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Biomaterials have shown promise for treatment of injuries to the nervous system. 

Laminin, a glycoprotein, forms distinct polymers under neutral (pH 7; neutral laminin, nLam) or 

acidic (pH 4; acidic laminin, aLam) conditions (1, 2). aLam promotes significant axonal growth 

(2), making it of interest as a therapeutic for nervous tissue injuries.  

In this thesis, instead of as a substrate, we evaluate unbound aLam. In Chapter 2.1, we 

use an in vitro model system to investigate the mechanisms underlying aLam growth promotion. 

Results indicate: 1) laminin can act as a signaling molecule promoting outgrowth of adult 

neurons in vitro; 2) aLam is a more efficient promoter of outgrowth than nLam; 3) both polymers 

signal through α1 and α3 integrins without increasing their expression; 4) aLam, increases α3 

integrins when α1 integrins are blocked; 6) aLam increases vinculin, a focal adhesion complex 

protein.  These findings indicate that aLam promotes outgrowth by increasing integrin activation 

to enhance neurite outgrowth.   

In Chapter 2.2 microcontact printing and live imaging were combined to evaluate aLam’s 

effects on growth dynamics.  Our results suggest: 1) neurons will adhere to stamps and grow in a 

directional manner in culture; 2) cells did not adhere or grow well during live imaging.  Results 

indicate potential for directing neuronal outgrowth, but optimization is necessary to assess 

growth dynamics.  

ACIDIC LAMININ: MOLECULAR MECHANISMS AND POTENTIAL 
FOR NERVOUS TISSUE REPAIR

 

Agnes E. Haggerty, PhD 

University of Pittsburgh, 2014

iv 



Peripheral nerve injury (PNI) and spinal cord injury (SCI) are devastating. In Chapter 3.1 

we investigate aLam’s treatment potential in PNI.  R esults indicate that aLam treatment: 1) 

increased presence of larger diameter axons; 2) facilitated compliance in treadmill walking; 3) 

alleviated autophagia; 4) did not affect motor function, axon number or myelination.  These data 

show that aLam treatment elicits an axon growth response without affecting motor function 

recovery.  Further research is needed to optimize treatment for functional improvements.    

Chapter 3.2 evaluates aLam treatment after SCI.  Results show that aLam treatment:  1) 

did not affect axon regeneration; 2) decreased astrocyte activation; 3) did not affect neuropathic 

pain or motor outcomes.  The data indicate treatment did not lead to functional improvements.  

Further research is needed to investigate the potential of aLam for SCI repair. 
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1.0  INTRODUCTION 

Spinal cord injury (SCI) and peripheral nerve injury (PNI) lead to loss of motor and sensory 

function.  Motor vehicle accidents have historically been a main cause of these types of nervous 

tissue trauma.  In recent years in the United States, neuropathies due to diabetes has increasingly 

contributed to the overall number of people with PNI-related functional impairments (3).  The 

spinal cord contains long descending motor axons originating from neurons in various brain 

nuclei.  T he peripheral nerves contain long motor and/or sensory axons from neurons in the 

ventral spinal cord and dorsal root ganglia, respectively.  Trauma to these anatomical structures 

typically severs these axonal tracts thereby disrupting the information to and from the target 

cells.  Neuronal death due to an injury to the spinal cord and peripheral nerve is relatively limited 

because of the typically long distances between cell body and the injury site.  Thus, promoting 

recovery of function after PNI and SCI by eliciting re-growth (regeneration) of the severed axons 

is a f easible repair strategy.  On e approach to axonal regeneration is to introduce exogenous 

axonal growth-promoting molecules to the site of injury.  In this thesis, we have investigated the 

molecular mechanisms of action and the nervous tissue repair potential of polymers of acidic 

laminin (aLam), an injectable axonal growth-promoting biomaterial.   
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1.1 BIOMATERIALS 

There is not yet a consensus among scientists and engineers on what constitutes a biomaterial, 

but here it is loosely defined as: “a naturally occurring or synthesized material exposed to a 

biological specimen separate from its origin to elicit a response.” The emergence of biomaterials 

for regeneration and increased collaborations between engineers, basic and translational 

scientists, and clinicians hold promise for the development of effective therapies for spinal cord 

and peripheral nerve  injury.  A plethora of biomaterials are available and have been tested in 

various models of SCI (4) and PNI (5). Biomaterials may provide structural support and/or serve 

as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. 

Designing materials in order to address the specific repair needs of the damaged central nervous 

system is crucial and possible with current technology.   

In general, biomaterials for nervous tissue repair are employed for their ability to provide 

passive structural or active growth support to damaged axons; some offer both through 

functionalization with biologically active peptide sequences.  N umerous natural and artificial 

materials have been tested for their efficacy in repairing the injured central (6, 7) and peripheral 

nervous system (8, 9).  Application of some of these resulted in functional improvements 

demonstrating their repair potential.  As introduced above, axonal regeneration is considered an 

important repair mechanism for the injured nervous system and promoting regeneration of 

severed axons after injury could elicit anatomical and behavioral recovery.  

Most biomaterials designed and produced in the laboratory and tested for their efficacy to 

repair the injured peripheral nerve and spinal cord are polymers.  P olymers have numerous 

biomedical applications due to their vastly diverse properties.  Typically, polymers are large 2- 
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or 3-dimensional molecules composed of repeating units (10, 11).  Polymers can be obtained 

from natural sources including plants, animals, and deoxyribonucleic acid, or be fabricated 

synthetically in a laboratory.  Natural polymers are widely available and tend to undergo highly 

controlled synthesis resulting in regular structures; however, they often contain contaminating 

molecules and are difficult to sterilize (11).  S ynthetic polymers are easier to sterilize, but are 

typically susceptible to the chosen process of synthesis often causing irregularities in structure 

and composition (11).   

Currently, there is a lack in agreement in the literature on the optimal characteristics of 

biomaterials for promoting neural regeneration and repair.  However, there is increasing 

theoretical and experimental evidence for the use of polymers for repair of soft tissue such as 

nervous tissue (6, 7).  An important advantage of some polymers for nervous tissue repair is that 

they can be designed for in situ polymerization and/or cross-linking, therefore requiring less 

invasive approaches to be applied, i.e. injection. Other advantages are that they can be fabricated 

to degrade within a s pecific time window, they are non-cytotoxic, and they have similar 

mechanical properties as that of the host tissue to minimize fibrolysis (12).   

A variety of natural biomaterials mostly present within the extracellular matrix (ECM) 

provide structural and growth support to axons in the developing (13, 14), mature (15), and 

damaged (16) nervous tissue.  Laminin, collagen, fibronectin, vitronectin, and 

proteoglycans(PG)/glycosaminoglycans (GAGs) (14) are all members of this particular group of 

materials.  Many axonal growth-promoting ECM components signal through integrin receptors 

(17) that often bind the Arg-Gly-Asp (RGD) peptide sequence (18).  ECM proteins have been 

implemented as biomaterials to repair nervous tissue (19, 20) and increase compatibility of other 

materials interfacing with in the nervous system (21).  Our continuously increasing 
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understanding of the role of ECM in axonal growth and regeneration has fueled many 

investigations of the repair efficacy of these particular materials (22). 

1.1.1 Laminin 

Laminin is a heterotrimeric glycoprotein consisting of alpha, beta, and gamma subunits that self-

assemble in a t emperature-, pH-, and concentration-dependent manner (2, 23).  As a major 

component of basement membrane ECM, laminin has frequently been shown to influence neurite 

outgrowth both in vitro (2, 24-26) and in vivo (25, 27-30). There are fifteen different types of 

laminins that have been identified thus far.  Plantman et al (12) showed that laminin-α1β1γ1 

(laminin-1 or laminin-111) promotes neurite outgrowth of adult DRG neurons in culture in the 

absence of growth factors.   Laminin is not a structurally robust ECM protein, and therefore quite 

suited for injection or as an adjunct in combination with other more supportive materials to 

increase cell growth (31-34) and differentiation (35). 

One group has shown that the structure of the laminin-1 polymer may be a determinant in 

its signaling pathways and/or efficacy. Certain structural configurations may induce regeneration 

and functional recovery when injected directly into the spinal cord following injury(30). 

1.1.2 Acidic Laminin Polymer 

In vivo, laminin has been shown to assemble in different structures depending on environmental 

cues (23).  U nlike some ECM molecules that require external factors for polymer formation, 

laminin is able to self-assemble, and readily does so in solution at room temperature (23).  
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Laminin-111 in particular has been shown to have the capability of assembling in different 

structural configurations in a pH-dependent manner (2).  These different structural configurations 

will be referred to here as acidic laminin (aLam, identifying the polymer structure assembled in a 

pH4 environment) and neutral laminin (nLam, identifying the polymer structure assembled in a 

pH7 environment).  Freire and colleagues showed that embryonic neurons grown on a substrate 

of aLam extend longer neurites than those grown on a substrate of nLam, without differences in 

number of adhered neurons or strength of cell attachment (2).  These data suggest that the 

configuration of laminin can alter its neurite growth-promoting capability.   

Laminin communicates with cells through binding to cell surface integrin receptors (36).  

The configuration of laminin could determine how it binds/activates integrins. Integrin activation 

regulates neurite outgrowth via formation and breakdown of focal adhesion complex and 

activation of Focal Adhesion Kinase (FAK) and mitogen-activated protein kinase 

kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways leading to actin 

polymerization at the growth cone level and neurite extension (37). 

1.2 INTEGRIN RECEPTORS AND THE FOCAL ADHESION COMPLEX 

Integrin receptors are heterodimeric transmembrane proteins that consist of alpha and beta 

subunits, each with cytoplasmic tails that transmit information upon binding of a ligand to the 

cell. There are various integrins that mediate laminin-cell interactions (36). It has been shown 

that a crucial element for integrin dependent neurite growth is the β1 subunit (24, 38); α1β1 and 

α3β1 integrin receptors have specifically been implemented in laminin-111-mediated neurite 

growth in vitro (24, 26).  The Arginine-Glycine-Aspartic acid (RGD) motif is present in laminin 
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and involved in integrin binding.  Other motifs in laminin binding with different affinities to 

integrins result in a variety of cellular events (39). One of the cellular events cause by integrin 

signaling is the formation of the focal adhesion complex, which consists of a variety of proteins 

gathered together in a functional unit at the site of the cytoplasmic tails of the integrin receptors 

(Figure 1).   

 

 

Figure 1. Schematic of Focal Adhesion Complex with some of the key proteins highlighted 

 

 

One important protein within the focal adhesion complex is vinculin, which has been 

implemented in FAK autophosphorylation and actin polymerization specifically in the neuronal 

growth cone (40, 41).  This occurs when integrin receptors are activated and cluster together on 

the cell membrane in response to binding a ligand (42).  The ligand-receptor interaction can be 

 6 



described as a dynamic equilibrium process where R is the receptor and L is the ligand and C is 

the receptor-ligand complex (Equation 1)(42). 

Equation 1 

         

Once receptors are activated and clustered and the focal adhesion complex is formed, 

there is a change in the association constant (Ka) of the ligand-receptor interaction (Equation 2) 

(16). The clustering of the receptors to form this complex results in a change in the probability of 

the ligand being bound to the receptor, thereby increasing the concentration of receptor-ligand 

complexes. 

Equation 2 

                             

 

Due to its natural role in promoting and guiding growth of axons in the developing CNS 

and adult PNS and the lack of effective axonal growth-promoting strategies when damage 

occurs, the potential of laminin to elicit axonal regeneration after nervous tissue injury is of 

clinically relevant interest.  Since aLam was found to be a better promoter of neurite extension 

than nLam, which is the typically used laminin polymer substrate in neuronal cultures, 

investigation of the mechanisms underlying aLam-induced axonal growth is of particular 

importance as it ma y reveal novel therapeutic targets that would support the development of 

materials that effectively promote axonal regeneration after nervous tissue damage.  Having a 

well-characterized in vitro model system for screening/evaluating materials for growth dynamics 

under live imaging would be a highly valuable tool.  
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1.3 MICROCONTACT PRINTING FOR LIVE IMAGING ASSESSMENT 

Microcontact printing (µCP) is a combination of soft lithography and stamp printing, most often 

performed with polydimethylsiloxane (PDMS) stamps made from etched glass or silicon master 

reliefs.  This technique was first utilized to pattern gold (43) and has since been utilized in many 

electronic and cellular biology applications.  One important benefit of using this technique is that 

the etched glass or silicon master relief allows for a high degree of pattern reproducibility.  A 

stamp can be used many times and easily be replicated in case some damage occurs.  T he 

concept behind µCP is that a particular material is used to create a reservoir of “ink” absorbed 

into the PDMS stamp (Figure 2).  This technique allows for µm level control over patterning of a 

substrate and, therefore, in biological applications, µm level control over the direction and 

surface to which cells will attach and migrate and/or grow.   
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Figure 2 Microcontact Printing with 10% w/v SDS release layer 

 

 

 

Previously, using printing of a variety of ECM and non-ECM substrates, this technique 

has been shown to direct both neuronal and non-neuronal cell attachment and growth (44-48).  

An additional advantage is that this technique allows tracking of axonal growth cones because of 

the pattern-directed growth.  On a non-patterned substrate axons will grow indiscriminately in all 

directions, making accurate quantifiable comparisons of dynamic growth difficult.  The pattern-

directed growth of axons on stamped substrates, however, allows for easier tracking and thus 

measuring of growth speed and cell-cell interactions.   
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1.4 PERIPHERAL INJURY AND REPAIR 

In the US, up to 5% of people entering level 1 trauma centers have some type of damage to the 

peripheral nervous system leading to paralysis and/or neuropathic pain (5).  The axons injured in 

PNI derive from motor neurons located in the spinal cord ventral horn and/or sensory neurons 

located in the dorsal root ganglia.  Because PNI occurs frequently on the battlefield much of our 

current knowledge has been gathered in wars such as the American Civil War and the World 

Wars I and II (49-51).  Due to the high variety of causes and the fact that injured nerves may 

contain either motor or sensory axons  or both, the level of ultimate impairment (and recovery) is 

often unpredictable.  PNIs are most commonly categorized using the Seddon (49) or Sunderland 

(50) classification scheme.  Seddon classifies injuries into three categories termed “neurapraxia” 

(intact axon, loss of myelin or ischemia), “axonotmesis” (axon loss and variable stromal 

disruption) and “neurotmesis” (axon loss and complete disruption of endoneurial tubes, 

perineurium and epineurium) (49).  S underland classifies injuries in five degrees, the first of 

which is equivalent to Seddon’s “neurapraxia” and the fifth to “neurotmesis”.  In Sunderland’s 

classification scheme, the “axonotmesis” classification is further divided into second, third and 

fourth degree injuries depending on the degree to which the endoneurial tubes, perineurium and 

epineurium are intact or disrupted(50).   

While axons in the damaged peripheral nerve exhibit a relatively high intrinsic level of 

regeneration, the recovery of function is typically limited and largely dependent on the size and 

location of the defect.  Injuries causing greater than second degree severity typically require 

some surgical intervention (52).  Currently, the gold standard in surgical repair of moderate to 

long distance PNI is grafting of an autologous nerve, commonly the sural nerve, which connects 

proximal and distal nerve stumps and provides a Schwann cell-filled guidance conduit for 
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growth-promotion and guidance of severed axons (53).  T his gold standard approach remains 

suboptimal in that it invariably leads to loss of function at the donor site, and potential mismatch 

in graft size.  A n alternative approach is the use of allogeneic genic grafts but these require 

immune suppressors which may cause unwanted side effects.  T ime is of the essence when 

considering surgical treatments for PNIs.  If a motor nerve is damaged, the treatment window for 

axon regeneration and re-innervation is 18-24 months, after which time muscle atrophy is often 

an unsurmountable obstacle to functional recovery (52).  This therapeutic window is longer if the 

lesion is to a sensory nerve since their target end organs generally degrade much slower (52).  To 

maximize the overall level of functional recovery after PNI, treatments designed to encourage 

and/or enhance axonal regeneration should be implemented as soon as medically possible, 

especially with injuries involving motor axons.  

The use of biomaterials for peripheral nerve repair has received ample attention in the last 

decade.  It is a rapidly expanding field of pre-clinical and clinical research.  Due to the relative 

accessibility of many peripheral nerves, many strategies involving conduits have been 

investigated for their PNI repair potential.  Conduits become especially important in neurotmesis 

injuries where the guidance provided by the perineurium and epineurium has been disrupted.  

When one or more of these sheaths are left intact, as in axonotmesis injuries, injectable, growth-

promoting molecules/materials may be preferred as they do not  carry the risk of nerve 

compression associated with conduits. 
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1.5 SPINAL CORD INJURY AND REPAIR 

SCI produces an immediate and ongoing loss of nervous tissue often resulting in (thus far) 

untreatable loss of function, which has devastating personal and societal consequences. The most 

prevalent mechanism of SCI in humans is a contusion which typically presents in the formation 

of fluid-filled cystic cavities in the central spinal cord surrounded by a rim of spared white 

matter.  T hese anatomical incomplete contusions often result in complete loss of motor and 

sensory function.  A recent study conducted by the Dana and Christopher Reeves Foundation 

revealed that approximately 1.27 million people in the US alone are living with some type of 

paralysis as a result from SCI (54).  In the US, each year, there are approximately 12,000 new 

cases of SCI, which means that the group of people living with a spinal cord injury is steadily 

growing (54).  SCI results in physiological, sociological and psychological problems and a range 

of functional impairments, which are mostly dependent on the type, severity, and location of the 

initial injury.  Medical expenses and lifestyle changes associated with these injuries are costly to 

both the injured individuals and society.  Depending on t he level and severity of injury, the 

lifetime cost of SCI ranges between 0.5-3 million dollars per patient (54).  The personal and 

societal consequences of SCI drive the search for treatments that lead to biologically significant 

recovery of function (54, 55). 

There are three main mechanisms that are thought to contribute to recovery of function 

after a SCI: neuroprotection, rehabilitation, and regeneration. Neuroprotective approaches aim to 

limit the secondary loss of healthy nervous tissue which may lead to decreased overall loss of 

function and/or increased prospects for future repair strategies.  Neuroprotective approaches need 

to be initiated soon after injury to maximize the reparative effects. Rehabilitation, typically 

through physical therapy and/or electrical stimulation paradigms, aims to induce axonal plasticity 
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in spared axonal circuits that could lead to reorganization and increased functional connectivity.  

Regenerative approaches aim to promote axonal re-growth and re-connection with the original or 

new target neurons which could alone or in combination with targeted rehabilitative strategies 

lead to increased recovery of function.  The studies described in this thesis focus on an approach 

to promote axonal regeneration.  Axonal severance after SCI leads to interruption of signaling 

between the brain and spinal cord segments below the injury site and, ultimately, the periphery.  

Adult mammalian neurons retain the intrinsic ability, albeit to a limited degree, to regenerate 

their damaged axon.  However, the lack of (nervous) tissue, which could serve as a growth 

substrate, and the presence of axonal growth-inhibitory molecules, expressed by reactive 

astrocytes and in oligodendrocyte myelin debris, in and around the injury site, limit regeneration 

of axons and, consequently, their contribution to functional recovery.  Previous studies have 

shown that the introduction of axonal growth-promoting molecules/materials in the injured 

spinal cord may elicit axonal regeneration which in some, but not all, cases was accompanied by 

functional improvements. These partially successful studies are a major motivation for the 

development of novel more effective axonal regeneration-promoting biomaterials.  

1.6 GOALS OF THESIS 

The goals listed below guided the planning and design of each of the studies included in this 

Thesis.  The chapters in which the studies are described is listed in parenthesis.  All study results 

and future directions are discussed in the General Discussion section (Chapter 4). 

1) To develop and utilize a novel in vitro system to test the molecular and cellular 

mechanisms of aLam as a growth-promoting molecule (Chapter 2.1)  
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2) To employ microcontact printing and live imaging to create a system in which to 

study aLam’s effect on growth cone dynamics and glial cell involvement (Chapter 

2.2) 

3) To test the repair potential of aLam as an injectable regenerative therapeutic using an 

adult  rodent model of PNI (Chapter 3.1) 

4) To test the repair potential of aLam as an injectable regenerative therapeutic using an 

adult rodent model of SCI (Chapter 3.2) 
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2.0  SIGNALING MECHANISMS OF ACIDIC LAMININ-MEDIATED AXON GROWTH IN 

VITRO 

Previous studies showing that a substrate of aLam enhances neurite growth of embryonic 

cortical neurons in vitro (2), supporting the development of aLam as a therapeutic for nervous 

tissue repair.  At present, the mechanisms underlying the axon growth-promoting ability of aLam 

are unknown.  E lucidating these mechanisms will expand our current knowledge and possibly 

reveal novel targets supporting the development of more effective strategies to promote axonal 

regeneration and functional recovery after nervous tissue damage.  

 

2.0.1 In vitro model system 

 

The in vitro model systems typically used to investigate the potential of particular 

molecules to elicit and/or enhance neurite outgrowth contain embryonic neurons growing on a  

substrate of the molecule in question.  The main reason is that embryonic neurons, in contrast 

with adult neurons, retain their growth competence to a relatively large degree, allowing for a 

less demanding evaluation of the neurite outgrowth.  Previously, the effects of aLam on neurite 

outgrowth has been studied using embryonic neurons cultured on a substrate of aLam(1).  

However, the vast majority of injuries to peripheral nerves and the spinal cord occur in the adult 

and are ‘closed injuries’ with an intact epineurium and dura mater, respectively, which would be 
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best treated using injectable therapeutics.  So far, the effects of injectable, non-substrate, aLam 

on neurite outgrowth of adult neurons are unknown.  We have developed here a novel in vitro 

model system containing adult neurons with aLam presented as an unbound therapeutic to better 

model the specific circumstances of the majority of PNIs and SCIs (Figure 3).  In this novel 

culture model system, the neurons are grown on poly-d-lysine (PDL) which itself provides no 

support to neurite outgrowth.  We have used this model system to evaluate the effects of aLam 

on neurite outgrowth on t he molecular level, using antibody blocking and SDS-PAGE and 

Western Blot, and the cellular level, using live cell imaging and immunocytochemistry (Chapter 

2.1).  In order to elucidate what occurs during an active growth period, a microcontact printed 

pattern of PDL was tested in its ability to guide neuronal outgrowth and allow for a more 

rigorous and clear visualization of the dynamic growth process (Chapter 2.2). 

Figure 3 In vitro model system  

With this model we enabled investigation of the effects of different laminin structures 

(aLam and nLam) on integrin binding and activation and neurite growth.  This provided novel 
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insight into the testing of signaling capability of self-assembling ECM molecules in an 

environment where they are not acting as a primary substrate for cell attachment.  This system 

can potentially be used to differentiate between factor-like signaling and substrate-signaling of a 

variety of ECM molecules/binding motifs that have so far only been investigated as a substrate 

for neurons.  T his is a new and innovative in vitro approach to studying ‘substrate-like’ 

molecules that are being investigated as injectable treatments following spinal cord and 

peripheral nerve injury.   

2.1 ACIDIC LAMININ POLYMER AND INTEGRIN-MEDIATED SIGNALING 

2.1.1 Introduction 

Regeneration of axons (or lack thereof) following a traumatic injury to the nervous system is a 

widely studied, yet somewhat poorly understood phenomenon.  T here are both intrinsic and 

extrinsic factors that contribute to the anatomical and physiological outcome.  Studies of intrinsic 

factors are mostly focused on t he intracellular changes occurring naturally with age, or as a 

consequence of damage, including gene expression, protein transport and physiological 

properties.  E xtrinsic factors contributing to the level of endogenous axon regeneration in 

damaged nervous tissue include invasion and activation of inhibitory macrophages and 

microglia, scar formation, myelinating glial state changes, availability of growth factors and the 

breakdown in both structure and function of the extracellular matrix (ECM). ECM provides 

important scaffolding for cellular growth as well as a signaling ligand for membrane-bound 

receptors.  T hese cell adhesion receptors affect gene expression for growth, direction and 
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apoptotic signaling cascades within the cells. Different components of the ECM typically define 

the niche in which a cell resides.  M uch of CNS development is driven and arrested through 

ECM (and other non-matix extracellular signaling molecules)-receptor interactions.  The integrin 

family of receptors, specifically, interact with many of the different ECM proteins including 

fibronectin, collagen and laminin (56).  In order to evaluate the mechanisms of structurally 

different laminin polymers for axon outgrowth, the in vitro experiments described here have 

been purposefully designed to gather information about its potential for use as a s ignaling 

molecule interacting with adult, terminally differentiated neurons.  We will test the hypothesis 

that aLam signals through integrin receptors in order to promote the neurite outgrowth 

competence of adult neurons in vitro. 

2.1.2 Materials and Methods 

2.1.2.1 Reagents 

aLam and nLam: Laminin-111 (Invitrogen, 1mg/ml in saline) was diluted to a final concentration 

of 50μg/ml in either a Tris buffer (20mM, pH 7, nLam) or Sodium Acetate buffer (20mM, pH 4, 

aLam) as described in (2). ALam or nLam was suspended in culture medium for cellular 

exposure. 

Dissociation and Culture Media: Dulbecco’s Modified Essential Medium (DMEM) + 10% Fetal 

Bovine Serum (FBS) + 1% Penicillin Streptomycin (Pen/Strep). 

2.1.2.2 Neuron cultures 

DRG dissection and culture protocol were modified from Malin et al (57) for use with adult rat 

neurons cultured on poly-D-lysine.  Dorsal root ganglia (DRG) neurons were harvested from the 
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L3-L5 spinal section of adult female Sprague-Dawley rats (200-250 g) under deep sedation of 

Ketamine (90 mg/kg)/ Dexmedetomidine (0.75 mg/kg) (IP) to maintain the integrity of the 

neurons.  Laminectomy was performed to expose L1-L6 spinal cord and the L3-L5 DRG pairs (6 

ganglia total) were dissected (Figure 4).  Individual ganglia were thoroughly cleaned from blood 

and nerve fragments and dissociated enzymatically (10 min papain (40 units/mL, Worthington, 

#3126) followed by 20 min collagenase type II (1580 units/mL, Worthington, #4176)/dispase 

type II (8.5 units/mL, MB, #165859) under agitation at 37 ºC) and mechanically (15 x trituration 

in HBSS (-Ca -Mg) with fire-polished glass pipette, centrifuge at 4.5 min, 3000 g to pellet 2x). 

The cells were transferred to pre-warmed culture medium (37ºC) and 100 uL of cell suspension 

was added to each poly-d-lysine (PDL, 100 μg/mL, Millipore, #A-003-E) coated 15 mm glass 

cover slip (Ted Pella, #26021) in a 12-well plate and placed into a humidity controlled incubator 

(5 % CO2/37 °C). After 2 h, neuronal cultures were treated with either culture medium alone or 

culture medium containing 10 % aLam or nLam (50µg/mL), followed by 24 h incubation. 

Cultures were then prepared for either immunostaining or gel electrophoresis. 
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Figure 4 Schematic of rat spinal cord with dorsal root ganglia (DRGs). Location of L3-L5 ganglia lies 

directly rostral to iliac crest 

2.1.2.3 Immunostaining and Axon Length Quantification 

Cell cultures were fixed with 4 %  paraformaldehyde (PFA) for 10 m in at room temperature. 

Nonspecific binding sites on fixed cells were blocked using 5% Normal Goat Serum (NGS) and 

permeablized with 0.3 % Triton in .01M Phosphate Buffered Saline (PBS) for 30 m inutes at 

room temperature.  C ells were then incubated with primary antibodies diluted in blocking 

solution for either 2 h a t room temperature or up to overnight at 4 °C  (Table 1).  F luorescent 

secondary antibodies diluted in 0.01 M  PBS (Alexa Fluor®, life technologies) (Table 1) were 

added for 1 h a t room temperature, followed by DAPI counterstaining and coverslips were 

inverted onto microscope slides. Axon lengths were determined using a Zeiss Axio Observer 

inverted fluorescent microscope with Zeiss Plan Apochromat objective (20 x air, NA 0.8), and 

Neurolucida (MBF Bioscience) software.  Slides were relabeled to blind experimental conditions 

and the 10 ne urons with the most substantial growth from each coverslip (minimum 3 

coverslips/condition) were identified for tracing and quantification.  Each experiment contained 
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3 biological replicates and at least 3 technical replicates. Graphs are pooled results of all cells 

analyzed (minimum 90 cells/group). 

2.1.2.4 Integrin Blocking  

Cells were harvested and plated as described above.  Following plating, cells were incubated at 

37 °C and 5 % CO2 with integrin-blocking antibodies at a concentration of 20 µg/mL (see Table 

1) in culture medium for 2 h. Then, fresh culture medium alone or containing aLam or nLam was

added to each well, and the incubation continued for 24 h. The cells were then prepared for either 

immunocytochemistry or protein gel electrophoresis. PDL was chosen as a cell substrate for all 

in vitro experiments because it binds neurons non-specifically, so that initial cell adhesion did 

not confound the evaluation of integrin-laminin interactions. 

2.1.2.5 Electrophoresis and Western Blot 

In order to obtain enough protein for detection, cells from six pairs of DRGs (L1-L6)/2 rats were 

dissected and cultured for 24 h as described above.  The cells were then trypsinized using manual 

agitation for 12 min, rinsed, and lysed using PMSF-RIPA buffer.  T he proteins from the cell 

lyses were combined with Laemmli Buffer (3:1) in boiling water for 5 min, placed on wet ice 

and separated by denaturing polyacrylamide gel electrophoresis (SDS-PAGE) (125 V, 75 min) 

using Novex® precast Tris-glycine gels (life technologies, EC60255BX5). A total of 15 µL 

lysate+buffer was loaded per well and transferred overnight at 4 °C to nitrocellulose membranes 

(100 V).  
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2.1.2.6 Protein Staining and Visualization 

Nonspecific binding sites of proteins on the membranes were blocked using 1 x TBS-T + 5 % 

blocking (Bio Rad, #107-6404XTU) 1 h at room temperature. Membranes were then incubated 

with primary antibodies diluted in blocking solution (see Table 1) for 1 h at room temperature 

followed by overnight at 4 ˚C. After rinsing, membranes were exposed to Horseradish 

Peroxidase (HRP)-conjugated secondary antibodies for 1 h at room temperature.  Protein bands 

were visualized using enhanced chemiluminescent (ECL) substrate (SuperSignal West Femto, 

ThermoScientific, #34095) followed by 10 s ec exposure to ECL Hyperfilm and developed. 

Quantification was performed using ImageJ software gel analysis tool (58).  

Table 1 Working Concentrations of Primary and Secondary Antibodies 

Experimental Procedure Antibody Specifications Working Concentration 
(μg/mL) 

Immunocytochemistry Anti-ß-III Tubulin (purified rabbit monoclonal; Covance, 
MRB435P) 

0.5 

Immunocytochemistry Alexa Fluor 488 (α-rabbit, IgG; Molecular Probes, A11008) 0.4 

Antibody blocking Anti-α1 Integrin (rabbit polyclonal;  Antibodies-online, 
ABIN343462) 

20 

Antibody blocking Anti-α3 Integrin (mouse monoclonal; BD, 611044) 20 
Antibody blocking Anti- α5 Integrin (rat monoclonal; antibodies-online, 

ABIN135245) 
20 

Antibody blocking Anti- α6 Integrin (CD49f, purified rat monoclonal; BD, 
555734) 

20 

Western Blot Anti-GADPH (rabbit polyclonal; Sigma, G9545) 0.125 
Western Blot Anti-ß-III Tubulin (purified rabbit monoclonal; Covance, 

MRB435P) 
1 

Western Blot Vinculin (mouse monoclonal; Sigma, V9264) 0.1 

Western Blot Anti-α3 integrin (mouse monoclonal; BD, 611044) 0.5 
Western Blot Anti-α1 Integrin (rabbit polyclonal;  Antibodies-online, 

ABIN343462) 
1 

Western Blot Goat α-rabbit (IgG, HRP; Invitrogen, G21234) 0.2 
Western Blot Goat α-mouse (IgG, HRP; Invitrogen, G21040) 0.2 
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2.1.2.7 Statistical Analysis 

Differences in outgrowth data was tested using the Kruskal-Wallace test for nonparametric data 

in SPSS software package (SPSS version 21, IBM).  Data, as expected failed homogeneity of 

variance assumption required for standard ANOVA testing (medium only group had very low 

variance as most cells grew very little or not at all, while other groups had some cells with very 

limited and others that had extensive outgrowth).  All other measurements satisfied assumptions 

and therefore F-statistic (ANOVA) was calculated using SPSS statistical software package. 

Significance was set at ≤ 0.05. 

2.1.3 Results 

2.1.3.1 aLam promotes neurite growth from adult DRG neurons in vitro better than nLam 

No difference in neuronal attachment was detected between groups (p > 0.05, data not shown) 

with all cells plated on PDL coated glass coverslips.  Photomicrographs are presented in Figure 5 

to illustrate the outgrowth of the neurons under the various conditions.  Q uantification 

demonstrated that neurons presented with aLam exhibited significantly greater neurite outgrowth 

(p < 0.001) than those presented with nLam or medium only (Figure 5). 
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Figure 5 Neuronal Outgrowth Profiles.  Graph: Box Plot of median neurite outgrowth per group after 

24hr incubation, Independent-Samples Kruskal Wallis test significance <.001 between groups.  Images: Acidic 

laminin (aLam), Neutral laminin (nLam), Medium alone (βtubulin-III (green), DAPI (blue); scale bar = 50µm.  

Note: Brightness of all color channels equally enhanced to better visualize outgrowth). 

2.1.3.2 aLam and nLam exhibit differential interactions with α1 and α3 integrins 

We used integrin blocking to study laminin-cell communication.  Immunocytochemistry 

for α1 and α3 integrins revealed that both receptors are present on the neurons in our cultures 

prior to exposure to laminin (Figure 6).  With any of the used antibody combination, differences 

in cell adhesion of the neurons were not observed (p > 0.2, data not shown).   
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With blocking of α1 integrin only, the growth-promoting capabilities of aLam, but not 

nLam were unaffected.  T he average measured outgrowth of cells exposed to aLam was 

unchanged following α1 integrin blocking relative to unblocked aLam control (p > 0.3), while 

that of cells exposed to nLam was significantly decreased (p < 0.01) (Figure 6). 

With blocking of α3 integrin only, the neurite growth responses did not significantly 

decrease in aLam or nLam groups relative to unblocked controls (p > 0.05).  On the other hand, 

blocking of both α1 and α3 integrin resulted in a significant decrease in outgrowth of neurons in 

aLam (p < 0.001) and nLam (p < 0.01) (Figure 6).   
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Figure 6 Neuronal Outgrowth Profiles after Antibody Blocking.  Images: DRG neurons plated on poly-

D-lysine with antibody blocking of α1 integrin(first row), α3 integrin (second row) and α1+ α3 integrins (third row),   

+aLam added to culture (first column), +nLam added to culture (second column). (βtubulin-III (green), DAPI (blue); 

scale bar = 50µm); Note: brightness of all color channels equally enhanced to better visualize outgrowth in images.   

Graphs: Mean neurite outgrowth (µm) per each condition.  F or aLam condition * denotes p < 0.001; for nLam 

condition * denotes p < 0.01, # denotes p < 0.05. 
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To test the specificity of the α1 and α3 integrin involvement in laminin-mediated neurite 

outgrowth, additional controls for the blocking experiments that included α5 (a non-laminin 

associated integrin) and α6 (a non-growth laminin-associated integrin) were similarly evaluated 

with immunostaining/axon quantification analysis. The results showed that neither α6 nor α5 

blocking resulted in significant decrease in outgrowth (p >0.05) under either experimental 

condition (data not shown), suggesting that aLam and nLam signal their neurite growth activity 

through α1 and α3 integrins. 

2.1.3.3 Blocking α1 integrin leads to laminin structure-dependent changes in the relative 

expression of α3 integrin  

Protein electrophoresis and western blotting were performed on cell lysates from integrin 

blocking experiments to calculate the relative protein concentrations.  We confirmed that the 

levels of glyceraldehyde 3-phosphate dehydrogenase (GADPH) were similar between groups, 

allowing it to  be used as a standard to compare integrin levels (Figure 7).  In the unblocked 

condition, there are similar relative expression levels of α1 and α3 integrins in the presence of 

either aLam or nLam (Figure 7A, C).  When α1 integrin was blocked, followed by exposure to 

aLam, cells exhibit a relative increase in the expression of α3 integrins (Figure 7, D).  When α1 

integrin was blocked, followed by exposure to nLam, no change in α3 integrin expression was 

detected (Figure 7, B).   
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Figure 7 Increased α3 Integrins Expression After α1 Block.  A) Relative α3 integrin protein levels from 

unblocked DRG cell lysates exposed to nLam. B) Relative α3 integrin protein levels from cell lysates where α1 

integrin has been blocked followed by exposure to nLam. C) Relative α3 integrin protein levels from unblocked 

DRG cell lysates exposed to aLam. D) Relative α3 integrin protein levels from cell lysates where α1 integrin has 

been blocked followed by exposure to aLam. 

2.1.3.4 The presence of aLam increased relative amounts of Vinculin 

Total amounts of vinculin in cultures containing aLam, nLam or media alone were evaluated 

using SDS-PAGE and Western Blot.  These semi-quantitative results revealed relative increases 

in vinculin protein concentration compared to GADPH levels. The highest level of vinculin was 

found in neurons exposed to aLam, while the lowest levels were found in neurons exposed to 

medium only (Figure 8).   
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Figure 8 Vinculin Protein Expression Levels.  Relative vinculin protein levels in cell lysates from DRG 

cultures exposed to aLam are greater than nLam or medium alone. 

2.1.4 Discussion 

Laminin is known for its effects on neural outgrowth in vivo during development and as a 

substrate for attachment in neuronal cultures in vitro.  S o far, the effects of laminin as an 

unbound signaling molecule for neurite outgrowth in vitro have not been investigated.  In the 

present in vitro study we demonstrate that: 1) aLam and nLam can act as a signaling molecule to 

promote neurite outgrowth of adult neurons; 2) aLam is a significantly stronger promoter of 

outgrowth of adult neurons in vitro than nLam; 3) aLam and nLam convey their actions 

differentially through α1 and α3 integrins; 4) aLam, but not nLam, causes upregulation of α3 

integrins under blocking of α1 integrin; 5) aLam causes an upregulation of vinculin.  O ur 

findings support the notion that unbound a Lam promotes enhanced outgrowth in vitro by 

increasing integrin activation leading to enhanced actin polymerization and neurite growth.  The 
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data from this study confirm the use of aLam as a signaling molecule to promote neurite 

outgrowth in vitro and its potential to affect axon regeneration in damaged nervous tissue.   

 

We demonstrate that laminin polymers can act as a signaling molecule to promote neurite 

outgrowth of adult neurons in vitro, and that aLam, is a superior to nLam in growth promotion 

signaling. To our knowledge this is the first demonstration that laminin polymers act as a 

signaling molecule enhancing the neurite outgrowth competence of adult neurons. The finding 

that aLam is a stronger promoter of neurite outgrowth than nLam agrees with earlier 

observations made in an in vitro model system containing embryonic neurons on a substrate of 

the two laminin polymers (2). However, our novel model system introduces two important 

features which significantly enhance the clinically relevance of the potential use of laminin 

polymers as nervous tissue repair-supporting molecules. One, we employed adult neurons which 

is an important and clinically relevant expansion of our current knowledge that aLam enhances 

neurite outgrowth of embryonic neurons (2), because the majority of nervous tissue injuries 

occur in adults. Two, we presented unbound, free, laminin polymers to the cultured adult 

neurons, rather than as a bound substrate, which is clinically relevant because most injuries to 

peripheral nerves and spinal cord are ‘closed injuries’ that prefer the use of injectable 

therapeutics. Together, the demonstrated enhancement of the neurite growth-promoting 

competence of cultured adult neurons of injectable laminin polymers open new avenues for using 

the development of effective strategies for repair of damaged nervous tissue.  

 

We used molecular biology techniques to start understanding how aLam supports the 

neurite outgrowth abilities of neurons.  Previous studies have suggested that laminin-111 signals 
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its growth promoting effects though α1 and α3 integrins, although there are a variety of integrin 

receptors for laminin.  Our results revealed that both aLam and nLam signal their neurite growth-

promoting actions also through the α1 and α3 integrins.  The use of these two receptors appears 

to be specific for these polymers because we also showed that α5 integrins, which do not bind 

laminin, and α6 integrins, which bind laminin but is not primarily involved in neurite outgrowth, 

were not involved in aLam and nLam-mediated actions on ne urite outgrowth in our model 

system.  

If both types of laminin polymers signal through the same two receptors, how can then 

their total effect on ne urite outgrowth be different?  O ne possible reason is that the different 

polymers have different effects on the presence of the integrins on the cell surface.  In general, 

an increase in the total amount of integrins would cause a stronger output.  O ur data did not 

support the idea that aLam would elicit an increase in the total amount of either α1 or α3 

integrin.  Interestingly, our integrin blocking experiment demonstrated that aLam, but not nLam, 

causes a relative increase in α3 integrin when α1 integrin was blocked.  The role of this up 

regulation of α3 integrin by aLam, under non-physiological circumstances, is unknown but may 

indicate a co mpensatory effect to preserve the overall outgrowth effect.  T his may be of 

importance for future applications under conditions where neurons do not express or only 

express the α1 integrin to a low degree.  This finding enhances the overall impact of aLam as a 

neurite growth-promoting molecule.  Future studies aiming at evaluating neural selectivity of the 

growth-promotion elicited by aLam are needed to further elucidate this phenomenon. 

An alternative, or complementary, reason for our observed differential effects of the 

polymers on neurite outgrowth even though they bind the same integrin receptors, is differential 

levels of activation.  Upon ligand binding to integrins, intracellular events initiate clustering of 
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various proteins forming a focal adhesion complex. One of the crucial protein components of this 

complex is vinculin and our data demonstrate that the expression of this protein was increased in 

the presence of aLam.  T hese findings indicate that aLam causes an increase in integrin 

activation which could lead to enhanced actin polymerization and neurite outgrowth.         

The knowledge of multi-integrin binding of the polymers resulting in enhanced neurite 

growth is important for the future development of synthetic biomaterials to be employed in 

nervous tissue repair strategies. Based on t his, such biomaterials could be designed to mimic 

aLam in its potential to elicit growth by enhanced formation of the focal adhesion complexes via 

co-binding α1 and α3 integrins.  Another way to interpret this finding is to consider the potential 

of laminin in this configuration to have a complementary binding site, as is the case in 

fibronectin (59).  Possibly, such a structural configuration could bring two integrin-binding 

ligands into close proximity, allowing for different binding affinity or activation state.  If this is 

the case, the specific structure and presentation of binding ligands relative to one another is 

essential to elicit outcomes.  F uture studies testing this hypothesis by presenting these two 

peptides in close proximity at an optimal distance may further improve effects on ne urite 

outgrowth. 
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2.2 MICROCONTACT PRINTING OF POLY-D-LYSINE FOR LIVE IMAGING 

ANALYSIS OF AXON GROWTH 

2.2.1 Introduction 

Microcontact printing (µCP), a method for patterning substrates on a micron level accuracy, is a 

useful tool for creating patterns for directed growth on specialized culture dishes or coverslips 

specifically designed for use with live imaging.  This technique is especially enticing because it 

can utilize many different substrates, including growth inert ones, like poly-d-lysine, for the 

targeted evaluation of growth-promoting molecules delivered in the media.  T his gives it an 

advantage over other growth-directing tools such as microfluidic devices, which require a 

minimal amount of growth-promotion within the substrate in order for axons to enter the 

designated chambers.  When we attempted to use microfluidics for evaluation of unbound 

laminin with a PDL substrate, all growth remained within the soma reservoir and little to none 

was not drawn into the axon chambers, this phenomenon did not occur when laminin was used as 

a substrate.  For our purposes here, developing this system into a successful tool for use with 

PDL and live imaging of neurite growth could provide valuable information not otherwise 

readily available.   

In this study, we utilize the µCP technology to guide neurite outgrowth of adult neurons 

in order to track and quantify additional aspects of growth mediated by laminin polymers using 

live imaging and differential interference contrast (DIC) microscopy.  
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In this chapter we will test the hypothesis that utilizing µCP patterned PDL substrates 

will allow for neuronal tracking to evaluate aLam elicited growth dynamics, including secondary 

interactions with glial cells and an increase in growth speed. 

2.2.2 Materials and Methods 

2.2.2.1 Reagents 

Culture Medium:  The culture medium contained 25 mL Neurobasal®-A (Gibco) + 0.5 mL B-27 

+ 0.5 mM Glutamine + 1 % Penicillin Streptomycin (Pen/Strep). 

Imaging Medium: The medium used for imaging contained the culture medium + 25 mM 

HEPES. 

aLam and nLam: Laminin-111 (Invitrogen, 1 mg/ml in saline) was diluted to a final 

concentration of 50 μg/ml in either a Tris buffer (20 mM, pH 7, nLam) or Sodium Acetate buffer 

(20 mM, pH 4, aLam) as previously described (2) and as used on our in vitro investigation of the 

underlying mechanisms (see Chapter 2.1). ALam or nLam were suspended in culture medium 

before added to neuronal cultures. 

2.2.2.2 Preparing culture dishes 

Using a bench top drill press equipped with a ½ inch hollow bit, 35 mm culture dish was fixed 

onto a stage and a hole drilled in the center of the dish. Edges were smoothed to ensure a clean, 

flat surface for attachment of a 25 mm PDMS spin-coated glass coverslips. The coverslips were 

attached using a thin layer of PDMS along the edge of the drill hole on the inside of the dish and 

gently pressing it to ensure a seal is made.  Dishes are then cured for 24 h at 65 ºC.  To sterilize, 

dishes with attached coverslips are treated in a UVO (UV light and Ozone gas) cleaner for 15 

min prior to stamping.  
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2.2.2.3 Alternate coverslip preparation 

As an alternate to the culture dishes, we prepared 40mm PDMS spin-coated coverslips with µCP 

of patterned PDL for use in a Bioptechs closed chamber system (Bioptechs, FCS2/FCS3) live 

imaging chamber specifically designed for these size coverslips.  Coverslips were prepared in the 

same manner as the 25mm ones described in 2.2.2.2.  On these coverslips, cells were allowed to 

attach and grow for 24 h prior to transfer into the chamber followed by 12 h of  live imaging.  

This system was implemented because it allows for the objective to access a greater area of the 

coverslip, which included the entire stamped area.  

2.2.2.4 Microcontact Printing of Poly-D-lysine 

Microcontact printing of poly-D-lysine was done on culture dishes or coverslips (section 2.2.2.2 

and 2.2.2.3).  Stamps were premade and generously provided by Dr. Feinberg’s lab at Carnegie 

Mellon University. The pattern used was 20 µm thick lines of PDL at 30 µm intervals.  PDMS 

stamps were sonicated pattern side up in 10 % W/V Sodium Dodecyl Sulfate (SDS) for 30 min 

(SDS was used as release layer to enhance transfer of PDL from stamp to coverslip (60)), then 

transferred immediately to a sterile culture hood.  Stamps were dried with a nitrogen air gun and 

coated with 200 µL of 200 µg/mL PDL.  Once pipetted onto stamp, maximum coverage was 

ensured by gently dragging the edge of the pipette tip over the PDL, using the surface tension to 

expand droplet to each corner of the stamp.  Stamps with PDL were kept under sterile conditions 

at room temperature for 1 h t o allow adequate “inking”.  After this incubation period, stamps 

were rinsed twice in sterile diH2O and dried with nitrogen air gun.  Stamps were then inverted 

onto PDMS-coated coverslips directly over the center hold drilled into the culture dish and 

gently tapped using sterile forceps to ensure complete contact.  After 5 min, they were gently 
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removed without disrupting the pattern, and either re-inked or stored for future use.  S tamped 

dishes were filled with sterile diH2O, wrapped in Parafilm and stored at +4 ºC until use.  

2.2.2.5 Cell Culture and Live Imaging 

DRG neurons were dissected and prepared for culture as described previously (see 2.1.2.2 

Neuronal Cultures).  Prior to plating, cells were run through a 50 µm cell strainer to remove 

any connective tissue debris.  Just prior to use, µCP dishes were treated with 1 % Pluronics F-27 

solution for 5 min followed by 3 washes with sterile diH2O. Then all fluids were removed and 

200 µL of strained cells were plated on the µCP dishes, incubated for 2 h to allow attachment, 

and then filled with culture media and incubated for 10 h (37 ºC, 5 % CO2) to allow initial 

growth to occur.  Cultures were then treated with 25 mM HEPES and imaged using Differential 

Contrast Imaging (DIC) on a Nikon T2 Live cell imaging system with an atmospheric and 

temperature-controlled stage (37 ˚C, 5 % CO2) using a Nikon CFI Plan Fluor objective (40 x oil, 

NA 1.3) (for schematic of set-up see Figure 9).  Fifteen different XY coordinates were taken at 

each time point, 10 msec exposure time, 10 min time between acquisitions, for a duration of 12 

h.  Medium containing either aLam or nLam was added at the 1 h time point.  I mages were 

acquired using a P hotometrix camera and videos were collected and processed using NIS 

Elements 4.0 software. 
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Figure 9 Schematic of modified culture dish 

2.2.2.6 Statistical Analysis 

Factorial ANOVA is used to evaluate growth speed, neurite length, and number of neuron-glia 

interactions between aLam and nLam groups. Differences between groups were considered 

significant at p < 0.05. 

2.2.3 Results 

2.2.3.1 Microcontact Printing with SDS release layer is an efficient way of creating 

patterned PDL for axonal guidance in culture 

Prior to live imaging, stamped dishes were evaluated with and without cultured cells and stained 

for visualization. Results indicated that stamping technique was: a) effectively transferring PDL 

in the desired pattern, and b) the patterned lines had sufficient width to allow for cell attachment 

and directional growth.  Figure 10 illustrates a stamped pattern with and without cell attachment. 
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The PDL concentration of 200 µg/mL proved to be optimal for stamping and the 20 µm width of 

the PDL pattern allowed for cell attachment and directional outgrowth.  

Figure 10 Image of poly-D-lysine stamp on PDMS coated coverslip.  (A) Coverslip without cells (goat α 

mouse AF 555; 1:500); (B) with neurons attached (βIII tubulin(red)/S100(green)/DAPI(blue)), arrows denote 

direction of pattern, scale bar=50µm. Note: Images artificially brightened for better visualization. 

2.2.3.2 Neurons did not adhere strongly enough for live imaging outgrowth assessment 

When our cultures were transported for live imaging, there was a noticeable trend that the 

cells were not remaining adherent and there were significantly less cells observed under live 

imaging conditions than initially observed under normal culture conditions.  Cells that remained 
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attached did not achieve significant levels of outgrowth regardless of whether we implemented 

modified culture dishes (Section 2.2.2.2) or alternative stamping (Section 2.2.2.3) methods 

(Figure 11). 

Figure 11-Live Imaging aLam.  12h of live imaging on modified culture dish with stamped PDL revealed 

little adhesion and movement (either growth or direction).   
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2.2.4 Discussion and future studies 

Our results here suggest that microcontact printing holds potential for directed neuronal cell 

grow using a growth neutral substrate (PDL) in culture.  DRG neurons and glial cells were able 

to adhere and neurons extended neurites along stamped PDL.  However, some aspects of this 

method could benefit from further optimization.  D istance between stamped lines may be 

extended to the point that glia cells are unable to bridge them.  Using the current pattern, glia 

appear to have formed bridges between substrate lines, which allowed neurites to grow both in 

phase with the stamped substrate, as well as perpendicular to it.  

When attempting to translate from still post-fixation figures to live imagine, we made 

some interesting observations.  Relatively few viable cells remained on the pattern.  O riginal 

modified imaging dishes restricted the area of focus so that the objective had access to only a 

small percentage of the total stamped area.  This was our initial motivation for utilizing the 

alternative coverslip stamping preparation, which allowed the objective to capture the entirety of 

the stamp.  T herefore we were able to determine that cells were consistently not achieving a 

sufficient level of adherence required for live imaging at any part of the stamped substrate. 

Increasing the width of stamped lines from 20µm to 50µm may encourage greater cell adhesion 

to the pattern. In spite of the limited overall adherence, cells that were captured, using either of 

our methods (dishes or Bioptechs), remained viable for the entire 12h i maging period.  T his 

finding shows that we can successfully image neurons over this period of time using the current 

protocol without loss of viability.  

In order to assess growth dynamics associated with aLam treatment in culture, some 

future design steps may be considered, 1) evaluate different stamped patterns including patterns 

with wider substrate lanes (some DRG cell bodies can reach up t o 50µm in diameter) for 
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stronger soma attachment and wider lanes between growth lane to discourage glial bridge 

formation; 2) optimize timing of imaging so that cells have additional time for stronger 

adherence and outgrowth initiation and implement measures to minimize movement of dishes 

during transport that could initiate sheer force, breaking cell adhesion bonds.  Although 12 h was 

calculated as the optimal imaging time in order to visualize some initial outgrowth to track, this 

was optimized using PDL coated, not stamped dishes, stamped dished appear to require addition 

time to achieve similar level of outgrowth. With the restricted attachment substrate, neurons 

appear to interact less with one another as well as with glial cells.  We could potentially 

overcome some of this by culturing the neurons utilizing a higher plating density.  Overall, this 

technique shows promise for analyzing real-time growth dynamics of cultured adult neurons over 

long periods of time. 
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3.0  TESTING OF ACIDIC LAMININ FOR NERVOUS TISSUE REPAIR 

Our data from chapter two suggests that DRG neurons exposed to aLam in vitro exhibit 

increased growth competence resulting in longer neurites than those in nLam or culture medium 

only without laminin polymers. In this chapter, we will test whether or not aLam has similar 

effects on neurons in vivo and whether this would result in increased repair. DRG neurons in vivo 

are referred to as ‘pseudounipolar cells’ because they have a single axon that splits shortly after 

leaving the cell body with one branch projecting out into the periphery through the peripheral 

nerve while the other branch projects through the dorsal root towards the spinal cord where they 

either terminate in the grey matter of the segment of entry or course through the dorsal columns 

towards the dorsal column nuclei in the brainstem. To test whether the in vitro actions of aLam 

can be translated into in vivo nervous tissue repair, we have elected two models of nervous tissue 

injury that represent each of the two environments, PNS and CNS, in which the bipolar DRG 

neurons extend their axons.  It is well known from the literature that these two environments 

differ in how they respond to an injury and to what degree they support axonal re-growth. By 

considering both types of environments we can more accurately evaluate the potential of aLam 

as a treatment for nervous tissue repair.  W ithin these two environments, we chose clinically 

relevant models of ‘closed’ injuries that would allow injection of the laminin polymers.  In the 

periphery, we utilized a moderate crush injury model (Seddon classification level 
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axonotmesis/Sunderland forth degree-epineurium intact) (49, 50).  C entrally, we utilized a 

contusion injury, which is the most common mechanism of SCI in humans (54). 

For both in vivo studies conducted, all animal care and procedures were done in 

accordance with approved guidelines set by the National Institutes of Health and the United 

States Department of Agriculture and monitored by the University of Pittsburgh Institutional 

Animal Care and Use Committee, protocol approval #12050540.  A ll rats were housed within a 

double-barrier animal facility with 12 h/12 h light/dark cycles and continuous access to fresh air, 

food, and water. 

3.1 ACIDIC LAMININ FOR PERIPHERAL NERVE REPAIR 

3.1.1 Introduction 

The peripheral nervous system is defined as the nerves and ganglia that lie outside of the brain 

and spinal cord.  This environment differs from the CNS in both its glial population (Schwann 

cells and Satellite cells versus astrocytes, oligodendrocytes, and microglia) and access to blood 

supply and nutrient (lack of a blood - peripheral nerve - barrier versus a blood - brain (spinal 

cord) - barrier).  S chwann cells play an important role in the relative larger regenerative 

competence of damaged axons in the PNS (61). Upon injury, Schwann cells dedifferentiate into 

nonmyelinating cells that, along with macrophages, clean up damaged myelin and other cellular 

debris, produce ECM, secrete numerous growth factors, and form Bands of Bungner, which all 

together create conducive regeneration pathways for severed axons.  Following successful axon 

regeneration, Schwann cells differentiate back to their mature state and myelinate the new 
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processes (61). One of the ECM components produced by Schwann cells is laminin which in the 

PNS plays an essential part in the regeneration response.  It was shown that in mice in which 

Schwann cells were genetically altered to not produce and secrete laminin the regeneration 

response was significantly impaired following a sciatic crush injury(62).  DRG neurons express 

α1 and α3 laminin-binding integrins at the surface of their cell bodies and growth cones in 

culture as well in vivo (Figure 10). 

Figure 12 Integrin Expression of DRG cells in culture and tissue. A) α1 integrin expression in culture at 

the cell body and growth cone (arrow) βtubulinIII (red), alpha1 (CD49a) (green).  B) α3 integrin expression in 

culture at the cell body and growth cone (arrow).  βtubulinIII (red), alpha3(CD49c) (green). C. Integrin expression 

in DRG tissue slice (CD49a (red), CD49c (green), DAPI (blue); Scale bar=100µm) 

C
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Combined with our in vitro findings, this information implies that aLam could support axon 

regeneration following a moderate crush injury of the peripheral nerve.  Injuries to the peripheral 

nervous system are common and can have a devastating impact on a person’s daily life.  One 

possible treatment  is to promote and/or enhance axon regeneration using extrinsic signalling 

cues administered following injury,  Using Seddon’s method of nerve damage characterization, 

we focus on a n injury model of axonotmesis because it represents an injury that typically 

requires some type of intervention for recovery, but does not require an implantable guidance 

conduit because the epineurium remains intact (49).  This is, therefore, an ideal injury model to 

test an injectable signaling molecule such as aLam. In the study described in the first part of this 

Chapter, we will test the hypothesis that aLam promotes axonal regeneration and functional 

recovery in a clinically relevant model of peroneal nerve crush. 

3.1.2 Materials and Methods 

To test the regenerative capability of aLam in vivo, we injected aLam polymers into the crushed 

peripheral nerve of adult rats and evaluated motor and sensory function over a course of ten 

weeks post injury and injection. The rats were then perfusion fixed and the peripheral nerve and 

DRGs prepared for histological assessment of axonal regeneration. 

3.1.2.1 Surgical Procedures 

Female adult Sprague Dawley rats (225-250g, n=21; Charles River Laboratory, Wilmington, MA 

USA) were anaesthetized using intraperitoneal injection of a cocktail of ketamine (60 mg/kg; 

Butlerschein, Dublin, OH USA) and Dexdomitor (0.5mg/kg; Pfizer, New York, NY USA)(7).  
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The right hind limbs was shaved and cleaned with 70% ethanol followed by Betadine® scrub 

(Figure 11A), the thigh muscles were exposed and separated to reveal the peroneal nerve and a 

30 sec crush was made using #5 f ine forceps (Fine Science Tool, Foster City, CA). The nerve 

was consistently crushed where it passed over the tendon, which was used as an anatomical 

marker to ensure consistency between rats and for nerve dissection at the end of the functional 

testing (Figure 11B and C).  The completeness of the crush was confirmed visually by the 

presence of a translucent band (Figure 11D, circled).  Two days after the crush, animals were 

randomly assigned into one of three groups (n=7/group) and their injured nerve was re-exposed 

and 3 μL of either aLam, nLam or PBS was injected into the injury site using a 10 µL Hamilton 

syringe fitted with a pulled glass needle.  The investigator performing the injections was blinded 

to the treatment groups.  Starting 14 d ays post injection (dpi), gait was tested using the 

DigiGaitTM Image Analysis System until 70 dpi.  T he investigators conducting the behavioral 

assessments were blinded to experimental group. 

After final behavioral testing, animals were anesthetized as described above and nerves 

were traced using a 3 µL injection of Cholera Toxin B subunit (CTB; 1% CTB in sterile diH2O; 

List Biological Laboratories, Campbell, USA) 10 mm distal to the crush site (63).   
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Figure 13 Peroneal Nerve Injury.  A. Right hind limb prepped for surgery. B. Muscles separated to reveal 

peroneal nerve.  Forceps indicated tendon used as anatomical marker of injury. C. 30 sec crush injury at anatomical 

marker with fine forceps. D. Circled area denotes translucent band indicative of axonotmesis crush injury. 

3.1.2.2 Post-Surgery Procedures 

Antisedan (1.5 mg/kg; Pfizer) was injected subcutaneously to reverse the effects of dexdomitor. 

An intramuscular injection of gentamicin (6 mg/kg; VWR), a subcutaneous injection of Rimadyl 

(5 mg/kg; Pfizer), and a subcutaneous Ringer’s solution (5 mL) were administered daily for two 

days post injury. After injection, all rats received three additional days of Rimadyl (5 mg/kg, 1x 
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daily). All rats were monitored daily throughout the course of experiment.  Autophagia of the 

injured limb may occur with this type of peripheral nerve crush.  At the first sign of autophagia, 

rats were treated with topical lidocaine, Zymox® with 1 % hydrocortisone, and bitter spray to 

heal the wounds and discourage future chewing.  All animals were supplied daily with paper huts 

to chew.  Rats were perfusion fixed with 0.01 M PBS followed by 4 % Paraformaldehyde (PFA) 

at 11 weeks post injury. 

3.1.2.3 Motor Function Assessment 

The DigiGaitTM Image Analysis System (Mouse Specifics, Framingham, MA, USA) was 

employed to investigate gait (Figure 16).  P reliminary study revealed the importance of 

acclimating rats to the DigiGaitTM prior to data collection.  F or acclimation, rats were first 

introduced into the DigiGaitTM chamber with the treadmill and lights off.  Then, for 8 min for 

four days, the rats were placed on the treadmill at a starting speed of 3 cm/sec which was slowly 

increased to the target speed of 20 c m/sec on the fourth day, at which time baseline 

measurements were recorded.  The target treadmill speed of 20 cm/sec (zero degree incline) was 

chosen because it requires continuous walking (no running) for all rats, but it is not so laborious 

that injury prevents successful participation for most animals.  Rats that did not walk at the target 

speed were excluded from the study.  The complete behavioral testing schedule was: 1 day prior 

to surgery (baseline), 14 dpi, then weekly up to 42 dpi and bi-weekly from 42-70 dpi.  The main 

motor outcome measure was Peroneal Function Index (PFI). 
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Figure 14 DigiGait® Automated Treadmill walking device and software to detect differences in gait.  

Top: Image of rat treadmill walking in chamber, bottom left: dynamic paw area and gait signal plots, bottom right: 

posture plots. 

3.1.2.4 Immunohystochemistry 

Following the 70 dpi behavioral measures, animals were anesthetized and transcardially 

perfused with 300 mL of 0.01M PBS followed by 400 mL of 4 % paraformaldehyde (PFA). A 5 

mm-long piece of the peroneal nerve centered on the crush site and the proximally adjacent 5 

mm-long section were dissected and post-fixed overnight in 4 %  PFA, followed by treatment 

with 30 % sucrose solution and storage at +4 ºC.  Then, 15 µm thick longitudinal sections were 
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cut in five series using a cryostat microtome at -24 ºC and mounted on pos itively charged 

microscope slides.  Nonspecific binding sites were blocked using 0.01M PBS with 5 % Normal 

Goat Serum (NGS) and 0.03 % Triton blocking solution at room temperature for 1h.  To evaluate 

nerve regeneration, sections were incubated with anti-neurofiliament-heavy type (NF-h) 

antibodies (1:250, Millipore AB1991) at 1 h at room temperature followed by overnight at +4 ºC.  

Neurofilament is a major component of the neuronal cytoskeleton, mainly found in the axon 

where it provides support and participates in axonal transport.  After washing with 0.01 M PBS, 

secondary antibody reaction was initiated using AlexaFluor 488 f luorescent antibodies against 

rabbit (1:1000, Molecular Probes) for 1 h at room temperature followed by 3x washing, DAPI 

counterstain, and covering with a glass slip using anti-fade fluorescent mounting media (Dako, 

#S3023, Carpenteria, CA, USA). The number and size of NF-h positive axons crossing the crush 

site were determined using a Zeiss Axio Observer inverted fluorescent microscope with Zeiss 

Plan Apochromat objective (20x air, NA 0.8) and quantified using ImageJ (58). 

3.1.2.5 Semi-thin nerve sections 

A 3 mm long piece of the peroneal nerve just distal to the crush was removed and post-fixed in 

2.5 % gluteraldehyde overnight in 4 ºC  for semi-thin sections.  T issue was then rinsed three 

times in PBS and then penetrated with OsO4 overnight.  After washing, the tissue was processed 

using serial drying with increasing concentrations of ethanol from 30 - 100 %.  Tissue was then 

treated with propylene oxide (PO), combination PO:Epon® (3:1, 1:1, 1:3), 100 %  Epon® and 

embedded in silicone molds with Epon® resin.  Following 24 h curing at 37 ºC and 48 h at 65 ºC, 

cross sections of nerve were cut using a diamond knife at a thickness of 400 nm and stained with 

toluidine blue for myelin analysis and quantification. 
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3.1.2.6 Myelin Quantification 

Toluidine blue (tolonium chloride) is a staining solution that at high pH will bind to nucleic acid 

and proteins.  The alkaline form is used here to delineate structural components of our semi-thin 

sections in order to quantify total myelinated fibers in cross sections of nerves just distal to the 

crush.  P reliminary data showed that while there were significant differences found when 

comparing more proximal sections of the nerve to those within the injury site, there was no 

difference in total area of myelination, size or number of myelinated fibers when comparing 

within the injury site to the adjacent distal section, therefore numbers here will be taken as 

representative of re-myelination across the injury.  Total area and number of myelinated fibers 

were quantified using ImageJ (58) particle analyzer and averaged per experimental group. 

3.1.2.7 Statistical Analysis 

Statistical analyses were performed using SPSS statistical software package (SPSS version 21, 

IBM).    O ne-way ANOVA with Tukey’s post hoc was used to measure histological differences 

between groups.  R epeated measures ANOVA with Tukey’s post hoc were used to evaluate 

differences in behavioral measures.  Differences were considered significant at p ≤ 0.05. 

3.1.3 Results 

3.1.3.1 Laminin treatment resulted in decreased autophagia  

Autophagia was characterized under two categories; early (before injection) and late (at least one 

week post injection).  If any blood was visible on t oenails or lacerations/ulcers on t he right 

hindpaw it was marked as autophagia.  Equal numbers of early autophagia occurred throughout 
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groups (n=2/7 for each group).  For late autophagia, the incidence was lowest in aLam treated 

rats (n=1/7) compared to nLam treated rats (n=2/7) or PBS treated rats (n=3/7). 

3.1.3.2 aLam treatment increased compliance for treadmill walking 

Prior to injury, baseline measures were taken from all animals and only those with perfect 

compliance were selected for the study.  Following crush injury, the group with aLam treatment 

remained at 100% compliance for treadmill walking at all behavioral time points.  In the nLam 

treatment group some animals refused to walk at the target speed at 28 and 70 dpi. In the PBS 

treatment group, there were several rats that refused to walk at the target speed at each time point 

after 14 dpi (Figure 13). 

Figure 15 Compliance for Automated Treadmill Walking. aLam group achieved 100% compliance for 

treadmill walking at every time point (aLam=blue, nLam=orange, PBS=grey) 
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3.1.3.3 No difference in peroneal function index at 70 dpi 

Repeated Measures ANOVA was conducted on standardized PFI data (timepoint-baseline) and 

no significant effect of group was found (p=0.07).  Nerve function in the aLam and nLam groups 

was similar (p=0.8) and both groups trended towards significance from the PBS group (p=0.07), 

but did not reach the set value. Results from PFI analysis and example of DigiGait hindpaw area 

graphs are depicted in Figure 14. 

Figure 16-Peroneal Function Index.  Left: DigiGait paw area graphs. Top graphs (blue/purple dots) 

represent forepaws and bottom graphs (green/red dots) represent hindpaw. Top pair is representative of 14 dpi and 

bottom pair of 70 d pi.  Bottom right hindpaw (red) has regained area indicative of functional recovery.  Right: 

Standardized PFI graph shows loss and return of function of right hindpaw in all groups along the course of the 

study (aLam(n=5), nLam(n=6), PBS (n=3)). 
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3.1.3.4 aLam treatment increased the number of large diameter axons at 70dpi 

NF-h staining was used to determine the amount of axon regeneration/sprouting across the injury 

site.  We found significantly more large diameter axons in the aLam group than in the nLam or 

PBS group (p<0.05).  There were no differences found in total number of fibers or total area of 

NF-h staining (p>0.05) (Figure 15). 

Figure 17 Peroneal Nerve Regeneration. Image:  Example of a crushed peripheral nerve 10 weeks post-

injury (A), at (B) and away (C) from the crushed site (NF-h (green) and DAPI (blue), Scale bar= 250 µm on A and 

50 µm on B and C). Graphs:  Significantly more large diameter axons found in aLam treatment group than nLam or 

PBS control at 70dpi (ANOVA, p<.05).  Overall total number or area of NF-h positive axons did not differ between 

groups. 

3.1.3.5 No difference in myelination of nerve between groups 

Myelin was quantified using the semi-thin sections stained with toluidine blue.  Five sections per 

animal were quantified and averaged.  Analysis showed no difference in total area or number of 

myelinated fibers between groups (Figure 16). 
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Figure 18 Myelin Quantification. Top: Semi-thin plastic sections stained with toluidine blue (Scale bar= 

50µm). Bottom: No difference observed in number of myelinated fibers or total area of myelin (PBS (grey), nLam 

(orange), aLam (blue), p>.05) 

3.1.4 Discussion 

Our in vitro studies described in Chapter 2 demonstrated that aLam can act as a s ignaling 

molecule promoting neurite growth from DRG neurons in vitro.  In the present study we 

investigated the repair potential of aLam using a clinically relevant in vivo model of peripheral 

nerve damage.  O ur findings partially supported our hypothesis showing that aLam treatment 
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resulted in enhanced axon regeneration.  We did not observe enhanced functional recovery.  The 

data suggests that 1) aLam increases compliance on t readmill running after injury; 2) aLam 

decreases autophagia, a common occurrence following PNI; 3) aLam was associated with 

significant increase in large diameter axons across the crush; 4) there were no s ignificant 

differences in area of myelination or number of myelinated axons; 5) there were no significant 

differences in motor recovery as measured by the peroneal function index. Together these results 

support the notion that aLam has potential for treatment as an injectable signaling molecule.  It 

showed increased biocompatibility and no additional damage or discomfort was observed in the 

rats. In fact, the decreased autophagia in the aLam group can be interpreted that aLam treatment 

alleviated discomfort normally associated with this type of injury.  Further research will be 

needed to elucidate aLam’s role in these findings.  

Although there were no overall significant differences in PFI, there appeared to be a trend 

towards earlier recovery in the polymerized laminin treatment groups.  Due to the low number of 

compliant controls in the behavioral evaluation, it is  difficult to say whether additional data 

would have further separated these findings into significance.  O ne could postulate that those 

animals which complied with the task demands represented only the highest functioning 

controls, whereas the aLam group data, with 100 % task compliance, was the most accurate 

representation of the three experimental groups.  If one were to include lower functioning 

controls, this difference may become more apparent, but additional studies, employing perhaps a 

less demanding, but equally sensitive behavioral measure, are needed to test this theory.  

One caveat of this model is that all groups showed improvement in motor function by 70 

dpi, at which point all histological data was collected and analyzed.  T he similar functional 

outcomes were in agreement with the lack of differences between groups in total number of 
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axons and myelination.  Peripheral axons exhibit a relative high intrinsic ability to grow and can 

reach growth speeds of 5 mm/week. Thus, it is possible that we missed the window at which we 

could have detected differences in total number of regenerated fibers.  Evaluation of histology at 

earlier time points after injury/treatment could provide additional information about the true 

potential of aLam treatment to promote axon regeneration and functional recovery after PNI.  

Alternatively, a more severe injury could provide additional data, but this also may further 

incapacitate our control group for behavioral measures. 

A clinically significant finding in our study is aLam’s effect on autophagia.  Autophagia 

is a common occurrence in peripheral nerve injury in rats and can lead to devastating self-

mutilations.   T he fact that aLam all but abolished this response underscores its potential for 

further development as a therapeutic for PNI. 

3.2 ACIDIC LAMININ FOR SPINAL CORD REPAIR 

3.2.1 Introduction 

The central nervous system (CNS) consists of the brain and spinal cord, which are 

physically separated from the rest of the body through the blood - brain/spinal cord – barrier. 

This barrier presents a unique challenge when developing systemically delivered treatments for 

repair. Due to the closed structure of the CNS, developing injectable treatments with minimally 

invasive delivery may be preferable.   Following traumatic injury, adult CNS neurons, although 

intrinsically capable of regeneration (64), do not  spontaneously regenerate damaged axons. 
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Strategies that promote axonal regeneration or plasticity after CNS injury are necessary for 

recovering disrupted motor and sensory circuits and reinstating functional flow of information 

between the brain and periphery.  In order for this to occur there are many obstacles to axon 

growth that one must overcome, including an abundance of inhibitory molecules, lack of growth-

promoting molecules and loss of matrix substrate. Laminin has been shown to be involved in 

growth promotion (25, 62) and as a guidance matrix (31, 65, 66) during development and after 

injury, making it an interesting candidate treatment for repair.  Our previous studies suggest 1) 

that aLam acts as an axon growth-promoting molecule in vitro, 2) aLam signals its growth 

effects through α1 and or α3 integrins, and 3) aLam can be employed as an injectable treatment 

to elicit growth responses in the damaged peripheral nerve. In the study described in this chapter, 

we will test the therapeutic potential of aLam for damaged central nervous tissue utilizing a 

clinically relevant model of spinal cord contusion injury.   

Our previous studies showed that polymerized laminin requires α1 and α3 integrin 

receptors to initiate growth signaling responses.  These laminin polymer-binding integrins are 

also mostly absent in healthy, uninjured, spinal cord tissue (Figure 19, A).  F ollowing a 

contusive SCI, there is a significant increase in both α1 and α3 integrin receptors at and around 

the injury site (Figure 19, B).  T his increase is at least in part attributed to an increase in 

expression on s pinal motor neurons, which show expression of one or both types of integrins 

(Figure 19, C (arrows)). 
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Figure 19 Integrin Expression after SCI.  A. α1 (red) and α3 (green) integrin expression in uninjured, 

healthy spinal cord thoracic segment. B. α1 (red) and α3 (green) integrin expression at three days post 200kDyne 

contusion injury (T9 spinal segment). C.  Increased magnification of injury site to show expression increase is (in 

part) due to an increase in expression of one (bottom arrow) or both (top arrows) integrins to varying degrees in 

motor neurons.  Note: Same camera and microscope settings used for A and B 

In this chapter, we will test the hypothesis that aLam promotes axonal growth in a contusion 

model of spinal cord injury thereby improving functional recovery. 

3.2.2 Materials and Methods 

3.2.2.1 Surgical Procedures 

A model of adult rat spinal cord contusion (7, 67, 68) was used to test axonal regenerative effects 

of aLam.  F emale adult Sprague Dawley rats (225-250 g, n = 30; Charles River Laboratory, 
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Wilmington, MA USA) were anaesthetized using intraperitoneal injection of a cocktail of 

ketamine (60 mg/kg; Butlerschein, Dublin, OH USA) and Dexdomitor (0.5 mg/kg; Pfizer, New 

York, NY USA) (7).  The dorsal surfaces of animals were shaved and then cleaned with 70 % 

ethanol followed by Betadine® scrub, the tenth thoracic spinal cord segment was exposed via 

laminectomy and contused using a force of 200 kDyne (Infinite Horizon IH-0400 impactor; 

Precision Systems and Instrumentation, LLC, Versailles, KY USA) (69) (Figure 20).  The injury 

site was rinsed with sterile saline containing 0.1 % gentamicin (VWR, Radnor, PA), the muscles 

were sutured in layers and the skin was closed with Michel wound clips (Find Science Tools, 

Foster City, CA USA).  Rats were included in the study based on receiving an impact within 5 % 

of the intended force and a Basso-Beattie-Bresnahan (BBB) (70, 71) score of ≤ 1 at day 1 and ≤ 

5 at day 3 post-contusion.  Three days post injury, which was previously identified as an optimal 

time point for therapeutic intervention (67), rats were randomized, sedated and 5 µL of either 

aLam (50 µg/mL), nLam (50 µg/mL) or 0.01 M PBS in was injected into the epicenter of the 

contusion by an investigator blinded to the treatment administered (Figure 20). 
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Figure 20 Spinal cord injury and injection.  A) Laminectomy was performed at thoracic level and B) T9 

spinal segment was exposed.  C) Contusion injury with Infinite Horizon impactor. D) Injection apparatus for 3dpi 

injection of aLam, nLam or PBS. 

3.2.2.2 Post-Surgery Procedures 

Antisedan (1.5 mg/kg; Pfizer) was injected subcutaneously to reverse the effects of dexdomitor. 

An intramuscular injection of gentamicin (6 mg/kg; VWR) and subcutaneous injections of 

Rimadyl (5 mg/kg; Pfizer) and Ringer’s solution (10 mL on the surgery day, 5 mL thereafter) 

were administered daily for three days post injury. After injection on the third day after injury, 

61 



rats received daily injections with gentamicin for four days Rimadyl and Ringer’s for three days.  

Bladders were expressed manually twice daily until reflex voiding returned.  A ll rats were 

monitored daily throughout the course of experiment and exhibited no sign of additional stress or 

pain response.  R ats were perfusion fixed with 1 x PBS followed by 4 % Paraformaldehyde 

(PFA) at seven weeks post injury. 

3.2.2.3 Motor Function Assessment 

All motor function assessments were conducted by one or more investigators (depending on the 

tested motor task) blinded to the treatment group.  O verground walking ability was assessed 

using the BBB test (70) (Figure 21) one and three days post injury and weekly thereafter 

(n=10/group).  Individual scores were averaged across paws and used for experimental group 

averages. Sensorimotor function was assessed using the horizontal ladder walking tests (aLam 

(n=10); nLam (n=7); PBS (n=9)) at three and six weeks post injury (Figure 21). Medium (foot 

and partial leg) and large (full leg) slips were counted and expressed as a percentage of the total 

number of steps. Percent scores were averaged across experimental group. Gait at a w alking 

speed of 20 cm/sec was assessed using the DigiGaitTM Image Analysis system (Figure 12) at one 

day prior to (baseline) (n=10/group) and six weeks post injury (aLam (n=7); nLam (n=9); PBS 

(n=9)).  Hind limb stride length was expressed as a percent of the baseline value and averaged 

between paws and within groups. 
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Figure 21 BBB and Horizontal Ladder.  A) Image of spinal cord injured rat completing BBB evaluation 

of overground walking.  B) Image of spinal cord injured rat transversing horizontal ladder sensorimotor task. 

3.2.2.4 Sensory Function Assessment 

All sensory function assessments were conducted by one or more investigators blinded to 

treatment group of rats.  Mechanical alloydynia was assessed using Von Frey hairs, previously 

shown to detect changes in sensitivity using this injury model (68).  A nimals were placed in 

Plexiglas boxes on a raised grid platform and allowed to acclimate until visibly relaxed and still. 

Rigid filaments were applied to the plantar surface of each hindpaw at increasing force (g) until 

withdrawal.  To reduce variability, test was repeated five times per paw at 5 min intervals and 

the middle three scores were recorded and averaged per time point. Testing was conducted at one 

day prior to (baseline) and three and six weeks post injury (n=10/group).  Scores were expressed 

as a percentage of the baseline score and averaged across paws and within groups.  

Thermal hypersensitivity was measured using the Hargreaves assay (72).  R ats were 

placed in Plexiglas boxes on a  raised glass platform and allowed to acclimate until visibly 

relaxed and still.  A  high-intensity beam of light was focused on the plantar surface of each 
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hindpaw and seconds to withdrawal was measured.  The active beam intensity was set at 25 %, 

resting intensity at 5 %, and cutoff at 20 sec to ensure no t issue damage was done. To reduce 

variability, test was repeated five times per paw at 5 min intervals and the middle three scores 

were recorded and averaged per time point. Testing was conducted at one day prior to (baseline) 

and three and six weeks post injury (n=10/group).  Scores are expressed as a percentage of the 

baseline score and averaged across paws and within groups. 

3.2.2.5 Anterograde and Retrograde Tracing 

Biotinylated Dextran Amine (10 % BDA, 10,000 MW; Molecular Probes, #D1956, Lot: 

1476602) was inject bilaterally into the motor cortex six weeks post injury.  The skull was 

exposed and two small diameter holes were drilled directly above the motor cortex.  Three µL of 

1 % BDA was injected per hemisphere to anterogradely trace the corticospinal axons. Traced 

axons were visualized using TSA Cyanide-3 Amplification Kit (PerkinElmer, 

NEL704A1001KT).  Labeled axons 1 mm above and below the lesion cavity were counted, 

multiplied by ten (one out of ten sections were used for quantification) and expressed as percent 

regenerated/spared ((below/above)*100).  Totals were averaged per experimental group. 

 Retrograde tracing was performed using 2 % Fast Blue (0.6µL each spinal hemisphere; 

Sigma, #F337813), injected 10 mm caudal to injury.  Brainstem sections were cut into ten series 

using the cryostat microtome (40 µm, -24 ºC, free-floating).  One series was mounted on 

positively charged slides and the total number of labeled neurons in the red nuclei was counted 

using a Zeiss Plan Apochromat objective (20x air, NA 0.8).  The numbers were multiplied by ten 

and averaged per group. 
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3.2.2.6 Histology 

Ten days after injection of tracer, animals were deeply anesthetized (100 mg/kg Ketamine) and 

transcardially perfused with 300 mL of 0.01 M PBS followed by 400 mL of 4 % 

paraformaldehyde (PFA).  Spinal cords were then dissected and post-fixed overnight at 4 ºC in 4 

% PFA then transferred into a cryoprotective 30 % sucrose solution and stored at 4 ºC.  A 15 

mm-long piece of the spinal cord centered on the injury site was dissected from spinal cord cut 

into 10 s eries of 15 µm-thick horizontal sections on a cryostat microtome and mounted on 

positively charged microscope slides.  One series was used for Nissl staining for spared tissue 

quantification.  All other series were used for immunohistochemistry. 

3.2.2.7 Immunohistochemistry 

Nonspecific binding sites were blocked using 0.01M PBS with 5 % Normal Goat Serum (NGS) 

and 0.03 % Triton blocking solution at room temperature for 30 min.  Tissue was then incubated 

with primary antibodies against astrocytes (GFAP; DAKO, 1:200) and neurofilament-h (RT-97; 

Millipore, 1:200) diluted in blocking solution for 2 h at room temperature or overnight in 4 ºC.  

Fluorescent secondary antibodies diluted in 0.01 M PBS (Alexa Fluor®, life technologies, 1:500) 

were added for 1 h  at room temperature, followed by DAPI counterstaining and covered with 

glass slips with anti-fade fluorescent mounting media (Dako, #S3023, Carpenteria, CA USA). 

Tissue was evaluated using a Zeiss Axio Observer inverted fluorescent microscope with Zeiss 

Plan Apochromat objective (20x air, NA 0.8), and StereoInvestigator® (MBF Biosciences, Inc.) 

software.   
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3.2.2.8 Spared Tissue Quantification 

Nissl stained sections were used to determine the volume of spared tissue within the area of 

injury using a Zeiss Axio Observer inverted microscope and the Cavalieri estimator function of 

StereoInvestigator software (MicroBrightField, Inc).  Analysis was performed by an investigator 

blinded to experimental condition.  The spared tissue areas of all sections were used to calculate 

the volume of spared tissue in the series and multiplied by 10 to represent tissue across the entire 

cord segment, totals were averaged per experimental group (n=10/group).   

3.2.2.9 Statistical Analysis 

Factorial ANOVA with Tukey’s post hoc was used to analyze histological and tracing 

differences between groups.  R epeated measures mixed ANOVA with Tukey’s post hoc was 

used to evaluated differences in behavioral measures.  Significance was set at p ≤ 0.05. 

3.2.3 Results 

3.2.3.1 Laminin did not affect motor function recovery 

Multiple tests were conducted to comprehensively evaluate motor function in the injured and 

treated rats.  Laminin polymer treatment did not affect overground walking as measured by the 

BBB or sensorimotor function as measured by the horizontal ladder test (Figure 22). Differences 

in gait were assessed using the DigiGait and no effect of group was found in stride length and 

paw rotation, outcome measures that normally are associated with SCI (Figure 23). 
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Figure 22 BBB and Horizontal ladder. Polymerized laminin did not affect recovery of overground 

walking (BBB; p=0.4) or sensorimotor integration (horizontal ladder; p=0.7) 

Figure 23 Gait Analysis.  Polymerized laminin injection did not affect gait recovery measurements at 6 

weeks post injury (MANOVA, Stride length; p=0.68, Paw angle; p=0.49) 

67 



3.2.3.2 Laminin did not affect sensory function recovery 

In order to evaluate sensory function, the Hargreaves test was used to assess thermal 

hyperalgesia and the Von Frey test for mechanical allodynia. We found that none of the injured 

and treated animals developed allodynia (data not shown).  All rats exhibited symptoms of 

thermal hyperalgesia.  The control group and the nLam-treated group had higher sensitivity for 

the thermal stimulus than the aLam-treated group, but the group differences did not reach 

statistical significance (p=0.5) (Figure 24). 

Figure 24-Thermal Hyperalgesia. Thermal hyperalgesia was measured using the Hargreaves method 

(resting intensity 5%, active intensity 25%, 20sec max).  N o main effect of group was observed using repeated 

measures ANOVA (p=0.5). 

3.2.3.3 Laminin polymers decrease astrocyte activation 

Astrocyte activation was measured using antibodies against glial-fibrillary acidic protein 

(GFAP).  Laminin polymer treatment resulted in a significant effect of group (p=0.008) showing 
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significant decreases in staining intensity of GFAP relative to the PBS group (PBS vs aLam or 

nLam, p<0.05) (Figure 25). No difference in the effects of aLam and nLam on astrocyte activity 

was detected (p=0.85).   

3.2.3.4 aLam did not affect axon intensity at injury site 

Axons were identified using antibodies against neurofilament-h and the staining intensity 

measured. We found a significant effect of group (p=0.01).  T ukey’s post hoc revealed aLam 

treatment did not affect axon intensity relative to PBS group.  nLam treatment, however, showed 

significantly decreased axon intensity across the injury site relative to PBS (Figure 25, p<0.01).  

Figure 25 Astrocyte Activation and Axons. Significant decrease in GFAP intensity at the injury site in 

laminin treatment groups (p<0.05). Significant decrease in axon intensity at injury site in nLam group vs PBS 

(p<0.01), no difference between PBS and aLam group.  Image: GFAP (green), RT97 (neurofilament, red), DAPI 

(blue). 
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3.2.3.5 Anterograde and Retrograde tracing 

Fast Blue (FB) retrograde tracing and BDA anterograde tracing were used to determine 

number of axons originating from the red nuclei or primary motor cortex, respectively.  There 

was no effect of group on either population of axons (Figure 26). 

Figure 26 Tracing Quantification.  A) Fast blue traced neurons in the red nucleus (Scale bar=100µm).  

No difference between groups was observed (ANOVA, p=.8).  B )  B DA traced axons at the injury site (Scale 

bar=100µm).  Graph expresses count 1mm below injury as a percentage of 1mm above injury cavity.  No effect of 

group (ANOVA, p=.77). 
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3.2.3.6 Polymerized laminin had no effect on tissue sparing 

Nissl staining was used to enable identification of lost tissue and analysis of spared tissue in the 

contused segment.  I njection of laminin polymers did not affect the volume of spared tissue 

(p=0.2) (Figure 27). 

Figure 27 Tissue Sparing.  Nissl staining of spinal segments were quantified for total volume (Scale bar= 

100µm).  Graph represents group means with 95% confidence interval.  No effect of group (ANOVA, p=.26) 
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3.2.4 Discussion 

Our results from the study described in Chapter 3.1, suggested that aLam elicits axonal 

growth responses in an injured peripheral nerve.  H ere, we have evaluated whether aLam 

promotes axonal responses in the contused adult rat spinal cord. Our findings suggest that 1) 

laminin polymers do not affect the total number of axons in general, and corticospinal or 

rubrospinal tract fibers specifically at the injury site; 2) laminin polymers do not affect motor or 

sensory recovery at six weeks following an injury; 3) laminin polymer presence decreases 

astrocyte activation; 5) laminin polymer injections do not  affect spared tissue volume. In 

summary, aLam reduced astrocytic activation in the contused spinal cord segment, but this did 

not result in enhanced axon regeneration and functional recovery.    

The lack of effects on axon responses by aLam may suggests that the timing of the 

treatment or the concentration/amount of the injected laminin polymer was suboptimal for 

eliciting an effect.  SCI presents an environment full of inhibitory molecules and high levels of 

inflammation.  It is a daunting task to overcome the many growth-inhibitory factors in order to 

elicit regeneration.  A mong the inhibition encountered at the lesion site is reactive astrocytes 

composing the glial scar.  This ‘scar’ form a physical and chemical barrier to growth surrounding 

the injury.  An immediate injection may better utilize aLam’s effect on astrocyte activation and 

could be more suitable for decreasing inhibition in order to observe optimal benefits from its 

growth-promoting abilities. Another consideration is the site of injection.  O ur integrin 

immunostaining before and after injury indicated an increased expression on m otor neurons 

above and below the epicenter, perhaps multiple injections in those locations would prove more 

favorable than a single injection into the epicenter.  Future research will be necessary to elucidate 

the validity of these possible explanations.  

72 



4.0  SUMMARY AND GENERAL DISCUSSION 

Together the results obtained from the experiments described in this thesis provide a thorough 

evaluation of the in vitro and in vivo potential of laminin polymerized under acidic pH conditions 

for neurite extension and axon regeneration.  In the first part of our in vitro work using a novel 

developed model system (Chapter 2.1),  our results provided information about the integrin 

receptor targets of aLam to enhance neurite growth competence of adult neurons and that aLam 

elicits compensatory measures to up regulate α3 integrins in the ‘absence’ of availability of α1 

integrins.  The data also showed that aLam enhances neurite outgrowth by increasing focal 

adhesion complex formation, which is necessary for actin polymerization and axon extension.  

That aLam elicits its response through multiple growth-promoting binding sites and can initiate a 

compensatory response in the absence of one is an important characteristic because it increases 

the overall impact of aLam as a t reatment for nervous tissue repair.  Integrin expression is a 

dynamic process following injury, as is evidenced from the significant increase in expression of 

α1 and α3 at three days after SCI.  As the injury environment changes with time, it has been 

shown  that integrin expression changes as well (73).  Detailed information on l ongitudinal 

integrin expression profiles in response to a specific injury mechanism is needed to fully realize 

the potential therapeutic window of aLam.  

In second part of our in vitro work (Chapter 2.2), we showed that microcontact printing is 

an appropriate way to observe directed growth of neurons cultured on growth-neutral PDL 
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substrates and that when translated to the live imaging environment, attached neurons are able to 

remain viable in this system for long periods of time, regardless if they were imaged using the 

Bioptechs chamber or culture dishes.  This is an important proof of concept to take into 

consideration in the design of future live imaging experiments.  This finding suggests that our 

PDL concentration, media components, and choices of imaging modality and duration are all 

appropriate for these types of neurons.  Optimizing this system to retain greater cell adhesion and 

growth in order to be able to evaluate dynamic interactions is an important next step. 

In the in vivo experiments (Chapter three) we found that aLam injected into a damaged 

peripheral nerve, resulted in an axonal regeneration response.  In addition, aLam treatment 

decreased autophagia and increased treadmill task compliance.  Our spinal cord data revealed 

that the effect of aLam is not exclusive to neurons, which was apparent through the decrease in 

activated astrocytes at the injury site.  H owever, since this action did not result in enhanced 

growth in our model system, it is  impossible to definitively determine from the present results 

whether it is related to regeneration, or an unrelated, potentially beneficial side effect. 

Our first goal of this thesis was to utilize a novel in vitro system to test the molecular and 

cellular mechanisms of aLam as a growth-promoting molecule.  In Chapter 2.1 we successfully 

tested our novel in vitro system and our results revealed that aLam maintains its growth-

promoting effects through binding of the α1 and α3 integrin receptors and increasing focal 

adhesion complex formation.  O ur second goal was to employ microcontact printing and live 

imaging to create a system in which to study aLam’s effect on growth cone dynamics and glial 

cell involvement.  Early results from this support the feasibility of utilizing this technique in that 

we were able to achieve directed growth on PDL stamped substrates in culture and cells retained 

viability for the duration of the live imaging.  Together these suggests that with optimization of 
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pattern and technique, microcontact printing of PDL and live imaging would be an appropriate 

and valuable combination tool for use in the assessment of neural growth dynamics with 

unbound signaling molecules.  O ur third goal was to test the repair potential of aLam as an 

injectable regenerative therapeutic using an adult rat model of PNI.  T his was accomplished 

using a clinically relevant model of rat peroneal crush injury.  Results showed that aLam elicited 

therapeutic effects on axon growth, task compliance and autophagia.  Axon growth effects did 

not lead to improvements in motor function.  R esults on a utophagia are novel and clinically 

relevant and future studies should be conducted to better understand this phenomenon.  O ur 

fourth goal was to test the repair potential of aLam as an injectable regenerative therapeutic 

using an adult rat model of SCI.  This was accomplished using a clinically relevant model of 

contusion SCI.  R esults showed that aLam did not elicit axon regeneration or functional 

recovery.  There was a novel and clinically relevant aLam-mediated decrease in activated glia at 

and surrounding the contusion.  

Taken together we have shown here that organization of polymerized laminin can have 

significant impact on how it interacts with receptors and promotes signaling for growth and that 

this signaling is not substrate attachment dependent, but rather acts as an unbound environmental 

signaling ligand.  This increases the potential impact for treatment development in that it retains 

the potential for use in delicate tissues and ‘closed systems’ where injectable treatments are 

preferable because they cause minimal addition damage to nervous tissue.  Our results here 

indicate that the differences found between aLam and nLam could be due to their structure. 

Further work is needed to definitively determine if structural differences are underlying changes 

observed in receptor interaction and growth-promotion.  Elucidating meaningful differences in 

three dimensional structure of this polymer could impact the development of novel biomaterials 
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as well as future consideration in the use of ECM proteins for signaling and repair.  Our goals 

stated above have been accomplished through new, innovative approaches accompanying time-

tested established models.  The marriage of these allowed for us to reveal novel and interesting 

results that could potentially change the way people think about and test extracellular matrix 

molecules for injectable therapeutics.   

Although aLam did not, in our model, promote axon regeneration that led to functional 

repair in vivo, the combined studies provided important groundwork for engineering new, more 

efficient molecular structures for specific targeting of multiple integrin receptors for neural 

regeneration.   
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