
 

SIGNAL NORMALIZATION AMONG MULTIPLE OPTICAL COHERENCE 
TOMOGRAPHY DEVICES 

 
 
 
 
 
 
 
 

by 

Chieh-Li Chen 

Bachelor of Science in Electrical Engineering, National Taiwan University, 2008 

Master of Science in Electronics Engineering, National Taiwan University, 2010 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

The Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy in Bioengineering 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2014 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Chieh-Li Chen 
 
 
 

It was defended on 

September 8th, 2014 

and approved by 

Howard Jay Aizenstein, MD, PhD, Associate Professor, Department of Psychiatry 

Larry Kagemann, PhD, Associate Professor, Department of Bioengineering 

Kang Kim, PhD, Associate Professor, Departments of Medicine and Bioengineering 

Joel S. Schuman, MD, Distinguished Professor, Department of Ophthalmology 

George Stetten, MD, PhD, Professor, Department of Bioengineering 

Gadi Wollstein, MD, Associate Professor, Department of Ophthalmology 

 Dissertation Director: Hiroshi Ishikawa, MD, Assistant Professor, Departments of 

Ophthalmology and Bioengineering 

 

 



 iii 

Copyright © by Chieh-Li Chen 

2014 



 iv 

 

Optical coherence tomography (OCT) has become a clinical standard in ophthalmology because 

it has the ability to provide in vivo cross-sectional images of ocular tissues with microscopic 

resolution in a non-contact and non-invasive manner. More and more manufacturers are getting 

involved in the race of instrument design and the development of the spectral-domain OCT (SD-

OCT). Various light sources, optical designs, and image acquisition settings were employed by 

different manufacturers to stand out among competitors. This provides a wide variety of options 

in terms of scanning protocol, image processing, and presentation. However, the diversity also 

reflects in the variability in the OCT signal characteristics. The variability of OCT signal 

characteristics not only results in systematic differences in OCT measurement data, such as the 

retinal nerve fiber layer (RNFL) thickness and total retinal thickness, but also induces 

discrepancies in OCT image appearance. Those differences cause serious clinical challenges 

when comparing OCT images from different OCT devices, or recruiting multiple OCT devices in 

one study.  

To solve this problem, a novel signal normalization method was developed in this 

dissertation. The signal normalization was developed in a stepwise fashion to resolve all factors 

contributing to the systematic differences among various OCT devices, including axial sampling 

density, the amount of speckle noise, intensity dynamic range, and image quality. Quantitative 

analyses and qualitative assessments were conducted to evaluate the proposed signal 
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normalization method. For the quantitative analyses, engineering and clinical validations were 

performed via measuring the absolute differences in A-scan profile intensity and comparing the 

systematic RNFL thickness differences before and after signal normalization. For the qualitative 

assessment, subjective evaluation of the similarity of OCT image appearance through a 

questionnaire was performed. Statistically significant reduction in both the absolute difference in 

A-scan profile and the systematic differences among SD-OCT devices were observed after signal 

normalization. Statistically significant improvements of image similarity between OCT image 

pairs were also found after the processing. With the proposed signal normalization method, 

quantitative analysis as well as qualitative assessment among OCT devices will become directly 

comparable, which would broaden the use of OCT technology in both clinical and research 

applications. 
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1.0  INTRODUCTION 

Optical coherence tomography (OCT) is a non-invasive and non-contact optical imaging 

technique. It generates in-vivo cross-sectional images of biological structures with microscopic 

resolution in a real-time fashion by measuring the interference of the reflected signals from the 

reference mirror and from the tissue.[1, 2] Early OCT systems detect the correlation of the light 

echoes in time domain using interferometry, and therefore are referred to as time-domain OCT 

(TD-OCT).[1-3] Instead of the physical reference mirror, the later OCT generation detects the 

backscattering signals in frequency domain with a spectrometer, encodes the time delay 

information as a spectrum, and therefore are often referred to as spectral-domain OCT (SD-

OCT).[3, 4] The hardware improvement in SD-OCT furthermore enhances the axial resolution, 

improves the image acquisition speed, and allows volumetric image acquisition.[2, 3, 5] With the 

advances of OCT technology in both hardware design and software developments, OCT has 

become an indispensable tool in clinical routines for both the qualitative and quantitative 

assessment of tissue structures to help disease diagnoses and management, especially in 

ophthalmology.[6] 

Multiple SD-OCT devices have been made commercially available from several different 

manufacturers. Each device is equipped with different optical design and image acquisition 

settings, providing a wide variety of options in terms of scanning protocol, image processing, 

and presentation. This diversity, however, not only results in OCT image data incompatibility, 
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but also generates substantial differences in both qualitative and quantitative OCT image 

measurements/interpretations among the various OCT devices. The measurement differences 

pose a serious clinical challenge, as OCT measurements obtained using different OCT devices or 

different device generations are not directly comparable. In addition, the discrepancies in the 

appearance of biological structures require extra caution be taken when qualitatively evaluating 

the OCT images. These factors limit the uses of OCT devices because they both lead to 

inflexibility with regard to switching between various OCT devices or generations when patients 

move from one clinic to another or device models update or change. 

To solve this problem, a signal normalization method was proposed and developed in this 

dissertation. The ultimate goal is to develop a signal normalization method to minimize the 

discrepancies in signal characteristics among multiple OCT devices, and to make the outcomes 

(both OCT image appearance and measurements) directly comparable so that clinicians can fully 

utilize OCT technology without worrying about which device was used for image acquisition 

and compare measurements and appearance obtained from different devices directly. 

1.1 OPTICAL COHERENCE TOMOGRAPHY 

The conventional OCT technique typically consists of an interferometer with a low coherence 

and a broad bandwidth light source (Figure 1). The light is split into two beams after passing 

through a beam splitter. One beam is sent to the reference arm which has a reference mirror, and 

the other beam is sent into the biological samples. The combination of the backscatter signal 

from the samples and the reflective signal from the reference mirror generates an interference 

pattern with maximal intensity if the path length to the reference mirror and tissue are within the 
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coherence length of the light source.[3, 7, 8] Depth-resolved tissue reflectivity characteristics are 

then extracted from the interference pattern and recorded as an intensity profile in the axial 

direction. By changing the position of the reference mirror, backscattered tissue intensity can be 

detected from different depths in the tissue sample. A sequence of echoes from a single retina 

location are presented in a series as an axial scan (A-scan), and optical cross-sections (B-scans) 

are obtained by scanning the OCT beam in the transverse direction (Figure 2). Since time-

encoded signals are obtained in this manner, this approach is referred to as TD-OCT.[3] 

 

 

Figure 1. The schematic figure of TD-OCT instrument. (Marschall et al. [9]) 
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Figure 2. An example of cross-sectional image (B-scan) through a healthy macula. The vertical white line indicates 

the location of the single A-scan intensity profile shown on the right. 

 

Fourier-domain OCT (FD-OCT) includes SD-OCT and swept-source OCT (SS-OCT). 

Instead of using a physically moving reference mirror, FD-OCT detects the backscattering 

signals from the biological tissues in the frequency domain with either a combination of a broad-

bandwidth light source, charge-coupled device (CCD) camera, and a spectrometer (SD-OCT), or 

by sweeping through a range of frequencies (SS-OCT) (Figure 3).[10-16] Frequency information 

from all depths at a given point (about 20 µm in diameter) in the tissue is acquired 

simultaneously and converted into an intensity profile by Fourier-transform. The implementation 

of the broadband light source with broader bandwidth enhances the axial resolution from ~10 µm 

to 2 µm, and the introduction of the spectrometer or sweeping frequencies improves the image 

acquisition speed (from 400 A-scans/s to between 26,000 and 100,000 A-scans/s).[2, 5, 17, 18] 

In addition to faster scanning speed, a higher signal-to-noise ratio is offered with a perfect 

reflector.[14] With the improvements of scanning speed and resolution in SD-OCT and SS-OCT, 

collecting volumetric (three-dimensional; 3D) scans of biological tissues becomes feasible. More 
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information from the retina can be acquired in a relatively short amount of time, allowing more 

detailed biological structure visualization.[11, 19-22] Although SS-OCT is able to provide a 

faster scanning rate, less photons reaching the retinal tissues results in the potential limitation of 

a lower signal to noise ratio, and the choice of a tunable narrowband laser light source further 

reduces the resolution of SS-OCT.[3] 

 

 

Figure 3. The schematic illustration of FD-OCT instrument. (A) SD-OCT and (B) SS-OCT. (Marschall et al. [9]) 
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1.2 OPTICAL COHERENCE TOMOGRAPHY APPLICATIONS IN 

OPHTHALMOLOGY 

With the invention of OCT, medical diagnostic imaging technology has entered a new era. The 

resolution of OCT is superior to other in vivo imaging techniques such as magnetic resonance 

imaging (MRI), computed tomography (CT), scanning laser ophthalmoscopy, B-mode 

ultrasound, and ultrasound biomicroscopy (UBM, or high frequency ultrasound), which have 

image resolutions of 1 mm, 300, 300, 150, and 20 µm, respectively.[23-25] Its non-invasive and 

non-contact nature has made OCT imaging become known as “optical biopsy.” With the ability 

to perform “optical biopsy” with microscopic resolution (as high as 2 µm), OCT improved not 

only the understanding of disease pathogenesis,[24-26] but also clinical diagnosis and 

management of various diseases.[18, 24-29] 

The major medical applications of OCT focus on tissues that are accessible by optics and 

need high spatial resolution cross-sections, such as eye, skin, surgically exposed tissue, and 

surfaces that can be reached by endoscopic probes. Among those clinical applications, OCT is 

particularly suitable for ophthalmology because of the optical properties and transparent nature 

of the eye, and the accessibility of the retina to transpupillary examination.[24] In addition, 

opposed to fluorescein angiograph and ultrasound imaging, which may cause considerable 

discomfort to the patient, OCT is noninvasive and requires no physical contact with the eye. All 

these advantages have led to the rapid success of OCT in ophthalmology. Since its first 

application in ophthalmology, OCT has characterized a wide variety of retinal pathology and the 

images correspond with the histopathologic features of these disorders.[24, 30]  

Retinal and macular diseases, such as macular holes, diabetic retinopathy, and age-related 

macular degeneration (AMD), used to be diagnosed with fundoscopic exam, fluorescein 
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angiography, and B-scan ultrasound. However, insufficient resolution prohibits the instruments 

from providing detailed information on retinal structures. The microscopic resolution of OCT 

imaging allows the discrimination of the retina’s micron-scale layered structures; and the cross-

sectional images are able to present corresponding histopathologic features of the diseases.[24, 

30] OCT has proven to be very helpful in the evaluation of retinal pathologies, elucidating 

pathological processes, assessing if surgical intervention is required, or in monitoring the 

outcome of surgery. For example, OCT data help detect the primary pathogenic event in 

idiopathic macular hole formation, which appears as a localized perifoveal vitreous 

detachment;[31-34] OCT-derived measurements become useful information for assessing the 

anatomical and functional success after surgery.[26] The non-invasive characteristics of OCT, 

which produces less discomfort to the patients, has created a trend towards the less frequent use 

of fluorescein angiography, especially during frequent follow-up visits.[26] OCT technology also 

helps the evaluation of the vitreorretinal interface, such as the epiretinal membrane. An attached 

epiretinal membrane can be appreciated on OCT as a contrast in reflectivity between the 

membrane and retina, or as the presence of an edge, or as a steepened foveal contour.[26] The 

morphological information of the retinal tissues provided by OCT images further plays an 

important role in the disease diagnoses and managements for macular edema and AMD. 

Qualitative OCT assessment demonstrates subtle disease activity before biomicroscopy fundus 

examination and visual acuity changes; moreover, the ability to detect the presence of intraretinal 

fluid in OCT imaging shows an effective way to guide treatment and retreatment, as intraretinal 

fluid is associated with the presence of neovascular membranes in AMD.[35] Besides the 

qualitative assessment of OCT images, the quantitative measurements, such as the total retinal 

thickness (the thickness between internal limiting membrane (ILM) and retinal pigment 
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epithelium (RPE)) in various macular locations, and total macular volume further provide 

objective information for disease monitoring and for evaluating responses to therapy.[36] 

Glaucoma, one of the leading causes of blindness worldwide, is a slowly progressing 

optic neuropathy that is characterized by the loss of retinal ganglion cells and the retinal nerve 

fiber layer (RNFL) with associated visual field loss.[37, 38] Because optic nerve damages are 

irreversible, it is crucial to detect glaucoma in its earliest possible stage and monitor disease 

progression closely so that proper interventions are applied at the right time to prevent further 

damage. The ability to provide an objective quantitative assessment of RNFL thickness has made 

OCT part of the clinical routine for glaucoma practice. Total retinal and circumpapillary RNFL 

thicknesses are measured via the automated segmentation software embedded in the 

commercialized OCT device. The measurements of optic nerve head (ONH) parameters, such as 

cup area, disc area, and cup-to-disc ratio were achieved later when 3D volume scans can also be 

obtained in both TD-OCT and FD-OCT images. Good reproducibility in measuring the RNFL 

thickness and ONH parameters has been observed.[39-42] Several previous studies also have 

demonstrated that OCT was capable of differentiating glaucomatous from healthy eyes.[27-29, 

36, 43-47] Furthermore, OCT is able to capture both progressive RNFL thinning and ONH 

remodeling, which helps monitor glaucoma progression.[18, 48, 49] 

Anterior segment OCT (AS-OCT) extends the use of the OCT imaging applications from 

the posterior to the anterior part of the eye by providing structural information about the cornea, 

anatomic structures of angle, structures not visible with slitlamp examination, and the anterior 

chamber.[50] Compared to the conventional UBM, AS-OCT enables the visualization and 

quantification of the anterior segment of the eye with high resolution in a non-invasive and non-

contact manner in the clinic. Therefore, AS-OCT is frequently used not only for diagnosing 



 9 

pathologic conditions of anterior segment, but also for evaluating anterior surgeries.[51-54] With 

AS-OCT, distinguishing the epithelial layer from the stroma and observing the wound-healing 

process of the cornea become possible.[50] Studies have shown that epithelial ingrowth under 

the laser in situ keratomileusis (LASIK) flap could be seen with AS-OCT. For quantitative 

assessments, objective measurement of cornea thickness shows reliable pachymetric mapping. 

Pachymetric measurements are useful for LASIK surgery and the diagnosis of keratoconus and 

other corneal pathologies. 

In summary, OCT technology provides additional information of disease diagnosis and 

monitoring. OCT enables the subjective visualization and objective measurement of ocular 

tissues, including the cornea and retina, in a real-time, non-contact, and non-invasive fashion 

with microscopic axial resolution. With the advances in OCT technology and the improvement 

of computer-aided image processing tools, OCT has become an indispensable ocular imaging 

device in daily clinical care for ophthalmology. In this dissertation, we will focus on the retinal 

and RNFL thickness measurements and tissue structure visualization application of OCT, 

especially for the region around the ONH and macular region. 

1.3 CLINICAL PROBLEMS TO BE SOLVED 

Multiple SD-OCT devices from several manufacturers are commercially available currently 

(Table 1). While all manufacturers aim to improve OCT technology in order to improve their 

clinical diagnoses and disease detection abilities, each manufacturer also dedicates their efforts 

to advancing their products without concern towards data/measurement compatibility and  

 



 10 

comparability. They use different optical designs, device settings, and image processing 

methods.[26, 55] This diversity causes OCT data inconsistency and OCT measurement 

incompatibility. 

 

Table 1. List and technical characteristics of the commercially available SD-OCT. 

Instrument Manufacturer 
Center 

wavelength  
(nm) 

Axial  / 
Transverse 
resolution 

(µm) 

Scan speed 
(A-scans/s) 

Data format 
(bits/pixel) 

Scan depth 
(mm) /  

Number of 
samples 

Cirrus  
HD-OCT Zeiss 840 5 / 15 27,000 8 2.0 / 1024 

RTVue 
OCT Optovue 840 5 / 15 26,000 12 2-2.3 / 768 

Spectralis 
OCT 

Heidelberg 
Engineeriing 870 3.9 / 14 40,000 16 1.9 / 496 

 

  

Significant differences in retinal layer thickness measurements were observed when 

comparing OCT measurements from different devices.[22, 56-59] The systematic measurement 

differences among OCT devices pose a serious challenge. RNFL thickness is an excellent 

biomarker and plays an important role for glaucoma diagnosis and monitoring.[18, 28, 36, 44, 

47-49, 60] Because of its slowly progressing nature, a long-term follow-up is needed for early 

progression detection. During the follow-up period, if patients move from one clinic to another, 

or device models change or update, the systematic differences between various OCT devices or 

model iteration make previous data useless and prevent us from establishing a long-term clinical 

record of RNFL thickness measurements, which is required for glaucoma progression analysis. 

Besides, when it comes to multicenter clinical studies, OCT data coming from different clinical 
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centers may be acquired using different OCT devices or different generations. In that case, the 

data incompatibility among different OCT devices would make it difficult to compare the 

measurements directly, further reduce the amount of eligible data and limit OCT applications. 

 Inconsistent image appearance, such as contrast between retinal signal and background 

noise or contrast between adjacent intra-retinal layers, may mislead clinical diagnoses if one is 

evaluating images from different devices. In addition, the variations in OCT data format, such as 

sampling numbers and intensity dynamic range, make OCT image visualization machine-

specific. Specific image browsers and parameter settings are needed when opening and reading 

OCT data from different devices. This adds complexity and inconvenience when browsing or 

comparing OCT images from different OCT devices. Although all devices can export OCT 

images in generic graphic formats (e.g. JPEG, TIFF, etc.), those data are usually down sampled, 

especially in sampling bit rate (12- or 16-bit data becomes 8-bit) together with possible 

compression artifacts, which further affects processing especially for detailed segmentation of 

intra-retinal layers. The Digital Imaging and Communication in Medicine (DICOM)[61] has put 

efforts into OCT image format standardization, but nevertheless, still cannot fully resolve the 

discrepancy among various devices. The data incompatibility and image discrepancy among 

multiple OCT devices cause a serious problem for both clinical practice and research study 

design. Therefore, an image processing method that is able to normalize the various signal 

characteristics and minimize the systematic differences among different SD-OCT devices would 

be indispensable. 
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1.4 SYSTEMATIC DIFFERENCES IN OPTICAL COHERENCE TOMOGRAPHY 

MEASUREMENTS 

During the last 25 years, many models and generations have been developed and 

commercialized, such as OCT1, OCT 2000, and OCT3 (also known as Stratus (Carl Zeiss 

Meditec)) (all TD-OCTs), and the newly invented FD-OCT devices, which were developed by 

various manufacturers. Although new models offer faster scanning speed, improved scan quality, 

and advanced processing software, significant measurement differences are usually observed 

between the new models and the existing instruments, which poses a serious challenge when it 

comes to comparing the RNFL thickness measurements from various devices during a patients’ 

follow-up periods.[56-58] 

Several studies were conducted to investigate the compatibility of RNFL thickness 

measurements among the early generations of OCT, namely OCT1, OCT 2000, and Stratus. 

Bourne et al. found that the RNFL thickness measurements were thinner with Stratus compared 

with OCT 2000. Even after applying a correction factor, the variability exceeded TD-OCT’s 

limit of resolution (10 µm).[62] Monteiro et al. compared the RNFL thickness measurements 

between OCT1 and Stratus, and found that the measurements were smaller with Stratus than with 

OCT1.[63] Both studies concluded that the measurement agreement among the TD-OCT devices 

were poor from a clinical standpoint and should not be used interchangeably.[62, 63] 

Global, quadrant, and clock hour mean RNFL thickness measurements were compared 

among Stratus and various SD-OCT devices to test their compatibility as well. Systematic 

differences in RNFL thickness measurements were observed between Stratus and Cirrus (Zeiss, 

Dublin, CA, USA), between Stratus and RTVue (Optovue, Fremont, CA, USA), and between 

Stratus and Spectralis (Heidelberg Engineering, Heidelberg, Germany), respectively.[56, 64-66] 
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Vizzeri et al. found a proportional bias between Stratus and Cirrus, but in general Stratus 

consistently provided thicker RNFL measurements than Cirrus for both global and sectoral 

parameters even when no statistically significant difference in image quality was detected (image 

quality has been recognized as a main factor influencing thickness measurements).[64, 67-72] 

The same trend was observed by Knight et al. and Sung et al.[65, 66] Seibold et al. compared the 

RNFL thickness among Stratus, Cirrus, RTVue, and Spectralis, individually. They found that 

Stratus reported thicker RNFL thickness than Cirrus and Spectralis but thinner thickness than 

RTVue, and concluded that the measurement values were significantly different and clinicians 

should be aware of relationships between various OCT machines when following glaucoma 

patients, especially if switching instruments or comparing scans from various machines.[56] 

Giani et al. extended the measurements from the ONH to the macular region and compared the 

thickness measurements from Stratus with five SD-OCT devices (Cirrus, RTVue, Spectralis, 

SDOCT Coopernicus HR (Optopol Technology SA, Zawiercie, Poland), and 3D OCT (Topcon, 

Tokyo, Japan)).[57] They found that differences between OCT devices were beyond expected 

device measurement variability and should not be used interchangeably.[57] With the systematic 

differences, many pieces of literature suggested that standardized OCT measurements for clinical 

practice are needed and it is imperative that clinical trials use single OCT device for the disease 

follow-ups.[57] 

Leite et al. tested the agreement of RNFL thickness assessment among SD-OCT 

instruments.[58] They found that RTVue and Spectralis reported statistically significant thicker 

RNFL thickness measurements as compared to Cirrus, and detected fixed biases and proportional 

biases in the measurement values. The 95% limit of agreement was around 20 µm, which was 

nearly twice the expected measurement variability within a single SD-OCT device (±5 µm). 
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They summarized that systematic differences existed among SD-OCT devices and suggested 

comparing with histologic measurements to help determine which technique was most 

accurate.[58]. Buchser et al. and Kanamori et al. compared the RNFL thickness among Cirrus, 

RTVue, and 3D OCT (Buchser et al. used 3D OCT-1000 while Kanamori et al. used 3D OCT-

2000). In their findings, RTVue showed statistically significantly thicker RNFL measurements 

than Cirrus (17.5 µm [22] and 8.8 µm [59]), and 3D OCT (8.4 µm [22] and 8.1 µm [59]), again 

confirming that systematic differences existed among SD-OCT devices, and the measurements 

from different SD-OCT devices should not be considered equivalently. 

Significant differences in RNFL thickness measurements among OCT devices were 

detected, suggesting that OCT measurements from different devices are not directly comparable 

and meaning that extra care must be taken when comparing measurements among OCT devices. 

Speculations were made that the following factors accounted for the systematic differences 

among OCT devices: 1) the intrinsic differences between the TD-OCT and SD-OCT instruments 

and the hardware discrepancies between SD-OCT devices, 2) the definition of retinal boundaries 

in segmentation software, 3) the variability in image processing and analysis software, 4) the 

scan type (circle scan vs. cube scan) and registration area, and 5) the image quality.[56, 57, 64-

66] Conversion equations, calculated from regression models [57] or structural equation models 

(SEMs) [22], were constructed to compensate for the discrepancies among OCT devices and 

enable direct comparison for measurements from various OCT devices.[22, 57, 66] However, 

they were either with high standard errors for both intercepts and slope conversion values,[57] or 

need a larger sample number to be generalized, and thus were not capable of being applied to all 

the datasets. Kim et al. developed a scan location matching method to align the scan location 

between TD-OCT’s circle scan and SD-OCT’s 3D raster cube scans.[73] Their results showed 
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that scan location variability plays an important role in the measurement differences. With the 

scan location matching method, the measurement variability was successfully reduced and the 

measurement agreement was improved, however, the systematic differences between TD-OCT 

and SD-OCT cannot be fully solved without the help of calibration equations.[73]  

In summary, systematic differences in RNFL thickness measurements have been 

recognized as a serious challenge in clinical practice when clinicians intend to compare 

measurement from different OCT devices or maintain a long-term follow-up for disease 

management using multiple OCT devices or generations. Calibration equations established to 

solve the measurement differences were found to be population dependent and not generalizable 

for every case. To overcome these obstacles, a novel signal normalization method was proposed 

in this dissertation. 

1.5 PROJECT OBJECTIVES 

The ultimate goal of this dissertation was to develop a signal normalization method to minimize 

the signal characteristic discrepancies among multiple OCT devices so that both quantitative and 

qualitative assessments become directly comparable regardless of the device differences. This 

would broaden the application of OCT in both clinical and research fields. 

 The signal normalization method was developed based on the assumption that OCT 

signals carry similar information from the same biological tissue but show different signal 

characteristics among OCT devices. The signal differences stemmed from the use of various 

light sources with different wavelengths, optical designs, and signal processing methods, which 

cause systematic measurement differences and inconsistent image visualization. We 
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hypothesized that 1) the variation in optical characteristics among OCT devices can be 

minimized by applying the signal normalization technique; and 2) normalizing the OCT signal 

will help reduce the inherent systematic differences in quantitative OCT measurement data as 

well as qualitative OCT image viewing, and enable the direct comparison of both quantitative 

and qualitative OCT data among multiple OCT devices. To examine these hypotheses, the 

following objectives were realized: 

1.5.1 Objective 1: To Develop and Optimize an Automated Signal Normalization 

Algorithm 

Different OCT devices have different OCT data specifications, such as sampling density in three 

axes (x, y, and z directions), noise level, and intensity dynamic range. These differences, together 

with hardware design differences, account for many of the discrepancies in OCT signal 

characteristics. The signal discrepancies affect the OCT segmentation algorithms, and thus result 

in systematic differences in OCT measurements. In this objective, we developed a signal 

normalization method to normalize scaling and sampling density in the axial direction, noise 

level, intensity dynamic range, and signal strength among various OCT devices in a stepwise 

fashion. The method was performed in multiple steps and integrated together to form one 

automated software algorithm. 



 17 

1.5.2 Objective 2: To Test and Validate the Effect of the Signal Normalization Method 

Quantitatively 

In order to test the proposed signal normalization method, quantitative verification of the 

proposed signal normalization algorithm was performed in two ways: engineering validation and 

clinical validation. For engineering validation, absolute differences between individual A-scans 

from different SD-OCT devices sampled at the same location from the same eye were measured 

and compared. For clinical validation, the circumpapillary RNFL and macular total retinal 

thickness were measured and analyzed to test the reduction of systematic differences among 

multiple devices.  

1.5.3 Objective 3: To Test and Validate the Effect of the Signal Normalization Method 

Qualitatively 

Even though the OCT signals from different OCT device become similar in shape, for example, 

fringe patterns, peak widths, and all other aspects, the effect of signal normalization on image 

appearance still needs to be tested, as subjective qualitative assessment of OCT images is a major 

part of clinical activity, especially for retinal pathologies. Therefore, a qualitative verification of 

the proposed signal normalization algorithm was performed subjectively by judging similarity 

between images from different OCT devices both before and after processing in the following 

aspects: signal contrast between retinal signal and background noise, signal contrast between 

adjacent intra-retinal layers, the texture and pattern of OCT images in the retinal layers, and the 

overall image appearance. 
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2.0  SUBJECTS AND IMAGE ACQUISITION 

In this study, all the experiments conducted in order to evaluate the developed methods were 

cross-sectional studies. Healthy participants and subjects with various pathologies (glaucoma, 

AMD, diabetic retinopathy, macular edema, macular hole, and proliferative vitreoretinopathy) 

were recruited at the University of Pittsburgh Medical Center Eye Center. The University of 

Pittsburgh Review Board and ethics committee approvals were obtained for the study and 

informed consent was obtained from all subjects. This study followed the tenets of the 

Declaration of Helsinki, and was conducted in compliance with the Health Insurance Portability 

and Accountability Act. 

2.1 SUBJECTS 

Healthy subjects, glaucoma subjects, and subjects with retinal pathology were recruited. The 

inclusion criteria were best-corrected visual acuity of 20/40 or better, refractive error within ± 

6.0 D, and no media opacities. Subjects were excluded if they were using medications known to 

affect the retina, or if they had any previous intraocular surgeries other than uneventful cataract 

extraction or glaucoma surgery. 
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2.2 INSTRUMENTS AND IMAGE ACQUISITION 

Circumpapillary and macular images were acquired with three SD-OCT devices: Cirrus HD-

OCT (Zeiss, Dublin, California, USA), RTVue (Optovue, Fremont, California, USA), and 

Spectralis (Heidelberg Engineering, Heidelberg, Germany). The details of the scan protocols are 

described below. For all the images, images with an image quality below the manufacturer’s 

recommended cutoff (signal strength (SS) below 6 for Cirrus data, signal strength index (SSI) 

below 40 for RTVue data, and image quality below 15 for Spectralis data), or images with 

apparent eye movement during scanning were considered poor quality images and discarded. 

Eye movement was subjectively defined as image artifacts on OCT en face images showing a 

horizontal frame shift larger than one average sized retinal blood vessel diameter or a major 

distortion of the fovea region. All of the OCT raw data were exported to a standalone computer 

for signal normalization and further analysis. 

2.2.1 Cirrus HD-OCT 

Optic Disc Cube 200×200 scan and Macular Cube 200×200 scan were used to obtain the 3D 

cube data. The scanning protocol collected 200×200 A-scans from a 6×6 mm2 area centered on 

the optic disc or the macula with 1024 sampling points within 2.0 mm axial scan depth for each 

point. 
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2.2.2 RTVue OCT 

200×200 and 513×101 raster cube scan centered on the foveola, and RNFL 3.45 Circle scan 

pattern were used to acquire RTVue image data at the macula and ONH regions respectively. 

Isotropic 200×200 raster cube scan patterns collected 200×200 A-scans from a 6×6 mm2 area 

centered on the macula and 640 sampling points within 1.96 mm axial scan depth for each point. 

Anisotropic 513×101 raster cube scan acquires similar information from the same area with the 

same sampling density in the axial direction, except that 513×101 A-scans are collected. 

RNFL3.45 Circle scan pattern consisted of 1019 A-scans and 768 samplings along each A-scan 

for a 2.3 mm axial scan depth following a 3.45 mm diameter circle centered on the ONH. 

2.2.3 Spectralis 

Macular raster volume scan centered at the fovea covering a 20°×20° region (193 sections, 9 

frame averaged), and Circle RNFL scan (100 frame averaged) were used to acquire the image 

data for the macular and ONH region in this study, where for both scan types 496 sampling 

points were collected along a 1.9 mm axial scan depth. 
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3.0  SIGNAL NORMALIZATION ALGORITHM DEVELOPMENTS 

Both hardware and software specifications vary significantly among SD-OCT devices; including 

different light sources, optical design, scan settings, image-processing techniques, and data 

formats. As summarized in Table 1, Cirrus uses a superluminent diode laser with a center 

wavelength of 840 nm while Spectralis OCT uses a dual-beam SD-OCT and a confocal laser 

scanning ophthalmoscope (CSLO) that uses a wavelength of 870 nm and an infrared reference 

image to simultaneously provide images of ocular microstructures. OCT data can have 1024 

pixels along the z-axis in 2.00 mm with an 8-bit data format or 496 pixels in 1.9 mm with a 16-

bit data format. All these differences account for the signal characteristic variation among SD-

OCT devices, leading to the inherent systematic differences in OCT data measurements. When 

looking at an individual A-scan at the same location from the same eye scanned by Cirrus and 

RTVue on the same day, although the signal characteristics varied dramatically in intensity 

dynamic range and sampling density between devices, the A-scan intensity profiles showed 

similar profiles in general, such as major peak locations and their relative amplitudes 

proportions. With these observations, we hypothesized that by normalizing the variable signal 

characteristics, including sampling density, spatial scaling, and signal to noise ratio, differences 

among SD-OCT devices would virtually disappear. 

We classified factors causing the variability in signal characteristics into four categories: 

sampling density in the axial direction (Z-direction), the amount of speckle noise, the overall 
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noise level and intensity dynamic range, and the intensity contrast within tissue signals. We then 

developed a signal normalization method to resolve each factor in a stepwise fashion. The 

proposed signal normalization consists of four stages (as shown in Figure 4): z-scaling, sampling 

density normalization, speckle noise reduction, amplitude normalization, and the optimization of 

signal to noise ratio using either high dynamic range (HDR) imaging concept based image 

processing or histogram matching. The details of each stage are described in the following 

sections. In brief, z-scaling and sampling density normalization resolved the scaling and 

sampling density variation in the axial direction; speckle noise reduction removed the speckle 

noise; amplitude normalization rescaled the meaningful retinal signal to the entire intensity 

dynamic range and normalized the intensity dynamic range; and HDR and histogram matching 

processing compensated for the image quality discrepancy. All this processing was performed 

step-by-step. Among our various component specific experiments and validations, the algorithm 

details of components may exhibit minor differences to suit the purpose (as described in Chapter 

4). 

Cirrus data format (1024 pixels/samplings in 2.0 mm in the axial direction and an 8-bit 

data format for one pixel) was used as the normalization reference data format, so that OCT data 

from other SD-OCT devices were normalized into Cirrus equivalent data format. The reasons for 

normalization using 8-bit data format as the standard data format can be explained from three 

aspects. Current display systems are using the 8-bit data format for display purposes; therefore, 

even though we have higher dynamic range, such as 12-bit or 16-bit data format, the down-

sampling of the OCT data is needed for display, which might degrade the image quality. For 

image processing performance, a majority of the image processing techniques used in computer 

vision or computer graphics focus on 8-bit data format images, and it has been proved that 8-bit 
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data format is sufficient to provide satisfactory and reliable processing and segmentation 

results.[74] Finally, data size is made smaller by converting OCT data to 8-bit data format, which 

would save memory space and accelerate the processing time of image analysis and data transfer. 

 

 

Figure 4. The overall flow of the proposed signal normalization method. 

 

All the image processing techniques used to build the signal normalization method were 

population independent and did not require training or tuning parameters or converting equations 

for different OCT devices or cohorts, and could be applied to any OCT devices. We believed the 

combination of those image-processing methods could successfully minimize OCT signal 
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discrepancies. Besides, the use of a uniform OCT data format would allow for an established 

common standard for OCT image data format so one universal visualization and analysis 

software can handle all OCT data independent of device specific differences. 

3.1 Z-SCALING AND SAMPLING DENSITY NORMALIZATION 

The simplest way to compare two A-scans is by aligning them to a reference point, such as the 

ILM or the inner-most border of the retina, and comparing the A-scan intensity profile pixel-by-

pixel. However, the discrepancies in z-scaling and sampling density among SD-OCT devices 

make each sampling point stand for different physical sizes and points to different locations even 

though they are aligned and with the same index in the axial direction. 

As the first step of OCT signal normalization, z-scaling and sampling density 

normalization were applied. From the device specification, Cirrus data have 1024 sampling 

points within a 2.00 mm scan depth, RTVue data have 640 sampling points within 1.96 mm for 

macular scans and 768 sampling points within 2.35 mm for ONH scans, and Spectralis data have 

496 sampling points within a 1.90 mm scan depth. As we set Cirrus data format (1024 sampling 

points within 2.00 mm scan depth; each sampling point stands for about 2 µm) as the reference 

data format, RTVue and Spectralis data were oversampled along the axial direction using 

backward mapping to have the same scaling scale and sampling density, as shown in Eq. 3-1: 

ztarget = z×
ScanDepthref

Nref

×
N in

ScanDepthin
                (Eq. 3-1), 

where ztarget  indicates the target z index to be sampled for the interpolation, z  is the index in the 

z direction of the pixel in the sampling density normalized A-scan, ranging from 0 to 1023, 
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ScanDepthref  and ScanDepthin  are the scan depth for the reference data format (2.0 mm), and for 

the input device (1.96 mm for RTVue macular scans, and 1.90 mm for Spectralis); Nref  and N in  

are the sampling points for the reference data format (1024 pixels), and for the input device (640 

pixels for RTVue macular scans, and 496 pixels for Spectralis), respectively. After calculating 

ztarget , one-dimensional linear interpolation was applied to generate a smooth interpolated A-scan 

profile. Sampling points located beyond 1.96 mm scan depth for RTVue data and 1.90 mm scan 

depth for Spectralis data were padded with the minimum value in the corresponding A-scan. 

3.2 SPECKLE NOISE REDUCTION 

Speckle is an inherent component of OCT image. When the interference of backscattered waves 

of the same frequency but with different phases and amplitudes happens, speckles occur, and 

present as a granular pattern on the OCT cross-sections.[75, 76] Speckle carries information 

about both the imaged structure (signal-carrying speckle) as well as noise (signal-degrading 

speckle),[76] and the latter is responsible for the salt-and-pepper appearance especially in areas 

where less or no signal is expected, such as the vitreous cavity, or the anterior chamber. Speckle 

noise has been recognized as a factor degrading the quality of acquired images, masking actual 

target signals, and causing difficulties in qualitative assessment as well as quantitative analysis. 

We further speculate that speckle noise also results in the variability in OCT signal between 

OCT images, even within the same device. 

Many speckle noise reduction methods have been developed, such as adaptive filtering, 

anisotropic diffusion, wavelet techniques, etc., and applied as part of pre-processing before 
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automated segmentation analysis.[77-81] Although these methods can produce good contrast 

enhancement of the images and maintain the sharpness of the edges, they also generate blurring 

effects on the fine-textured tissue structure regions, especially within the same retinal layers, 

which can affect qualitative assessment and potentially influence the automated segmentation 

performance. Further, adaptive filtering based and anisotropic diffusion based methods require a 

large number of iterations to complete the process, which is computation-heavy and time-

consuming, and thus not practical for real-time clinical diagnosis applications, especially with 

volumetric scans.[80] 

In order to successfully reduce the speckle noise in a time-efficient manner, and keep 

most of the retinal structural information without blurring the details, a fully automated speckle 

noise reduction method was developed and tested. 

3.2.1 Speckle Noise Reduction Algorithm Development 

The speckle noise reduction method was performed as a four-step process (Figure 5): 

Step 1: Signal Mapping on Raw Data (Amplitude Normalization) 

Each A-scan signal was rescaled based on the pixel intensity histogram (Figure 5, Step 

1). In order to maximize the dynamic range within the meaningful retinal signal, signal levels 

between the 66th percentile and the 99th percentile on the histogram were rescaled onto the 8-bit 

data grayscale level (lower 66th percentile becomes 0 and top 1st percentile becomes 255). The 

cutoff of the 66th percentile was determined based on the average thickness of the meaningful 

signal focusing on the retina (retina with a part of choroid; 660 µm) within the 2.0mm scan 

length window. This cutoff is commonly used on many devices for the pseudo-color 

visualization of OCT image data. 
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Step 2: Tissue Signal Modeling by Smoothing (Generating Tissue Skeleton) 

After signal mapping, a two-dimensional (2D) mean filter was applied to smooth the 

signal on each processed B-scan. Kernel size in the axial direction of the mean filter was a 

function of the total pixel number in the axial direction. A kernel size of 3×7 (3 in the transverse 

and 7 in the axial direction) was used for data with 1024 pixels in the axial direction (Figure 5, 

Step 2). 

 

Step 3: Model Signal Rescaling 

After mapping and smoothing, the intensity level of the processed A-scan became lower 

than the original A-scan profile due to averaging. In order to preserve the original intensity level, 

the processed A-scan signals were normalized based on the pixel intensity histogram again. The 

noise level (66th percentile) and saturation level (99th percentile) on the histogram were 

calculated for the original and the processed A-scan profiles (Figure 5, Step 3). Eq. 3-2 was 

constructed and used to match the signal intensity level of the processed A-scan to the original 

A-scan profile. 

IR =
IS − noiseS

saturationS − noiseS
× (saturationO − noiseO)+ noiseS                 (Eq. 3-2), 

where IS  and IR  refer to the pixel intensity before and after signal rescaling (Step 3), 

saturationO  and noiseO  refer to the saturation and noise level on the original A-scan, and 

saturationS  and noiseS  refer to the saturation and noise level on the smoothed A-scan profile. 
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Step 4: Selective Removal of High Frequency Noise Components 

The rescaled smoothed A-scan signal generated in Step 3 was used as a mask to 

selectively remove high signal peaks, which were considered as speckle noise. Signal intensity at 

the same location (with the same z index) from the original A-scan and the mask were compared 

pixel by pixel (Figure 5, Step 4). If pixels from the original signals showed higher intensity than 

their counterparts from the mask, their intensity were adjusted to the same intensity as the mask; 

otherwise, they were kept as the original intensity (Eq. 3-3). 

ISpR =
IR  if  IO > IR

IO  if  IO ≤ IR

"
#
$

                (Eq. 3-3). 

Eq. 3-3 describes the process of selectively removing the high frequency noise 

components, where ISpR  is the final result, IR  is the pixel intensity from the mask, and IO  is the 

original pixel intensity. 

 

Figure 5. The speckle removal process. 
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3.2.2 Speckle Noise Reduction Effects Assessment 

Subjects and Image Acquisition 

To evaluate the noise reduction effects, healthy participants and subjects with various 

pathologies (glaucoma, AMD, diabetic retinopathy, macular edema, macular hole, and 

proliferative vitreoretinopathy) were recruited at the University of Pittsburgh Medical Center 

Eye Center. Circumpapillary and macular images were acquired with Cirrus HD-OCT and 

RTVue. Details of the scanning protocols were described in Section 2.2. 

 

Noise Reduction Effects Assessment 

The effects of the speckle noise reduction method were subjectively evaluated on both 

cross-sectional images (B-scans) and OCT en face images. In OCT en face images, which are 

created by integrating intensity information along the axial direction, one summed A-scan 

presents a single pixel in the en face image and further constitutes the fundus of the retina. 

In addition to subjective evaluation, performance of the proposed speckle noise reduction 

method was also objectively evaluated using established speckle-reduction performance metrics: 

signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).[79, 80, 82-84] SNR measures the 

signal level of a desired signal to the signal level of the background noise, and CNR measures 

the difference between the area of image feature and an area of background noise. Image signal 

quality is better with both higher SNR and CNR values. The definitions for these image quality 

metrics for a single frame as appearing in the literature are described in Eq. 3-4:[79, 80, 82-84] 
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                (Eq. 3-4). 

In the expression for SNR, I  represents the logged value from the SD-OCT machine 

output, and σ n
2  stands for the variance of the background noise region in the logged value. In 

CNR formula, µf  and µn  indicate the mean value of the selected region of interest and of the 

same background noise region as in SNR, while σ f
2  and σ n

2  stand for the variance of the selected 

region of interest and of the same background noise region as in SNR. 

To measure the SNR and CNR for the entire cube data, we modified Eq. 3-4 into Eq. 3-5: 
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                (Eq. 3-5). 

In Eq. 3-5, intermediate SNR and CNR for each frame were calculated and accumulated and the 

final SNR and CNR values were assessed using the arithmetic average of the intermediate 

parameters, where M  stands for the number of frames in one set of cube data. For SNR and 

CNR calculations, signals located in a rectangular region at the bottom of each B-scan, with the 

same width as the B-scan and height as 3% of the axial pixel number, were considered the noise 

signal, so that we had the minimal chance to include true retinal signal into the noise signal 

model when calculating µn  and σ n . An additional four regions were automatically located in the 
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RNFL, ganglion cell and inner plexiform layer (GC-IPL), inner nuclear and outer plexiform 

layer (IN-OPL), and RPE based on the position of ILM, outer RNFL border, and RPE from the 

segmentation results using our custom segmentation software.[85] The CNR values were 

averaged over the four regions of interest, while the SNR used the entire image as the region of 

interest. 

For further assessment, we compared the proposed speckle noise reduction method with 

the conventional mean and median filters by calculating the differences in SNR and CNR before 

and after processing using our method, mean, and median filters. The noise reduction ability for 

OCT images from different OCT devices was also tested.  

 

Statistical Analysis 

 Paired t-tests were used to analyze the image quality metrics (SNR and CNR) 

improvements between the original images and speckle noise reduced images. Differences in 

SNR and CNR before and after the noise reduction processing using different methods were 

calculated. The differences were used as the parameters for paired t-tests to further compare the 

noise reduction ability in terms of image quality among different noise reduction methods. 

3.2.3 Results 

Two hundred sixty-nine scans on 155 eyes from 95 subjects were recruited. All images showed 

notable improvement in image/signal quality, regardless of the scanning location (macula or 

ONH), pathology, or signal strength. Speckle reduced en face images showed noticeably clearer 

borders of retinal vessels and ONH contours compared to the raw image. Speckle reduced cross-

sectional images exhibited minimal blurring while speckle noise was effectively suppressed and 
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edges between different layers were preserved. A-scan profiles displayed clear retinal structure 

signal. Average processing time for each scan (200×200 cube data) was 4.3 seconds (MacBook 

Pro, 2.6GHz Core i7, 8GM RAM). 

Quantitatively, both SNR and CNR showed statistically significant improvement after 

speckle noise reduction regardless of the methods (p<0.0001, paired t-test) (Table 2). Compared 

to the conventional mean and median filters, the present method outperformed both conventional 

methods (p<0.0001), except for the CNR on Cirrus images. 

 

Table 2. Image quality metrics using different noise reduction methods. SNR: signal-to-noise ratio, CNR: contrast-

to-noise ratio, and Diff: SNR or CNR difference from original to each noise reduction method. 

  SNR Diff CNR Diff 

Cirrus 
(N=124) 

Original 26.2 --- 4.3 --- 

Mean Filter 29.1 2.9 5.6 1.4 

Median Filter 28.8 2.6 5.4 1.2 

Our Method 47.0 20.8 5.0 0.7 

RTVue 
(N=145) 

Original 20.8 --- 2.7 --- 

Mean Filter 27.1 6.3 5.3 2.6 

Median Filter 26.2 5.4 4.9 2.2 

Our Method 43.8 23.0 5.8 3.1 

 

 

For qualitative assessment, five sample cases are shown in Figure 6 to illustrate the effect 

of the speckle reduction. 
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Figure 6. Example results of the presented speckle reduction method. The original en face image (top left) is shown 

with the cross-sectional B-scan (top middle) and the A-scan profile corresponding to the vertical white line on the 

original cross-sectional B-scan (top right). The processed en face image (bottom left) is shown with the cross-

sectional B-scan (bottom middle), and the A-scan profile corresponding to the vertical white line on the processed 

cross-sectional B-scan (bottom right). 

 

Case 1 

The original OCT data, presented in the top half of Figure 6, Case 1, contained a 

significant amount of speckle noise, which can be seen as the granular pattern in the en face 

image (left), the salt-and-pepper noise in the cross-sectional B-scan (middle), and the fluctuated 

shape of A-scan profile (right). After noise reduction processing, speckle noise was reduced both 

in the cross-sectional image (bottom middle) and the A-scan intensity profile (bottom right). 

Retinal layer boundaries became clearly visible and the contrast was enhanced. In the en face 
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image, the grainy appearance was cleaned up and the borders of blood vessels and ONH became 

sharper (shown in the bottom left figure). Even small vessels became noticeably visible after 

processing (as the red arrow indicates). 

 

Case 2 

Although there was little speckle noise visible in the original OCT data of Case 2 (Figure 

6, Case 2), both the cross-sectional image and the A-scan profile became cleaner after processing. 

The en face image also showed noticeably less noise, and small blood vessels became noticeably 

more visible after processing. 

 

Case 3 

In Figure 6, Case 3, OCT data not only contained notable speckle noise but also had poor 

signal quality, likely due to poor focus. Although speckle noise was reduced and the contrast was 

enhanced on the cross-sectional image and the A-scan profile, the speckle reduction effect was 

limited in the en face image due to poor focus. 

 

Case 4 

In Case 4 (Figure 6, Case 4), vitreo-retinal proliferative change is seen in both the cross-

sectional and en face images. Speckle was reduced in all 3 visualizations (en face, cross-section, 

and A-scan). Visibility of proliferative tissue insertion in the retina was increased with 

processing (red arrows). Contrast of retinal folds was also improved. 
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Case 5 

A glaucomatous eye with retinal nerve fiber wedge defects is shown in Figure 6, Case 5. 

After processing, the quality of all visualizations (en face, cross-section, and A-scan) was 

improved and the wedge defect (red arrows) was also effectively highlighted. Image contrast was 

enhanced and the visualization of the retinal nerve fiber wedge defect was improved. 

3.2.4 Discussion 

The presented speckle method improved image quality in both quantitative and qualitative 

assessments with little blurring. The innovation of the presented method is the selective removal 

of the high frequency noise components. Unlike existing noise reduction methods, which remove 

all the high frequency components without considering the intensity level to generate smooth 

areas when the local intensity variance is small, the presented noise reduction method only 

removes the high frequency components with high intensity and keeps the high frequency 

components with low intensity as original. By doing this, the output signals maintain details in 

the low and mid intensity level, which are recognized as tissue structures, and thus prevent the 

processed images from being blurry, solving a common side effect of most of the speckle noise 

reduction methods. 

The selective smoothing approach can be applied to any other noise reduction method 

where signal modeling takes place. One of the common limitations of noise reduction is image 

blurring. Blurring happens because the original signal is modified from both ends: high and low 

signal level. For a majority of the cases, unwanted speckle noise belongs to a high signal level  
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not low (salt and pepper appearance), especially for subjective image quality assessment. We 

believe that the selective approach is a simple but powerful concept in practical signal 

enhancement. 

Besides the preservation of tissue structure information, another advantage of the 

presented method is time-efficiency. Our noise reduction method removes the noise by first 

generating a smoothed mask and then comparing the original signal with the mask and 

selectively smoothing. In this way, the computational complexity only relates to the number of 

A-scans and frames, substantially reducing the computation complexity of the existing methods 

(such as a complex statistical model or the need for a large number of iterations). This is 

especially important as the number of sampling points keep increasing with the advancement of 

OCT sampling speed. 

Although the presented noise reduction method can remove speckles and enhance the 

image contrast and quality, inferior quality images due to poor focus, polarization, or factors not 

related to speckle noise showed limited improvement with the presented method. Poorly focused 

images present with a deficiency in signal content. Therefore, even after removing high 

frequency noise components, these images did not show the full details of the actual tissue, 

leading to less optimal visualization. 

For objective image quality evaluation, the overall SNR and CNR showed a significant 

improvement in the image quality in terms of signal strength and image contrast. However, we 

found some systematic difference in the magnitude of improvement in CNR among SD-OCT 

devices (Table 2). For Cirrus data, the CNR increased from 4.3 dB to 5.0 dB, while for RTVue 

data, the CNR increased from 2.7 dB to 5.8 dB, regardless of the scan location and scan type. 

This phenomenon can be explained by the definition of CNR. When calculating CNR, the mean 
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of the region of interest is subtracted from the mean of the noise region and then divided by the 

averaged standard deviation (SD) of the region of interest and noise region. The original RTVue 

data have a higher noise level and a larger SD as compared to Cirrus data as indicated in the red 

boxes in Figure 7, and therefore provides a large improvement of the CNR after speckle noise 

reduction. 

 

 

Figure 7. Averaged A-scan before and after speckle reduction with two SD-OCT devices. Averaged A-scan profiles 

in one single frame before and after speckle noise reduction from the same eye scanned on the same day using 

Cirrus and RTVue machines. The clinical display and the speckle reduced A-scan profiles are superimposed 

together to better observe the effect. Red boxes indicate the regions used as noise signal models when calculating 

SNR and CNR for Cirrus and RTVue data. 
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CNR results also showed contradicting trends between Cirrus and RTVue images. The 

present method outperformed the conventional mean and median filters on RTVue but not on 

Cirrus. In theory, CNR gives an advantage to the conventional methods because mean intensity 

is higher and variance is lower with simple smoothing than the present method, as the present 

method preserves high frequency components at low intensity level. However, RTVue images 

have higher noise floor level than Cirrus images (Figure 7), and the conventional methods do not 

suppress the noise as effectively as the present method. Therefore, the background noise effect 

overwhelmed the other factors, which depend on the region of interest. 

In conclusion, the presented noise reduction method successfully reduced speckle noise, 

enhanced image contrast and quality, and preserved the details of tissue structure in a time-

efficient manner. It was effective across all tested OCT platforms, which may form the 

foundation of a clinically useful post-processing tool. 

3.3 HIGH DYNAMIC RANGE IMAGING CONCEPT BASED SIGNAL 

ENHANCEMENT METHOD 

It is well known that image quality variability affects our ability to interpret and analyze OCT 

images.[70, 86] Quantitative RNFL thickness measurements showed a significant positive 

correlation with the image quality.[70, 72, 86] Qualitative evaluation of OCT images is also 

markedly influenced by the signal quality.[87-89] Several attempts were designed to enhance 

OCT images with relatively low image quality,[69, 90-92] however, to our knowledge, there is 

none that proved to be effective in addressing OCT measurement variability within the same 

target due to variable signal quality. 
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HDR imaging technology, which has a long history in photography, expands the image 

contrast dynamic range by combining multiple images with a wide range of exposure 

settings.[93-98] Figure 8 shows an example of the effect of HDR. Though, with OCT scanning, 

acquiring multiple scans with different exposure settings is not feasible, as the exposure level 

cannot be controlled mechanically or optically. We hypothesized that the HDR concept can be 

applied to enhance OCT images and achieve greater dynamic range in both weak and strong 

signal areas without the need of multiple scans, and that the HDR processing technique can be 

used to compensate image quality differences in quantitative and qualitative OCT image 

assessment. 

 

 

Figure 8. An example result of HDR processing in photography. Using images with multiple exposure setting to 

generate a HDR image. (Debevec PE and Malik J [93]) 
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The purpose of this section was to develop and test a novel signal enhancement method 

for OCT images based on the HDR processing concept without the need of multiple scans in 

different exposures. For its validation, a set of OCT images obtained under varying corneal 

dryness conditions causing fluctuating image quality were processed to see the effect on RNFL 

thickness measurements between good and poor signal strength images scanned on the same eye. 

3.3.1 High Dynamic Range Processing Algorithm Development 

The HDR processing includes two major stages: 

Step1: Three Virtual OCT Signal Channels Processing 

 For each B-scan image, four histogram parameters, minimum, maximum, noise level, and 

saturation level were calculated based on a previous study,[87] where minimum and maximum 

were the lowest and highest pixel values of the entire B-scan image, while noise level and 

saturation level were defined as the 66th and 99th percentile of the pixel value of the entire B-

scan. For each frame, the original OCT signal dataset was divided into three datasets, creating 

three virtual channels: low, medium, and high signal channels. The low signal channel, ILow , 

consisted of pixel values between minimum and low offset values, the high signal channel, IHigh , 

consisted of pixel values between high offset and saturation level values, and the medium signal, 

IMid , consisted of pixel values between low offset and high offset values, where low and high 

offsets were defined as Eq. 3-6: 

Low Offset = noise+ 0.23× (saturation− noise),
High Offset = saturation− 0.067× (saturation− noise)

                (Eq. 3-6). 
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Each dataset is then processed to maximize the signal dynamic range by linearly 

rescaling pixel values between lowest and highest values within each dataset to the full 8-bit 

grayscale range (0 to 255) in each B-scan. Intensity values outside of the defined cutoff values 

(lower or higher) are forced to be either 0 or 255. 

 

Step 2: High Dynamic Range Signal Composition 

Signals from all three channels are combined to generate the final HDR dataset by 

calculating weighted mean values of the three channels, as shown in Eq. 3-7, where ILow , IMid , 

IHigh , and IHDR  stand for low, medium, and high signal channels, and the output image after 

HDR processing, respectively; I(x, z)  indicates the pixel value at position (x, z)  in the processed 

B-scan, i.e. x th A-scan and z th pixel in the axial direction; and cL , cM , and cH  are the weighted 

coefficients. The coefficients used for calculating the weighted mean are adjusted so that the 

image quality can be enhanced for OCT images with poor signal strength, while preventing the 

images with good signal strength from becoming saturated. In general, the coefficients were 3.0 

for cL , 2.0 for cM , and 1.0 for cH . 

IHDR(x, z) =
1

cL + cM + cH
cL × ILow(x, z)+ cM × IMid (x, z)+ cH × IHigh (x, z)( )                 (Eq. 3-7). 

3.3.2 High Dynamic Range Processing Performance Assessment 

Two experiments were designed to test the performance of the proposed HDR processing on 

OCT images. In the first experiment, we tested the signal quality compensation ability of the 

HDR processing using our previous TD-OCT data, which had a wide range of SSs.[70] In the 
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second experiment, we moved forward onto SD-OCT data to assess the image appearance after 

HDR processing, and to show that the HDR processing also works on SD-OCT data. 

 

Experiment 1: Effects of Signal Quality Compensation on Quantitative Analysis 

This experiment was designed to test the effects of the proposed HDR processing method 

on signal quality compensation for quantitative analysis. The variability in RNFL thickness 

measurements on images scanned with various SS of the same eye was measured. 

 

Subjects and Image Acquisition 

Ocular images obtained in a previous study were used in this experiment.[70] Seventeen 

eyes of 17 healthy volunteers were scanned with the TD-OCT Fast RNFL scanning protocol 

(Stratus OCT), which generated 3 consecutive, circumpapillary RNFL images at a scanning 

radius of 3.4 mm centered on the ONH. The upper eyelid of each subject was taped to the 

forehead on the selected, anesthetized eye to prevent blinking so that images with a wide variety 

of signal quality could be acquired from the same eye. In general, corneal dryness correlates well 

with signal quality (the drier the cornea, the worse the signal quality). OCT images were 

acquired every 20 seconds for a total of 8 series of images on each eye. After the drying scans, 

the tape was removed and the subject was allowed to blink normally. Then, 3 more scans were 

acquired at 1, 2, and 4 minutes after removing the tape. In this way, we had the reference scans 

(the scans with the highest SS) and the deteriorated scans all acquired from the same eye and 

same session, removing most potential confounders. All of the raw image data were exported to 

a standalone computer for further HDR processing. 
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Both the original OCT data and the HDR processed OCT data were then processed with 

our custom segmentation algorithm to measure RNFL thickness. The details of the segmentation 

algorithm are described in another study.[85] For the original OCT data, RNFL thickness was 

also measured with the original built-in segmentation algorithm of the machine. Segmentation 

results were subjectively evaluated for the accuracy of the automated RNFL border detection. 

Scans were excluded if the images demonstrated one or both of the following: (1) apparently 

inaccurate border detection for more than a consecutive 15% or additive 20% of the total image 

or (2) the borders of the RNFL were collapsed, meaning that the RNFL thickness was recorded 

as a string of zeros for at least 10 consecutive points. The mean of at least 2 qualified scans (from 

the 3 scans acquired in each series) for each time point was used for the analysis. 

Finally, a pair of scans, which were the scans with the highest and lowest signal quality 

without RNFL segmentation failure were selected for each eye in order to compare the HDR 

processing effect. 

 

Experiment 2: Effects of Image Quality Enhancement 

This experiment was designed to test the effects of the proposed HDR processing method 

on OCT image enhancement. OCT images with poor signal quality were processed with our 

HDR processing method, and the visibility of the intra-retinal layers before and after HDR 

processing was subjectively evaluated. In addition, the objective assessment of image quality 

was further applied to a separate dataset of SD-OCT images that showed good signal quality in 

order to test the effects of the proposed method on normal, clinically acceptable images. 
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Image Enhancement Ability Assessment 

Fifteen eyes of 15 subjects (8 healthy and 7 glaucoma) were enrolled. Poor quality 

images obtained with two SD-OCT devices were assembled for this study (Cirrus HD-OCT and 

RTVue). The visibility of intra-retinal layers was subjectively evaluated before and after HDR 

processing by presenting the images in a random order. The observer judged if there was a 

notable difference in visibility between each pair. In addition, the same custom retinal 

segmentation algorithm as the one used in Experiment 1 in Section 3.3.2 was also performed on 

both original and HDR processed OCT images to test the possible improvement on segmentation 

performance after HDR processing. 

 

Objective Image Quality Assessment 

Two hundred seventy SD-OCT images were acquired from one hundred thirty-six eyes 

from 95 subjects (32 healthy, 22 glaucoma suspect, and 41 glaucoma subjects). High quality 

images, which were eligible for clinical diagnoses and image analyses, were obtained with two 

SD-OCT devices for this experiment (Cirrus HD-OCT and RTVue). 

SNR and CNR were used to objectively evaluate the performance of the proposed HDR 

processing of 270 SD-OCT images. The definition of SNR and CNR were identical to the one 

used in “Noise Reduction Effects Assessment” (Section 3.2.2). As HDR processed images are 

clipped at the saturation level (the 99th percentile), SNR and CNR calculation was done on the 

original images after the same clipping was applied. This prevents erroneous measurements due 

to a few exceptionally high intensity outlier pixels. 
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Statistical Analysis 

The relationship between RNFL thickness measurements and the SS of OCT images was 

measured using linear regression models for each of the following RNFL thickness segmentation 

algorithms: the original device’s built-in algorithm (Device) and our custom algorithm with or 

without HDR processing (Original or HDR, respectively). Paired t-tests were used to analyze the 

image quality metrics (SNR and CNR) improvement between the original and HDR processed 

images. 

3.3.3 Results 

Experiment 1: Effects of Signal Quality Compensation on Quantitative Analysis 

In total, 951 images were collected, and 109 (11.5%) of them (mean SS 2.7 ± 1.1) were 

excluded from the study due to the segmentation failure. The overall mean SS of the original 

TD-OCT images was 6.6 ± 2.4, ranging from 0 to 10 (the full range of the SS for the TD-OCT 

device). Mean SS of good and poor quality scans were 9.0 ± 1.1 and 4.4 ± 0.9, respectively. Prior 

to signal quality enhancement, the RNFL thickness showed significant differences between good 

and poor quality scans on the same eye (mean RNFL difference 11.9 ± 1.6 µm, p<0.0001, paired 

t-test). This difference became substantially smaller and non-significant after HDR processing, 

where the mean difference was 1.7 ± 1.7 µm (p=0.33). This result fits well within the expected 

test-retest measurement variability, which is 10 µm for TD-OCT images with good signal 

quality.[99] 

The RNFL thickness showed two separate linear relationships with a SS above or below 

4 for all algorithms (Device, Original, and HDR, Figure 9). In the range of SS > 4, the HDR 

algorithm showed a smaller slope (-0.01 µm) in the relationship between RNFL thickness and SS 
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as compared to other algorithms (2.6 µm and 7.4 µm, for Device and Original, respectively). In 

the range of SS ≤ 4, all algorithms showed similar and relatively steep slopes, ranging from 7.6 

to 10.5 µm, in the relationship between RNFL thickness and SS (Table 3). 

 

 

Figure 9. Scatterplots of RNFL thickness measurements using various methods versus SS. (A) The built-in 

algorithm in TD-OCT devices, (B) our custom segmentation algorithm, and (C) our custom segmentation algorithm 

after HDR processing. The RNFL thickness showed two separate linear relationships with SS less than or equal to 4 

and SS greater than 4 for all algorithms. (D) The changes in RNFL thickness after HDR imaging as a function of 

baseline SS. 
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Table 3. Summary of signal quality compensation on quantitative analysis. RNFL thickness (RNFLT) 

measurements, slope, and intercepts of the regression curves of RNFL thickness versus SS using different 

processing methods. 95% confidence interval (CI) of the RNFL thickness measurement is shown in the parentheses. 

 SS ≤ 4 SS > 4 

 Device Original HDR Device Original HDR 

RNFLT 
(µm) 

86.8 
(84.0, 89.7) 

68.0 
(65.9, 70.2) 

97.8 
(95.6, 100.0) 

104.8 
(104.0, 105.5) 

100.4 
(99.3, 101.5) 

109.5 
(108.7, 110.3) 

Slope 
(µm/SS) 10.5 7.6 9.0 2.6 7.4 -0.01 

Intercept 
(µm) 57.8 46.9 72.9 85.4 46.3 109.6 

 

 

Figure 9D shows the changes in RNFL thicknesses as a function of the corresponding 

baseline SS. For lower range SS (SS < 7), there was a significant increase in RNFL thickness 

after HDR processing (mean thickness change 24.5 ± 10.0 µm), and the amount of change 

decreased as SS increased, while less changes in RNFL thicknesses were found in higher range 

SS (SS ≥ 7), with mean thickness change -0.25 ± 9.6 µm. 

 

Experiment 2: Effects of Image Quality Enhancement 

In all SD-OCT images with poor signal quality, notable improvements in terms of retinal 

layer visibility were observed (Figure 10). The contrast between adjacent retinal layers or 

between layers with high and low reflectivity became more apparent. Areas with poor signal 

quality that led to segmentation failure were accurately segmented after HDR processing (Figure 

10). Seven out of 9 SD-OCT images with segmentation algorithm failure (77.8%) showed 

successful segmentation after HDR processing. 
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Figure 10. SD-OCT cross-sectional images before and after HDR processing. Top row: Visibility of the retinal 

layers became clearer across the image, especially the area within the red bar on top. Signal quality also became 

more homogeneous with HDR processing. Bottom row: RNFL segmentation failed on original image but succeeded 

after HDR processing (red arrow). 

 

For objective assessment using the image quality metrics, the overall SNR of the 

processed images was statistically significantly lower than the original SNR, while the overall 

CNR of the processed images showed statistically significant improvement compared to the 

original (SNR: 23.3 vs 20.0 dB, CNR: 2.8 vs 3.0 dB; p<0.0001, paired t-test) (Table 4). A similar 

trend was found when analyzing the change in image quality metrics for each imaging device 

separately. SNR showed a statistically significant decrease for both Cirrus and RTVue data (26.2 

vs 20.9 dB for Cirrus, 20.8 vs 19.1 dB for RTVue, p<0.0001 for both devices, paired t-test) while 

CNR showed a statistically significant improvement (2.8 vs 3.1 dB for Cirrus, 2.7 vs 2.9 dB for 

RTVue, p<0.0001 for both device, paired t-test). 
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Table 4. Image quality assessment results for original and HDR processed images. Diff: SNR or CNR difference 

from the original to HDR. 

 SNR (dB) CNR (dB) 

 Original HDR Diff Original HDR Diff 

Cirrus 
(N=124) 

26.20 
(26.12, 26.28) 

20.94 
(20.85, 21.03) 

-5.27 
(-5.30, -5.24) 

2.80 
(2.59, 3.01) 

3.07 
(2.80, 3.34) 

0.27 
(0.20, 0.33) 

RTVue 
(N=145) 

20.81 
(20.75, 20.88) 

19.12 
(19.10, 19.17) 

-1.69 
(-1.72, -1.66) 

2.73 
(2.64, 2.82) 

2.90 
(2.81, 2.99) 

0.17 
(0.16, 0.18) 

Overall 
(N=269) 

23.30 
(22.97, 23.63) 

19.96 
(19.84, 20.10) 

-3.34 
(-3.56, -3.12) 

2.76 
(2.66, 2.87) 

2.98 
(2.85, 3.11) 

0.21 
(0.18, 0.24) 

 

3.3.4 Discussion 

The proposed HDR processing method successfully compensated for the signal quality variation, 

reduced the consequent RNFL thickness measurement variability, and minimized the 

measurement variability across a wide range of SS to the level of expected measurement 

variability within the good SS range. Most retinal layer segmentation algorithms detect the 

retinal layer boundaries based on the contrast between the adjacent retinal layers. In OCT images 

with poor signal quality, the contrast between the adjacent retinal layers is degraded because of 

low signal quality and loss of tissue information. This leads to variable border detection 

accuracy. The HDR processing enhanced the image quality in areas with poor signal quality, 

resulting in the reduction of the RNFL thickness measurement variability. 

The HDR method worked well for images with moderately low signal quality (SS > 4). 

For images with extremely low signal quality (SS ≤ 4), however, the HDR processing algorithm 

failed to compensate for the low signal quality effect on the RNFL thickness measurement. In 

our experience, it is a rare case where the best achievable SS is less than 5. In cases of extremely 
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low signal quality, repeated scanning usually results in a scan with higher SS. It is relatively 

common that the best SS is 5, especially with older patients with some ocular pathology, which 

is less than the manufacturer’s recommended acceptable SS cutoff of 6. One example is a case 

with one scan with a SS = 5 and another scan with a SS = 10 on the same eye that showed more 

than a 10 µm difference in RNFL thickness (Device slope 2.6 µm × 5 (SS difference)). However, 

with HDR processing, the expected difference reduces to -0.05 µm (HDR slope -0.01 µm), which 

is negligible. Therefore, images with a SS of 5 may become acceptable for clinical assessment. 

HDR processing also enhanced the visualization of retinal layers and decreased the 

frequency of segmentation errors that are common in poor SS images. The HDR processing 

method divided data from a single OCT image into three virtual channels based on the histogram 

distribution, mimicking the low, medium, and high exposure images used in the traditional HDR 

technology in photography. By stretching each channel to the full 8-bit data dynamic range, 

optimized tissue visualization can be obtained. 

Strictly speaking, the presented HDR processing technique is not a pure HDR technique 

because three different “virtual exposure” images are created using the same original OCT data. 

However, by expanding low, medium, and high signal channels, detailed tissue information was 

enhanced and became visible, which generated an effect similar to the outcome of the actual 

HDR technique. 

For objective image quality evaluation, images showed significantly lower SNR but 

higher CNR than the original images after HDR processing. The decrease of SNR is due to 

boosting the speckle noise along with the meaningful signal by expanding the low signal 

channel. On the other hand, the improvement of CNR agrees with the subjective assessment that 

HDR processing enhances the visibility of fine details of the retinal tissues. Observers tended to 
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look at the signal quality on the homogeneous parts of the retina and compare it against the 

background, which is the same as how CNR was calculated (Eq. 3-4 and Eq. 3-5). The CNR 

measures the differences between the signal quality of the homogeneous parts of the retina and 

the noise signal. Both the retinal signal quality and the noise signal quality were raised after 

HDR processing, but the effects on the meaningful signal outperformed the adverse effect on the 

boosted noise. This indicates that for clinically acceptable high signal quality images, the 

proposed HDR processing method has the ability to improve image quality and enhance the 

visibility of the fine details of the retinal tissues, which may help better clinical diagnoses and 

image reading. 

Though the HDR processing increased the noise signal and thus resulted in the reduction 

of SNR, the HDR processing still eliminated some segmentation failures. As with the effects of 

subjective assessment, a similar positive effect was observed on segmentation performance even 

with the boosted noise. Combined with its compensation effect on RNFL thickness measurement 

variability and possibly with a noise reduction method, the HDR processing may provide better 

RNFL thickness measurement reproducibility, and improve the accuracy of longitudinal clinical 

assessment on disease management. 

In conclusion, the novel application of a standard signal enhancement method based on 

HDR imaging concept successfully restored OCT signal and image quality for both TD- and SD-

OCT images. We further confirmed that the RNFL thickness measurement differences caused by 

image quality variation were significantly reduced to the expected measurement variability. 
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3.4 HISTOGRAM MATCHING 

Another image processing method used to compensate for the measurement variability related to 

image quality variation is presented here. Histogram matching (HM) is an image processing 

technique to calibrate the differences in intensity contrast when capturing images with different 

cameras, image acquisition equipment, settings, and different light sources.[100, 101] By 

shaping an input image histogram to a reference histogram, HM is able to compensate for the 

differences in intensity and image contrast, and even enhances the image quality. HM technique 

has been widely used as a pre-processing step in cellular imaging and many medical imaging 

modalities, such as positron emission tomography (PET), single photon emission computed 

tomography (SPECT), and MRI, to correct the difference in background intensity and improve 

the registration and analysis variability.[102]  

We hypothesized that the application of HM in OCT image data will enhance the image 

quality of the images with lower signal quality, and therefore be able to reduce the RNFL 

thickness measurement variability related to image quality variations. The purpose of this section 

was to minimize the influence of signal quality related OCT RNFL thickness measurement 

variability using a novel OCT image processing method utilizing HM technique. 

3.4.1 Subjects and Image Acquisition 

This was an observational cross-sectional study. Healthy volunteers were recruited at the 

University of Pittsburgh Medical Center Eye Center. The circumpapillary region from all eyes 

was scanned using Cirrus HD-OCT (software version 6.5) with the Optic Disc Cube 200×200 

scan pattern as described in Section 2.2.1. A series of OCT scans (at least 10 scans) were 
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acquired from each eye at the same visit to achieve a wide range of SS (a metric of OCT image 

quality is provided by the device manufacturer that ranges from 1 to 10) by intentionally 

defocusing and changing the refraction settings. The image inclusion criteria were mentioned in 

Section 2.2. Raw OCT image data files were exported to a standalone computer for further 

processing and analysis. 

3.4.2 Histogram Matching Algorithm Development 

The HM processing is divided into three steps: Circular B-scan resampling, then speckle noise 

reduction, followed by reference histogram construction or HM processing, depending on the SS. 

The overall flow of HM processing is presented in Figure 11. The details of each step are 

described below. 

 

Circular B-Scan Resampling 

For each 3D cube image data, the geometric center of the ONH was automatically 

determined based on the manually delineated disc margin. 512 equally spaced A-scans were 

sampled along the 3.4 mm diameter circle to generate a virtual circular Cirrus B-scan. 

 

Speckle Noise Reduction 

 The same speckle noise reduction method as described in Section 3.2 was applied to the 

resampled circular B-scan here to reduce the speckle noise. In brief, the speckle noise reduction 

method was a localized high amplitude signal removal method based on a selective smoothing 

method where only spiky OCT signals are suppressed to the level of its heavily smoothed 

counterpart. In this way, high frequency components with relatively high amplitude, considered 
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as speckle noise, were removed, while high frequency components with low amplitude, 

recognized as retinal tissue signals, were preserved so that more details of the tissue structures 

remained in the OCT signals after noise reduction.[103] 

 

 

Figure 11. Flow chart of the HM method. Circular B-scan resampling, then the speckle noise reduction, followed by 

reference histogram construction or HM processing depending on the SS. 
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Reference Histogram Construction (applied only for the image with the highest SS for each eye) 

After circular B-scan resampling and speckle noise reduction, the histogram of the 

resampled image with the highest SS of each image series was set as the reference histogram. 

Images with lower SS were processed with the HM method (described below) so that their 

histograms had the same shape as the reference histogram. 

To take the clinic reality into account, where for some elderly or diseased eye, images 

with a good SS (SS>6) cannot be achieved, reference histograms were constructed in two ways 

(Figure 12): 

I. Individual reference histogram. 

With the speculation that histogram statistics differ among retinal tissues, we partitioned 

the circular B-scan image into top and bottom halves along the valley, where the OCT signal 

amplitude was the lowest between the outer plexiform layer (OPL) and the external limiting 

membrane (ELM) (the yellow dash curve in Figure 12-I). The valley was automatically detected 

by our segmentation software, which is based on the algorithm described elsewhere.[85] The top 

half contained the vitreous body, RNFL, ganglion cell layer (GCL), IPL, and OPL, and therefore 

is also called the NFL peak. The bottom half included the outer nuclear layer, inner and outer 

segment (IS/OS), RPE, and the region below the RPE and therefore was also noted as the RPE 

peak (Figure 12-I). The total pixel numbers of the top and bottom halves were matched to half of 

the entire circular B-scan by padding or cropping signals from the region in the vitreous or below 

the RPE so that the proportion of actual retinal signal was consistent across all the subjects. 

For each image series, the histograms of the top and bottom halves of a resampled image 

with the highest SS were set as the reference histograms for the top and bottom halves 

respectively. In other words, each image series had its own top and bottom reference histograms. 
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II. Group reference histogram. 

The mean histogram patterns of all the reference histograms were generated for the top 

and bottom halves separately. The mean outcome histograms were used as the group reference 

histograms for all the images. 

 

Histogram Matching (applied to the rest of the images) 

HM has been known as an image processing technique where a series of histogram 

equalization steps is used to match the statistical information, or histogram shape, of two images. 

For each image series, all images except for the one with the highest SS were processed with 

HM. All subjected images were pre-processed and partitioned in the same way as the reference 

histogram. 

To begin with, the percentile information on the histograms at each intensity was 

calculated by Eq. 3-8, as shown in Figure 13.[104] 

P[i]=
nx

x=0

i

∑
N

, 0 ≤ i ≤ 255                 (Eq. 3-8), 

where P[i]  indicates the percentile information at intensity i , while nx  shows the number of 

pixel having intensity x , and N  is the total pixel number within the region. For Cirrus data, the 

full intensity dynamic range is from 0 to 255. 
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Figure 12. The schematic figures of how the reference histograms were constructed. (I) Individual reference 

histogram (partitioned into top and bottom halves, or the NFL and RPE peaks), and (II) Group reference histogram. 

The blue and red borders surrounding the circular B-scan indicate the region where the reference histograms were 

calculated. The range of the vertical axis is adjusted for better visualization of the histogram. 
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Figure 13. The reference histogram and corresponding percentile information.  

 

Based on the percentile information, a mapping matrix was used to convert the shape of 

the input histogram to the shape of the reference histogram was then generated by matching or 

minimizing the distance in percentile at each intensity on the histograms between reference and 

input histograms, as shown in Eq. 3-9. 

Τ[i]= j,  if Pin[i]−Pref [ j] =min
k
Pin[i]−Pref [k]                 (Eq. 3-9), 

where Τ[ ]  is the resulted mapping matrix, Pin[i]  and Pref [ j]  are the percentile information on 

the input and reference histograms at intensity i  and j , respectively. For each intensity i  in the 

input histogram, we found a corresponding intensity j  in the reference histogram, so that the 
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percentile Pin[i]  and Pref [ j]  had minimal difference. All the sample points in the input image 

data with intensity i  were then mapped to intensity j  to generate the output image data. 

Conventional HM procedure views the sampling points with the same intensity as a 

group and thus cannot distinguish pixels with the same intensity. This generates the 

approximation errors due to quantization and rounding-off, which can be observed as the spiky 

shape of the outcome histogram as Figure 14 shows.[101, 105, 106] To solve the approximation 

errors and enable separating pixels with the same intensity, we introduced a sub-feature besides 

the intensity to each sampling point.[101, 105, 106] The sub-feature virtually made the histogram 

bin finer than the minimal intensity unit and allowed us to have more flexibility to model the 

histogram shape.[101, 105, 106] 

The sub-feature we added here was the mean intensity of a pixel’s 3×3 neighbors. With 

this sub-feature, each sampling point had a new value, Inew , as presented in Eq. 3-10: 

 Inew = Iori ×256+ Imean                 (Eq. 3-10), 

where 256 is the full intensity dynamic range for Cirrus data, while Iori  and Imean  stand for the 

original intensity of the sampling point and the mean intensity of its 3×3 neighbors. 

HM and mapping matrices were performed and generated based on the new intensity and 

corresponding histogram. The effects of the individual and group reference histograms were 

tested separately. 
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Figure 14. HM with sub-feature reduces the quantization and rounding-off errors. Top left and right: the reference 

and the input histogram. Bottom left and right: the histogram using conventional HM and using HM with sub-

feature. The quantization and rounding-off errors (spiky artifacts as indicated by the green arrows in the bottom left 

figure) can be reduced with the sub-feature, which enables us to separate pixels with the same intensity but in 

different retinal layers, as shown in the bottom right figure. The red curve in the bottom left and bottom right figures 

present the shape of the reference histogram.  

 

3.4.3 Histogram Matching Performance Assessment 

RNFL Thickness Measurements 

The proposed HM processing was tested by comparing the circumpapillary RNFL 

thicknesses before and after HM processing. The RNFL thicknesses were measured using our 

custom segmentation software (the same algorithm used in Section 3.3.2) both before and after  
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HM (Original and HM measurements). The thickness measurements reported from the Cirrus 

machine (Device measurement) were also collected. The relationships between Device, Original, 

and HM measurements and SS were further investigated. 

 

Statistical Analysis 

Wilcoxon tests were used to compare the total measurement variability (the maximum 

measurement variability with SS range from 1 to 10) among Device, Original, and HM 

measurements. Broken stick non-linear mixed effects models were applied to analyze the 

relationship between RNFL thickness for Device, Original, and HM measurements. In addition, 

the coefficient of variation (CoV) of the Device measurements within the manufacturer 

recommended acceptable SS range (SS from 6 to 10) was calculated on each case. The lowest SS 

that achieved similar Device CoV on Original and HM measurements was detected for each 

case, in order to see if the acceptable SS range could be extended with the present method. 

3.4.4 Results 

Twelve right eyes from 12 healthy volunteers (4 males and 8 females) were recruited at the 

University of Pittsburgh Medical Center Eye Center. The average age was 31.7 ± 11.1 years with 

visual field average MD of -0.21 ± 1.46 dB. 

For the relationships between RNFL thickness and SS, two segments of linear 

relationship were detected on Device, Original, and HM measurements. Table 5 summarizes the 

slopes and intercepts of both segments, and the breaking points of all the measurements. An 

example is presented in Figure 15. The slope in the first segment (β1 ) presents the linear 

relationship in the lower SS range (range from 1 to the breaking point), while the slope in the 
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second segment (β2 ) presents the linear relationship in the higher SS range (range from the 

breaking point to 10). The Original measurements had statistically significantly larger slope in 

the second segment than the Device measurements (4.89 vs 1.72 µm/SS), indicating that Original 

measurements were more sensitive to SS. This strong correlation of the Original measurements 

was successfully reduced after HM, regardless of using individual or group reference histograms 

(1.17 and 1.06 µm/SS). 

 

Table 5. Statistical analysis summary. The slopes of first and second segment ( β1  and β2 ), intercepts at SS=0 

(α1 ), intercepts at the breaking point (α2 ), and the breaking point for the relationships between RNFL thickness 

and SS of Device, Original, and HM measurements. (95% CI is shown in the parentheses). 

 α1  β1  α2  β2  Breaking point 

Device -28.91 42.57 88.16 1.72 2.75 
(2.49, 3.00) 

Original 35.86 11.77 105.77 4.89 5.94 
(4.93, 6.95) 

Histogram 
Matching 

Individual 
Reference 71.73 14.62 119.39 1.17 3.26 

(2.70, 3.82) 

Group 
Reference 70.84 14.89 120.27 1.06 3.32 

(2.81, 3.83) 
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Figure 15. Relationships between RNFL thickness and SS. RNFL thicknesses from one subject were plotted against 

SS with two segments of the linear relationships on the Device (top), Original (middle), and the HM measurements 

(bottom). The Original measurements show larger measurement variability. While with HM, a lower SS (SS=2) was 

achieved to maintain the same maximum absolute difference (yellow band) within the manufacturer recommended 

acceptable SS range on the device (top, SS=6), as indicated by the red vertical dash line. 



 66 

For the breaking point, the Original measurements had statistically significantly higher 

breaking points than the Device measurements (5.94 vs 2.75 SS), while it became similar after 

applying HM (3.26 with individual reference and 3.32 with group reference), suggesting that HM 

stabilized the measurement variability in a wider SS range. 

No statistically significant differences in total measurement variability (SS range 1 to 10) 

were found between Device and Original measurements (p=0.86, Wilcoxon tests) (Table 6). 

However, HM measurements showed statistically significantly smaller total measurement 

variability than the Device measurements on both individual and group references (33.4 and 33.5 

µm, both p<0.038, respectively, Wilcoxon tests). 

The mean Device CoV for the recommended acceptable SS range (SS 6 to 10) was 0.025. 

The original measurements reached the same CoV with a SS ranged from 8.7 to 10. HM 

measurements showed the same CoV with a wider SS range (SS 3.0 to 10 and 2.2 to 10, for 

individual and group reference histograms respectively). 

 

Table 6. Summary of the measurement variability and minimum acceptable SS range. In the measurement 

variability column, 95% CIs are shown in the parentheses. *: Significantly difference between the method and 

Device measurements 

 Measurement Variability (µm) 
SS: 1-10 Minimum Acceptable SS 

Device (Reference) 64.83 (50.94, 78.73) 6 

Original 69.11 (55.21, 83.01) 8.7 

Histogram 
Matching 

Individual 
Reference 33.39 (19.49, 47.29)* 3.0 

Group 
Reference 33.56 (19.66, 47.46)* 2.2 
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3.4.5 Discussion 

A novel HM based OCT image enhancement method was developed. The proposed method 

successfully enhanced OCT images with lower image quality and reduced the RNFL thickness 

measurement variability related to image quality variation. With the enhanced image quality and 

reduced thickness measurement variability, HM further extended the acceptable signal quality 

range, which would broaden the application of OCT to elder or diseased subjects who tend to 

have lower best-achievable image quality. 

In the HM processing, a sub-feature was added to separate pixels with the same intensity 

but different characteristics, which should not be classified into the same group. Any feature that 

is able to make two pixels that have the same intensity but carry different information 

distinguishable can be used as a sub-feature, such as the location of the pixel in the retina, mean 

neighbor intensity (with various neighbor regions, such as 3×3, 5×5, or 1×3 neighbor pixels 

within the same A-scan), and the variance among neighbor pixels. The more distinguishable the 

sub-feature is, the finer HM we can achieve. However, simply applying the most distinct sub-

feature, for example the axial position of the pixel, did not improve the results because the axial 

location of the retina varies within a frame. The sub-feature needs to be able to separate pixels 

with different characteristics, but keep the similar pixel in the same group. On the other hand, the 

variance among neighbor pixels has less separation power. Therefore we chose to use the mean 

intensity of a pixel’s 3×3 neighbor as the sub-feature. By adding mean 3×3 neighbor intensity as 

the sub-feature, the contextual information (surrounding tissue information) can be included in 

the HM process to improve the outcome. 

Separating the retina into two parts and applying individual HM on each part improved 

the image enhancement performance. We observed that the OCT signal from RPE peak was 
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generally stronger than the signal from the NFL peak along all SS variation. In other words, the 

signal from the NFL peak degraded more than the signal from RPE peak as SS decreased. 

Therefore, when simply applying HM to the entire image, the signal from NFL peak remained 

weak even after enhancement. This affected the segmentation performance as the NFL peak is 

supposed to have a relatively high reflectivity in principle. When partitioning the circular B-scan 

into the top and bottom halves, the NFL signal was boosted to a similar level of RPE, which 

made the segmentation performance more reliable and led to reduced measurement variability. 

No statistically significant differences were detected in both the slope of the second 

segment and the breaking point when using individual and group reference histograms. This 

indicates that the specific reference histogram for each image series can be replaced by a group 

reference histogram and similar performance can be achieved. However, there is a limitation. 

The group reference histogram works based on the assumption that the disease does not change 

the histogram characteristics of the scan. If the histogram characteristics are different from the 

group reference histogram, then the outcomes may not reflect the actual disease status. In that 

case, an individual reference histogram or a separate group reference histogram with similar 

histogram characteristics (pathology) is required. Further investigation for the validation of such 

references in warranted. 

With HM processing, similar RNFL thickness measurements were generated across a 

wider SS range, suggesting less measurement variability expected even with lower SS image 

than the current manufacturer’s recommendation. In addition, the measurement variability was 

also reduced across the recommended SS range (SS 6 to 10). The reduced measurement 

variability may help reduce the false positive reading due to acceptable but low SS. 
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One major limitation of this study was our use of custom segmentation algorithm to test 

the proposed HM method because the device software does not accept modified OCT image files 

for processing. Strictly speaking, the observed improvement is limited to the custom algorithm. 

However, the overall trend in correlation between segmented thickness measurements and image 

quality is observed regardless of the differences in algorithm approach. Therefore, it is 

reasonable to speculate that the HM method may expand the acceptable SS range without 

affecting the OCT measurement variability. 

In conclusion, the proposed HM method successfully enhanced OCT images and 

extended the acceptable SS range on OCT images. With the potential to achieve a wider 

acceptable SS range, HM would qualify more OCT images with relatively low SS for clinical 

assessment, and further broaden the OCT application to a wider range of subjects. 
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4.0  QUANTITATIVE ASSESSMENT OF THE SIGNAL NORMALIZATION 

In Chapter 3, a signal normalization method was developed. Multiple image processing methods 

were integrated in a stepwise fashion to overcome various factors that cause OCT signal 

characteristics variability, such as sampling density normalization, speckle noise reduction, 

amplitude normalization, and image quality compensation. To test the ability of the signal 

normalization in minimizing the discrepancies in signal characteristics and data measurement 

differences among SD-OCT devices, quantitative assessments were conducted in two ways: 

engineering validation and clinical validation. In the engineering validation, the absolute 

differences between individual A-scans were measured to investigate the effects of the 

normalization method. In the clinical validation, the systematic differences in RNFL thickness 

among SD-OCT devices were assessed before and after signal normalization to assess the effect 

of signal normalization on actual clinical measurements. 

4.1 ENGINEERING VALIDATION OF THE SIGNAL NORMALIZATION 

In the engineering validation, we measured the absolute differences between individual A-scans 

from two SD-OCT devices, namely Cirrus and RTVue, to investigate the effects of the 

developed signal normalization on reducing the signal characteristics variability. 
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4.1.1 Methods 

A total of 14 healthy and 7 glaucoma subjects volunteered to participate in this prospective 

cross-sectional study. One eye from each subject was randomly selected and used in the study. 

For the diseased eyes, a variety of glaucoma damage was included. The diagnosis of glaucoma 

was clinically defined based on the presence of visual field analysis and typical glaucomatous 

structural changes. The inclusion criteria were the same as described in Section 2.0 and Section 

2.1. 

 For the instruments and image acquisition, the macular region was imaged at the same 

visit using two commercially available SD-OCT devices with equivalent 3D cube scan patterns: 

Cirrus HD-OCT (software version 5.1) and RTVue (software version 6.1). Details of the scan 

protocols and image inclusion criteria can be found in Section 2.2. 

4.1.1.1 Signal Normalization Processing 

The experiment methods were divided into three stages: image registration and sampling, signal 

normalization, and A-scan profile comparison. As mentioned in Chapter 3, Cirrus OCT data 

format was used as the normalization reference data format, so the RTVue OCT data format was 

converted to a Cirrus-equivalent OCT data format. 

 

Image Registration and Sampling 

In order to sample the A-scan profile from the same location from different OCT data, the 

foveola position was manually selected on both the Cirrus and RTVue cube data by looking for 

the largest separation between the junction of the IS/OS of the photoreceptors and RPE as 

appearing on the horizontal and vertical cross-sectional B-scans (Figure 16). The selected 
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foveola position was then used as the center for both registration and sampling. RTVue data were 

then translated and rotated to match the blood vessel position subjectively on the Cirrus en face 

image by finding the translation vector and rotation degree which minimized the absolute 

differences in pixel value between Cirrus and RTVue en face images. After registration, single 

A-scans were sampled 1.8 mm from the foveola in the temporal, superior, nasal, and inferior 

quadrants from Cirrus and RTVue data and were saved for further processing and analysis. The 

sampling position of each A-scan pair in Cirrus and RTVue was subjectively evaluated 

according to the relative position of major blood vessels. If the A-scan pairs were sampled from 

different positions (absolute distance larger than the width of a major retinal blood vessel) in 

Cirrus and RTVue, the A-scan pairs were excluded. Figure 17 shows the flow of the image 

registration and sampling. 

 

 

Figure 16. Demonstration of how to determine the foveola position. Foveola position was selected manually by 

looking for the largest separation between the junction of the IS/OS (5) and RPE (6). The red line on the en face 

image (left) indicates where the cross-sectional image on the right was sampled. The vertical cyan line indicates the 

location of the largest separation between the IS/OS and RPE. The intersection of the red and cyan lines on the en 

face image is the selected foveola position. (1) ILM, (2) NFL, (3) GCL, (4) Inner plexiform layer (IPL), (5) IS/OS, 

and (6) RPE. 
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Figure 17. Image registration and A-scan sampling process. 
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Signal Normalization 

The signal normalization consisted of three processing steps: z-scaling and sampling 

density normalization, speckle noise reduction, and amplitude normalization. Here the first step 

in speckle noise reduction was separated and used as individual amplitude normalization. The 

experiment was divided into two phases. In phase I, the effects of reducing the differences 

between Cirrus and RTVue in each processing step were assessed individually. In phase II, all 

three processing steps were combined together using different cutoffs, and the final results were 

assessed.  

 

Phase I 

 The goal in phase I was to assess and optimize the ability to reduce the difference 

between Cirrus and RTVue OCT signals in each processing step. The testing started with z-

scaling and sampling density normalization; secondly, speckle noise reduction and amplitude 

normalization were applied separately and the effects with various cutoffs were assessed.  

 Z-scaling and Sampling Density Normalization. The details of the normalization 

method were described in Section 3.1. After interpolation, RTVue was further linearly 

compressed from 12-bit to 8-bit data format. In this way, RTVue and Cirrus data would be at a 

comparable intensity level. The z-scaling and sampling density normalized 8-bit RTVue data 

were then used as the baseline RTVue data, and further processing was performed on them. 

 Speckle Noise Reduction. After z-scaling and sampling density normalization, the 

previously described speckle noise reduction method was applied to reduce the speckle noise. 

The details of the method were similar to Section 3.2.1 except that instead of using 66th 

percentile on the histogram as a fixed low cutoff (noise level) in Step 3 of speckle noise 
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reduction, various low cutoffs were used in this step to test and optimize the effect of speckle 

noise reduction processing. To test the effects of the various cutoff thresholds in the mask 

amplitude matching (Step 3), the first, 33rd, 50th, and 66th percentiles on the histogram were used 

as the low cutoff. The high cutoff was always the 99th percentile on the histogram. 

Amplitude Normalization. Amplitude normalization was designed to normalize the 

noise level between Cirrus and RTVue data. Various cutoffs were used for amplitude 

normalization to find the optimal settings: 1) A histogram-based amplitude normalization 

method as described in Section 3.2.1 Step 1 was used here to linearly map the signals between 

the low cutoffs (the 1st, 33rd, 50th, and 66th percentiles on the histogram of the frame where the 

sampled A-scan was located) and high cutoff (the 99th percentile on the histogram of the frame 

where the sampled A-scan was located) to the full 8-bit gray scale level on OCT data for both 

Cirrus and RTVue, or 2) Data range matching: matching the data range of two A-scan profiles by 

linearly mapping the minimal and maximal intensity of the frame where the sampled A-scan was 

located to the full 8-bit gray scale for both Cirrus and RTVue data. 

 

Phase II 

In phase II, the three processing steps were combined and the outcomes of the 

combination of the three processing steps were evaluated. We combined the processing in the 

order that z-scaling and sampling density normalization came first, followed by speckle noise 

reduction, and then amplitude normalization with the cutoffs showing the best results in phase I. 
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A-scan Profile Comparison 

After each step, the residual between Cirrus and RTVue A-scan pairs sampled from four 

quadrants were measured. A-scan pairs sampled from the same quadrant were aligned to the 

ILM. Then, the mean absolute difference in amplitude at each sampling point within the eligible 

measurement range was calculated, where the eligible measurement range means that within this 

range, all the A-scan pairs were able to find corresponding Cirrus and RTVue data. Since 

original Cirrus and Z-scaled RTVue data had different data ranges as compared to normalized 

Cirrus and RTVue data, the mean absolute difference in amplitude was normalized to the 

percentage of the maximal data range from the two A-scans in order to compensate for the data 

range inconsistency, as shown in Eq. 4-1. The absolute difference in amplitude between Cirrus 

and RTVue data is presented as the shaded region between Cirrus and RTVue A-scan profiles 

(Figure 18). The mean absolute difference in percentage between Cirrus and Z-scaled RTVue 

data was used as the baseline difference between the two OCT devices. Mean absolute difference 

in percentage between two Cirrus scans, acquired from the same eye at the same visit sampled at 

the same location, was computed and used as the reference for similarity assessment. The same 

eligible measurement range was applied to calculate the mean absolute difference in percentage 

between two Cirrus scans. 

Mean Absolute Difference (%) =

Cirrusi − RTVuei
Max  Data Range
"

#
$

%

&
'

i
∑

Eligible Measurement  Range
×100%             (Eq. 4-1). 

 



 77 

 

Figure 18. Absolute difference between A-scan profiles before and after signal normalization. Cirrus (blue line) and 

RTVue (red line) A-scan profiles as recorded within the eligible measurement range. The shaded area between 

Cirrus and RTVue is the residual between the two A-scan profiles, and is used as a quantitative analysis parameter.  

 

4.1.1.2 Statistical Analysis 

Paired t-tests were used to analyze the overall and quadrant absolute differences between 

original Cirrus and Z-scaled RTVue data, between normalized Cirrus and normalized RTVue 

data, and between two original Cirrus scans. P<0.05 was considered as statistically significant. 
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4.1.2 Results 

Subject demographics are presented in Table 7. Fourteen healthy and 7 glaucoma subjects were 

enrolled in this study. Healthy eyes were younger than glaucomatous eyes (41.9 ± 16.9 vs 65.2 ± 

5.5 years, p=0.0023, t-test). 

 

Table 7. Subject demographics. 

 Healthy (n=14) Glaucoma (n=7) 

Male / female 4:10 1:6 

OD / OS 10:4 4:3 

Age (years) 41.9 ± 16.9 65.2 ± 5.5 

MD 0.6 ± 0.6 -2.0 ± 2.0 

Total retinal thickness 303.8 ± 12.5 297.8 ± 8.2 

 

 

 Table 8 summarizes the mean absolute difference in amplitude in the percentage of A-

scan profiles between the original Cirrus and Z-scaled RTVue data (baseline residual), and 

between Cirrus and RTVue data after speckle noise reduction with various cutoff settings. The 

overall residual was statistically significantly reduced after speckle noise reduction with the 

settings using the 33rd percentile on the histogram as the low cutoff and the 99th percentile as the 

high cutoff (p=0.0031, paired t-test), but not when using the 50th and 66th percentile on the 

histogram as the low cutoff. When using the first percentile on the histogram as the low cutoff, 

the residual was significantly increased (p<0.0001, paired t-test). Among all the settings, using 

the 33rd percentile on the histogram as the low cutoff statistically significantly outperformed the 

settings with the rest low cutoffs (p<0.0001), and generated the largest reduction in the residual 
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in amplitude between Cirrus and RTVue. For quadrant analysis, only the superior quadrant with 

the 33rd percentile on the histogram as the low cutoff showed a statistically significant reduction 

compared to the baseline residual. For the 50th and 66th percentile on the histogram as the low 

cutoffs, there was no significant difference in the residual compared to baseline in all four 

quadrants. When using the first percentile on the histogram as the low cutoff, the residuals 

significantly increased in all the quadrants. A similar trend in the overall results was found in the 

quadrants analysis that using the 33rd percentile on the histogram as the low cutoff statistically 

significantly reduced the baseline residual the most when compared to other settings (p<0.0048). 

 

Table 8. Mean absolute difference in amplitude between Cirrus and RTVue A-scan profiles I. Speckle noise 

reduction was used as the next step following z-scaling and sampling density normalization. Absolute difference is 

in the percentage with the difference of baseline the residual from the residual after speckle noise reduction in 

parentheses. The minus sign indicates that there was a reduction in the residual between Cirrus and RTVue after 

speckle noise reduction. 

 Overall (%) Temporal (%) Superior (%) Nasal (%) Inferior (%) 

Baseline residual 12.7 12.8 12.4 13.0 12.6 

First percentile 14.6 (1.9) 15.9 (3.1) 13.3 (0.9) 15.5 (2.5) 13.7 (1.1) 

33rd percentile 12.4 (-0.3) 12.7 (-0.1) 12.1 (-0.2) 12.6 (-0.5) 12.3 (-0.3) 

50th percentile 12.7 (-0.0) 13.0 (0.3) 12.4 (0.1) 12.8 (-0.2) 12.5 (-0.0) 

66th percentile 12.8 (0.1) 13.1 (0.3) 12.6 (0.2) 12.9 (-0.1) 12.6 (-0.0) 

 

 

Table 9 shows the mean absolute difference in amplitude in the percentage of A-scan 

profiles between original Cirrus and Z-scaled RTVue data (baseline residual) and between Cirrus 

and RTVue data with amplitude normalization as the second step after z-scaling and sampling 
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density normalization using various cutoff settings. The overall residual was statistically 

significantly reduced when using the 50th and 66th percentile on the histogram as the low cutoff 

and the 99th percentile on the histogram as the high cutoff (both p<0.0001, paired t-test). No 

significant difference in the residual before and after amplitude normalization was found when 

using the 33rd percentile on the histogram as the low cutoff. A statistically significant increase in 

the residual was detected when applying the first percentile on the histogram as the low cutoff 

and using the data range matching method (both p<0.0001, paired t-test). Among the settings 

which successfully reduced the residual, the method using histogram-based amplitude 

normalization with the 66th percentile as the low cutoff statistically significantly outperformed 

other settings and contributed to the largest amount of reduction compared to baseline residual. 

For the quadrant analysis, the same trends as the overall results were found in all four quadrants.  

 

Table 9. Mean absolute difference in amplitude between Cirrus and RTVue A-scan profiles II. Amplitude 

normalization was used as the next step following z-scaling and sampling density normalization. Absolute difference 

is in percentage with the difference of baseline residual from the residual after amplitude normalization in 

parentheses. The minus sign indicates that there was a reduction in the residual between Cirrus and RTVue after 

speckle noise reduction.  

 Overall (%) Temporal (%) Superior (%) Nasal (%) Inferior (%) 

Baseline residual 12.7 12.8 12.4 13.0 12.6 

First percentile 20.5 (7.8) 20.8 (8.0) 20.2 (7.9) 20.8 (7.8) 20.0 (7.4) 

33rd percentile 12.6 (-0.0) 12.6 (-0.1) 12.4 (0.0) 12.9 (-0.1) 12.5 (-0.1) 

50th percentile 10.7 (-2.0) 10.6 (-2.2) 10.5 (-1.9) 11.0 (-2.0) 10.6 (-2.0) 

66th percentile 8.7 (-4.0) 8.6 (-4.2) 8.5 (-3.9) 9.1 (-3.9) 8.6 (-4.0) 

Data range matching 19.6 (6.9) 20.3 (7.5) 18.9 (6.5) 19.8 (6.8) 19.4 (6.8) 
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In phase II, for the combined signal normalization method, the three processing steps 

were combined in the following order: z-scaling and sampling density normalization, followed 

by speckle noise reduction, and at the end of the signal normalization we performed amplitude 

normalization. The settings which generated the best results of each processing step were used in 

the final combined method. For the speckle noise reduction step, the 33rd and 99th percentile on 

the histogram were used as the low and high cutoff. In amplitude normalization, the histogram-

based amplitude normalization method with the 66th and 99th percentiles on the histogram as the 

low and high cutoffs was used to remove the noise level difference and match the different data 

range between Cirrus and RTVue.  

An example of step-by-step signal normalization in phase II is presented in Figure 19. 

The first row in Figure 19 shows the original A-scan profile from Cirrus (blue) and RTVue (red). 

For display purposes, the dynamic range of RTVue data was linearly rescaled from 12-bit to 8-

bit gray scale in Figure 19 (the first row). A-scan profiles from Cirrus and RTVue were aligned 

to ILM so the effect of signal normalization can be appreciated easier. As the first row in Figure 

19 shows, the original A-scan profiles looked dissimilar and had different noise levels and 

sampling densities. The second row presents the results after z-scaling and sampling density 

normalization. After oversampling RTVue data in the axial direction, the sampling density of the 

two A-scan profiles became the same and the peaks in the A-scan profiles matched. However, 

there is still a noise level difference between Cirrus and Z-scaled RTVue data. The third row 

shows the results after speckle noise reduction. Compared to the second row, the high spiky 

peaks were removed, and the high frequency components with low intensity values were kept 

intact. The last row in Figure 19 shows the final results. After amplitude normalization, the noise 

level of the two A-scan profiles became the same and the A-scan profiles looked similar. 
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Figure 19. OCT A-scan profiles in the consecutive steps of the signal normalization procedure. First row: Original 

A-scan profiles from Cirrus (blue) and RTVue (red). For display purposes, the A-scan profile from RTVue was 

linearly scaled from 12-bit to 8-bit. Second row: Z-scaling and sampling density normalization. Third row: Speckle 

noise reduction. Fourth row: After amplitude normalization, the distance between noise levels from Cirrus and 

RTVue equals zero. Last row: The combined signal normalization method. Signal profiles of the devices become 

similar at the end of the process. 
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Table 10 summarizes the mean absolute amplitude differences in percentage between two 

A-scan profiles from two original Cirrus scans, from Cirrus and Z-scaled RTVue scans, from 

normalized Cirrus and RTVue scans, and from two normalized Cirrus scans. Two A-scan pairs in 

the temporal quadrant, 2 A-scan pairs in the superior quadrant, 1 A-scan pair in the nasal 

quadrant, and 2 A-scan pairs in the inferior quadrant were excluded because of misalignment. 

The mean absolute difference in percentage between Cirrus and RTVue was statistically 

significantly reduced after signal normalization (12.7 vs 6.2 %, p<0.0001, paired t-test). The 

mean absolute difference in the amplitude in the percentage between Cirrus and RTVue were 

also statistically significantly decreased after normalization in all quadrants (p<0.0001, paired t-

test). 

 

Table 10. Mean absolute difference in amplitude between A-scan profiles. Absolute difference is in percentage with 

95% CI in parentheses. 

 Overall (%) Temporal 
n = 19 

Superior 
n = 19 

Nasal 
n = 20 

Inferior 
n = 19 

Original Cirrus vs 
Original Cirrus 

9.9 
(9.6, 10.1) 

10.0 
(9.4, 10.5) 

9.9 
(9.3, 10.6) 

9.6 
(9.2, 10.0) 

9.9 
(9.4, 10.4) 

Original Cirrus vs 
Z-scaled RTVue 

12.7 
(12.4, 13.0) 

12.8 
(12.1, 13.4) 

12.4 
(11.6, 13.1) 

13.0 
(12.5, 13.5) 

12.6 
(12.0, 13.2) 

Normalized Cirrus vs 
Normalized RTVue 

6.2 
(6.0, 6.4) 

6.0 
(5.6, 6.4) 

6.2 
(5.8, 6.7) 

6.5 
(6.2, 6.9) 

6.2 
(5.8, 6.5) 

Normalized Cirrus vs 
Normalized Cirrus 

6.0 
(5.8, 6.2) 

5.9 
(5.3, 6.5) 

6.2 
(5.7, 6.7) 

5.9 
(5.6, 6.2) 

6.0 
(5.6, 6.3) 

 

 

After signal normalization, the overall mean absolute difference in percentage between 

Cirrus and RTVue was statistically significantly smaller compared to the difference between two 
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Cirrus scans (6.2 vs 9.9 %, p<0.0001, paired t-test), indicating that the signal normalization 

process successfully reduced the differences, even lower than the level of the intra-device 

difference. Similar results were found in quadrant analysis: the difference between the Cirrus and 

RTVue data was statistically significantly smaller compared to the difference between two Cirrus 

scans in all four quadrants (p<0.0001, paired t-test).   

The last row in Table 10 summarizes the residual in percentage between two normalized 

Cirrus scans. After signal normalization, the residual in percentage between two scans from the 

same device was also statistically significantly reduced for both mean and all quadrants 

(p<0.0001 for all comparisons, paired t-test), indicating that the proposed signal normalization 

method also reduced the difference among the OCT data obtained with the same device. 

Comparing the residual between normalized Cirrus and RTVue and two normalized Cirrus data, 

the overall residual was statistically significantly different (6.3 vs 6.0 %, p=0.03, paired t-test). 

For the quadrant analysis, there was no statistically significant difference in the residual between 

two normalized comparison pairs except for the nasal quadrant (p=0.0006). 

Table 11 and Table 12 present the results divided by the clinical grouping. A statistically 

significant reduction in the mean absolute difference in percentage between Cirrus and RTVue 

after signal normalization was observed for both healthy and glaucoma groups for the mean and 

all quadrants (p<0.0147, paired t-test). Furthermore, after signal normalization, the absolute 

difference in percentage between Cirrus and RTVue was also statistically significantly smaller as 

compared to the difference between two Cirrus scans in all comparisons for each group. 
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Table 11. Mean amplitude absolute difference between A-scan profiles for healthy subjects. Absolute difference is 

in percentage with 95% CI in parentheses. 

 Overall (%) Temporal 
n = 13 

Superior 
n = 12 

Nasal 
n = 14 

Inferior 
n = 14 

Original Cirrus vs 
Original Cirrus 

9.7 
(9.5, 10.0) 

9.7 
(9.1, 10.2) 

9.9 
(9.2, 10.6) 

9.5 
(9.0, 10.0) 

9.9 
(9.3, 10.5) 

Original Cirrus vs 
Z-scaled RTVue 

12.6 
(12.3, 13.0) 

12.7 
(11.8, 13.6) 

12.3 
(11.4, 13.2) 

13.0 
(12.3, 13.6) 

12.5 
(11.8, 13.2) 

Normalized Cirrus vs 
Normalized RTVue 

6.3 
(6.1, 6.5) 

6.1 
(5.5, 6.7) 

6.3 
(5.8, 6.9) 

6.5 
(6.0, 7.0) 

6.1 
(5.7, 6.6) 

Normalized Cirrus vs 
Normalized Cirrus 

6.0 
(5.8, 6.2) 

5.9 
(5.3, 6.4) 

6.3 
(5.6, 7.0) 

5.9 
(5.5, 6.2) 

6.0 
(5.6, 6.4) 

 

 

Table 12. Mean amplitude absolute difference between A-scan profiles for glaucoma subjects. Absolute difference 

is in percentage with 95% CI in parentheses. 

 Overall (%) Temporal 
n = 6 

Superior 
n = 7 

Nasal 
n = 6 

Inferior 
n = 5 

Original Cirrus vs 
Original Cirrus 

10.1 
(9.6, 10.6) 

10.6 
(9.1, 12.1) 

10.0 
(8.5, 11.5) 

9.9 
(9.1, 10.6) 

9.9 
(8.8, 10.9) 

Original Cirrus vs 
Z-scaled RTVue 

12.9 
(12.3, 13.4) 

13.0 
(12.1, 14.0) 

12.4 
(10.9, 14.0) 

13.2 
(11.9, 14.4) 

12.8 
(11.6, 14.1) 

Normalized Cirrus vs 
Normalized RTVue 

6.1 
(5.8, 6.5) 

5.8 
(4.9, 6.7) 

6.0 
(5.1, 7.0) 

6.5 
(5.7, 7.3) 

6.2 
(5.5, 6.9) 

Normalized Cirrus vs 
Normalized Cirrus 

6.0 
(5.6, 6.4) 

6.0 
(4.3, 7.7) 

6.0 
(5.0, 7.0) 

6.0 
(5.3, 6.7) 

5.9 
(5.0, 6.9) 
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4.1.3 Discussion 

In this experiment, we developed a novel signal normalization method to reduce the A-scan 

profile differences between two SD-OCT devices. The presented method successfully reduced 

the differences between A-scan profiles from Cirrus and RTVue.  

The effect on reducing the residual (in percentage) between Cirrus and RTVue A-scan 

profiles of speckle noise reduction and amplitude normalization was assessed separately. Each 

processing step focused on different factors that resulted in the dissimilarity between Cirrus and 

RTVue signals, and solved them from a different aspect. Speckle noise reduction was applied to 

eliminate the differences between Cirrus and RTVue A-scan profiles caused by the randomly 

distributed high spiky signal (considered to be the speckle noise). Amplitude normalization was 

designed to remove the noise level difference between two devices. Overall, both processing 

steps significantly reduced the A-scan profile residual with some tested cutoffs. Nevertheless, 

since each individual processing step focuses on one particular factor, the ability to reduce the 

residual between Cirrus and RTVue of each one was limited. These two processing steps 

complement each other in order to achieve the optimized signal normalization. 

The optimized cutoff settings for each processing step were different, indicating that the 

cutoff settings were processing specific. Various cutoffs were used and tested for their ability to 

reduce the residual between Cirrus and RTVue in speckle noise reduction and amplitude 

normalization. Different reactions to reduce the residual with various cutoffs were observed 

between individual processing steps. In order to optimize the signal normalization method, the 

cutoffs that showed the best results were chosen when combining each processing step to build 

the final signal normalization method. For speckle noise reduction, the 33rd percentile on the 

histogram was picked; while for amplitude normalization, the 66th percentile was used as the low 
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cutoff to remove the noise level difference. There is still some room for further optimization of 

the method, for example, systematic software training with feedback to find the optimal solution. 

We picked the 66th percentile on the histogram as the low cutoff for amplitude 

normalization as the best setting. Though setting an even higher cutoff for amplitude 

normalization may have provided smaller residuals, we needed to strike a balance between 

reducing the profile differences and preserving the actual retinal signals. Based on the statistical 

analysis of the regular retinal thickness of the entire scan length of the OCT frame, the 

meaningful retinal signals form approximately one-third of the OCT images. The same analysis 

results are also applied in traditional and conventional ways of displaying OCT images on the 

devices using false-color scheme; the lower 66% of signals (or similar cutoff) are usually 

considered as noise signals and removed, and the entire OCT images are further rescaled so that 

the details of the retinal tissues can be appreciated in a clearer way so physicians can make 

clinical diagnoses. 

Despite the fact that our results support and work well with the notion of using the 66th 

percentile as the low cutoff, there is still the possibility that we may discard some actual retinal 

tissue signals as having intensity weaker than the strong noise signal by cutting off low intensity 

pixels, which may result in the loss of important information from ocular tissues. In order to 

dynamically calculate the optimized cutoff for multiple SD-OCT devices that separate true tissue 

signal from the noise, Huang et al. have developed a method based on histogram density 

modeling and decomposition.[88] However, they found that the overlap of weak retinal tissue 

signal and strong noise signal is relatively wide, and results in the limitation that we may lose 

information from retinal tissues having less reflectivity by cutting off low intensity pixels. 

Further improvement on this issue is required. 
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The proposed signal normalization method can be applied to and works for all sampling 

points in the cube data. However, for validation purposes, the sampling location was chosen to 

have all the inner retinal layers distinguishable, as the layers merge or disappear in the area close 

to the foveola, while avoiding the major retinal blood vessels. It is known that blood vessels 

reflect and block the light signal, which causes shadowing artifacts that obscure the ocular tissue 

information beyond the blood vessels (Figure 20).[107, 108]  

 

 

Figure 20. Shadow effect of blood vessel on OCT signal quality. The horizontal red line on the en face image (left) 

indicates the position where the cross-sectional image (middle) was sampled, 2.61 mm away from the foveola. A 

dramatic drop of the signal quality can be observed at the positions where blood vessel lies (the yellow bar) on the 

cross-sectional image and the A-scan profile (right), which is sampled from the position of the cyan vertical line. 

 

Other intensity profile normalization methods of OCT images across different eyes using 

the same devices have been developed to compensate for the RNFL thickness measurement 

variability caused by inconsistent attenuation of the reflectivity between healthy and diseased 

eyes, and to increase the sensitivity and specificity of disease detection.[74, 109] Many studies 
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solved the A-scan profile intensity variation by normalizing the RNFL signal intensity to the 

brightest layer in the OCT image, usually the RPE, as a preprocessing step before thickness 

measurement to reduce the variation. Those methods are simple, easy to implement, and can be 

applied to the entire OCT image. However, they require a robust segmentation algorithm to 

accurately detect the positions and boundaries of RNFL and RPE, which can be a challenge, 

especially with coexisting retinal pathology. Another disadvantage of those methods is that they 

assume that the relative signal intensity of adjacent retinal layers is the same across different 

eyes and SD-OCT devices. From our observation, A-scan profiles varied substantially among 

different eyes and SD-OCT devices. Even on the same eye, on different devices, they can 

significantly differ from each other on intensity proportions among various retinal sub-layers. 

For example, A-scan profiles from Cirrus and RTVue (the second row of Figure 19) have 

different contrasts between high and low intensity signal, where the contrast is larger in Cirrus 

than in RTVue, which results in different responses from the same segmentation algorithm, or 

different RNFL thickness measurements. In contrast, our method does not require any 

segmentation prior to the normalization, and has no assumption about the intensity profiles being 

similar on the same eye across different devices. In addition, our signal normalization works 

equally well on healthy and glaucomatous eyes, indicating that the proposed method is capable 

of compensating for signal characteristic differences independent from the pathologic state, 

where the RNFL signals are generally weaker and show somewhat different A-scan profiles. 

Although we only tested the effect of the method with Cirrus and RTVue devices, in 

principle, this normalization method can be applied to all SD-OCT devices. Further investigation 

is warranted. 
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In conclusion, the reported novel signal normalization method successfully reduced the 

A-scan profile differences between Cirrus and RTVue SD-OCT in healthy and glaucomatous 

eyes. This signal normalization method would allow the establishment of fundamental signal 

compatibility among multiple OCT devices, which would make the analysis and measurement 

results from various devices directly comparable. 

4.2 CLINICAL VALIDATION OF THE SIGNAL NORMALIZATION 

An engineering validation was conducted to test the signal normalization’s ability to reduce the 

variability of characteristics in OCT signals by measuring the absolute differences in A-scan 

profile intensity.[103] The results were promising. To move one step further toward our ultimate 

goal, which is making the outcome measurements directly comparable among multiple OCT 

devices, a clinical validation was performed to validate the ability of the signal normalization 

method to reduce the systematic measurement differences among SD-OCT devices. The 

circumpapillary RNFL thickness measurements obtained from Cirrus and RTVue were compared 

before and after signal normalization processing. 

4.2.1 Methods 

Subjects included in this study were recruited at the University of Pittsburgh Medical Center Eye 

Center Glaucoma clinic (both healthy and glaucomatous eyes), following the same tenets 

described in Section 2.0. The inclusion criteria were the same as Section 2.1. 
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The circumpapillary region from all eyes was scanned using Cirrus HD-OCT (software 

version 5.1) and RTVue (software version 6.1) at the same visit. Scan patterns, which allow the 

devices to measure the RNFL thickness using their own segmentation algorithms, were used on 

both devices, namely the Optic Disc Cube 200×200 scan for Cirrus and the RNFL 3.45 Circle 

scan pattern for RTVue. The details of the protocols were described in Section 2.2. 

4.2.1.1 Signal Normalization Processing 

The signal normalization was performed as previously described.[103] The normalization 

process had three stages: 1) z-scaling and sampling density normalization, 2) amplitude 

normalization, and 3) image quality normalization. Since a modified median filter was applied as 

part of the preprocessing stage in our segmentation algorithm to reduce the speckle noise,[85] the 

speckle noise reduction step in the original signal normalization method was removed. On the 

other hand, as image quality has been known to be an important factor affecting the signal 

responses to segmentation algorithms and inducing RNFL thickness measurement variability, in 

order to compensate for the differences in image quality, image quality normalization, which was 

omitted in the previous experiment, was added after amplitude normalization. For image quality 

normalization, two methods were applied individually to normalize image quality variation, and 

thus generated two signal normalization methods: one that used HDR processing at the image 

quality stage, and one that used HM processing. 

 

Method 1: With HDR Processing  

In the first method, HDR processing was applied after amplitude normalization and used 

to minimize image quality difference. Quality index (QI) was first calculated and used as the 

image quality index for each OCT image.[87] As the data range of QI was different between 
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Cirrus and RTVue images, QI values were normalized by calculating the percentiles of the QI 

distribution on Cirrus and RTVue separately. Then the difference in QI percentiles between the 

matched Cirrus and RTVue images obtained from the same eye was calculated to assess signal 

quality disparity. Finally, on the histogram of the QI percentile difference, the top and bottom 5 

percent of the differences were classified as cases showing substantial QI difference, which 

became subjects to the image quality normalization.  

In each Cirrus and RTVue pair, the image with worse quality was processed with our 

custom HDR processing (details described in Section 3.3.1) to compensate for poor image 

quality.[110] In brief, the HDR processing remaps the signal dynamic range in three signal levels 

(low, medium, and high) separately, and then combines them into one so that OCT retinal signal 

is enhanced and boosted selectively on poor signal portion of the images. 

 

Method 2: With HM Processing 

In the second method, since HM processing has been used to calibrate the differences in 

intensity contrast and intensity dynamic range between images, in the signal normalization 

method using HM processing at the image quality normalization stage, amplitude normalization 

and image quality normalization were combined together and replaced with HM processing so 

that the final signal normalization method only had two stages: 1) z-scaling and sampling density 

normalization and 2) HM processing.  

 

Reference Histogram Construction 

The HM processing started with a reference histogram construction so that input image 

histograms could be shaped to a reference histogram. Instead of preparing a specific reference 
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histogram for each eye, a group reference histogram was constructed. 40 Cirrus OCT images of 

40 healthy eyes from the same dataset with a SS larger than or equal to 9 (maximum signal 

strength is 10) were selected and used to created the reference histogram. The histogram based 

on the data of the entire 3D cube was generated and the average histogram of the 40 healthy eyes 

was calculated and used as the group reference histogram for Cirrus data.  

For the RTVue data, the reference histogram was constructed using the same Cirrus OCT 

images from the same healthy subjects. To mimic the circular scan type of RTVue data, the 

geometric centers of the ONH of the Cirrus images were first automatically determined based on 

the manually delineated disc margins. The A-scans located on the 3.45 mm circle were sampled 

to generate the virtual circular Cirrus scans and then the histogram was calculated from the re-

sampled circular scans. Finally, the mean of the virtual circular histogram from the 40 Cirrus 

OCT images was calculated and used as the group reference histogram for RTVue circular scan 

data. 

 

Histogram Matching 

 The HM processing was applied to all the Cirrus and RTVue data. Details of the HM 

processing were described in Section 3.4.2. Instead of using the average intensity from the 3×3 

neighbor, the sub-feature we added here was the difference between each sampling point’s top 

and bottom neighbors so that the contrast information could be kept. The idea was based on a 

Sobel filter,[111] which here we modified into an one-dimensional filter along the axial direction 

so that the contrast could be kept within each A-scan as shown in Eq. 5-1: 
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 With the sub-feature, each sampling point has a new value as presented in Eq. 5-2: 

Inew = Iori ×2×DataRange+ (Ibottom − I top )+DataRange−1#$ %&            (Eq. 5-2), 

where the DataRange  is 256 for Cirrus data and is 4096 for RTVue data; in order to keep the 

intensity change direction, instead of using the absolute difference between bottom ( Ibottom ) and 

top ( I top ) neighbors, the direction was preserved by shifting the difference with DataRange−1  

and thus twice the DataRange  is multiplied to Iori . The HM processing was performed based on 

the new intensity and corresponding histogram. 

4.2.1.2 RNFL Thickness Measurements 

The original machine measured global mean circumpapillary RNFL thicknesses on the original 

Cirrus and RTVue data were exported from the commercial devices (Comparison I, Table 13). In 

order to eliminate the measurement differences caused by segmentation algorithm variation and 

test the hypothesis that applying the same segmentation algorithm can reduce the measurement 

differences, RNFL thickness was also measured automatically using the same universal RNFL 

segmentation algorithm of our own design as before (Comparison II).[85] As the word 

“universal” indicates, our segmentation software is able to open, read, and perform retinal layer 

segmentation on various SD-OCT data with the same core segmentation algorithm, unlike 

algorithms integrated in the commercial devices which have an optimized approach and 

parameters targeting the signal characteristics of a specific SD-OCT device, and thus may not 

generate equally good segmentation results when processing OCT data from a different SD-OCT 

device. In Comparison III, RNFL thickness was measured using the same universal algorithm, 

but with parameters tuned specifically to Cirrus and RTVue images in order to assess the effect 

of fine-tuning the universal algorithm. Finally, RNFL thickness was measured after signal 
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normalization (for both HDR and HM processing), using the universal segmentation algorithm 

without any specific tuning (for Comparison IV, the parameter settings were the same as in 

Comparison II). The segmentation performance was subjectively evaluated for any potential 

erroneous border detection. Image data were excluded if the images demonstrated one or both of 

the following: (1) apparently inaccurate border detection for more than a consecutive 15% or an 

additive 20% of the total image or (2) the borders of the RNFL collapsed, meaning that the 

RNFL thickness was recorded as a string of zeros for at least 10 consecutive points. 

 

Table 13. Definition of different methods for comparison of RNFL thickness measurements. 

Comparison Methods OCT Signal Measurement Description 

Comparison I Original signal Original device outputs 

Comparison II Original signal 
Algorithm parameters only optimized for Cirrus and 
applied this algorithm to both original Cirrus and 
RTVue data 

Comparison III Original signal 
Algorithm parameters optimized for both Cirrus and 
RTVue separately and applied to both original Cirrus 
and RTVue data 

Comparison IV Normalized signal 
Algorithm parameters optimized for Cirrus and 
applied this algorithm to both normalized Cirrus and 
RTVue data 

 

4.2.1.3 Statistical Analysis 

In order to appropriately handle the comparison between RNFL thickness measurements from 

Cirrus and RTVue with multiple measurements of the same RNFL thickness from data including 

both eyes from the same subject, we constructed a comprehensive measurement error model. 

This measurement error model describes how the true unknown RNFL thickness of each eye is 
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linked to the measurements from each device and the processing method, and provides 

calibration equations to delineate the relationship between Cirrus and RTVue for different 

comparison methods. 

The simplified basic measurement error model is given by Eq. 5-3: 

xij =αi +βiµ j +εi             (Eq. 5-3), 

where µ j  indicates the unknown true RNFL thickness for the j th eye, xij  indicates an RNFL 

thickness observation measured by device i  (Cirrus or RTVue) for eye j , αi  and βi  describe 

the bias (systematic error) introduced by device i , and εi  denotes a random error whose 

distribution describes the imprecision for each device. Based on the measurement error model, 

the calibration equation between two devices for each comparison method can be derived as Eq. 

5-4: 

Ε[xR ]= αR −
βR
βC
αC

#

$
%

&

'
(+

βR
βC

Ε[xC ]            (Eq. 5-4), 

where E  denotes the expectation operator (which averages out the random error) and C  stands 

for Cirrus while R  stand for RTVue. When the ratio of two device slopes (β ’s) equals one, the 

calibration line is parallel to the no-bias line, E[xC ]= E[xR ] , and the bias is considered to be a 

constant bias and equal to the horizontal or vertical distance between the calibration line and the 

no-bias line. 

SEMs (Figure 21) were used to estimate the parameters in the measurement error model 

and further derive parameters for the calibration equations. The R environment and language for 

statistics (version 2.13.1)[112] with OpenMx (version 1.1.2-1818)[113] and merror (version 

1.0)[114] were used to describe the SEMs. Full information on the maximum likelihood was 

used to estimate the measurement error model parameters. 
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Figure 21. Path diagram of the SEMs used for statistical analysis. 

 

Furthermore, to assess the effect of our signal normalization method in reducing the 

systematic difference between Cirrus and RTVue over a wide range of disease severity 

(measured using the visual field mean deviation (MD) value), linear mixed effect models were 

constructed to estimate the relationship between the differences in RNFL thickness between two 

devices to the MD value. 

4.2.2 Results 

One hundred and nine eyes from 59 subjects were included in this study. Subject demographics 

and clinical characteristics are presented in Table 14. Disease severity, as measured by the visual 

field MD, ranged from -9.23 to 2.13 dB, including healthy subjects as well as early and moderate 

glaucoma subjects. 
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Table 14. Subject demographics. Data are expressed as the mean ± SD and 95% CI in the parentheses. 

Subject Demographics 

Male / Female 16 : 43 

Age (years) 61.67 ± 8.0 (59.60, 63.75) 

Visual field mean deviation (MD) (dB) -0.76 ± 1.90 (-1.13, -0.40) 

 

 

Table 15 shows the global mean circumpapillary RNFL thicknesses from Cirrus and 

RTVue data measured using five different methods, the systematic differences in RNFL 

thickness measurements between Cirrus and RTVue, and the slope and intercept values of the 

corresponding calibration lines. The RNFL thicknesses between Cirrus and RTVue were 

statistically significantly different before normalization regardless of the choice of segmentation 

algorithms (device built-in or our custom design, Comparison I to Comparison III). Before signal 

normalization, there were significant differences in RNFL thickness measurements between 

Cirrus and RTVue both from the original device outputs (Comparison I; mean absolute 

difference 10.6 µm, p<0.05, Figure 22A) as well as when using the same segmentation software 

regardless of using the same parameters for Cirrus and RTVue or optimizing the parameters for 

Cirrus and RTVue separately (Comparison II and III; 18.1 µm and 10.9 µm, both p<0.05, Figure 

22B and C, respectively). After signal normalization with HDR processing, although the RNFL 

thickness showed a non-constant difference between devices (Comparison IV-HDR; Figure 

22D), the difference was reduced substantially. The difference between Cirrus and RTVue was 

statistically significantly reduced by signal normalization for the eyes with RNFL thicker than 

62.4 µm according to Cirrus device measurements (dotted blue vertical line in Figure 23), 

representing 95% of the studied population. The mean absolute difference between Cirrus and 

RTVue for eyes with a Cirrus RNFL thickness larger than 62.4 µm was 2.95 µm, which was 
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calculated by averaging the absolute difference between the two devices in that range. On the 

other hand, after signal normalization with HM processing, the measurement differences 

between Cirrus and RTVue were significantly reduced across the entire thickness range (mean 

absolute difference 0.5 µm, p>0.05, Figure 22E). The largest difference between Cirrus and 

RTVue after signal normalization with HM processing was 2.5 µm, which appeared when the 

RNFL thickness was 48.7 µm according to Cirrus device measurements, which was also the 

minimum RNFL thickness in our dataset.  

 

Table 15. Summary of RNFL thickness differences using four comparison methods. Global mean circumpapillary 

RNFL thickness measurements and systematic measurement differences between Cirrus and RTVue, along with the 

slope and intercept values of the corresponding calibration line, are presented. Data are expressed as the mean ± SD 

and 95% CI are shown in the parentheses. *: Non-constant difference ranging from -0.1 to 5.0 µm. 

 Cirrus (µm) RTVue (µm) Diff (µm) Slope Intercept 

Comparison I 82.7 ± 12.0 
(80.4, 84.9) 

93.0 ± 12.7 
(90.6, 95.5) 

10.6 
(9.8, 11.4) 

1.1 
(1.0 1.1) 

6.2 
(-1.8, 13.3) 

Comparison II 96.8 ± 15.1 
(93.9, 99.6) 

114.5 ± 17.2 
(111.3, 117.8) 

18.1 
(16.3, 20.0) 

1.1 
(0.9, 1.2) 

13.5 
(-3.3, 28.5) 

Comparison III 96.8 ± 15.1 
(93.9, 99.6) 

107.4 ± 16.1 
(104.3, 110.4) 

10.9 
(9.2, 12.6) 

1.0 
(0.9, 1.1) 

13.5 
(-2.0, 27.3) 

Comparison IV-HDR 97.7 ± 15.0 
(94.9, 100.6) 

99.6 ± 14.8 
(96.8, 102.4) * 0.9 

(0.8, 1.1) 
9.2 

(-6.3, 22.7) 

Comparison IV-HM 96.6 ± 14.3 
(93.8, 99.4) 

96.7 ± 13.9 
(94.0, 99.4) 

0.5 
(-1.3, 2.3) 

1.0 
(0.8, 1.1) 

5.7 
(-12.4, 21.0) 
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Figure 22. Scatter plots of RNFL thickness measurements with five comparison methods. (A)-(C) Comparison I-III, 

(D)-(E) comparison IV with HDR processing and HM processing, respectively. The calibration curve (red line) and 

no-bias curve (green line) were drawn on each plot. Vertical gray line indicates the average of the RNFL thickness 

measured from Cirrus data, and the constant differences between two SD-OCT devices were measured as the 

distance between red line and green line at this point. Paired eyes from the same subject are connected by gray lines. 

See Table 13 for definition of the comparisons. 
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Figure 23. Calibration curves between Cirrus and RTVue RNFL thickness measurements. Blue line: after signal 

normalization with HDR processing, red line: from original machine outputs, and green dotted line: no-bias curve. 

Note how the calibration curve after normalization (blue line) is closer to the no-bias curve (green dotted line), 

showing less bias overall. However, the blue line is not parallel to the green dotted line, indicating that the 

systematic measurement difference depends on the measured thickness. The dotted blue vertical line is at the 

threshold of RNFL thickness where differences between devices below this level are statistically significant. 

 

The relationship between the RNFL thickness differences (RTVue – Cirrus) and visual 

field MD was also analyzed. Since the effect of the present signal normalization on eyes with a 

Cirrus-measured RNFL thinner than 62.4 µm were not significant, six eyes with such condition 

were excluded for this analysis. The RNFL difference showed no significant correlation with the 

visual field MD both before and after normalization (correlation coefficient 0.24 vs -0.34 µm/dB, 

respectively, p>0.30), indicating that the residual difference between two devices was 

independent from disease severity before and after normalization. 
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4.2.3 Discussion 

The systematic measurement differences between two commercial SD-OCT devices, Cirrus and 

RTVue, were statistically significantly reduced to the level of measurement variability within 

devices after processing with the developed signal normalization. Along with the results 

presented in Section 4.1, it is not only indicated that the proposed signal normalization is able to 

reduce the residuals between A-scan profiles, but it is also capable of minimizing the 

measurement differences between OCT devices, which further improves the comparability of 

OCT data measurements among machines. 

 Two methods were included in the signal normalization process, HDR and HM 

processing. When processed using the signal normalization with HDR processing, it successfully 

reduced the differences for most of the cases (95%) where the Cirrus RNFL thickness was larger 

than 62.4 µm. This encompasses a wide range of subjects including early and moderate 

glaucoma participants, along with healthy subjects. However, the results also demonstrate that 

the present method had limited ability to reduce the systematic measurement differences for 

cases where the Cirrus RNFL thickness is less than or equal to 62.4 µm, where advanced 

glaucoma subjects stand. The behavior of the systematic measurement difference can be 

observed from Figure 23. The absolute difference in RNFL measurements between Cirrus and 

RTVue after normalization was always smaller than the difference between the original device 

outputs. Although the calibration curve after normalization (blue line) in Figure 23 is closer to 

the no-bias curve (green line), showing less difference overall, it is not parallel to the no-bias 

curve, indicating that the systematic measurement difference depends on the measured thickness. 

We assumed that the lack of ability to reduce the measurement differences when Cirrus RNFL  
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thickness was less than or equal to 62.4 µm comes from an insufficient number of observations 

of advanced glaucoma subjects, and further investigation with more observations of severe 

glaucoma cases is warranted.   

 When processed using the signal normalization with HM processing, the systematic 

measurement differences were significantly reduced across the entire thickness range (including 

all clinical groups: healthy, early, moderate, and advanced glaucoma subjects). The largest 

difference between Cirrus and RTVue was 2.5 µm after normalization, less than the largest 

difference when using HDR processing (5.0 µm). This suggests that signal normalization with 

HM processing performed better than normalization with HDR processing. One advantage of 

using HM processing was the generality. When performing HDR processing, image pairs with 

significant image quality differences were carefully selected and then the one with lower image 

quality was subjected to HDR processing, so that we could avoid signal saturation in high image 

quality scans. This selection scheme enhanced the poor quality images without boosting high 

quality images, however, and also induced a selection bias (which may cause a proportional bias 

in measurements between devices). On the contrary, HM processing can be applied to all image 

data without any selection, compensating for the quality differences between image pairs, and 

thus it successfully eliminated the selection bias and improved the measurement differences 

between SD-OCT devices across the entire thickness range. Another advantage gained from HM 

processing was the efficiency. Three-stage signal normalization was integrated into two-stage 

normalization, which makes the proposed method simpler and more efficient. One potential 

limitation of HM processing is its requirement of a reference histogram. As described in Section  
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3.4, the reference histogram can be generated from a group of images instead of individual 

reference image, however, it is still a speculation that group reference works with all the images 

including both healthy and diseased eyes. Further investigation is warranted. 

Previous studies showed that RTVue-measured RNFL thicknesses were thicker than the 

corresponding Cirrus measurements.[58, 59] The results of our analysis of the devices’ original 

outputs agreed with the previous findings. Heussen et al. suggested in a recent study that similar 

RNFL thickness measurements could be generated by both manually segmenting and correcting 

the outer retinal boundary to a standardized reference location.[115] Their results support our 

first hypothesis that while scanning the same eye, OCT signals from different devices contain the 

same information though the signal characteristics vary because of different device settings and 

thus react differently to the same segmentation algorithm. However, only correcting the 

boundary position still cannot resolve all the systematic difference in RNFL measurements, and 

it is not practical to manually correct segmentation in regular clinical settings.[115] The same 

results were also observed in our study. Even using the same segmentation software, RNFL 

thickness measured on the RTVue images still presented thicker measurements than when 

measured on the Cirrus images, which further implies that the factors causing this systematic 

difference in RNFL thickness is not only due to the use of a different segmentation algorithm but 

also due to various signal characteristics. 

The systematic RNFL measurement difference between Cirrus and RTVue was 10.6 µm 

from the original devices outputs, and 18.1 µm when processing both the original Cirrus and 

RTVue image data with our universal segmentation software without optimizing the parameters 

for each SD-OCT device separately. The increased systematic measurement difference indicated 

that simply processing OCT data from different SD-OCT machines with the same segmentation 
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algorithm cannot reduce the systematic measurement differences between SD-OCT devices, but 

makes the differences even larger. The results also proved our hypothesis that OCT data from 

different SD-OCT devices have different signal characteristics so that they react differently to 

the same segmentation algorithm. 

After fine-tuning the parameters in our universal segmentation software for Cirrus and 

RTVue separately, the systematic measurement difference became 10.9 µm. With the 

optimization, the systematic measurement difference decreased to the same level as the one 

obtained from machine outputs, 10.6 µm. This result was expected since tuning parameters in the 

same algorithm for each specific SD-OCT device worked similarly to using different algorithms, 

which were optimized for specific SD-OCT devices and would present the best performance for 

the image captured from the specific device. However, software optimization did not fix the 

systematic measurement difference between Cirrus and RTVue data. Therefore, a different 

approach other than adjusting the segmentation algorithm is needed to solve this problem. 

With the present signal normalization method, RNFL thickness from the two devices 

could be reduced to the inherent device measurement variability level and become directly 

comparable. By unifying the sampling density in the axial direction using z-scaling and sampling 

density normalization, normalization of the pixel dynamic range, and compensating for image 

quality differences, the proposed normalization method succeeded in transforming OCT signals 

obtained with one device into virtually similar signals obtained with the other device. Although 

the systematic differences in RNFL measurement between Cirrus and RTVue could not be 

reduced to a statistically significant level with RNFL thickness thinner than 62.4 µm, the largest 

difference between two devices after normalization was 5.0 µm, which was within the inherent 

device measurement variability. 
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It was interesting that the RNFL thickness measurement differences between devices 

were independent from the disease severity. With thinner RNFL on glaucomatous eyes, one may 

expect a smaller difference if the effect is proportional. But instead, the results suggest that the 

effect is more of a fixed bias regardless of the disease status. It is likely this bias is stemmed 

from the characteristic difference in the slope of the intensity profiles at the inner and outer 

borders of the RNFL. We hypothesize that normalizing such intensity profile characteristics 

would further reduce the systematic difference in OCT measurements. Further investigation is 

needed. 

Although we only tested the effect of the signal normalization method on reducing the 

systematic RNFL thickness measurement differences with Cirrus and RTVue devices, in 

principle, this normalization method can be applied to all SD-OCT devices. Further investigation 

is warranted. 

In conclusion, our signal normalization method successfully reduced the systematic 

difference in RNFL thickness measurements between Cirrus and RTVue to the level of the 

device’s reported inherent measurement variability. This enables the direct comparison of RNFL 

thicknesses obtained from multiple devices, and would broaden the use of OCT technology in 

both clinical and research applications. 

4.3 SIGNAL NORMALIZATION BETWEEN SINGLE-FRAME AND AVERAGED-

FRAME OPTICAL COHERENCE TOMOGRAPHY IMAGES 

We have demonstrated that the proposed signal normalization method is capable of unifying the 

variation of signal characteristics, reducing the residuals between two A-scan profiles, and 
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minimizing the systematic measurement differences between SD-OCT devices. So far, all the 

validations focused on the comparability between single-frame OCT images, like Cirrus and 

RTVue. In this section, we extend the ability of our signal normalization method to normalize 

between single-frame and averaged-frame images. 

The Spectralis system has a hardware eye-tracker built in to resolve eye movement 

artifacts or blinking during scanning. Two beams of light reach the target eye simultaneously; 

one beam for tracking and the other beam for OCT scanning, so that Spectralis can repeatedly 

scan at the same location and apply the OCT signal averaging on the fly. With eye tracking and 

signal averaging, Spectralis produces much clearer, better contrasted, and more detailed images 

of the retinal layers. However, it also induced signal characteristic differences as compared to 

signal-frame OCT images. The previously developed signal normalization method successfully 

reduced the measurement differences between SD-OCT devices providing single-frame images, 

but was ineffective in normalizing signals between single-frame and averaged-frame images. The 

challenge for us here is how to compensate for the signal characteristics variation between 

single-frame and averaged-frame image. To solve this problem, we developed a novel virtual 

averaging method and applied it to single-frame image data only in order to minimize the 

differences between single-frame and averaged-frame OCT data, which are Cirrus and 

Spectralis. 

4.3.1 Methods 

Twenty-one healthy subjects volunteered to participate in this prospective cross-sectional study. 

The right eye from each subject was used in the study. The inclusion criteria were described in 

Section 2.1. 
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For each participant, both macular and ONH regions were scanned using two 

commercially available SD-OCT devices during the same visit, where Cirrus device (software 

version 6.1) was used to acquire single-frame image data while Spectralis device (software 

version 1.5) had an eye-tracking system and provided averaged-frame image data. The details of 

the scan protocols were described in Section 2.2. 

4.3.1.1 Virtual Averaging Algorithm Development 

To mimic the acquisition of frame-averaged OCT data, we first simulated the deviation in the x 

and y direction while Spectralis scans at the same location. For each sampling voxel, one 

neighboring voxel was randomly selected from the 3×3 neighborhood voxels located on the same 

z-position (including the center voxel) following a 2D Gaussian random distribution, where the 

closer the voxel was to the center, the higher its possibility of being selected as a candidate (as 

Figure 24, Step 1 shows). Then we simulated the variation of the voxel value while imaging the 

same position multiple times by adding a random Gaussian deviation to the selected voxel value 

(Figure 24, Step 2). This process (deviation in x and y direction and in voxel value, namely Step 

1 and 2 in Figure 24) was repeated 15 times for each voxel, and the average of the outcomes 

were used to replace the original value (Figure 24, Step 3). 
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Figure 24. Processing flow of virtual averaging. 

 

4.3.1.2 Virtual Averaging Effects Assessment 

For the validation of virtual averaging, we first assessed its effects on OCT image quality 

enhancement. To test the image enhancement ability, single-frame OCT data (Cirrus data) were 

processed with the virtual averaging method and the outcomes were evaluated and compared 

with averaged-frame OCT data (the corresponding Spectralis data) subjectively and objectively. 
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Subject and Objective Assessment 

For subjective assessment, a subjective image quality evaluation based on the image 

appearance in terms of tissue contrast, the smoothness of the tissues, and the visibility of intra-

retinal layers were assessed by two observers (CLC and HI). For objective assessment, SNR and 

CNR (as described in Section 3.2.2) were calculated to evaluate the image enhancement effect. 

In addition to conventional image quality metrics, the distance between the end of visible 

nasal RNFL and the foveola (dNFL) was measured to assess the effect on improved retinal layer 

visibility quantitatively. The end of visible nasal RNFL (as indicated by the orange arrow in 

Figure 25) is usually judged in doubt because the end of the nasal RNFL is too thin to see as the 

RNFL merges into GCL at the fovea. The definition of dNFL is presented in Figure 25 as the 

horizontal distance between the blue and orange arrows, where the blue arrow points to the 

foveola position while orange arrow points to the end of visible nasal RNFL. 

 

 

Figure 25. Distance between the end of visible nasal RNFL and the foveola measurement. Blue arrow points to the 

foveola position while orange arrow points out the end of visible nasal RNFL. dNFL is calculated as the horizontal 

distance between the blue and orange arrows. 
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Statistical Analysis 

Paired t-tests were used to analyze the image quality metrics (SNR and CNR) 

improvement between the original and virtually averaged images as well as the differences in 

dNFL between single-frame and averaged-frame data before and after processing. 

4.3.1.3 Virtual Averaging Application in Signal Normalization 

Virtual averaging was then employed in the signal normalization and tested for its compensating 

effects on the signal characteristic differences as well as reducing tissue thickness measurement 

differences between single-frame and averaged-frame images. 

 

Signal Normalization 

The signal normalization was modified based on the previously reported method.[103, 

116] The normalization process had two disparate stages for Cirrus and Spectralis data, as 

presented in Figure 26. Spectralis data (averaged-frame data) were first processed with Z-scaling 

and sampling density normalization, while Cirrus data (single-frame data) were processed with 

virtual averaging in the first step. Since the averaging of multiple frames during image 

acquisition for Spectralis data and virtual averaging applied on the Cirrus data have the same 

effect on reducing the speckle noise, the speckle noise reduction step in the original signal 

normalization method was removed. After the first step, both Cirrus and Spectralis data were 

processed with amplitude normalization to match the intensity dynamic range. 
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Figure 26. Flow chart of signal normalization for single-frame and averaged-frame data. 
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OCT Thickness Measurement Comparison 

 The same thickness measurement comparison methods were used as described in Section 

4.2.1.2 and Table 13. Both the total retinal thicknesses of nine macular sections and the global 

mean circumpapillary RNFL thicknesses were collected. In order to measure in the same region 

for sectoral macular total retinal thicknesses, the foveola position was manually selected by 

looking for the largest separation between the junction of IS/OS of the photoreceptors and the 

RPE as appearing on the horizontal and vertical cross-sectional B-scans (as described in Section 

4.1.1.1, shown in Figure 16). An Early Treatment Diabetic Retinopathy Study (ETDRS) pattern 

was then applied to measure the total retinal thickness in nine sectors. 

 

Statistical Analysis 

As mentioned in Section 4.2.1.3, SEMs were used to analyze the absolute difference in 

the circumpapillary RNFL thicknesses and the sectoral total retinal thicknesses in the macular 

region between Cirrus and Spectralis from the original machine outputs, from our software 

outputs before and after signal normalization. 

4.3.2 Results 

Twenty-one right eyes from 21 healthy subjects were recruited in this study. They included 9 

males and 12 females. The mean age of the healthy group was 34.3 ± 11.5 years old. The 

averaged visual field MD was -0.6 ± 1.1 dB. 
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Subject and Objective Assessment 

Subjectively, all processed images showed notable improvement in image quality and 

bore clear resemblance to active tracking averaged Spectralis images after virtual averaging. 

Figure 27 presents an example of the cross-sectional images in the macular region from the 

original single-frame Cirrus image (left), processed Cirrus image (middle), and averaged-frame 

Spectralis image (right). As the example shows, the external limiting membrane was hard to 

differentiate from the signal pattern in the outer nuclear layer (ONL) in the original Cirrus image, 

but became clearly visible and easy to trace after processing (red arrowhead). Moreover, the 

contrast between retinal layers became more apparent and the continuous inner border of the IPL 

(yellow arrowhead) became easily distinguishable after virtual averaging. 

 

 

Figure 27. An example of virtual averaging. Processed Cirrus data show notable improvement in signal quality and 

retina; cross-sectional image looks similar to averaged-frame Spectralis image. In the processed Cirrus image, ELM 

(red arrowhead) and the continuous inner border of IPL (yellow arrowhead) become clearly visible. 
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In the objective assessment using image quality metrics, the mean SNR and CNR were 

significantly improved after virtual averaging (SNR: 30.5 vs 47.6 dB, CNR: 4.4 vs 6.4 dB, 

original vs processed, p<0.0001, paired t-test). As for quantitative analysis on the dNFL 

parameter, dNFL were significantly different between Cirrus and Spectralis before processing 

(681.4 vs 446.5 µm, original vs Spectralis, p<0.0001, paired t-test), but after virtual averaging 

there was no significant difference in dNFL between Cirrus and Spectralis (442.9 vs 446.5 µm, 

processed vs Spectralis, p=0.76, paired t-test). 

 

Signal Normalization and Compensating Tissue Thickness Measurement Differences 

For sectoral macular total retinal thicknesses, significant systematic differences were 

detected in all sectors between Cirrus and Spectralis on both device outputs (Comparison I, 

Table 16, p<0.0001) and between our universal software measurements before normalization 

(Comparison II and III, Table 16). After signal normalization, no significant differences were 

found in any of the sectors between Cirrus and Spectralis data except for in the outer temporal, 

outer nasal, and inner inferior sectors (Comparison IV, Table 16). Signal normalization 

significantly reduced the absolute differences between the devices in all sectors except for the 

center (mean absolute difference 20.3 µm (devices) to 6.7 µm (normalized), p<0.0001). 
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Table 16. Results of total macular retinal thickness analyses between Cirrus and Spectralis. Sectoral macular total 

retinal thickness measurements and systematic measurement differences between Cirrus and Spectralis, using four 

comparison methods were summarized. 95% CI are shown in the parentheses. *: Statistically significant differences 

were detected between Cirrus and Spectralis. 

 

 

 

 

 

 

 

 

 

Comparison I 
(Device outputs) 

  Cirrus (µm) Spectralis (µm) Mean Absolute 
Differences (µm) P-value 

Outer 

Temporal 258.3 
(253.0, 263.6) 

281.7 
(276.4, 286.9) 

23.3 
(20.6, 26.1) 

<0.0001* 

Superior 278.0 
(272.3, 283.6) 

298.9 
(292.7, 305.1) 

21.0 
(18.7, 23.2) 

Nasal 297.8 
(290.2, 305.4) 

315.9 
(308.1, 323.7) 

18.1 
(15.3, 21.0) 

Inferior 266.6 
(260.8, 272.4) 

287.4 
(281.0, 293.8) 

20.8 
(18.3, 23.3) 

Inner 

Temporal 308.9 
(302.4, 315.3) 

332.4 
(327.3, 337.5) 

23.5 
(20.6, 26.5) 

Superior 322.4 
(316.3, 328.5) 

345.0 
(339.4, 350.7) 

22.7 
(19.8, 25.5) 

Nasal 324.8 
(318.9, 330.6) 

346.9 
(341.5, 352.3) 

22.1 
(19.1, 25.2) 

Inferior 317.9 
(311.6, 324.1) 

341.6 
(336.2, 346.9) 

23.7 
(21.0, 26.5) 

 Center 259.0 
(252.7, 265.2) 

275.0 
(269.0, 280.9) 

16.0 
(13.5, 18.5) 
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Table 16 (continued). 

 

Comparison II 
(Our custom algorithm with same parameters) 

  Cirrus (µm) Spectralis (µm) Mean Absolute 
Differences (µm) P-value 

Outer 

Temporal 288.4 
(282.5, 294.4) 

285.7 
(280.8, 290.5) 

4.5 
(2.9, 6.1) 0.023* 

Superior 304.5 
(298.6, 310.5) 

302.5 
(297.6, 307.5) 

5.3 
(3.4, 7.2) 0.18 

Nasal 321.4 
(314.1, 328.7) 

314.7 
(308.3, 321.0) 

7.7 
(5.0, 10.3) 0.0002* 

Inferior 293.4 
(287.3, 299.5) 

291.4 
(285.1, 297.7) 

6.8 
(4.0, 9.6) 0.33 

Inner 

Temporal 324.4 
(319.0, 329.9) 

322.0 
(317.2, 326.8) 

6.3 
(4.2, 8.4) 0.16 

Superior 343.0 
(337.6, 348.4) 

339.6 
(334.5, 344.7) 

6.0 
(3.9, 8.0) 0.031* 

Nasal 342.4 
(337.5, 347.2) 

337.5 
(332.4, 342.6) 

6.7 
(4.7, 8.6) 0.002* 

Inferior 338.1 
(332.6, 343.6) 

331.4 
(326.5, 336.3) 

7.7 
(5.6, 9.8) <0.0001* 

 Center 250.6 
(243.0, 258.2) 

261.7 
(28.5, 285.0) 

31.7 
(12.5, 50.8) 0.34 

Comparison III 
(Our custom algorithm with fine tuned parameters) 

  Cirrus (µm) Spectralis (µm) Mean Absolute 
Differences (µm) P-value 

Outer 

Temporal 288.4 
(282.5, 294.4) 

280.1 
(274.7, 285.4) 

8.7 
(6.4, 10.8) <0.0001* 

Superior 304.5 
(298.6, 310.5) 

294.3 
(288.6, 300.0) 

10.3 
(8.2, 12.3) <0.0001* 

Nasal 321.4 
(314.1, 328.7) 

306.8 
(300.0, 313.6) 

15.1 
(12.7, 17.5) <0.0001* 

Inferior 293.4 
(287.3, 299.5) 

283.1 
(277.6, 288.6) 

10.3 
(8.0, 12.5) <0.0001* 

Inner 

Temporal 324.4 
(319.0, 329.9) 

318.0 
(311.4, 324.7) 

8.1 
(4.6, 11.6) 0.0048* 

Superior 343.0 
(337.6, 348.4) 

334.4 
(329.1, 339.8) 

9.1 
(6.9, 11.3) <0.0001* 

Nasal 342.4 
(337.5, 347.2) 

333.5 
(328.1, 339.0) 

9.2 
(7.2, 11.2) <0.0001* 

Inferior 338.1 
(332.6, 343.6) 

326.9 
(321.6, 332.2) 

11.2 
(8.5, 14.0) <0.0001* 

 Center 250.6 
(243.0, 258.2) 

236.6 
(223.7, 249.6) 

18.1 
(8.5, 27.6) 0.0015* 
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Table 16 (continued). 

 

 

For the circumpapillary RNFL thickness, statistically significant differences were found 

between Cirrus and Spectralis in the original device outputs and when using our custom 

segmentation software (Comparison I to III, Table 17). Although the differences found in the 

device outputs were significant, the detected absolute differences (3.6 µm) were within the 

expected device measurement variability and were clinically non-significant (Comparison I).[64, 

117, 118] Applying the same segmentation algorithm (our custom universal segmentation 

software) did not help reduce the systematic differences in RNFL thicknesses, but made the 

differences larger (Comparison II and III, Table 17). After signal normalization, no systematic 

measurement differences were detected between Cirrus and Spectralis (Comparison IV, Table 

17). Although the mean absolute difference between Cirrus and Spectralis was larger than the 

Comparison IV 
(After signal normalization) 

  Cirrus (µm) Spectralis (µm) Mean Absolute 
Differences (µm) P-value 

Outer 

Temporal 291.4 
(285.4, 297.3) 

294.6 
(289.5, 299.8) 

5.0 
(3.4, 6.7) 0.01* 

Superior 307.0 
(301.2, 312.9) 

305.9 
(300.5, 311.3) 

3.8 
(2.5, 5.1) 0.26 

Nasal 325.4 
(317.9, 332.9) 

319.4 
(313.1, 325.8) 

7.2 
(4.7, 9.8) 0.0009* 

Inferior 296.7 
(290.7, 302.8) 

294.8 
(289.4, 300.1) 

4.9 
(3.5, 6.3) 0.12 

Inner 

Temporal 328.0 
(321.7, 334.3) 

328.2 
(322.2, 334.2) 

6.6 
(4.1, 9.1) 0.93 

Superior 346.4 
(341.1, 351.7) 

344.3 
(339.2, 349.4) 

4.5 
(2.9, 6.0) 0.08 

Nasal 345.7 
(340.0, 351.3) 

344.5 
(339.0, 349.9) 

4.5 
(3.3, 5.6) 0.29 

Inferior 341.2 
(335.5, 346.9) 

337.9 
(332.9, 342.9) 

4.7 
(2.4, 7.0) 0.02* 

 Center 249.7 
(240.1, 259.2) 

251.1 
(238.0, 264.2) 

13.1 
(8.2, 18.1) 0.71 
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difference between device outputs (5.5 vs 3.6 µm, Comparison IV vs I), the mean absolute 

differences after signal normalization were still subclinical and within the expected measurement 

variability, indicating that the proposed signal normalization did not add any artifacts. 

 

Table 17. Results of RNFL thickness measurements between Cirrus and Spectralis. Global mean circumpapillary 

RNFL thickness measurements and systematic measurement differences between Cirrus and Spectralis, using four 

comparison methods were summarized. 95% CI are shown in the parentheses. *: Statistically significant differences 

were detected between Cirrus and Spectralis. 

Methods Cirrus (µm) Spectralis (µm) Mean Absolute 
Differences (µm) P-value 

Comparison I 96.3 
(91.2, 101.3) 

99.1 
(94.8, 103.4) 

3.6 
(2.3, 5.0) 0.003* 

Comparison II 99.4 
(94.5, 104.3) 

111.3 
(107.2, 115.3) 

11.9 
(9.3, 14.4) <0.0001* 

Comparison III 99.4 
(94.5, 104.3) 

106.1 
(102.2, 110.1) 

7.2 
(5.2, 9.3) <0.0001* 

Comparison IV 101.9 
(97.0, 106.7) 

100.4 
(96.6, 104.2) 

5.5 
(3.7, 7.2) 0.20 

 

4.3.3 Discussion 

In this experiment, a virtual averaging method was developed and employed in our signal 

normalization to improve the comparability of non-averaged non-tracking OCT images and 

active tracking averaged frame OCT images. By resampling voxels within a 3×3 neighborhood, 

adding a Gaussian deviation multiple times, and then calculating the average, the proposed  

 



 122 

method successfully mimicked the way active tracking averaged-frame devices acquire images, 

which reduced the measurement differences between single-frame and averaged-frame OCT data 

and further improved the image quality of single-frame non-tracking OCT data. 

We assumed the deviation of the incident light beam was caused by the relocation of the 

camera as well as the variation in signal intensity from the same location caused by the dryness 

of the cornea, speckle noise, and other factors following Gaussian distributions. That means the 

closer the voxel is to the center voxel, or the more moderate the change to the voxel value, the 

higher the possibility the voxel or the deviation has of being selected. In this way, the output of 

each re-sampling process would not select a voxel too far away from the center voxel or change 

the voxel value dramatically, therefore tissue structural information from the original OCT image 

can be kept after the averaging process. 

By adding Gaussian deviation and repeating the process (Step 1 and 2 in Figure 24) 

multiple times, the outcome of virtual averaging showed much less background noise and 

speckle noise in the retinal signal and thus strongly improved the image quality and intra-retinal 

layer contrasts. Retinal tissues like ELM and the end of nasal side RNFL, which cannot be 

identified clearly in the single-frame images, became clearly visible and easier to delineate after 

virtual averaging. By enhancing the visualization of single-frame OCT images, the proposed 

method may help detect the fine structural changes in those originally obscure tomographic 

features and improve the interpretation and assessment of the progression of pathologies; 

furthermore, it may enable detailed retinal structure studies on images that previously fell short 

because of image quality, and may also enable more robust and finer retinal tissue segmentation. 

Besides being able to enhance image quality, the virtual averaging can be used to 

normalize the OCT signal between single-frame images and averaged-frame images so that the 
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systematic differences in quantitative measurements can be minimized. Because different 

segmentation algorithms were used to measure the retinal thicknesses and the foveola was not 

always located at the center of the scan window, it would be expected that the systematic 

measurement differences in macular total retinal thickness between these two devices could be 

minimized by applying a universal segmentation algorithm and adjusting the foveola position. 

However, our results showed that even using the same segmentation algorithm, there were still 

significant differences in the macular total retinal thickness between Cirrus and Spectralis 

(Comparison II and III, Table 16), and it was indicated that the signal normalization process was 

still required. After applying signal normalization and using the universal segmentation 

algorithm, the systematic measurement differences between single-frame and averaged-frame 

OCT data were successfully reduced and the clinical measurements of macular total retinal 

thickness from them were made directly comparable. 

The circumpapillary RNFL thickness showed a significant difference in the original 

device outputs between Cirrus and Spectralis. Though the difference did not reach clinical 

significance as reported in the literature,[64, 117, 118] the detected statistically significant 

differences in circumpapillay RNFL from the device output indicate a consistent trend of 

Spectralis circumpapillary RNFL being thicker than the Cirrus measurements. Similar to the 

results found between Cirrus and RTVue, the systematic differences in circumpapillary RNFL 

thickness were not reduced by applying the same segmentation algorithm (our universal 

segmentation algorithm), but became even larger, indicating that signal normalization is needed 

to minimize the measurement differences. Despite circumpapillary RNFL thickness not needing 

any post hoc processing to make it clinically comparable between Cirrus and Spectralis, the 

circumpapillary RNFL thickness measurements trend between Cirrus and Spectralis was not 
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found after signal normalization, and the mean absolute differences were still subclinical and 

within the measurement variability range, suggesting that the signal normalization process did 

not add any adverse noise or artifacts. 

In conclusion, the novel virtual averaging method can be a fundamental image processing 

technique that enhances image quality without the need of increasing scanning time, bridges the 

gap between single-frame and averaged-frame images, and furthermore, makes both qualitative 

and quantitative assessments between single-frame and averaged-frame OCT images directly 

comparable. 
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5.0  QUALITATIVE ASSESSMENT OF SIGNAL NORMALIZATION 

The primary application of OCT in ophthalmology is the qualitative evaluation of disease status 

from cross-sectional images. However, the variability in pixel intensity, ocular tissues contrast, 

sampling density in the axial direction, image quality, and OCT image noise level may influence 

the interpretation of OCT images and may induce a serious clinical challenge when clinicians 

want to compare images from different OCT devices. In previous quantitative assessments, the 

proposed signal normalization method has presented its ability to minimize the systematic 

measurement differences and enable direct measurement comparisons among OCT devices, both 

between single-frame OCT devices and between single-frame and averaged-frame OCT 

machines. Now, we investigate its ability to reduce the discrepancies in OCT image appearance 

among OCT devices. Although subtle changes exist in the OCT images scanned using the same 

OCT device, we assumed larger differences would be present in the OCT images taken with 

different OCT machines. We hypothesized that by applying our signal normalization technique 

the similarity in image appearance among OCT devices could be attained. A qualitative 

validation was conducted to assess the effect of the proposed method on reducing the variation of 

image appearance among SD-OCT devices by subjectively evaluating of the image similarity 

before and after signal normalization. 
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5.1 METHODS 

This was an observational cross-sectional study. Subjects recruited in this study were collected at 

the University of Pittsburgh Medical Center Eye Center, including healthy eyes as well as eyes 

that have previously been shown to have glaucoma, AMD (both dry and wet AMD), diabetic 

retinopathy (including proliferative diabetic retinopathy (PDR), non-proliferative diabetic 

retinopathy (NPDR), and diabetic macular edema (DME)), macular hole, and cystoid macular 

edema (CME). Multiple retinopathology was included to test if the proposed signal 

normalization method works regardless of pathology. The tenets and inclusion criteria were 

described in Section 2.0 and Section 2.1. 

Both macular and ONH regions from all eyes were scanned using at least two out of three 

SD-OCT devices (listed as following) at the same visit: Cirrus (software version 6.1), RTVue 

(software version 6.1), and Spectralis (software version 1.5). Macular and ONH scans were 

acquired. The details of the scan protocols were described in Section 2.2.  

5.1.1 Signal Normalization Processing 

Signal normalization methods developed in Chapter 3 and Chapter 4 were applied to all the OCT 

images. Z-scaling and sampling density normalization and image quality normalization were 

applied to RTVue and Spectralis data to convert the data into Cirrus equivalent data format. For 

the original Cirrus and normalized RTVue data, virtual averaging and amplitude normalization 

were applied to mimic averaged-frame OCT data. 
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5.1.2 Subjective Evaluation 

For subjective evaluation, a questionnaire was created and used to validate the effect of our 

signal normalization on reducing the variation in image appearance among OCT devices. The 

exemption of informed consent from survey participants was approved from the University of 

Pittsburgh Review Board and ethics committee. This study followed the tenets of the Declaration 

of Helsinki and was conducted in compliance with the Health Insurance Portability and 

Accountability Act. 

The questionnaire contained 30 sets of images (30 questions). Each set contained two 

cross-sectional images extracted from the same location acquired from the same eye scanned at 

the same visit with any combination of Cirrus, RTVue, and Spectralis (Cirrus vs RTVue, Cirrus 

vs Spectralis, RTVue vs Spectralis, and two images from the same device). Observers were 

asked to evaluate the similarity of the image appearance for the two displayed images (as shown 

in Figure 28) based on 1) the contrast between the retinal signal and the background noise, 2) the 

contrast between adjacent retinal layers, and 3) the textures or patterns of RNFL and RPE (the 

two brightest retinal layers) according to their visual experience. The similarity was recorded in a 

Likert-type five point scale ranging from one point to five points, where one meant least 

similarity between the two images and five meant excellent similarity as listed below: 1) 

Significantly different (0-20% similarity), 2) Somewhat different (20-40% similarity), 3) Cannot 

decide if it is similar (40-60% similarity), 4) Looks similar (60-80% similarity), and 5) Nearly 

identical (as if taken by the same device) (80-100% similarity). When judging the similarity, the 

differences in retinal axial location in the scanning window, retinal orientation, and pathological 

contexts should not be taken into account. 
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Figure 28. An example of the “significantly different” image pair. 

 

 The 30 questions consisted of 24 testing questions and 6 control questions. For the 

control questions, two displayed images were from the same device (Cirrus vs Cirrus, RTVue vs 

RTVue, and Spectralis vs Spectralis), either before or after signal normalization. The scores of 

the 6 control questions were used to establish the scores of similarity within the same device and 

used as references. The 24 testing questions were from 12 eyes with different SD-OCT devices 

(4 Cirrus vs RTVue, 4 Cirrus vs Spectralis, and 4 RTVue vs Spectralis) both before and after 

signal normalization, so that the effect of reducing the discrepancies in image appearance could 

be assessed. Image pairs with different pathologies before and after processing were displayed in 

a random and masked manner. 

 Eye care specialists of various levels including residents, community ophthalmologists, 

attendings in glaucoma and retina specialties in ophthalmology, optometrists, medical students, 

medical imaging device technicians, and researchers having experience with OCT were invited 

to participate in the study. An electronic invitation was sent out first, and if the recipient agreed 

to participate, a face-to-face meeting was scheduled to complete the questionnaire. No 

identifiable information of any sort was collected. 
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An additional five sets of images were presented as examples before the actual survey 

started. Proper decisions were demonstrated to the participants in order to establish a common 

similar judging standard. The questionnaire is attached in Appendix A. 

5.1.3 Statistical Analysis 

Ordinal mixture effects models were constructed to investigate the effects on reducing the 

differences in image appearance and improving the image similarity among OCT devices. The 

changes in the histograms of the testing questions were analyzed by the ordinal mixture effects 

models before and after signal normalization. Cumulative link mixed model was used to estimate 

the parameters for the ordinal mixed effects models in order to assess the effects. 

5.2 RESULTS 

Thirty-one eyes from 31 healthy subjects, 15 eyes from 15 glaucoma subjects, and 25 eyes from 

18 retinal pathology subjects were recruited in this study. The mean age for each group was 40.9 

± 15.4, 65.9 ± 9.1, and 70.8 ± 9.0 years old. The averaged visual field MD was -0.47 ± 1.27, -

3.14 ± 0.12, and -8.06 ± 9.7 dB, respectively. Among them, 3 healthy, 2 glaucomatous, 4 AMD, 

4 macular hole, 2 diabetic retinopathy, 1 CME with NPDR, and 2 CME eyes were used to create 

the subjective evaluation questionnaire. 
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 A total of 29 observers participated in the survey. They were 6 ophthalmologists, 5 

faculties in Department of Ophthalmology at University of Pittsburgh School of Medicine, 4 

residents in ophthalmology, 1 medical student, 5 OCT technicians, and 8 researchers whose 

research fields are related to OCT.  

Figure 29 presents the descriptive summaries for the responses before and after signal 

normalization. The responses are summarized in histograms. The vertical axis shows the 

histogram in percentage while the horizontal axis shows the similarity scale, with 1 indicating 

the least similar and 5 indicating the most similar. Comparing the histograms before and after 

signal normalization, the similarity responses shifted from dissimilar to similar, suggesting that 

after signal normalization, the similarity between OCT images was improved. 

 

 

Figure 29. Overall similarity comparison before and after signal normalization. Subjective evaluation results: 

overall similarity distribution (presented as histogram in percentage) before and after signal normalization. 
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Figure 30 also shows the descriptive summaries, broken down to the individual 

comparison groups: Cirrus vs RTVue, Cirrus vs Spectralis, and RTVue vs Spectralis. The same 

trend was observed in the individual groups: the responses shifted in a positive direction (from 

dissimilar to similar), further indicating that the signal normalization was able to increase the 

similarity between OCT images regardless of comparison groups. Another observation was that 

the image similarity increased after signal normalization to varying degrees among groups, 

which can also be observed from Figure 30, where group Cirrus vs RTVue showed the highest 

improvement in similarity, followed by group Cirrus vs Spectralis, and then group RTVue vs 

Spectralis. 

 

 

Figure 30. Group similarity comparison before and after signal normalization. Subjective evaluation results: 

similarity distribution (presented as histogram in percentage) for each comparison group. 
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Table 18 summarizes the estimated parameters for the ordinal mixed effects model. Odds 

ratios (image similarity of images after signal normalization divided by the similarity before 

signal normalization) were used to analyze the effect of the signal normalization on improving 

the similarity between OCT images. An interaction between groups was detected, and thus an 

interaction model was added in the ordinal mixed effects model. Statistically significant 

improvement in image similarity was detected both overall and for the individual comparison 

groups after signal normalization. Varying degrees of the effects depending on the comparison 

combination were observed, with Cirrus vs RTVue showing the strongest effect (odds ratio in 

log scale = 6.1, p<0.0001), followed by Cirrus vs Spectralis (2.9, p<0.0001), and then by RTVue 

vs Spectralis (1.2, p=0.009), the same as our observation from descriptive summaries (Figure 30). 

 

Table 18. Statistical analysis results of the subjective evaluation. *: Statistically significantly different compared to 

the combination of Cirrus with RTVue before signal normalization. 

  Odds Ratio (log scale) P-value 

Before 

Cirrus vs RTVue 
(Reference) --- --- 

Cirrus vs Spectralis -0.1 0.82 

RTVue vs Spectralis -4.0 <0.0001 * 

After 

Cirrus vs RTVue 6.1 <0.0001 * 

Cirrus vs Spectralis 2.9 <0.0001 * 

RTVue vs Spectralis 1.2 0.009 * 
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5.3 DISCUSSION 

A subjective evaluation was conducted through a survey to validate the effects of our signal 

normalization on reducing the dissimilarity in image appearance among OCT devices. The 

results showed that the proposed signal normalization method statistically significantly improved 

the image similarity, in terms of contrasts between retinal layers, textures in ocular tissues, and 

overall image appearance regardless of pathology. 

The successful reduction in the contrast between adjacent retinal layers can be attributed 

to the normalization in amplitude and intensity dynamic range. By minimizing the differences in 

the noise level and optimizing the dynamic range to the meaningful retinal signal, the noise 

signals were suppressed and the actual retinal signals were rescaled and mapped to the same 

range, which improved the contrasts between retinal signal and background noise, and between 

adjacent retinal layers, and thus substantially reduced the discrepancies. 

Another important factor was the virtual averaging. By mimicking the image acquisition 

of averaged-frame images, the virtual averaging bridges the differences between single-frame 

and averaged-frame OCT images. The process not only decreased the quantitative measurement 

differences, but also improved the qualitative comparison between single-frame and averaged-

frame OCT image data. Before processing, the textures or patterns in the retinal layers and ocular 

tissues, taking RNFL and RPE for example, looked more granular in single-frame image. After 

virtual averaging, the retinal layers became smoother, clearer, and showed more detailed 

structural information. Therefore, the signal normalization with virtual averaging was able to 

reduce the discrepancies in the texture and patterns of retinal layers and enable direct 

comparisons between single-frame and averaged-frame OCT image data.    
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Image similarity clearly increased after signal normalization for each individual group, 

but with different degrees of effects. The combination of Cirrus and RTVue showed the strongest 

effect, followed by the combination of Cirrus and Spectralis, and finally the combination of 

RTVue and Spectralis. It was interesting that the signal normalization method successfully made 

the image appearance comparable between Cirrus and RTVue, and substantially reduced the 

discrepancies in image appearance between Cirrus and Spectralis, but when it came to convert 

normalized RTVue (in the equivalent Cirrus data format) to a frame-averaged OCT data, the 

effects were not the same, though a statistically significant improvement was still observed. The 

combination of RTVue and Spectralis showed the least similarity before signal normalization 

while the combination of Cirrus and RTVue and Cirrus and Spectralis were at the same level of 

similarity (absolute odds ratio difference: 0.1, p=0.82). The differences in similarity among 

comparison groups may indicate the limited ability of our signal normalization method, or there 

are other factors resulting in OCT signal characteristics variability. Further investigation is 

warranted. 

A better way to conduct the survey may be testing the effect of the individual aspects (the 

contrast between retinal signal and background noise, the contrast between adjacent retinal 

layers, and the textures in the retinal layer) separately so that we can better understand in what 

aspect the proposed signal normalization has more power. However, it would not be realistic to 

have such a time consuming survey, especially for busy clinicians. It was a compromise we 

chose to make in order to maximize the number of clinicians able to participate in the study.  

In conclusion, the qualitative validation showed that the proposed signal normalization 

method is not only able to minimize the systematic differences, but also able to improve the 

image similarity among SD-OCT devices. By improving the similarity in image appearance 
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among SD-OCT devices, signal normalization allows direct comparison of OCT images among 

various instrument, which would broaden the use of OCT technology in both clinical and 

research applications. 
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6.0  DISCUSSION 

In this dissertation, three objectives were achieved to minimize the systematic discrepancies in 

OCT signals and the differences in OCT data measurements among three SD-OCT devices. A 

novel signal normalization method was proposed and developed to unify OCT signal 

characteristics discrepancy in terms of axial scaling, sampling density, intensity dynamic range, 

and histogram statistics. For quantitative assessment, the residual between OCT A-scan profiles 

from different devices (between Cirrus and RTVue) were significantly reduced through bilinear 

up-sampling, context-aware speckle noise reduction, histogram-based tone mapping, and signal 

strength normalization (HDR and histogram matching). In the outcome results, the residual 

among different devices was reduced at least to the level of the observed differences within the 

same device. The systematic measurement differences in RNFL and retinal thickness 

measurements across OCT devices are significantly reduced to the level of expected 

measurement variability in both the peripheral and macular regions (including nine ETDRS 

sectors as well as the global mean total retinal thickness). For qualitative assessment, the 

similarity of cross-sectional images among various OCT devices is significantly improved in 

terms of the contrast between retinal signal and background noise, the contrast between adjacent 

intra-retinal layers, the texture or pattern in the retinal signal, and the overall image appearance. 
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 Although in this study we only tested the effect of the proposed method with Cirrus, 

RTVue, and Spectralis devices, in principle, the signal normalization can be applied to all SD-

OCT devices since no specific optical characteristics from devices or manufacturers have been 

used as a prior knowledge for the signal normalization method. 

 One of the main clinical applications of the signal normalization is in longitudinal studies 

using multiple OCT devices along the long observation period. In glaucoma practice, long-term 

quantitative follow-up (trend and change analysis) is usually hard to establish because of the 

inevitable utilization of various devices. With the proposed method, OCT image data that were 

previously excluded because of the usage of different OCT devices (in the situation that patients 

move from one clinic to another clinic) or the change/upgrade of device models and software can 

be included to set up a longer observation. Furthermore, OCT data acquired using different 

devices can be used, compared, and analyzed together in the multicenter study. In this way, 

diverse, large, and long-term follow-up cohorts can be established, which would improve the 

understanding of the properties of glaucoma, increase the sensitivity and specificity of disease 

detection, and yield a better method of disease management. 

In addition to the effect of reduced OCT signal discrepancies and minimized 

measurement differences and image inconsistences, the idea of a uniform OCT data format was 

thought of with the developed signal normalization method. A uniform OCT data format would 

allow the usage of a universal OCT image browser for both visualization and analysis purposes. 

No specific image browser will be needed for physicians and clinicians to use OCT image 

browsing/analysis. No particular settings will be required for OCT images coming from different 

OCT devices. Physicians and clinicians can read and compare the images without knowing 

which device was used to take the images and without being concerned about the sources of the 



 138 

images. The universal OCT browser can further be equipped with many image-processing tools, 

such as retinal segmentation algorithms and image enhancement methods. The browser can also 

allow interactions with the users, such as letting users choose the way they want to visualize the 

OCT image, for example, in 2D, 3D, as a horizontal or vertical cross-sectional image, in C-

mode, extracting individual retinal layer’s information, or view the entire retina as a whole. This 

will provide more information about the retinal tissues and enable browsing and analyzing OCT 

images in a more convenient fashion. Last but not least, with a universal OCT browser, using the 

same analysis method to process and analyze OCT images regardless of manufacturer will 

become feasible. As various analysis methods have been recognized as one of the major 

components resulting in measurement discrepancies, using the same analysis method to process 

normalized OCT data will definitely reduce the variability of quantitative measurements. The 

presented signal normalization method can be a core foundation of such an effort. 

We have mentioned two major factors causing systematic measurement differences, one 

is using different OCT devices, and the other is using devices from the same manufacturer but 

with different iterations. With the assumption that the inter-device measurement differences are 

larger than intra-device differences, we only investigated how signal normalization minimizes 

the systematic measurement differences among different SD-OCT devices. It would be 

interesting to test how the proposed signal normalization minimizes the measurement differences 

between devices from the same manufacturer with different generations. Second, in the clinical 

validation, we tested the effects between Cirrus and RTVue and between Cirrus and Spectralis 

separately. It is helpful to compare multiple SD-OCT devices altogether. Toward the end of this 

study, we were lucky to get phantom eyes from U.S. Food and Drug Administration (FDA).[119, 

120] Phantom eyes are designed and fabricated with scattering materials in a layered structure to 
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mimic human retina.[119, 120] As phantom eyes are more robust and do not change over time, 

we are able to use phantom eyes to test our signal normalization method in a more systematic 

way, such as how the OCT signal characteristics change in different conditions, or how the 

speckle noise affects the signals. Last, we would like to borrow the idea of signal morphing from 

audio signal processing.[121-123] Audio signals can be processed so that people speak with 

different frequencies, volumes, and pitches but end up with a similar sound. It would be 

interesting to see how signal morphing can help reduce the variation in OCT signal 

characteristics. 

In summary, a novel step-wise signal normalization method was proposed in this study, 

which successfully reduces systematic differences and enables direct comparison among various 

OCT devices. The method will become a useful tool for OCT data normalization or 

standardization when multiple OCT devices are involved in the same study, and will broaden the 

use of OCT in both clinical and research applications to a more exciting field. 
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APPENDIX A 

SUBJECTIVE EVALUATION QUESTIONNAIRE FOR QUALITATIVE ASSESSMENT 

Signal Normalization Among Multiple Optical Coherence Tomography Devices 

The purpose of this research study is to validate the effect of a self-developed signal 

normalization method on reducing the variation of image appearance among various spectral-

domain optical coherence tomography (SD-OCT) devices.  
In this questionnaire, 35 sets of images (5 sets in the Example session and 30 sets in the 

actual questionnaire) will be presented. Each set contains 2 SD-OCT cross-sectional images 

extracted from the same location acquired from the same eye at the same visit with any 

combination of 3 SD-OCT devices (Cirrus (Zeiss, Dublin, California, USA), RTVue (Optovue, 

Fremont, California, USA), and Spectralis (Heidelberg Engineering, Heidelberg, Germany)). 

There are healthy, glaucomatous, and retinal pathology cases. You will be asked to judge the 

relative similarity of image appearance for each set based on 1) the contrast between retinal 

signal and background noise, 2) the contrast between adjacent retinal layers, and 3) the textures 

of the retina. Please ignore the differences because of translation or rotation issue (overall shape 

of the retina) and ignore any pathologic context.  

The similarity will be recorded in 5 levels: 1) Significantly different (0-20% similarity), 

2) Somewhat different (20-40% similarity), 3) Cannot decide if it is similar (40-60% similarity), 

4) Looks similar (60-80% similarity), and 5) Nearly identical (as if taken by the same device) 

(80-100% similarity)  

Please check (X) the description that best matches your visual experience / feeling. 

Thank you very much for your participation! 
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Examples 

 

The survey starts with some examples. The examples show the variety of the testing data and are 

presented in the same way as the actual questionnaire. 

  

Example 1 

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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Example 2 

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

Example 3 

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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Example 4 

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

Example 5 

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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Signal Normalization Method Among Multiple Optical Coherence Tomography Devices 

Subjective Evaluation Questionnaire Starts 

 
1. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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2. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

3. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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4. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

	
  

5. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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6. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

	
  

7. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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8. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

9. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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10. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

	
  

11. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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12. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

13. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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14. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

15. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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16. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

17. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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18. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

19. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  



 154 

20. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

21. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity) 
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22. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

23. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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24. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

25. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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26. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

27. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity) 
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28. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  

 

29. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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30. 	
  

  
Please judge the similarity between the two images in terms of intensity, contrast, and 

overall image appearance based on your visual experience: 

(  ) 1 Significantly different (0-20% similarity) 

(  ) 2 Somewhat different (20-40% similarity) 

(  ) 3 Cannot decide if it is similar (40-60% similarity) 

(  ) 4 Looks similar (60-80% similarity) 

(  ) 5 Nearly identical (as if taken by the same device) (80-100% similarity)  
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