the group operation in J to
be given by ψ′(a, b) = c. With this choice of composition function the one

parameter subgroups of J are straight lines through the origin and e(x) = x

(Lie group and Lie algebra elements can be identified).
When the components of the dislocation density tensor have the form (6.1)

the structure constants with respect to the basis e1, e2, e3 where ea = ℓa(0),
are given by

Cijk = λνiνrǫrjk. (6.3)

Then the composition function in J has the form (dropping the prime in ψ′)

ψ(x,y) = x+ y + 1
2λν(ν · x ∧ y) x,y ∈ R3, (6.4)

where ν = νrer.
Let D be the discrete subgroup of J which is generated by e(ℓ1), e(ℓ2), e(ℓ3).

The translation group T of D is defined by

T = {t ∈ J : if d ∈ D, d+ t ∈ D}. (6.5)

Let λ = p/q ∈ Q where p and q ∈ Z have no common factors and define
ν = ν1ν2ν3. Also define the integer k as

k =







p if ν is even or if (ν is odd and p ∈ 4Z)
p
2 if ν is odd and p ∈ 2Z, p /∈ 4Z
2p if ν is odd and p is odd.

(6.6)

Cermelli and Parry [3] show that if k is even then T = D and T consists of all
integer linear combinations of e1, e2, e3, λν/k. Thus the points of D form a
three-dimensional lattice, as an integral basis of T = D may be found in terms
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of e1, e2, e3, λν/k. Also, if k is odd they show that T consists of all integer
linear combinations of 2e1, 2e2, 2e3, λν/k and D/T has four elements which
may be written as T,αT,βT,αβT for some α,β ∈ D. Thus the points of D
form a 4-lattice in the sense of Pitteri and Zanzotto [21].

6.1. Canonical Coordinates and Symmetries of D. The uniform discrete
subgroup D ⊂ J is generated by three elements e(ℓ1), e(ℓ2), e(ℓ3). According
to Mal’cev [12], in a three dimensional nilpotent Lie group with structure
constants given by (6.3) there are generators of D and corresponding Lie
algebra elements c1, c2, c3 ∈ R3 such that for some integer kc

[c1, c2] = kcc3, [c1, c3] = [c2, c3] = 0.

Recalling that group and algebra elements may be identified in J , Mal’cev
shows further that any d ∈ D can be written uniquely in the form

d = cα1 c
β
2c

γ
3 , α, β, γ ∈ Z.

(This relation is a generalisation of the expression of a point x of a perfect
lattice with basis ℓ1, ℓ2, ℓ3 as x = αℓ1+βℓ2+γℓ3, α, β, γ ∈ Z.) Also note that
for x,y ∈ J , x−1 = −x, etc., and one can show that the commutator and Lie
bracket can also be identified. In particular,

(c1, c2) = c
kc
3 , (c1, c3) = (c2, c3) = 0,

so the commutator subgroupD′ is generated by ckc3 . The commutator (c1, c2) =

ckc3 represents flow along the vector fields defined by the Lie algebra elements
c2, c1,−c2,−c1 successively, because Lie group and algebra elements can be
identified in this canonical representation. The corresponding Burgers vector
is an integer multiple of the third vector c3 and one may picture this lack of
commutativity as a ‘screw dislocation’.

Let the discrete subgroup D ⊂ J be generated by c1, c2, c3 where these
three elements provide a canonical basis for D as described above. Parry
and Sigrist [20] compute the necessary and sufficient conditions that elements
e1, e2, e3 ∈ D also generate D. These changes of generators are the geomet-
rical symmetries of the set of points D. The computations in [20] use the
fact that the translation group consists of all integer linear combinations of
c1, c2, c3 in the case that kc is even and consists of all integer linear combina-
tions of 2c1, 2c2 and c3 in the case that kc is odd.

Let De denote the group generated by e1, e2, e3 ∈ D. In the case where
the (canonical) generators of D satisfy (c1, c2) = c

kc
3 with kc even there exists

a matrix γ of integers with determinant Γ, say, such that ei = γijcj and
γ−1 = ± 1

Γ(plk) where plk ∈ Z. We define νi = p3i. (There are similar results
in the case kc odd). Parry and Sigrist [20] prove the following result regarding
the geometrical symmetries of D (we give the results only for the case kc even).
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Theorem 2. De = D if and only if there exist integers l0,m0,Γ, and a matrix
A ∈ GL3(Z) with third row of relatively prime integers ν1, ν2, ν3 with ν :=
ν1ν2ν3 such that if kc is even, then





1 0 −l0
0 1 −m0

0 0 ±Γ









c1
c2
c3



 = A





e1
e2
e3



 (6.7)

where if kc ∈ 4Z then hcf(kc,Γ) = 1 or if kc ∈ 2Z, kc /∈ 4Z then either (ν is
even and hcf(kc,Γ) = 1) or (ν is odd and hcf(kc,Γ) = 2).

7. The solvable cases

According to Auslander et al [1] there are two non-isomorphic classes of
three-dimensional solvable Lie groups which have uniform discrete subgroups.
They call these two classes S1 and S2. Group elements x ∈ Sp p = 1, 2 are
identified with points of R3 by expressing them as x = xiei with respect to
some basis e1, e2, e3. Auslander et al. [1] choose to represent the group ele-
ments as 4× 4 matrices (still parameterised by (x1, x2, x3)) and these matrix
representations form an isomorphic group Sp,m where the matrix representa-
tion of x ∈ Sp is rm(x) ∈ Sp,m which has the form

rm(x) ≡









φ(x3)

0 0
0 0

0 x1
0 x2
1 x3
0 1









, x ≡





x1
x2
x3



 ∈ R3, φ(x3) =

(

a(x3) b(x3)
c(x3) d(x3)

)

.

(7.1)
In (7.1), {φ(x3) : x3 ∈ R} is a one parameter subgroup of the unimodular group
SL2(R) and φ(1) ∈ SL2(Z). Let us define

φ(1) ≡ θ =

(

a(1) b(1)
c(1) d(1)

)

=

(

a b
c d

)

, a, b, c, d ∈ Z, ad− bc = 1. (7.2)

If tr(θ) > 2 then the eigenvalues of θ are real and distinct and the group of
matrices of the form rm(x) is isomorphic to S1. We discuss S1 only. (S2 will
be treated elsewhere). Group multiplication ψ in S1 is defined as follows:

rm(x)rm(y) = rm(ψ(x,y)), x,y ∈ R3 (7.3)

Let us also define

φ′(0) = A =

(

a′(0) b′(0)
c′(0) d′(0)

)

, where ′ denotes
d

dx
. (7.4)
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It is shown in [13] that tr(A) = 0 and det(A) 6= 0 and that the dislocation
density tensor is given by the following symmetric matrix:

S =





−b′(0) a′(0) 0
a′(0) c′(0) 0
0 0 0



 . (7.5)

The discrete subgroup D of S1 is generated by e1, e2, e3. Let these vectors
have matrix representations rm(e1) := B, rm(e2) := C and rm(e3) := A. Note
that A depends on the matrix θ = φ(1). The matrix group Dm generated
by A,B,C is isomorphic to D. The commutators of the generating matrix
elements satisfy

(A,B) = B1−dCc, (A,C) = BbC1−a, (B,C) = 0, (7.6)

and from this one can show that D = (Z3,ψ). Thus the discrete structure
which is the analogue of perfect lattice L is the cubic lattice Z3 with group
multiplication ψ defined by (7.3).

7.1. Symmetries of D. The set of global symmetries of a discrete subgroup
D ⊂ S1 corresponds to the choices of three elements g1, g2, g3 ∈ D such
that the group generated by these elements, denoted G = gp(g1, g2, g3) in
[13, 14] equals D. These are the changes of generators which preserves the
integer lattice Z3 in S1. It turns out that the conditions on g1, g2, g3 that are
necessary and sufficient that G = D are the same as those that are necessary
and sufficient that the commutator subgroups G′ and D′ are equal. Here, we
merely note that the elements {g1, g2, g3} can be put into canonical form by a
sequence of the following operations: permuting a pair of elements, inversion
of a single element, multiplication of precisely one element by another. Then,
explicit formulae given in [13], [14] provide conditions, on the canonical set of
elements so obtained, which are necessary and sufficient in order that the set
generate D.

8. Elastic symmetries of defective crystals

In sections 6 and 7 we have summarised results about the nature and ge-
ometrical symmetries of the discrete structures D which we take to be the
defective crystal analogues of the perfect lattice whose symmetries are widely
used in classical crystallography. These structures D are embedded in a con-
tinuous Lie group, just as a perfect lattice L is embedded in R3 with addi-
tion as the group multiplication. Recall that the geometrical symmetries of a
perfect lattice L with basis vectors {ℓ1, ℓ2, ℓ3} are the bijections of L which
preserve addition. These are given by φL(ℓa) = γabℓb, a, b = 1, 2, 3 where
γ = (γab) ∈ GL3(Z). Note that these bijections φL : L → L extend uniquely
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to smooth bijections of R3 that preserve addition so that every geometrical
symmetry of L represents a (restriction of an) elastic deformation.

In contrast, in the case of the uniform defective crystal whose discrete struc-
tures D are discrete subgroups of nilpotent or solvable Lie groups, the analo-
gous results do not hold. There is a difference between the set of ‘symmetries’
(the changes of generators summarised in sections 6 and 7 which preserve the
elements of D) and the subset of these symmetries which preserve the group
structure of D (these are the automorphisms of D). We consider now whether
or not the automorphisms of D extend uniquely to automorphisms of the am-
bient Lie group. First, an elastic deformation provides an isomorphism of
Lie groups, see [19]. Recall, too, that if φ : G → H is a Lie group homo-
morphism, and g, h are the corresponding Lie algebras, then ∇φ(0) is a Lie
algebra homomorphism and

φ(e(ν)) = e(∇φ(0)ν), ν ∈ g, (8.1)

where the exponential on the left hand side is the exponential which maps g

to G and that on the right hand side maps h to H.
Next, the nilpotent group G, and S1, are exponential groups in the sense

that each group element is the exponential of some element in the correspond-
ing algebra. So the automorphisms of G and S1 are straightforwardly calcu-
lated.

The automorphisms of discrete subgroups of G and S1 are calculated as
follows. Given a discrete subgroup D which is generated by the three ele-
ments d1,d2,d3, i, j = 1, 2, 3, one may compute the subset of the geometrical
symmetries which represent automorphisms of D using a result of Magnus,
Karrass and Solitar [11]. Thus, a mapping φD : {d1,d2,d3} → D is an au-
tomorphism of D if and only if for any word w in the generators such that
w(d1,d2,d3) = 0,

w(φD(d1),φD(d2),φD(d3)) = 0 and w(φ−1
D (d1),φ

−1
D (d2),φ

−1
D (d3)) = 0, (8.2)

where φ−1
D is the mapping that takes φD(d1) to d1, φD(d2) to d2 and φD(d3)

to d3. Thus, we determine the conditions that must be satisfied by φD by
taking the words w in (8.2) to be the relevant commutator relations.

8.1. Automorphisms of nilpotent discrete subgroups. Let D ⊂ J be
the discrete subgroup generated by the canonical set of elements c1, c2, c3
with (c1, c2) = c

k
3 and (c1, c3) = (c2, c3) = 0. From (8.1) the automorphisms

of D (and J) are linear mappings since e(x) = x in J . It is shown in [19] that

the automorphisms of D have the form φD : D → D where φ(ci) = c
αi

1 c
βi

2 c
γi
3 ,
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i = 1, 2, 3 and




α1 α2 α3

β1 β2 β3
γ1 γ2 γ3



 =





α1 α2 0
β1 β2 0
γ1 γ2 ǫ





where ǫ = ±1, α1β2 − α2β1 = ǫ and γ1, γ2 are arbitrary integers.
In this case, a theorem of Mal’cev [12] states that every automorphism of D

extends uniquely to an automorphism of J . Thus every symmetry of D which
corresponds to an automorphism of D is an elastic symmetry of D in that it
is the restriction of an elastic deformation of J . Symmetries of D which do
not satisfy (8.2) cannot be extended to automorphisms of J , so they may be
called inelastic symmetries.

8.2. Automorphisms of solvable discrete subgroups. In [15] we showed
that φD : Dm → Dm is an automorphism if φD(A) = Aα1Bβ1Cλ1 , φD(B) =
Aα2Bβ2Cλ2 , φD(C) = Aα3Bβ3Cλ3 , where α1 = ξ = ±1, α2 = α3 = 0, β1, γ1
arbitrary and

χ :=

(

β2 β3
γ2 γ3

)

∈ GL2(Z) is such that θξχ = χθ. (8.3)

There is an algorithm for determining the matrices χ which satisfy (8.3) for a
given matrix θ, described in [15], following the method used in [2]. Note that
from (7.2) and (7.5), it is the dislocation density tensor that determines the
automorphisms of D, via (8.3). Aut(D) is a finitely generated infinite group.

In the case where D is a uniform discrete subgroup of S1 a theorem of
Gorbatsevich [10] implies that every automorphism of D extends uniquely
to an automorphism of S1. The automorphism of the discrete group D are
therefore restrictions of elastic deformations.
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