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Distributed generation is characterized as a form of generation that is not directly connected to the 

bulk transmission grid.  It is usually connected via power electronic devices if it is a renewable 

resource, in this case in the form of a voltage source converter (VSC) operating as an inverter 

(converting DC-to-AC).  The grid impedance connected to the VSC has an influence on its stability 

and control performance.  By looking at the output impedance of the VSC, the stability can be 

determined in relation to the impedance of the grid connection.  A number of parameters influence 

the output impedance of a VSC, one of those being the control scheme used and the phase-locked 

loop (PLL) contained within it.   

The control parameters of the PLL can be adjusted to manipulate the location of the 

calculated poles and zeros of the open loop output impedance of the VSC.  These parameters are 

the gains of the loop filter, 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖.  Under certain short circuit ratio (SCR) values, having large 

PLL gain parameters can cause the VSC to become unstable.  While a large SCR will be unaffected 

by the PLL gains, a smaller SCR is more susceptible to PLL gains that are too large.  By accounting 

for the effects of the PLL in the output impedance, it can be found what PLL gains are considered 

too large for certain SCR values. 
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 A large enough grid impedance can destabilize the VSC and, therefore, cause the renewable 

generation to be disconnected and unused.  Ideally, the output impedance of the VSC will be large.  

This work analyzes the effect of the PLL on the output impedance of the VSC and ultimately the 

stability and control performance based on different grid impedances.
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1.0  MOTIVATION 

There are two main issues that are investigated in this work, those being an implementation of a 

distributed generation system network for integration of renewable resources and a stability 

analysis of the system itself.  Specifically, the DG system is connected to a weak AC grid-tie.  The 

renewable resources are represented as wind and solar energy.  The weak connection motivates 

the need for a formal stability analysis.  A weak connection can result in stability issues with 

regards to certain equipment being utilized to connect the renewable energy sources to the rest of 

the grid.   

The analysis of a renewable generation resource connected to a weak grid is relevant in 

multiple situations.  On the large-scale end, an example being a concentrated generation source of 

hundreds of megawatts, is likely located in a remote location away from the loads to which it is to 

supply power.  This is true for wind and solar resources as is shown in Figure 1-1 and Figure 1-2.  

On the other end of the spectrum, dealing with single digit to tens of megawatts in the form of 

distributed generation, these resources may be added to an existing system that cannot handle the 

added power due to low ratings on existing installed equipment.  The result would be to upgrade 

the necessary equipment to match the required load and generation, but such an upgrade can be 

expensive.  A specific example of this would be an industrial facility that wishes to add a few 

megawatts of wind and solar generation to their location.  The facility may be a fair distance from 

a strong grid connection and the additional generation may cause stability issues. 
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Figure 1-1. Wind resources in the United States [1]. 

 

 

Figure 1-2. Solar resources in the United States [2]. 
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The weak connection to the grid means that a traditional high voltage direct current 

(HVDC) configuration, like line-commutated converter (LCC), cannot be used since it requires a 

strong grid and steady voltage for the switching elements to commutate [3].  A comparison of LCC 

versus VSC can be seen in Table 1-1 [4][5].  While there are a number of differences between the 

two technologies, the focus of this work is on the requirement of LCC to operate in a strong AC 

system, whereas the VSC is able to operate in weaker systems. 

 

Table 1-1. Comparison of LCC and VSC. 

LCC VSC 
High power capability Lower power capability 
Good overload capability Weak overload capability 
Requires stronger AC systems Operates into weaker AC systems 
“Black start” capability requires additional 
equipment 

“Black start” capability 

Generates harmonic distortion requiring 
filtering 

Insignificant level of harmonic generation 
requiring no filtering 

Coarser reactive power control Finer reactive power control 
Large site area due to necessary filters Compact site area 50-60% of LCC site area  
Requires converter transformers Use of conventional transformers 
Lower station losses Higher station losses 
Lower cost Higher cost by 10-15% 
Higher reliability Lower reliability due to high component count 
More mature technology Less mature technology 
Power is reversed by changing polarity of the 
converters 

Power is reversed by changing direction of 
current flow 

Requires use of MI cables Ideal for use with XLPE cables 
 

The focus of this work is on DG connected to a weak grid network.  However, by using the 

output impedance of a system, as will be discussed later, stability analyses can be performed 

regardless of the grid strength and with limited knowledge of the converters themselves.  The 

dynamics are contained within the small-signal model and are carried through to the output 
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impedance.  The complexity of the output impedance can vary to include only the converter itself 

and the output filter components or integrate the effects of the control systems that are used to 

regulate the output values like real and reactive power.  This output impedance can then be 

compared to a Thévenin impedance of the grid system to determine whether it will operate in a 

stable fashion or require adjustments in order to properly function in different areas.  

 This will prove to be useful as utilities begin to integrate more and more renewable 

resources in smaller form factors.  The analysis would also be useful for microgrids since stability 

is of the utmost important because, by its very nature, a microgrid has the ability to operate 

independently of the larger grid interconnection and must maintain a very high reliability.   

In its current state, the grid has fairly large megawatt (MW) generation as its primary 

contribution for supply.  As DG becomes more widespread, smaller, more local generation sources 

will help to supplement the larger remote power plants.  This is a double-edged sword in terms of 

reliability and stability.  With generation closer to the loads being served, there are less losses 

associated with transmission.  Since there are many more smaller generating plants, losing one of 

many in an area will not have a drastic effect like having a 100 MW power plant go offline.  

However, with many DG sites, more advanced and sophisticated forms of protection are necessary 

so that the DG is able to connect and reconnect to the system without causing any issues that would 

result in negatively affecting the system to which it is connected.  For example, if the grid 

impedance were to change value and the DG power electronics were unable to transition to this 

new steady-state, issues could arise that would ultimately force the DG to disconnect from the 

system to prevent any cascading effects from harming the loads or other DG in the area.  By 

designing the output impedance of the DG to operate in a wide range of scenarios, it can continue 

to supply power without interruptions. 
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2.0  BACKGROUND AND THEORY 

Before performing the analysis on the system and determining the effects of the PLL for various 

grid impedance conditions, some techniques and nomenclature will be defined.  Each section will 

eventually lead to the PLL analysis of Chapter 4.0  

2.1 WEAK GRID 

A weak grid connection implies that the local bus voltages can be significantly influenced by load 

fluctuations and affect power quality and stability.  There is not a strict definition of what a weak 

grid is, but the condition is based on short circuit ratio (SCR), the ratio of S/Pd where S is the three-

phase short circuit level in mega-volt amperes (MVA) and Pd is DC terminal power in megawatts 

(MW), and has characteristically high impedance.  Inertia of the system also factors into a system 

being weak but will not be investigated in this work [6].  These factors are all related and help 

define what a weak grid is from a mathematical standpoint.  Some effects that arise from a weak 

grid condition are excessive transformer tapping, overloaded lines [7], frequency deviation, and 

voltage fluctuations in the form of voltage flicker, voltage drop, and harmonic distortion [8].  In 

order to combat the weak connection, some form of voltage support is necessary.  Very fast and 

continuous control is required for operation in a weak system and support can be added by the 

addition of synchronous condensers [6].   

The SCR is an approximation of an equivalent system that is represented by its Thévenin 

equivalent impedance and source.  It is therefore not a substitute for a full system analysis, but 
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depending on what is being studied, a detailed system representation may not be required.  It should 

also be noted that SCRs vary depending on the loads being connected and what points in an 

interconnected system are being analyzed.  Any studies will likely consider a range of SCRs to 

cover many potential situations that may arise.  This is especially relevant since the reactive power 

being supplied by a VSC has an impact on the SCR and will likely vary in real-world installations 

[9]. 

Before delving into the issue of stability of the PLL in a weak grid scenario, a brief 

discussion about some other potential solutions will be presented.  These are presented with some 

simulation results in [10].  The three solutions are static var compensator (SVC), synchronous 

compensator (SC), a combination of the SVC and SC, and fixed capacitor banks.  These options 

provide dynamic voltage control at the connection point of the VSC.  In the case with renewable 

generation, this connection point is very important for several reasons.  In some cases, if the 

voltage exceeds a certain threshold then it could be disconnected from the system and the power 

being generated will be lost.  Other generation sources would then have to come online in order to 

compensate for this loss.  This is obviously not a desired outcome; therefore, maintaining the 

voltage at the connection point is of the utmost importance in order to optimize the use of the 

renewable generation sources.  This same issue applies to the frequency at the connection point as 

well.  If it is not maintained within certain limits, the renewable generation may be disconnected 

to recover and regain stability and is once again lost to provide power for loads.  Results from [10] 

show that a combination of both SVC and SC have the best performance.  The SVC is able to 

operate very quickly and effectively to control overvoltages but actually further decreases the SCR.  

The SC is slightly the opposite because it has a slower response to controlling voltage but increases 

the SCR when connected.  It makes senses that combining the two would be the best option after 
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determining how they perform with the appropriate studies.  This form of solution, using both SVC 

and SC, is most appropriate for connections that require a very reliable connection and have loads 

that must stay operating at all times.  It would not be necessary for attaching to sites that have 

renewable generation and associated weak grid connections.  Because, while the loss of the 

generation is unfortunate, it would be very expensive to have this compensation at every 

connection point.  The results in [10] may also change depending on the voltage level since this 

research is focused on the medium voltage levels while their system was at 230 kV with larger 

loads than are being investigated in this research. 

2.1.1 Short Circuit Ratio in the Context of Voltage Source Converters 

In addition to those issues mentioned previously concerning a weak grid, there are a few additional 

problems that can directly affect the performance of a VSC.  These include: long fault recover 

times, voltage instability, high temporary overvoltages, risk of commutation failure, and low 

frequency resonances [10].  The voltage issues can have a correlation to the amount of reactive 

power that can be supplied by the VSC.  If the voltage fluctuations are too great for the VSC to 

compensate, the system could become unstable.  Is it also possible that equipment is damaged from 

these large voltage swings.  A direct impact on the VSC is the risk of commutation failure since 

this will change the output of the VSC.  A VSC is suitable for operation in a weak grid connection 

due to its ability for self-commutation, but a specific range of appropriate SCR values would be 

very beneficial.  Some research has been done and a value of 1.3 to 1.6 was found but further 

analysis would be beneficial to affirm these values [11]. 
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2.1.2 Calculating the Short Circuit Ratio of a System 

As mentioned in the previous section, the SCR of a system is the ratio of the system short circuit 

level in megavolt-ampere (MVA) to the DC power of the converter in MW.  Another way of 

defining SCR is the AC system admittance expressed in per unit of DC power.  These definitions 

are expressed in Equations (2-1) and (2-2).  The system admittance is with respect to short circuit 

MVA and the rated AC voltage is used as the base.  The rated line RMS voltage is Vs and the 

Thévenin impedance of the system is Zs, the local load Zl, filter impedance Zf, and compensator 

impedance Zc.  The definitions and equations disregard the effects on the SCR from filtering 

elements and other compensation.  When these are considered, this is called the effective short 

circuit ratio (ESCR) and are expressed in Equations (2-3) and (2-4) [9][10]. 

 
𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑆𝑆𝑎𝑎𝑎𝑎
𝑃𝑃𝑑𝑑

=
(𝑉𝑉𝑠𝑠2/|𝑍𝑍𝑠𝑠| )

𝑃𝑃𝑑𝑑
, (2-1) 

 𝑆𝑆𝑆𝑆𝑆𝑆 = �
1
𝑍𝑍𝑠𝑠

+
1
𝑍𝑍𝑙𝑙
� 𝑍𝑍𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏 , (2-2) 

 
 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑆𝑆 − 𝑄𝑄𝑎𝑎
𝑃𝑃𝑑𝑑

, (2-3) 

 
 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 = �

1
𝑍𝑍𝑠𝑠

+
1
𝑍𝑍𝑙𝑙

+
1
𝑍𝑍𝑓𝑓

+
1
𝑍𝑍𝑎𝑎
�𝑍𝑍𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏 . (2-4) 

The maximum power that the VSC is able to transmit has a theoretical limit that is a result 

of the SCR.  This can be seen by looking at the equation, 

 
𝑃𝑃 =

|𝑉𝑉𝑠𝑠||𝑉𝑉𝑙𝑙|
𝜔𝜔𝐿𝐿𝑠𝑠

sin(𝜃𝜃𝑎𝑎) ≈ 𝑆𝑆𝑆𝑆𝑆𝑆 sin(𝜃𝜃𝑎𝑎), (2-5) 

where  |𝑉𝑉𝑙𝑙| is the magnitude of the voltage across the load or point of common coupling (PCC), 𝜃𝜃𝑎𝑎 

is the load angle of the converter, and Ls is the inductance of the connected grid system.  If it is 
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assumed that the magnitudes of both Vs and Vl are 1.0 pu, which is accurate during steady-state 

operation, they can be divided out by the voltage base leaving only the per unit denominator term.  

It then is equal to the SCR as is evident from Equation (2-2) if Zbase is ignored.  Therefore, based 

on Equation (2-5) the load angle cannot be greater than 90º during steady-state conditions [12]. 

2.2 AVERAGE AND SMALL SIGNAL MODEL OF A VSI 

When designing the control scheme that will be used for a converter, the analysis and design is 

made easier by using an average model of the circuit that is to be controlled.  To account for the 

smaller perturbations that impact the parameters of the circuit during operation, a small-signal 

model is derived from the average model and further used for analysis with the control scheme.  

In particular, this work used the small-signal model of a voltage source inverter (VSI).  The 

derivations of these models will not be discussed as there are references that discuss the procedure 

in detail (See for example [13]–[15]). 

 The equivalent circuits that are most pertinent are shown in Figure 2-1 and Figure 2-2.  The 

small-signal model is derived from the average model and is the circuit that was used to calculate 

the needed transfer functions.  
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Figure 2-1. Average model of a VSI. 

 

 

Figure 2-2. Small-signal model of a VSI. 
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The equations used to create the equivalent circuits are from performing KCL, KVL, and 

using Ohm’s Law to arrive at, 

 𝚤𝚤̃𝑑𝑑𝑎𝑎 = �̃�𝑑𝑑𝑑𝐼𝐼𝑑𝑑 + 𝐷𝐷𝑑𝑑𝚤𝚤̃𝑑𝑑 + �̃�𝑑𝑞𝑞𝐼𝐼𝑞𝑞 + 𝐷𝐷𝑞𝑞𝚤𝚤̃𝑞𝑞 , (2-6) 

 3𝑠𝑠𝐿𝐿𝚤𝚤̃𝑑𝑑 = 3𝜔𝜔𝚤𝚤̃𝑞𝑞 + �̃�𝑑𝑑𝑑𝑉𝑉𝑑𝑑𝑎𝑎 + 𝐷𝐷𝑑𝑑𝑣𝑣�𝑑𝑑𝑎𝑎 − 𝑣𝑣�𝑑𝑑 , (2-7) 

 
 

3𝑠𝑠𝐿𝐿𝚤𝚤̃𝑞𝑞 = −3𝜔𝜔𝚤𝚤̃𝑑𝑑 + �̃�𝑑𝑞𝑞𝑉𝑉𝑑𝑑𝑎𝑎 + 𝐷𝐷𝑞𝑞𝑣𝑣�𝑑𝑑𝑎𝑎 − 𝑣𝑣�𝑞𝑞 , (2-8) 

 
 𝑣𝑣�𝑑𝑑 = �𝚤𝚤̃𝑞𝑞 + 𝜔𝜔𝑆𝑆𝑣𝑣�𝑞𝑞� �

1
𝑆𝑆𝑠𝑠 + 1

�, (2-9) 

 𝑣𝑣�𝑞𝑞 = (𝚤𝚤̃𝑑𝑑 − 𝜔𝜔𝑆𝑆𝑣𝑣�𝑑𝑑) �
1

𝑆𝑆𝑠𝑠 + 1
�. (2-10) 

 Gathering current and voltage terms from Equations (2-6)-(2-10) and converting ‘s’ to the 

time-domain derivative yields, 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝚤𝚤̃𝑑𝑑
𝚤𝚤̃𝑞𝑞
� =

1
3𝐿𝐿

�
�̃�𝑑𝑑𝑑
�̃�𝑑𝑞𝑞
� 𝑉𝑉𝑑𝑑𝑎𝑎 +

1
3𝐿𝐿

�
�̃�𝑑𝑑𝑑
�̃�𝑑𝑞𝑞
� 𝑣𝑣�𝑑𝑑𝑎𝑎 − �0 −𝜔𝜔

𝜔𝜔 0 � �
𝚤𝚤̃𝑑𝑑
𝚤𝚤̃𝑞𝑞
� −

1
3𝐿𝐿

�
𝑣𝑣�𝑑𝑑
𝑣𝑣�𝑞𝑞
�, 

 
(2-11) 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑣𝑣�𝑑𝑑
𝑣𝑣�𝑞𝑞
� =

1
𝑆𝑆
�
𝚤𝚤̃𝑑𝑑
𝚤𝚤̃𝑞𝑞
� − �0 −𝜔𝜔

𝜔𝜔 0 � �
𝑣𝑣�𝑑𝑑
𝑣𝑣�𝑞𝑞
� ±

1
𝑆𝑆𝑆𝑆

�
𝑣𝑣�𝑑𝑑
𝑣𝑣�𝑞𝑞
�, 

 
(2-12) 

 
 𝚤𝚤̃𝑑𝑑𝑎𝑎 = [𝐷𝐷𝑑𝑑 𝐷𝐷𝑞𝑞] �

𝚤𝚤̃𝑑𝑑
𝚤𝚤̃𝑞𝑞
� + ��̃�𝑑𝑑𝑑 �̃�𝑑𝑞𝑞� �

𝐼𝐼𝑑𝑑
𝐼𝐼𝑞𝑞
�. (2-13) 

In order to use these equations to calculate the desired transfer functions that are needed 

for the analysis, they are finally placed into a state-space form using the A�⃗�𝑥+B𝑢𝑢�⃗  format.  The result 

is 

 

𝑑𝑑
𝑑𝑑𝑑𝑑
⎣
⎢
⎢
⎡
𝚤𝚤̃𝑑𝑑
𝚤𝚤̃𝑞𝑞
𝑣𝑣�𝑑𝑑
𝑣𝑣�𝑞𝑞⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 −𝜔𝜔 −

1
3𝐿𝐿

0

−𝜔𝜔 0 0 −
1

3𝐿𝐿
1
𝑆𝑆

0 −
1
𝑆𝑆

𝜔𝜔

0
1
𝑆𝑆

−𝜔𝜔 −
1
𝑆𝑆 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝚤𝚤̃𝑑𝑑
𝚤𝚤̃𝑞𝑞
𝑣𝑣�𝑑𝑑
𝑣𝑣�𝑞𝑞⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
𝑉𝑉𝑑𝑑𝑎𝑎
3𝐿𝐿

0

0
𝑉𝑉𝑑𝑑𝑎𝑎
3𝐿𝐿

0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎤

�
�̃�𝑑𝑑𝑑
�̃�𝑑𝑞𝑞
� +

⎣
⎢
⎢
⎢
⎢
⎢
𝐷𝐷𝑑𝑑
3𝐿𝐿
𝐷𝐷𝑞𝑞
3𝐿𝐿
0
0 ⎦
⎥
⎥
⎥
⎥
⎥

𝑣𝑣�𝑑𝑑𝑎𝑎 , (2-14) 
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where 𝑣𝑣�𝑑𝑑𝑎𝑎and its matrix multiplier are extra terms to complete the set of equations.  With the 

proper format established, it will be much easier to obtain the transfer functions depending on the 

inputs and outputs that are desired.  Again, following the state-space format, the C matrix that is 

the multiplier for the output can be changed to find the desired transfer functions. 

All of the desired transfer functions are calculated in Chapter 4.0  the PLL Stability 

Analysis.  However, to establish the formatting and method used to find the transfer functions 

discussed, an example will be given for context.  In this example, the transfer function of the 

control to the inductor current.  The state-space form is known and the transfer functions can be 

found with the equation, 

 𝒀𝒀(𝑠𝑠)
𝑼𝑼(𝑠𝑠) =  𝑪𝑪(𝑠𝑠𝑰𝑰 − 𝑨𝑨)−1𝑩𝑩+ 𝑫𝑫. (2-15) 

For the control to inductor current transfer function, the values for each matrix are the following, 

 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 −𝜔𝜔 −

1
3𝐿𝐿

0

−𝜔𝜔 0 0 −
1

3𝐿𝐿
1
𝑆𝑆

0 −
1
𝑆𝑆𝑆𝑆

𝜔𝜔

0
1
𝑆𝑆

−𝜔𝜔 −
1
𝑆𝑆𝑆𝑆⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

 

 

 

𝑩𝑩 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑉𝑉𝑑𝑑𝑎𝑎
3𝐿𝐿

0

0
𝑉𝑉𝑑𝑑𝑎𝑎
3𝐿𝐿

0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

 

 

 
𝑪𝑪 = �

1
0
0
0

�,  

 
𝑫𝑫 = 0,  
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𝑠𝑠𝑰𝑰 = �

𝑠𝑠 0 0 0
0 𝑠𝑠 0 0
0 0 𝑠𝑠 0
0 0 0 𝑠𝑠

�.  

 

It can then be seen that the output will result in a 2x1 matrix with the output being the 

inductor current with respect to the d-domain (𝚤𝚤̃𝑑𝑑) and the inputs are the duty cycles in both the d 

and q domain (�̃�𝑑𝑑𝑑 and �̃�𝑑𝑞𝑞).  The resulting equations are, 

𝚤𝚤̃𝑑𝑑 
�̃�𝑑𝑑𝑑  

 𝑉𝑉𝑔𝑔(𝑆𝑆𝑠𝑠 +  3𝐿𝐿𝑠𝑠 +  3𝑆𝑆2𝐿𝐿𝑠𝑠3 +  6𝑆𝑆𝐿𝐿𝑠𝑠2  +  3𝑆𝑆2𝐿𝐿𝑠𝑠𝑤𝑤2  +  1)
6𝐿𝐿𝑠𝑠 +  9𝐿𝐿2𝑠𝑠2  +  9𝐿𝐿2𝑤𝑤2  +  18𝑆𝑆𝐿𝐿2𝑠𝑠3 +  9𝑆𝑆2𝐿𝐿2𝑠𝑠4 +  9𝑆𝑆2𝐿𝐿2𝑤𝑤4 +  6𝑆𝑆𝐿𝐿𝑠𝑠2  −  6𝑆𝑆𝐿𝐿𝑤𝑤2  +  18𝑆𝑆2𝐿𝐿2𝑠𝑠2𝑤𝑤2  +  18𝑆𝑆𝐿𝐿2𝑠𝑠𝑤𝑤2  +  1

, (2-16) 

𝚤𝚤̃𝑑𝑑 
�̃�𝑑𝑞𝑞 

 𝑉𝑉𝑔𝑔(3𝐿𝐿𝑤𝑤 −  𝑆𝑆𝑤𝑤 +  3𝑆𝑆2𝐿𝐿𝑤𝑤3 +  3𝑆𝑆2𝐿𝐿𝑠𝑠2𝑤𝑤 +  6𝑆𝑆𝐿𝐿𝑠𝑠𝑤𝑤)
6𝐿𝐿𝑠𝑠 +  9𝐿𝐿2𝑠𝑠2  +  9𝐿𝐿2𝑤𝑤2  +  18𝑆𝑆𝐿𝐿2𝑠𝑠3 +  9𝑆𝑆2𝐿𝐿2𝑠𝑠4 +  9𝑆𝑆2𝐿𝐿2𝑤𝑤4 +  6𝑆𝑆𝐿𝐿𝑠𝑠2  −  6𝑆𝑆𝐿𝐿𝑤𝑤2  +  18𝑆𝑆2𝐿𝐿2𝑠𝑠2𝑤𝑤2  +  18𝑆𝑆𝐿𝐿2𝑠𝑠𝑤𝑤2  +  1

. (2-17) 

2.3 PHASE-LOCKED LOOP 

 
The phase-locked loop (PLL) is employed in many electronic applications besides the power grid.  

The PLL is widely used in other fields like communications to phase-lock into an existing signal 

and match it via its internal oscillator.  The signal generated by the PLL is then passed on to the 

control system to be used for determining signals for the switches of its associated converter.  Early 

PLL techniques used zero-crossing detection for finding the phase of the corresponding signal.  

However, in weak grid environments, such as the one investigated in this research, more advanced 

techniques are necessary to avoid the possibility of multiple zero-crossings being detected in the 

presence of harmonics and noise.  A controller that is observed from a stationary frame and rotating 

with respect to the fundamental grid frequency looks like it has DC variables.  These variables can 

be controlled with DC controllers that are advanced and proven.  These also work in such a way 

to eliminate many problematic harmonics that may have caused issues for the PLL itself. 
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The basic PLL structure is comprised of three portions.  These include a phase detector 

(PD), loop filter (LF), and voltage controlled oscillator (VCO).  A diagram and their associated 

components are shown in Figure 2-3.  The phase detector compares the signal created by the VCO 

and the desired signal to determine their phase difference and outputs a value proportional to this 

difference.  The output is then fed to a low-pass filter, which is usually represented by a 

proportional-integrator (PI) controller.  Lastly, the value from the LF is used as an input to the 

VCO to create the desired signal (in this case, a 60Hz sine wave) to match that of the input signal 

to the PLL. 

 

 
Figure 2-3. Basic PLL Building Blocks. 

  
 
The PD block is a simple multiplier and the signal coming from the VCO and the input have 

a unique phase and frequency term.  The input signal is expressed as 

 𝑣𝑣 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑑𝑑 + 𝜙𝜙), (2-18) 
 

and the signal from the VCO is expressed as 

 𝑣𝑣′ = cos(𝜃𝜃′) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔′𝑑𝑑 + 𝜙𝜙′), (2-19) 
 

with the phase error at the output of the PD written as 

 𝜀𝜀𝑝𝑝𝑑𝑑 = 𝑉𝑉𝑘𝑘𝑝𝑝𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑑𝑑 + 𝜙𝜙)𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔′𝑑𝑑 + 𝜙𝜙′), 

=
𝑉𝑉𝑘𝑘𝑝𝑝𝑑𝑑

2
�sin�(𝜔𝜔 − 𝜔𝜔′)𝑑𝑑 + (𝜙𝜙 − 𝜙𝜙′)� + sin �(𝜔𝜔 + 𝜔𝜔′)𝑑𝑑 + (𝜙𝜙 − 𝜙𝜙′)��. 

low-frequency term                                      high frequency term 

(2-20) 

εpd
kp + ki ʃ 

vlf  ʃ cos(x)

ωc

v v’ω' θ'

PD LF VCO
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It is assumed that the LF will filter out the high frequency components of the result from 

the VCO and input signal being multiplied together.  Therefore, the PD error can be expressed as 

 
𝜀𝜀�̅�𝑝𝑑𝑑 =

𝑉𝑉𝑘𝑘𝑝𝑝𝑑𝑑
2

𝑠𝑠𝑠𝑠𝑠𝑠�(𝜔𝜔 − 𝜔𝜔′)𝑑𝑑 + (𝜙𝜙 − 𝜙𝜙′)�, (2-21) 

 
When the frequency of the VCO is well tuned to the frequency of the input signal, and the 

phase error between the two is very small, the expression for the DC term can be simplified when 

the PLL is locked-in as 

 
𝜀𝜀�̅�𝑝𝑑𝑑 =

𝑉𝑉𝑘𝑘𝑝𝑝𝑑𝑑
2

(𝜃𝜃 − 𝜃𝜃′). (2-22) 

 
Equation (2-22) can be used to implement a small signal linearized model of the PD.  

Moving to the VCO, its averaged frequency is expressed as, 

 𝜔𝜔�′ = (𝜔𝜔𝑎𝑎 +△𝜔𝜔�′) = �𝜔𝜔𝑎𝑎 + 𝑘𝑘𝑣𝑣𝑎𝑎𝑣𝑣�̅�𝑣𝑙𝑙𝑓𝑓�, (2-23) 
 

where ωc is the center frequency of the VCO.  By comparing the right and left sides of Equation 

(2-23), it can be determined that small variations of VCO frequency can be represented by, 

 𝜔𝜔�′ = 𝑘𝑘𝑣𝑣𝑎𝑎𝑣𝑣�̅�𝑣𝑙𝑙𝑓𝑓 . (2-24) 
 
By using this result, the phase-angle detected by the PLL itself can be expressed in the time 

domain as, 

 𝜃𝜃′ = �𝜔𝜔�′𝑑𝑑𝑑𝑑 = �𝑘𝑘𝑣𝑣𝑎𝑎𝑣𝑣�̅�𝑣𝑙𝑙𝑓𝑓𝑑𝑑𝑑𝑑. (2-25) 

2.3.1 Linearized Small Signal Model of a PLL 

All equations and derivations have thus far been expressed in the time domain.  However, it will 

be more useful from a design perspective to express them in the frequency domain so that the 
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transfer function of the PLL can be derived.  The derivation will utilize the small signal model for 

the PLL and is pictured in Figure 2-4.  

 

 
Figure 2-4. Small signal model of a basic PLL [16]. 

 

The transfer function expressed in the frequency domain will allow for use of techniques 

and intuition that are unavailable or more difficult to utilize when the equations and expressions 

are written only in the time domain.  With kpd and kvco equal to one, each component of the PLL is 

given in its frequency domain format as 

Phase detector: 𝐸𝐸𝑝𝑝𝑑𝑑(𝑠𝑠) =
𝑉𝑉
2

(Θ(𝑠𝑠) − Θ′(𝑠𝑠)) (2-26) 

Loop filter (LF): 𝑉𝑉𝑙𝑙𝑓𝑓(𝑠𝑠) = �𝐾𝐾𝑝𝑝 +
𝐾𝐾𝑖𝑖
𝑠𝑠
� 𝐸𝐸𝑝𝑝𝑑𝑑(𝑠𝑠) (2-27) 

Voltage Controlled Oscillator: Θ′(𝑠𝑠) =
1
𝑠𝑠
𝑉𝑉𝑙𝑙𝑓𝑓(𝑠𝑠) (2-28) 

 
From the frequency domain equations derived above, the closed-loop transfer functions for 

the phase (𝐻𝐻𝜃𝜃(𝑠𝑠)) and error (𝐸𝐸𝜃𝜃(𝑠𝑠)) are determined to be 

 
𝐻𝐻𝜃𝜃(𝑠𝑠) =

Θ′(𝑠𝑠)
Θ(𝑠𝑠) =

𝐿𝐿𝐿𝐿(𝑠𝑠)
𝑠𝑠 + 𝐿𝐿𝐿𝐿(𝑠𝑠) =

𝐾𝐾𝑝𝑝𝑠𝑠 + 𝐾𝐾𝑖𝑖
𝑠𝑠2 + 𝐾𝐾𝑝𝑝𝑠𝑠 + 𝐾𝐾𝑖𝑖

, 

 

(2-29) 

 
𝐸𝐸𝜃𝜃(𝑠𝑠) =

𝐸𝐸𝑝𝑝𝑑𝑑(𝑠𝑠)
Θ(𝑠𝑠) = 1 − 𝐻𝐻𝜃𝜃(𝑠𝑠) =

𝑠𝑠2

𝑠𝑠2 + 𝐾𝐾𝑝𝑝𝑠𝑠 + 𝐾𝐾𝑖𝑖
. (2-30) 

 

θ θ'

PD(s) LF(s) VCO(s)

-
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These transfer functions can then be written in a normalized format so they can be related to 

other formats studied in the realm of control systems: 

 𝐻𝐻𝜃𝜃(𝑠𝑠) =
2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
, (2-31) 

 𝐸𝐸𝜃𝜃(𝑠𝑠) =
𝑠𝑠2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
, (2-32) 

where         𝜔𝜔𝑛𝑛 = natural frequency       and      𝜁𝜁 = damping coefficient. 

The closed-loop phase transfer function shows a low-pass filter characteristic for the input 

phase angle, which is very useful for eliminating unwanted noise and/or high order harmonics 

from the signal.  It can also be seen from the transfer functions that this is a second-order function.  

A second-order system has been studied extensively in control focused textbooks and that 

information can be directly applied here.  For example, the settling time of this system can be 

readily estimated as the following, 

 𝑑𝑑𝑠𝑠 = 4.6𝜏𝜏   with   𝜏𝜏 =
1
𝜁𝜁𝜔𝜔𝑛𝑛

 (2-33) 

 
Taking these equations and the normalized transfer functions from above, the tuning 

parameters for the PLL can be estimated as the following, 

 
𝐾𝐾𝑝𝑝 = 2𝜁𝜁𝜔𝜔𝑛𝑛 =

9.2
𝑑𝑑𝑠𝑠

,  𝐾𝐾𝑖𝑖 =
𝐾𝐾𝑝𝑝𝜔𝜔𝑛𝑛

2𝜁𝜁
=

2.3𝐾𝐾𝑝𝑝
𝑑𝑑𝑠𝑠𝜁𝜁2

. (2-34) 

 
Bandwidth is a term often used in signal processing and with the operating boundaries and 

response of a transfer function.  In reference to PLLs, their bandwidth does not refer to one 

description in particular.  When used in literature, it may refer to any of the following: (1) natural 

frequency ωn, (2) loop gain K, (3) noise bandwidth BL, and (4) 3-dB bandwidth ω3db [17]. 
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It is noted in [17] that the classification of bandwidth as the natural frequency of the PLL is 

not an accurate measure.  This is because the damping factor ζ has an influence on the response of 

the PLL transfer function.  This effect of ζ on the response of the PLL can be seen in Figure 2-5.  

The various values of ζ cause the lowpass curves to fall off at different frequency values.  This has 

been illustrated to point out that if using the term bandwidth in reference to the natural frequency, 

one should use caution because it is not entirely accurate [17]. 

 

 
Figure 2-5. Effect of damping factor on the response of the PLL [17]. 

 

An important factor of the PLL is the 3-dB bandwidth.  It can be increased and decreased 

depending on the response that is desired.  The 3-dB bandwidth is represented mathematically by 

the following equation: 

 
𝜔𝜔−3𝑑𝑑𝑏𝑏 = 𝜔𝜔𝜃𝜃 �1 + 2𝜁𝜁2 + �(1 + 2𝜁𝜁)2 + 1�

1
2� . (2-35) 
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When designing a PLL, there are four key parameters to consider as outlined in [18].  These 

four parameters are the hold range, pull-in range, pull-out range, and lock range. 

  • Hold range ΔωH   
 • Pull-in range ΔωP  
 • Pull-out range ΔωPO  
 • Lock range ΔωL  

 
The hold range is stated to be more useful from an academic standpoint.  This frequency 

range of the PLL is representative of the range wherein the PLL can maintain phase lock statically.  

If the frequency of the input signal exceeds the hold range, the PLL will no longer be able to 

acquire a phase-lock.  The expression of the hold range is 

 ∆𝜔𝜔𝐻𝐻 = 𝐾𝐾𝑝𝑝𝑑𝑑𝐾𝐾𝑣𝑣𝑎𝑎𝑣𝑣𝐿𝐿𝐿𝐿(0), (2-36) 
 

where the value of LF(0) is the DC gain of the loop filter and varies depending on the type of filter 

used.  A passive lag filter results in LF(0) = 1, for an active lag filter LF(0) = Ka, and lastly for an 

active PI filter LF(0) = ∞.  For this particular application, it is highly likely that a PI controller will 

be implemented.  If that is the case, the hold range will be infinite and the only frequency limit on 

the PLL will be the frequency range of the VCO. 

The pull-in range represents the frequency extents where the PLL will be locked into the 

phase angle of the input signal.  This range is dependent on the type of filter used.  As mentioned 

for the hold range, by using a PI filter, the range is practically infinite.  The pull-in time, not to be 

confused with the pull-in range, is the time needed by the PLL to become locked and is usually 

much larger than the lock-in time.  It can be calculated  

 
𝑇𝑇𝑃𝑃 =

𝜋𝜋2

16
∆ω𝑛𝑛

2

𝜁𝜁ω𝑛𝑛
3 . (2-37) 

 

 19 



The pull-out range is the dynamic limit for stable operation of a PLL.  This range is much 

smaller in comparison to the hold range.  If the PLL goes outside the pull-out range and loses 

tracking, it is possible for it to lock-in again since it is still within the hold range.  This range is 

approximated by the expression 

 ∆𝜔𝜔𝑃𝑃𝑃𝑃 = 1.8𝜔𝜔𝑛𝑛(𝜁𝜁 + 1). (2-38) 
 
The final key parameter is the lock range, which indicates that the PLL will lock very 

quickly when it falls within this range.  Using a PI filter for the LF, the lock range can calculated 

with the equation  

 ∆𝜔𝜔𝐿𝐿 = 2𝜁𝜁𝜔𝜔𝑛𝑛 = 2𝜁𝜁�𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖. (2-39) 

 
And consequently the settling time or lock-in time is calculated as  

 𝑇𝑇𝐿𝐿 ≈
2𝜋𝜋
𝜔𝜔𝑛𝑛

. (2-40) 

 
Each range has a corresponding operational stability that varies from dynamically unstable 

to the actual operating range of the PLL.  The simple inequality can be found relating the four key 

parameters and looks like 

 ∆𝜔𝜔𝐿𝐿 < ∆𝜔𝜔𝑃𝑃𝑃𝑃 < ∆𝜔𝜔𝑃𝑃 < ∆𝜔𝜔𝐻𝐻.  

2.3.2 PLLs using Quadrature Signals 

It is of interest to take a step back to determine why it is beneficial (or quite necessary, in reality) 

to utilize quadrature signals for the PLL rather than simply applying the basic structure to the 

electric power system.  An example problem, and the issues that arise from it, are presented in [16] 

and will be reviewed here. 
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The diagram depicted in Figure 2-3 has several drawbacks when applied to the electric grid 

where the frequency used is quite low at 60 Hz (or ω = 377 rads/sec).  This poses some issues 

when calculating the parameters discussed earlier due to the assumptions made to determine those 

expressions.  Most notably, an oscillatory frequency appears when the PLL attempts to lock-in 

with the input signal.  This is found to be double that of the grid frequency, which would be 120 

Hz in the case of a system using 60 Hz AC.  A depiction of this occurring can be seen in Figure 

2-6.   

The parameters were chosen when designing this PLL to maintain a settle time of 100 ms 

and a damping factor of 0.707.  With these parameters, the pull-in time can be calculated from the 

equations presented earlier to be 312.7 ms.  However, as shown in Figure 2-6 the pull-in time is 

much greater at 1.75 s.  There is a reason for this discrepancy between the derived equations and 

the results found for this example.  It was initially assumed during the expression derivations that 

the input signal to be phase-locked would be much higher than the bandwidth of the PLL.  Under 

this assumption, the higher frequency terms would be filtered and have no effect on the output 

result.  In the case of an electric power system, the frequency is very close to the cut-off frequency 

of the PLL.  These high frequency terms in the phase-angle error are twice that of the input 

frequency.  In this example, the bandwidth is calculated as 21.3 Hz.   
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Figure 2-6. Depiction of 120 Hz oscillation. 

 

To overcome this issue of having a 120 Hz oscillation present on the output of the PLL, 

the phase detector is changed from a simple multiplication block to a quadrature signal generator.  

The new diagram of the PLL is pictured in Figure 2-7.  The new calculation for the phase error 

εpd, becomes the following, 

 𝜀𝜀𝑝𝑝𝑑𝑑 = 𝑉𝑉 sin(𝜔𝜔𝑑𝑑 + 𝜙𝜙) cos(𝜔𝜔′𝑑𝑑 + 𝜙𝜙′) − 𝑉𝑉 cos(𝜔𝜔𝑑𝑑 + 𝜙𝜙) sin(𝜔𝜔′𝑑𝑑 + 𝜙𝜙′) 
= 𝑉𝑉 sin�(𝜔𝜔 − 𝜔𝜔′)𝑑𝑑 + (𝜙𝜙 − 𝜙𝜙′)� = 𝑉𝑉 sin(𝜃𝜃 − 𝜃𝜃′).                    (2-41) 

According to Equation (2-41), the steady-state error from the new quadrature PD will not 

contain any steady-state oscillation when the PLL is well synchronized, i.e. with ω = ω’.  

Therefore, it can be concluded that by replacing the previous PD with the version using a 

quadrature signal generator, the equations derived earlier can be applied when designing a PLL 

for the electric power grid.  This is also useful because techniques from other fields that use PLLs 

can be applied here as well. 

 

Main : PLL Results

Time [s] 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
 
 

0 

100 

200 

300 

400 

500 
Fr

eq
 [r

ad
/s

]
Frequency Grid Frequency

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 

th
et

a 
[ra

d]

PLL Phase

 22 



 

Figure 2-7. PD using quadrature signals in the PLL structure [16]. 

 

Once again, referring to Equation (2-41), it will be pointed out that this trigonometric 

expression is a part of the Park’s transformation.  The Park’s transformation is used extensively in 

control systems for the electric power network and therefore well studied [19].  Applying to the 

PLL will modify the model further, as shown in Figure 2-8.  Also, with the introduction of the 

Park’s transformation, the VCO is no longer necessary and replaced with a frequency/phase-angle 

generator (FPG).  The αβ to dq transformation block is represented by the transformation matrix, 

 �
𝑣𝑣𝑑𝑑
𝑣𝑣𝑞𝑞� = � cos(𝜃𝜃′) sin(𝜃𝜃′)

−sin(𝜃𝜃′) cos(𝜃𝜃′)� �
𝑣𝑣𝛼𝛼
𝑣𝑣𝛽𝛽�. (2-42) 

 

 

Figure 2-8. PD block adapted using Park's transformation [16]. 
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If the input signal to the PLL is a sine wave expressed as 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃), the output of the 

quadrature signal generator (QSG) is expressed as, 

 𝒗𝒗𝛼𝛼𝛽𝛽 = �
𝑣𝑣𝛼𝛼
𝑣𝑣𝛽𝛽� = 𝑉𝑉 � sin(𝜃𝜃)

− cos(𝜃𝜃)�. (2-43) 

Finally, by substituting (2-43) into (2-42), the expression for the output of the PD is found 

and free of oscillations if the PLL is well tuned to the frequency of the input signal, 

 𝒗𝒗𝑑𝑑𝑞𝑞 = �
𝑣𝑣𝑑𝑑
𝑣𝑣𝑞𝑞� = 𝑉𝑉 � sin(𝜃𝜃 − 𝜃𝜃′)

− cos(𝜃𝜃 − 𝜃𝜃′)�. (2-44) 

By using the QSG, it allows for regulation of the active and reactive power delivered into 

a single-phase network by a power converter.   

 

2.4 FORMULATING THE CRITERIA TO EVALUATE STABILITY  

The stability of an AC system has been outlined extensively in texts and literature so there is no 

need to create anything new [20]–[23].  The key fields of stability can fall under one of a few 

categories.  These categories are but not limited to small-signal stability, transient stability, 

subsynchronous oscillations, and mid-term and long-term stability [20]. 

Small-signal stability is the ability of the power system to maintain synchronism when 

subjected to small disturbances.  The small-signal stability category has even more meaning when 

the characteristics and modeling of certain power system components is known.  By knowing the 

components, the equations to represent them can be more easily obtained and understood.  

Instabilities may result from two forms, steady increase in generator rotor angle due to lack of 

synchronizing torque, and rotor oscillations of increasing amplitude due to lack of sufficient 
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damping torque.  In the present day power system, one of the main causes for small-signal 

instability lies with the insufficient damping of system oscillations [20].  With respect to the AC 

system being studied in this research, small-signal stability will be investigated but not with respect 

to any rotating machines.  The two sources of generation that will be implemented include 

photovoltaics and wind turbines.  The issue of insufficient damping of oscillations will therefore 

be a non-issue.  The photovoltaics have no oscillatory effects in reference to those represented in 

small-signal stability.  While the wind turbines have machines that serve as the creation point of 

electricity, they will not be modeled in such detail to include the effects that the machine may 

have.  Both generators will be modeled as ideal sources since they are not the focus of this work.  

The power electronic converters and the control used to transmit power from the renewable 

generation sources will be the main focus.  By perturbing the system about a chosen steady-state 

operating point, the effects of the control, specifically the PLL, can be observed and understood.   

In a typical power system, the large rotating machines that are generating power are of the 

most interest when investigating transient stability since they govern the reference voltages and 

angles throughout the rest of the system.  If any of these large machines become unstable due to a 

transient disturbance, such as a transmission line fault, loss of generation, or large load loss, factors 

like power flows or bus voltages may deviate too far from their ideal values and cause issues to 

power equipment or loads.  However, with the system being studied for this research, transient 

disturbances such as those mentioned will be regulated by the power electronic converters in the 

system.  Therefore the control schemes of the converters will be the main factor that determines 

the transient stability of the system [20]. 

The last topics are of sub-synchronous resonance and mid-to-long term stability.  The former 

topic will not be investigated in this research since these resonances would be from much larger 
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generating sources than will be used.  It would be more applicable to a coal plant with hundreds 

of generated megawatts versus solar and wind farms that are rated more in the tens of megawatts.  

The wind turbines may have contribution to sub-synchronous resonance but this will not be 

investigated.  Mid-to-long term stability has mention of power systems being placed into islanded 

states [20].  One of the benefits of distributed generation is its ability to operate in an islanding 

mode.  The power flows exchanged between generation and load would be the focus of research.  

These flows would be regulated by the power converters and communication between the 

converters would be vital for power flows to transfer smoothly. 

A look at the stability issues for AC networks has been outlined in this section and compared 

to the case of a distributed generation branch.  Some of the types stability discussed were not 

investigated because distributed generation did not possess the permissions to regulate voltage 

levels initially according to the IEEE1547 Standard but an addition has been made recently that 

addresses this [24].   

2.4.1 Output Impedance 

An effective method for analyzing the stability of a system that has an inverter connecting 

renewable generation to the grid is by looking at its output impedance in relation to the grid and 

line impedances [25].  For this work in particular, the impedance of the grid plays a very important 

factor.  The grid input impedance can be compared to the output impedance of the VSC by using 

a ratio to determine the stability of the system.  The power electronics circuit is nonlinear and 

therefore the small-signal analysis that was outlined in Chapter 2.2 will be of use.  A simple 

representation is shown in Figure 2-9. 
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Figure 2-9. Small-signal representation of a VSC and its corresponding load. 

 

 The current can be found dividing the source voltage by the series combination of the load 

and source impedance, 

 
𝐼𝐼(𝑠𝑠) =

𝑉𝑉𝑠𝑠(𝑠𝑠)
𝑍𝑍𝑠𝑠(𝑠𝑠) + 𝑍𝑍𝑙𝑙(𝑠𝑠)

, (2-45) 

While focusing on the stability of the system, it is assumed that the voltage source is stable 

and the load current is stable as well.  This means that 𝑉𝑉𝑠𝑠(𝑠𝑠) and 𝑍𝑍𝑙𝑙(𝑠𝑠) do not factor into the 

stability of 𝐼𝐼(𝑠𝑠).  If the equation is rearranged to factor out these terms, the parameters that affect 

the stability of the system can be more easily seen.  

 
𝐼𝐼(𝑠𝑠) =

𝑉𝑉𝑠𝑠(𝑠𝑠)
𝑍𝑍𝑙𝑙(𝑠𝑠) 𝑥𝑥

1

1 + 𝑍𝑍𝑠𝑠(𝑠𝑠)
𝑍𝑍𝑙𝑙(𝑠𝑠)

. (2-46) 

It can be that if the ratio of the source voltage to the load impedance is assumed stable that 

the factor that matters in the analysis lies on, 

 
𝐻𝐻(𝑠𝑠) =

1

1 + 𝑍𝑍𝑠𝑠(𝑠𝑠)
𝑍𝑍𝑙𝑙(𝑠𝑠)

. (2-47) 

By applying control theory to this function, the stability can be determined by using the 

Nyquist stability criterion.   

LoadSource
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The approached discussed thus far is applicable to voltage sources that are assumed to be 

stable while unloaded and operating on their own.  Since renewable sources are usually connected 

to the greater electric grid, a model incorporating both the VSC and the grid is needed.  To account 

for this, the new model shown in Figure 2-10 is used. 

 

Figure 2-10. Small-signal model with inverter modeled as a voltage source and impedance connected to a 
grid equivalent model. 

 

By use of superposition, the equation for the current with the connected grid is, 

 
𝐼𝐼(𝑠𝑠) =

𝑉𝑉𝑎𝑎(𝑠𝑠)
𝑍𝑍𝑎𝑎(𝑠𝑠) + 𝑍𝑍𝑔𝑔(𝑠𝑠)

−
𝑉𝑉𝑔𝑔(𝑠𝑠)

𝑍𝑍𝑎𝑎(𝑠𝑠) + 𝑍𝑍𝑔𝑔(𝑠𝑠). (2-48) 

Based on the stability assumptions of the VSC being stable by itself and the grid being 

stable by itself, Equation (2-33) can be rearranged by factoring out the VSC impedance to that 

shown in Equation (2-34). 

 

𝐼𝐼(𝑠𝑠) = �
𝑉𝑉𝑎𝑎(𝑠𝑠)
𝑍𝑍𝑎𝑎(𝑠𝑠)

−
𝑉𝑉𝑔𝑔(𝑠𝑠)
𝑍𝑍𝑎𝑎(𝑠𝑠)

�𝑥𝑥

⎝

⎛ 1

1 +
𝑍𝑍𝑔𝑔(𝑠𝑠)
𝑍𝑍𝑎𝑎(𝑠𝑠)⎠

⎞. (2-49) 

It can be seen that to be stable, the ratio of the grid impedance to the converter impedance 

must satisfy the Nyquist criterion.  The VSC will be stable across a large spread of grid impedances 

Converter Grid
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if it is very large [25].  As will be shown in Chapter 4.0  the PLL will affect the output impedance 

and can destabilize the system under certain grid impedance values. 

2.4.2 Impedance Shaping 

An important tool that is available when using the impedance for determining the stability of the 

system is that adjusting certain aspects of the control system can shape the impedance of the VSC.  

These include the PLL, current control, and voltage control of the VSC.  This grants a few degrees 

of freedom when presented with a large grid impedance that would cause issues for the VSC, to 

adjust its parameters in order to reduce or eliminate the instability problems.  Each of the three 

control parts have varying effects on the output impedance and the focus of this work is on the 

PLL effects.  It is stated in [26] that it is typically not practical to keep the ratio of the grid 

impedance to the VSC output impedance within the unit circle.  Furthermore, system stability 

usually is governed by the phase difference of the two impedances at the frequency where their 

magnitudes are equal.  Therefore, it is desirable to keep a proper phase response within a certain 

frequency range. 

 

 29 



3.0  SYSTEM OVERVIEW 

The power system investigated in this work is intended to represent a load that is being 

supplied by local distributed generation and is connected to a larger grid network via a weak 

connection.  A three-phase system diagram is shown in Figure 3-1.  The distributed generation is 

represented by an ideal DC source.  The dynamics from the sources are not of interest in this work 

and therefore it was chosen to have them as ideal and supplying a constant DC voltage.   

 

 

Figure 3-1. System with distributed generation and weak connection. 

 

Coming from the opposite end of Figure 3-1, an infinite bus (ideal three-phase AC source) 

is representative of the remaining power grid that the load and distributed generation are 

connected.  There is next a series RL impedance that is very important in establishing the weak 

connection that is vital to the research being performed.  The bases used for calculation were Vbase 

VSC NPC Topology

Filter Load Grid
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= 13.8 kV and Sbase = 5 MVA.  The calculation shown is for a SCR of 1.3 but any value of SCR 

can be found using the same equation.  This value for the impedance of the weak system was 

determined to be 29.29 Ω. 

 𝑆𝑆𝑆𝑆𝑆𝑆 = �
1
𝑍𝑍𝑠𝑠

+
1
𝑍𝑍𝑙𝑙
� 𝑍𝑍𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏 , 

 
 

 
𝑆𝑆𝑆𝑆𝑆𝑆 = 1.3 = �

1
29.29 Ω

��
(13.8 𝑘𝑘𝑉𝑉)2

5 𝑀𝑀𝑉𝑉𝑀𝑀
� , (3-1) 

 
𝑍𝑍𝑠𝑠 = 29.29 Ω.  

The VSCs are of a neutral point clamped (NPC) circuit topology design.  For additional 

power capacity, a 3-level configuration was chosen.  A circuit diagram is shown in  Figure 3-2.  

The output of the converters is connected to the same point, as they are connected in parallel, by 

very similar impedance values.  Part of the impedance is comprised of a LC-filter for smoothing 

of the VSC outputs while the remainder is from transmission cable.  Table 3-1 contains the values 

and ratings used for the various components and equipment for the entire system.  

 

Table 3-1. Parameters for various components of the system. 

Parameter Value 

VSC DC Source 20 kV 

System Voltage 13.8 kV 

Zsource 31.74 Ω 

System Frequency 60 Hz 

Filter L = 10 mH, C = 50 µF 

Rload 19.044 Ω (0.5 pu) 

Switching Frequency 2700 Hz 
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 Figure 3-2. NPC circuit topology with 3-levels. 

 

The 3-level NPC is controlled by a closed-loop current controls scheme. More specifically, 

it is also called PQ closed-loop voltage oriented control based on the synchronous dq frame [27].  

A diagram of the signal flow is shown in Figure 3-3.  The control is derived from performing KVL 

at the output of the NPC in the dq frame and arriving at the equations 

 
𝑉𝑉𝑡𝑡𝑑𝑑 − 𝑉𝑉𝑝𝑝𝑑𝑑 = 𝐿𝐿

𝑑𝑑𝑠𝑠𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝐿𝐿𝜔𝜔𝑠𝑠𝑞𝑞 + 𝑆𝑆𝑠𝑠𝑑𝑑 , (3-1) 

 
𝑉𝑉𝑡𝑡𝑞𝑞 − 𝑉𝑉𝑝𝑝𝑞𝑞 = 𝐿𝐿

𝑑𝑑𝑠𝑠𝑞𝑞
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝜔𝜔𝑠𝑠𝑑𝑑 + 𝑆𝑆𝑠𝑠𝑞𝑞 . (3-2) 

The equations are traditionally written with the inductor and derivative on the left hand 

side of the equation with all other terms on the right hand side, which leads to 

 
𝐿𝐿
𝑑𝑑𝑠𝑠𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐿𝐿𝜔𝜔𝑠𝑠𝑞𝑞 − 𝑆𝑆𝑠𝑠𝑑𝑑 + 𝑉𝑉𝑡𝑡𝑑𝑑 , (3-3) 

 
𝐿𝐿
𝑑𝑑𝑠𝑠𝑞𝑞
𝑑𝑑𝑑𝑑

= −𝐿𝐿𝜔𝜔𝑠𝑠𝑑𝑑 − 𝑆𝑆𝑠𝑠𝑞𝑞 + 𝑉𝑉𝑡𝑡𝑞𝑞 . (3-4) 
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Equations (3-3) and (3-4) are then manipulated further, ultimately leading to the creation 

of the structure shown in Figure 3-3.  The voltage references at the output of the control diagram 

are used to create the firing pulses for the switches of the NPC. 

 

 
Figure 3-3. Closed-loop current control. 

 

 The theta value used for the dq transformations in the current control comes from a custom 

PLL that is a slight deviation from the traditional approach and appears in Figure 3-4.   

 

 

Figure 3-4. PLL Structure. 
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The PLL is based on the inverse Park transform going from the αβ to the dq frame.  The 

equation is of the form 

 
𝑣𝑣𝛼𝛼𝛽𝛽 = �

𝑣𝑣𝛼𝛼
𝑣𝑣𝛽𝛽� = �

cos (𝜃𝜃′) −sin (𝜃𝜃′)
sin (𝜃𝜃′) cos (𝜃𝜃′) � �

𝑣𝑣𝑑𝑑
𝑣𝑣𝑞𝑞�. (3-5) 

A custom method was implemented rather than using the built-in PSCAD module so that 

dynamics within the PLL itself could be observed.  The PLL scheme itself was chosen due to its 

use of in-quadrature signals in the form of the αβ to the dq transformations making it applicable to 

three-phase systems and also because it eliminates a 90° phase shift that is found in other methods.  

It was also straightforward to implement in PSCAD.   
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4.0  PLL STABILITY ANALYSIS 

They key issue being investigated in this dissertation is the effect that the PLL has on the stability 

of the remaining system.  In this case, the system is composed of a Thévenin equivalent circuit 

that represents a weak source, which is the grid itself with its impedance.  The weak source is more 

susceptible to faults and stability issues.  This can have an effect on the PLL used in the VSC 

leading to a cascading problem that ultimately causes the system to go unstable and result in 

outages. 

4.1 BRIEF OVERVIEW OF SIGNAL FLOW 

Before outlining the mathematical analysis carried out, a high level overview of the flow of how 

the measurements and control parameters in the system interact with each other will be explained.  

Perturbations in the system grid voltage measurements feed into the control parameters and this is 

ultimately where the gains of the PLL control can have an effect on the output of the VSC.  An 

outline can be created following the labels sequentially in Figure 4-1.  A voltage perturbation from 

the grid system voltage (Location 1) is measured and converted into the dq domain.  These voltages 

are then used as the inputs for the PLL (Location 2) to generate the angle necessary for conversion 

between the system dq domain to the converter dq domain.  At the output of the PLL (Location 3), 

a reference angle is generated and used by the transformation blocks that feed into the controller.  

These transformation blocks are located at (Location 4a and 4b).  The block at (Location 4a) feeds 
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signals into the controller block whereas the block at (Location 4b) transforms the output signals 

of the controller back into the system dq domain.   

 

 

Figure 4-1. Signal flow of control parameters. 

4.2 DERIVATION AND ANALYSIS OF OUTPUT IMEPDANCE 

 An initial hurdle with performing an analysis that includes the effects of the PLL is the 

inherent non-linear properties that are present.  These properties can be linearized by use of the 

average model of the VSC.  The different effects can then be found by decomposing the system 
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into single-input-single-output (SISO) transfer functions, which can then be organized in a diagram 

that reflects the system mathematically [28][29].  This is shown in Figure 4-2. 

 

 

Figure 4-2. Diagram including the effect of the PLL on the output impedance. 

 

The transfer functions are determined going one step further by making use of the small 

signal model [13][30].  Some of the transfer functions shown in Figure 4-2 can be attained by the 

VSC small signal model and include duty ratio to inductor current (𝑮𝑮𝑖𝑖𝑑𝑑), and the open loop output 

impedance (𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡).  The measurement filters (𝑲𝑲) and delay from pulse-width modulation (PWM) 

control (𝑮𝑮𝑑𝑑𝑏𝑏𝑙𝑙) are standard equations that require no derivation and will be discussed later in this 

section.  Additional transfer functions are needed to represent the effects of the PLL (𝐆𝐆PLLi  and 

𝐆𝐆PLLd ) and will be derived in this section. [28] 

Converter dq domain

System dq domain
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 These transfer functions can be found by analyzing the small signal model that was outlined 

in Chapter 2.2.  The equivalent circuit for the VSC is replicated again in Figure 4-3 for easier 

access when showing the transfer function derivations. 

 

 

Figure 4-3. VSC small-signal equivalent circuit model. 

 

  The most essential transfer function to acquire first is the output impedance as this will be 

the foundation of the analysis and it will become more complex as the effects of the various control 

loops are added to it.  It is found by setting the both the duty ratios, dd and dq, to zero as well as 

the DC source, vdc. This eliminates the left-hand circuit in Figure 4-3 since the source is zero 

therefore no current is flowing.  The resulting right-hand circuit is simplified to that shown in 

Figure 4-4. 

+ -

+

-
+

_

+

-

+-

+

-
+

_

+

-
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Figure 4-4. Resulting small-signal equivalent circuit for Zout. 

 

 From this equivalent circuit, the output impedance can be found by KCL and KVL to get 

the equations, 

 𝚤𝚤̃𝑑𝑑 + 𝜔𝜔𝑆𝑆𝑣𝑣�𝑣𝑣𝑞𝑞 + 𝚤𝚤̃𝑣𝑣𝑑𝑑 − 𝑠𝑠𝑆𝑆𝑣𝑣�𝑣𝑣𝑑𝑑 = 0, (4-1) 

 𝚤𝚤̃𝑞𝑞 − 𝜔𝜔𝑆𝑆𝑣𝑣�𝑣𝑣𝑑𝑑 + 𝚤𝚤̃𝑣𝑣𝑞𝑞 − 𝑠𝑠𝑆𝑆𝑣𝑣�𝑣𝑣𝑞𝑞 = 0, (4-2) 

 3𝚤𝚤̃𝑑𝑑𝐿𝐿𝑠𝑠 − 3𝜔𝜔𝐿𝐿𝚤𝚤̃𝑞𝑞 + 𝑣𝑣�𝑣𝑣𝑑𝑑 = 0, (4-3) 

 3𝐿𝐿𝚤𝚤̃𝑞𝑞𝑠𝑠 + 3𝜔𝜔𝐿𝐿𝚤𝚤̃𝑑𝑑 + 𝑣𝑣�𝑣𝑣𝑞𝑞 = 0. (4-4) 

 Solving these equations for 𝚤𝚤̃𝑣𝑣𝑑𝑑 to 𝑣𝑣�𝑣𝑣𝑑𝑑, 𝚤𝚤̃𝑣𝑣𝑞𝑞 to 𝑣𝑣�𝑣𝑣𝑑𝑑, 𝚤𝚤̃𝑣𝑣𝑑𝑑 to 𝑣𝑣�𝑣𝑣𝑞𝑞, and 𝚤𝚤̃𝑣𝑣𝑞𝑞 to 𝑣𝑣�𝑣𝑣𝑞𝑞 will net the 

final transfer function matrix for 𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡.  The four transfer functions are the following, 

 𝑣𝑣�𝑣𝑣𝑑𝑑
𝚤𝚤̃𝑣𝑣𝑑𝑑

=
𝐺𝐺𝑧𝑧(9𝜔𝜔2𝐿𝐿2 − 𝐺𝐺𝑧𝑧 − 3𝑠𝑠2𝐿𝐿𝑆𝑆𝐺𝐺𝑧𝑧)

(3𝑠𝑠𝐿𝐿 + 𝑠𝑠𝑆𝑆𝐺𝐺𝑧𝑧)(9𝜔𝜔2𝐿𝐿2 − 𝐺𝐺𝑧𝑧 − 3𝑠𝑠2𝐿𝐿𝑆𝑆𝐺𝐺𝑧𝑧) − 3𝑠𝑠𝐿𝐿(3𝜔𝜔𝐿𝐿 − 𝜔𝜔𝑆𝑆𝐺𝐺𝑧𝑧)2, (4-5) 

 𝑣𝑣�𝑣𝑣𝑑𝑑
𝚤𝚤̃𝑣𝑣𝑞𝑞

= −
3𝑠𝑠𝐿𝐿𝐺𝐺𝑧𝑧(−3𝜔𝜔𝐿𝐿 + 𝜔𝜔𝑆𝑆𝐺𝐺𝑧𝑧)

(3𝑠𝑠𝐿𝐿 + 𝑠𝑠𝑆𝑆𝐺𝐺𝑧𝑧)(9𝜔𝜔2𝐿𝐿2 − 𝐺𝐺𝑧𝑧 − 3𝑠𝑠2𝐿𝐿𝑆𝑆𝐺𝐺𝑧𝑧) − 3𝑠𝑠𝐿𝐿(3𝜔𝜔𝐿𝐿 − 𝜔𝜔𝑆𝑆𝐺𝐺𝑧𝑧)2 , (4-6) 

+ -

+

_

+-

+

_
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 𝑣𝑣�𝑣𝑣𝑞𝑞
𝚤𝚤̃𝑣𝑣𝑑𝑑

= −
𝑣𝑣�𝑣𝑣𝑑𝑑
𝚤𝚤̃𝑣𝑣𝑞𝑞

, (4-7) 

 𝑣𝑣�𝑣𝑣𝑞𝑞
𝚤𝚤̃𝑣𝑣𝑞𝑞

=
𝑣𝑣�𝑣𝑣𝑑𝑑
𝚤𝚤̃𝑣𝑣𝑑𝑑

, (4-8) 

where 𝐺𝐺𝑧𝑧 = 9𝐿𝐿2(𝑠𝑠2 + 𝜔𝜔2).  

 A bode plot and pole-zero plot of the four transfer functions that make up 𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡 are shown 

below.  The following notation is used for the four parts of the matrix,  

 
𝑍𝑍𝑑𝑑𝑑𝑑 =

𝑣𝑣�𝑣𝑣𝑑𝑑
𝚤𝚤̃𝑣𝑣𝑑𝑑

, (4-9) 

 
𝑍𝑍𝑑𝑑𝑞𝑞 =

𝑣𝑣�𝑣𝑣𝑑𝑑
𝚤𝚤̃𝑣𝑣𝑞𝑞

, (4-10) 

 
𝑍𝑍𝑞𝑞𝑑𝑑 =

𝑣𝑣�𝑣𝑣𝑞𝑞
𝚤𝚤̃𝑣𝑣𝑑𝑑

, (4-11) 

 
𝑍𝑍𝑞𝑞𝑞𝑞 =

𝑣𝑣�𝑣𝑣𝑞𝑞
𝚤𝚤̃𝑣𝑣𝑞𝑞

. (4-12) 
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Figure 4-5. Bode plots of the Zout transfer function matrix. 

 

Figure 4-6. Pole-Zero mapping for Zout. 
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The pole-zero placement in Figure 4-6 shows that there are no poles in the right-hand plane 

(RHP) therefore the output impedance not considering the effects of the control systems is stable.   

4.3 DERIVATION AND ANALYSIS OF OUTPUT IMEPDANCE INCLUDING THE 

EFFECTS OF THE PLL 

The transfer function matrix 𝑮𝑮𝑖𝑖𝑑𝑑 needs to be derived as well.  This again is the transfer 

functions from duty cycle to inductor current.  A breakdown of how to find 𝚤𝚤̃𝑑𝑑 �̃�𝑑𝑑𝑑
�  and 𝚤𝚤̃𝑑𝑑 �̃�𝑑𝑞𝑞

�  was 

discussed in Chapter 2.2.  The transfer functions 𝚤𝚤̃𝑞𝑞 �̃�𝑑𝑑𝑑
�  and 𝚤𝚤̃𝑞𝑞 �̃�𝑑𝑞𝑞

�  can be found in a similar matter.  

The only change is the C matrix has a value of ‘1’ in the second row rather than the first.  The 

results can be found using Equation (2-27).  Alternatively, it is noted that the following equalities 

hold true as well having already performed the calculations, 

 𝚤𝚤̃𝑞𝑞
�̃�𝑑𝑑𝑑

= −
𝚤𝚤̃𝑑𝑑
�̃�𝑑𝑞𝑞

, (4-13) 

 𝚤𝚤̃𝑞𝑞
�̃�𝑑𝑞𝑞

=
𝚤𝚤̃𝑑𝑑
�̃�𝑑𝑑𝑑

. (4-14) 

  

The equations for K and 𝑮𝑮𝑑𝑑𝑏𝑏𝑙𝑙 are straightforward and do not require any sort of derivation.  

The transfer function matrix K is a low-pass filter for the measured dq voltage and current signals 

from the system.  The filter cleans up the signal of any high frequency components to avoid any 

obscurities when going through the control system.  It has the form 
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𝑲𝑲 =

⎣
⎢
⎢
⎢
⎡ 𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
0

0
𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2⎦
⎥
⎥
⎥
⎤
 (4-15) 

where 𝜔𝜔𝑛𝑛 is the natural frequency and 𝜁𝜁 is the damping coefficient.  

To represent the time delay, 𝑮𝑮𝑑𝑑𝑏𝑏𝑙𝑙, due to the control and (PWM), a first order Padé 

approximation is used.  The transfer function is 

 

𝑮𝑮𝒅𝒅𝒅𝒅𝒅𝒅 =

⎣
⎢
⎢
⎢
⎢
⎡1 −

𝜏𝜏
2 𝑠𝑠

1 + 𝜏𝜏
2 𝑠𝑠

0

0
1 − 𝜏𝜏

2 𝑠𝑠

1 + 𝜏𝜏
2 𝑠𝑠⎦
⎥
⎥
⎥
⎥
⎤

 (4-16) 

where 𝜏𝜏 is the time delay.  

The final transfer function matrices needed to analyze the effect of the PLL are the small-

signal equations of the PLL itself.  Following the steps taken in [28], the process to find the 

influence of the PLL is as follows: 

Begin making the assumption that the duty ratio, voltage, and current vectors are equal in 

the system domain and the converter domain in steady-state.  If this is the case, the angle between 

them could also be assumed to be zero.  To show this mathematically, first a transformation matrix 

to change between the system domain and converter domain is introduced that includes the effect 

of a small signal perturbation and is  

 
𝑻𝑻𝜽𝜽 = �

cos (𝜃𝜃 + 𝜃𝜃�) sin (𝜃𝜃 + 𝜃𝜃�)
−sin (𝜃𝜃 + 𝜃𝜃�) cos (𝜃𝜃 + 𝜃𝜃�)

� . (4-17) 

If the phase angle between the two domains is zero during steady-state, the voltage vectors 

would have the relationship of 
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𝑉𝑉�⃑ 𝑎𝑎 = �

cos (𝜃𝜃�) sin (𝜃𝜃�)
−sin (𝜃𝜃�) cos (𝜃𝜃�)

� 𝑉𝑉�⃑ 𝑠𝑠 . (4-18) 

The small signal perturbation from the PLL is close to zero so by using small-angle 

approximation on Equation (4-18), it can be simplified to  

 𝑉𝑉�⃑ 𝑎𝑎 ≈ � 1 𝜃𝜃�
−𝜃𝜃� 1

� 𝑉𝑉�⃑ 𝑠𝑠. (4-19) 

Expanding the vectors to show the steady-state and small signal perturbations, multiplying 

the right-hand side matrix to the system voltage vector, and canceling the steady-state terms for 

the converter and system voltages yields 

 
�
𝑉𝑉𝑑𝑑𝑎𝑎 + 𝑣𝑣𝑑𝑑𝑎𝑎�

𝑉𝑉𝑞𝑞𝑎𝑎 + 𝑣𝑣𝑞𝑞𝑎𝑎�
� ≈ � 1 𝜃𝜃�

−𝜃𝜃� 1
� �
𝑉𝑉𝑑𝑑𝑠𝑠 + 𝑣𝑣𝑑𝑑𝑠𝑠�

𝑉𝑉𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞𝑠𝑠�
� , (4-20) 

 
�
𝑣𝑣𝑑𝑑𝑎𝑎�

𝑣𝑣𝑞𝑞𝑎𝑎�
� ≈ �

𝑉𝑉𝑞𝑞𝑠𝑠𝜃𝜃� + 𝑣𝑣𝑑𝑑𝑠𝑠�

−𝑉𝑉𝑑𝑑𝑠𝑠𝜃𝜃� + 𝑣𝑣𝑞𝑞𝑠𝑠�
� �
𝑉𝑉𝑑𝑑𝑠𝑠 + 𝑣𝑣𝑑𝑑𝑠𝑠�

𝑉𝑉𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞𝑠𝑠�
� . (4-21) 

Substituting Equation (2-15) in for the small signal perturbation of the angle 𝜃𝜃�, the 

relationship between the system domain q channel voltage and the PLL is found to be  

 
𝜃𝜃� =

𝐿𝐿𝐿𝐿
𝑠𝑠 + 𝑉𝑉𝑑𝑑𝑠𝑠𝐿𝐿𝐿𝐿

𝑣𝑣𝑞𝑞𝑠𝑠�. (4-22) 

For use in the equations for the relationships between the PLL to current and duty ratio, it 

will be set that 

 
𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿 =

𝐿𝐿𝐿𝐿
𝑠𝑠 + 𝑉𝑉𝑑𝑑𝑠𝑠𝐿𝐿𝐿𝐿

. (4-23) 

Since the input of the PLL is the system voltage and the resulting angle 𝜃𝜃� is used to 

transform the duty ratio and currents between the system domain and converter domain, a similar 

analysis can be done with them that will include Equation (4-23).  For the duty ratio, the resulting 

equation is  
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�
𝑑𝑑𝑑𝑑𝑎𝑎�

𝑑𝑑𝑞𝑞𝑎𝑎�
� ≈ �

0 𝐷𝐷𝑞𝑞𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿
0 −𝐷𝐷𝑑𝑑𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿

� �
𝑣𝑣𝑑𝑑𝑠𝑠�

𝑣𝑣𝑞𝑞𝑠𝑠�
� + �

𝑑𝑑𝑑𝑑𝑠𝑠�

𝑑𝑑𝑞𝑞𝑠𝑠�
� . (4-24) 

From Equation (4-24), the transfer function matrix is found to be 

 
𝑮𝑮𝑷𝑷𝑷𝑷𝑷𝑷𝒅𝒅 = �

0 𝐷𝐷𝑞𝑞𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿
0 −𝐷𝐷𝑑𝑑𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿

� . (4-25) 

In a similar fashion, the effect of the PLL on the transformation of the currents between 

domains is 

 
�
𝚤𝚤𝑑𝑑𝑎𝑎�

𝚤𝚤𝑞𝑞𝑎𝑎�
� ≈ �

0 𝐼𝐼𝑞𝑞𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿
0 −𝐼𝐼𝑑𝑑𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿

� �
𝑣𝑣𝑑𝑑𝑠𝑠�

𝑣𝑣𝑞𝑞𝑠𝑠�
� + �

𝚤𝚤𝑑𝑑𝑠𝑠�

𝚤𝚤𝑞𝑞𝑠𝑠�
� . (4-26) 

The transfer function matrix for the effect of the PLL on the current transformation is  

 
𝑮𝑮𝑷𝑷𝑷𝑷𝑷𝑷𝒊𝒊 = �

0 𝐼𝐼𝑞𝑞𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿
0 −𝐼𝐼𝑑𝑑𝑠𝑠𝐺𝐺𝑃𝑃𝐿𝐿𝐿𝐿

� . (4-27) 

With all of the transfer function matrices shown in Figure 4-2 derived, the effect of the 

PLL on the output impedance Zout can be found.  By inspection, it can be seen that  

 𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡_𝑃𝑃𝐿𝐿𝐿𝐿
−1 = 𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡−1 + 𝑮𝑮𝑖𝑖𝑑𝑑𝑮𝑮𝑑𝑑𝑏𝑏𝑙𝑙𝑮𝑮𝑃𝑃𝐿𝐿𝐿𝐿𝑑𝑑 𝑲𝑲. (4-28) 

The diagram in Figure 4-2 is based originally on the derivation using the admittance ([28]) 

so it is important to invert the equation found to ultimately get the equation for the impedance as 

in Equation (4-29). 

 𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡_𝑃𝑃𝐿𝐿𝐿𝐿 = �𝒁𝒁𝑣𝑣𝑜𝑜𝑡𝑡−1 + 𝑮𝑮𝑖𝑖𝑑𝑑𝑮𝑮𝑑𝑑𝑏𝑏𝑙𝑙𝑮𝑮𝑃𝑃𝐿𝐿𝐿𝐿𝑑𝑑 𝑲𝑲�
−1

. (4-29) 
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Figure 4-7. Bode plots of Zout with PLL dynamics considered. 

 

Of note in Figure 4-7 is the phase of 𝒁𝒁𝑑𝑑𝑑𝑑, which is at -180° in the low frequencies after the 

effects of the PLL are added.  Comparing to Figure 4-5, the phase was acting as an inductor at         

-90° and is now acting as a negative resistance.  This has been documented in other literature 

[29][31]. 
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Figure 4-8. Pole-Zero mapping of Zout with PLL dynamics considered. 

4.3.1 Stability of the System Considering a Large SCR  

Using the theory outlined in Chapter 2.4.1 and the derived output impedance that includes the 

effects of the PLL, a stability analysis of the complete system is now able to be carried out.  The 

elegance of the stability criteria, a simple ratio of the grid impedance over the output impedance 

of the VSC, allows for a range of values to be explored while quickly being able to see if stability 

is maintained.  Of particular interest is the effect of the value of the SCR.  The SCR determines 

the value of the impedance of the grid.  The grid impedance will be modeled as an inductance.  

The question of what values are suitable for the system is one of the goals of this work.  This type 

of relationship between the PLL and SCR has been carried out in [11] by analyzing the eigenvalues 

of the system.  A different analysis is performed in this dissertation by using the impedances of 
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the VSC and grid.  The most useful plots are the pole-zero plots as well as the Nyquist stability.  

A value of 10 was used for the SCR as this corresponds to a stiff grid and will serve as a case 

where the PLL gains have no effect regardless of how large they are.  The PLL gain 𝐾𝐾𝑖𝑖 is equal to 

five times 𝐾𝐾𝑝𝑝. 

 

Table 4-1. Stability Analysis Parameters for SCR = 10. 

Parameter Value 

SCR 10 

Grid inductance 10.1 mH 

PLL Gain: Kp 10 

PLL Gain: Ki 60 

 

 

Figure 4-9. Pole-Zero mapping for SCR = 10. 
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Figure 4-10. Nyquist plots for SCR = 10. 

 

Figure 4-11. Nyquist plots for SCR = 10 with stability results. 
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The Nyquist plots are important for analyzing stability and so each plot will be shown 

individually in Appendix A, so a higher resolution figure is available. 

The results for an SCR value of 10 are the most telling in Figure 4-11 since it shows 

whether the transfer function is closed loop stable.  It can be seen that the stable cases are the dd 

and qq channels whereas the coupled channels of dq and qd are not stable.  It will be shown soon 

that the SCR and PLL values do not seem to affect the coupled channels of dq and qd.  It is not 

currently known why this is and will be designated to future work.  The channels always appeared 

unstable regardless of the SCR and PLL values used.  The instability is likely being caused by 

other components and/or parameters of the system.  The focus will be on the dd and qq channels 

for the remainder of the analysis. 

To demonstrate that the PLL gains have no effect on the SCR when it is suitably large, they 

were increased by a magnitude of two and the results are shown below with the new values shown 

in Table 4-2. 

 

Table 4-2. Stability Analysis Parameters for SCR = 10 with increased PLL gains. 

Parameter Value 

SCR 10 

Grid inductance 10.1 mH 

PLL Gain: Kp 1000 

PLL Gain: Ki 6000 
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Figure 4-12. Pole-zero mapping for dd channel (SCR = 10, Kp = 1000, Ki = 6000). 

 

Figure 4-13. Pole-zero mapping for qq channel (SCR = 10, Kp = 1000, Ki = 6000). 
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Figure 4-14. Nyquist plot for dd channel (SCR = 10, Kp = 1000, Ki = 6000). 

 

Figure 4-15. Nyquist plot for qq channel (SCR = 10, Kp = 1000, Ki = 6000). 
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As expected, increasing the PLL gains to very large values did not have an effect on 

stability at the SCR of 10.   

4.3.2 Stability of the System Considering a Small SCR  

The next set of simulations and values will demonstrate a similar effect but will show that 

with a very low SCR, the PLL gains are unable to move the system from an unstable state. 

 

Table 4-3. Stability Analysis Parameters for determining minimum SCR. 

Parameter Value 

SCR 0.971 

Grid inductance 104 mH 

PLL Gain: Kp 1 

PLL Gain: Ki 6 
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Figure 4-16. Pole-zero mapping for dd channel (SCR = 0.971, Kp = 1, Ki = 6). 

 

Figure 4-17. Pole-zero mapping for qq channel (SCR = 0.971, Kp = 1, Ki = 6). 
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Figure 4-18. Nyquist plot for dd channel (SCR = 0.971, Kp = 1, Ki = 6). 

 

Figure 4-19. Nyquist plot for qq channel (SCR = 0.971, Kp = 1, Ki = 6). 
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The lowest, most reasonable PLL gain of 𝐾𝐾𝑝𝑝 = 1, was maintained while determining the 

lowest SCR that would cause the system to be unstable.  This was determined to be 0.971.  It is 

possible that smaller PLL gains would result in the system being stable but this would result in 

very slow dynamics for the VSC control and is not realistic and therefore not tested.  It is also of 

interest to note that while the dd channel becomes unstable for this value of SCR, the qq channel 

remains stable.  The SCR was dramatically lowered (as low as 0.0001) to see if the qq channel 

would eventually become unstable but it continued to remain stable for all cases of SCR values.  

This is likely due to the fact that the qq channel has no poles or zeros in the right-hand plane. 

With an upper and lower limit established for the SCR and PLL gains, a middle ground is 

of interest to find.  While stability is maintained for the dd channel at low SCR values, the PLL 

gains are very small and this prevents the system from acting quickly to fluctuations.  This dynamic 

response may be desired and so a compromise between the PLL gains and SCR will be 

investigated. 

4.3.3 Stability Range Considering a Various SCR and PLL Gains  

After running sets of simulations ranging from SCR values of 0.8 to 1.8, Figure 4-20 was 

created to reflect what PLL 𝐾𝐾𝑝𝑝 gain values result in the dd channel being stable.  There are three 

crossover points of interest.  The first has already been identified at SCR = 0.972.  This is the 

lowest possible SCR value to maintain stability with a PLL 𝐾𝐾𝑝𝑝 gain value of 1.  All values of SCR 

lower than 0.972 are unstable for the dd channel.  The next is at SCR = 1.506.  At this point, the 

largest value of 𝐾𝐾𝑝𝑝 that is possible while still maintaining stability is 𝐾𝐾𝑝𝑝 = 14.  Lastly, the gain 𝐾𝐾𝑝𝑝 

has no realistic upper limit after SCR = 1.736.  A 𝐾𝐾𝑝𝑝 value of 50 is shown but this is simply to 

 56 



keep the scale legible.  Gain values for 𝐾𝐾𝑝𝑝 greater than 100 were tested and stability was still 

maintained at these higher SCR values. 

 

 

Figure 4-20. Stability range of SCRs with varying PLL Kp gain thresholds. 
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operating point at which point the SCR and/or PLL gains are modified to observe their effect on 

the operation and stability of the system. 

The first case is for a high SCR with large PLL gains.  It was shown theoretically that the 

PLL gains could be very large without the system becoming unstable.  This was simulated in 

PSCAD.  The frequency of the PLL is shown in Figure 4-21 with a gain of 𝐾𝐾𝑝𝑝 = 100.  The 

frequency deviates slightly from 60 Hz around ±0.03 Hz, which is within operating conditions.  

The voltage measured across the load in Figure 4-22 shows a very smooth curve.   

The PLL gain was increased to a much larger value of 𝐾𝐾𝑝𝑝 = 1000 in Figure 4-23.  While 

the system maintains stability and reaches a steady-state, the frequency deviation is larger at ±0.13 

Hz.  A steady-state frequency with this type of fluctuation is not desirable but whether this is within 

operating regulations depends on the electric system area and what it has deemed acceptable.  So 

while the system is able to maintain stability under very large PLL gains, it is likely not necessary 

to need such a rapid response from the PLL.  Most of the time the system is operating near 60 Hz 

and only slight deviations need to be accounted for by the PLL. 

 

Figure 4-21. Output Frequency of the PLL with moderately large gains (Kp = 100). 
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Figure 4-22. Voltage across the load (Kp = 100). 

 

 

Figure 4-23. Output Frequency of the PLL with very large gains (Kp = 1000). 
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then changing it to the new low value.  The change is similar to what may occur on the electric 

grid when an interconnection changed from being strong to being weak from changes happening 

within the system.  The resulting frequency from the PLL is shown in Figure 4-24.  As expected, 

the frequency becomes unstable and continues to drift from 60 Hz in an upward direction.  The 

voltage measured across the grid in Figure 4-25 has harmonic content appearing in its waveform 

as well. 

 

 

Figure 4-24. Frequency of the PLL with a small, unstable SCR. 
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Figure 4-25. Voltage across the load for unstable SCR. 
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5.0  CONCLUSIONS 

A system was modeled after a DG interconnection to a grid system that was represented as a 

Thévenin circuit.  The output impedance was derived for the VSC that served as the DC-to-AC 

conversion of the DG source to supply a local load.  The perturbations from the PLL were added 

to the output impedance to observe their effect when a weak grid connection was introduced.  In 

order to determine the stability of the system, the Nyquist criterion was used for the ratio of the 

input impedance of the system grid over the output impedance of the VSC.  Various SCR values 

and PLL gains were investigated to determine the critical point of stability.  Any SCR above 1.73 

was found to be unaffected by PLL gains and retained stability.  On the other hand, a SCR value 

below 0.97 causes the system to be unstable regardless of PLL gains.  The stability of the system 

at SCR values between these upper and lower thresholds is influenced by the PLL gains.  

Depending on the SCR value between 0.97 and 1.73, there is a limit on how large the PLL gains 

can be before the system becomes unstable. 

One interesting observation was the dq and qd channels of the stability test were always 

unstable regardless of SCR values or PLL gains.  The opposite was true for the qq channel whereas 

it was always stable across all tested values of SCR and PLL gain values.  While further 

investigation is necessary to pinpoint why and for what values this occurs, one hypothesis is that 

the dq and qd channels are always unstable because the Vq and Dq values were both set to 0 for the 

simulations.  The rationale for doing this is that the simulations were performed at steady-state and 

ideally there would be no reactive power at the PCC of the VSC.  If it is assumed that there is no 

voltage or current in the q channel, then the transfer functions associated with the output impedance 

of dq and qd would be zero in the steady-state.  However, under this logic the qq channel should 
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be unstable for all cases as well, but it is the complete opposite.  Again, more research is required 

to provide a definitive answer as to why these stability results are occurring. 

As for the dd channel of the stability tests, a thorough spectrum of values was tested and 

the results documented.  It is most interesting to note the relatively small range between where the 

system is stable, regardless of PLL gains and where it becomes unstable.  This region is possibly 

the most significant takeaway from this research.  The pitfall of this calculated region however is 

the values and range are very parameter specific.  That is to say, if the inductor or capacitor of the 

VSC output filter were altered, the stability region would be completely different.  The stability 

region of SCR and 𝐾𝐾𝑝𝑝 values would need to be recalculated.  On a similar note, with the scripts 

and code already created to evaluate and create the stability region for the different SCR and PLL 

gain values, all that would be needed to find this new operating range is to change the necessary 

parameters and run the script.  The result would be a plot showing the region of SCRs that will be 

stable and at what PLL gain is the threshold for that stability to hold true.   
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6.0  FUTURE WORK 

A natural progression of this work is to apply it or integrate it to a larger, more complex system.  

A good example would be a DG branch with multiple sources of generation each with their own 

inverter connected to the main electric grid.  In this research, the electric grid was modeled as 

Thévenin equivalent with an ideal source and impedance.  The weak nature of the system is 

brought about by the large impedance connecting the electric grid to the DG branch.  This could 

be modeled as a long distance transmission line or equivalent component.  Further tests for 

instability could then be carried out with this new, more detailed system.  The technique of 

analyzing the impedances of different inverters is applicable to more than one connected at the 

same point.  The calculation does not require detailed knowledge of the converter other than the 

output filter parameters.  This is assuming that the inverter being used fits the small-signal model 

well.  If this is not the case, a different small-signal model can be substituted in its place.  The new 

transfer functions will then need to be derived.  The stability criterion however remains the same.   

Applying faults further away from the DG branch would allow one to investigate whether 

particular faults would propagate into the system, most notably into the DG branch.  The DG 

branch, specifically the inverter control and PLLs, should theoretically be able to handle these 

disturbances and react accordingly to maintain stability within established grid codes.  The controls 

of the inverter will also have the capability to provide support to the system so it is also possible 

that the fault is alleviated before affecting more of the system.  One form of support would be in 

the form of reactive power compensation for voltage issues.  The power flow, be it real or reactive, 

will be limited however by the output of the DG located behind the inverter.  If ample power is 
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available, it is plausible that the inverter control would be able to provide support to the fault rather 

than being influenced by it from a stability standpoint. 

As with any theoretical and mathematical derivations, the best way to confirm their accuracy 

is to create the system using hardware.  In a lab environment the voltage and power ratings would 

be much lower but the method and technique could still be validated.  This is especially true since 

the simulation parameters are easily changed since the script has already been created.  The 

PSCAD model is easily changed to suit a different voltage and power level as well. 
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APPENDIX A 

NYQUIST STABILITY PLOTS OF RESULTS 

 

Figure 6-1. Nyquist plot for SCR = 10 (dd channel from Figure 4-11). 
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Figure 6-2. Nyquist plot for SCR = 10 (dq channel from Figure 4-11). 

 

Figure 6-3. Nyquist plot for SCR = 10 (qd channel from Figure 4-11). 
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Figure 6-4. Nyquist plot for SCR = 10 (qq channel from Figure 4-11).
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