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EMERGING RUN-TIME RECONFIGURABLE FPGA AND CAD TOOLS

Yi-Chung Chen, PhD

University of Pittsburgh, 2014

Field-programmable gate array (FPGA) is a post fabrication reconfigurable device to ac-

celerate domain specific computing systems. It o↵ers o↵er high operation speed and low

power consumption. However, the design flexibility and performance of FPGAs are severely

constrained by the costly on-chip memories, e.g. static random access memory (SRAM) and

FLASH memory. The objective of my dissertation is to explore the opportunity and enable

the use of the emerging resistance random access memory (ReRAM) in FPGA design.

The emerging ReRAM technology features high storage density, low access power con-

sumption, and CMOS compatibility, making it a promising candidate for FPGA implemen-

tation. In particular, ReRAM has advantages of the fast access and nonvolatility, enabling

the on-chip storage and access of configuration data. In this dissertation, I first propose a

novel three-dimensional stacking scheme, namely, high-density interleaved memory (HIM).

The structure improves the density of ReRAM meanwhile e↵ectively reducing the signal

interference induced by sneak paths in crossbar arrays. To further enhance the access speed

and design reliability, a fast sensing circuit is also presented which includes a new sense

amplifier scheme and reference cell configuration.

The proposed ReRAM FPGA leverages a similar architecture as conventional SRAM

based FPGAs but utilizes ReRAM technology in all component designs. First, HIM is used

to implement look-up table (LUT) and block random access memories (BRAMs) for func-

tionality process. Second, a 2R1T, two ReRAM cells and one transistor, nonvolatile switch

design is applied to construct connection blocks (CBs) and switch blocks (SBs) for signal

transition. Furthermore, unified BRAM (uBRAM) based on the current BRAM architecture
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is introduced, o↵ering both configuration and temporary data storage. The uBRAMs pro-

vides extremely high density e↵ectively and enlarges the FPGA capacity, potentially saving

multiple contexts of configuration. The fast configuration scheme from uBRAM to logic

and routing components also makes fast run-time partial reconfiguration (PR) much easier,

improving the flexibility and performance of the entire FPGA system.

Finally, modern place and route tools are designed for homogeneous fabric of FPGA.

The PR feature, however, requires the support of heterogeneous logic modules in order to

di↵erentiate PR modules from static ones and therefore maintain the signal integration. The

existing approaches still reply on designers’ manual e↵ort, which significantly prolongs design

time and lowers design e�ciency. In this dissertation, I integrate PR support into VPR – an

academic place and route tool by introducing a B*-tree modular placer (BMP) and PR-aware

router. As such, users are able to explore new architectures or map PR applications to a

variety of FPGAs. More importantly, this enhanced feature can also support fast design

automation, e.g. mapping IP core, loading pre-synthesizing logic modules, etc.
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1.0 INTRODUCTION

1.1 MOTIVATION

Field-programmable gate array (FPGA) has been widely used in system designs and proto-

type developments for its flexible post-fabrication reconfigurability, low development risk,

short time to market, and low cost of small volume. In modern FPGAs, configuration data

including both logic and routing elements can be stored in either a volatile memory, e.g.,

static random access memory (SRAM) [1, 2], or nonvolatile media, such as antifuse or Flash

memory [3, 4]. Since data in SRAM FPGA cannot be retained without power supply, an ex-

ternal nonvolatile memory is needed to store configuration while powering o↵ the system [5].

It also needs an initialization stage after powering on the system. In contrast, external

storage is not necessary for an antifuse-based or Flash-based FPGA because a logic config-

uration can be retained within the system. For an antifuse FPGA, it can be programmed

only one time [5]. An FLASH-based design needs a non-standard CMOS process to fabricate

the chip [5]. Thus, we need a new on-chip memory system to support on-chip storage of

configuration without adding large design complexity. Meanwhile, density of the memory

should be as higher as possible for improving performance of FPGA [5].

Due to slowing down of Moore’s Law, FPGA has also attracted attentions as accelera-

tors in computing systems because of its high performance, low power, high design flexibility,

and low cost [6][7][8]. For example, FPGAs are widely used in domain-specific computing

to accelerate the critical and intensive computation, and to implement non-general func-

tions [9]. Some adaptive systems is even required to modify the function based on run-time

requirements. To support such requirements, modern FPGAs have enabled the function of

dynamic partial reconfiguration (PR). PR is an advanced type of reconfiguration for FP-
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GAs to support online replacement of partial logic according to run-time requirements. The

operation requires separation of PR and static logic, i.e. the logic kept unchanged during

operation, because connections among the static logic can not be routed in PR region to

prevent signal interruption caused by PR [10]. Decomposing a design into logic modules is

a well adopted method to di↵erentiate PR and static logic [11][12]. The modules of various

logic functions may be quite di↵erent in area, shape, delay, etc. Therefore, to place modules

to a FPGA is di↵erent from the conventional fin-grain manner that has homogeneous unit,

e.g. configurable logic block, for considerations of optimization[13]. There are commercial

PR computer-aided design (CAD) tools, such as PlanAhead [11] and TransFR [14] to sup-

port modular placement. However, mapping steps still mainly rely on manual e↵orts. For

academic CAD tools, few works considered module-based placement and routing to support

PR. The commonly used placer and router, e.g. VPR, is based on homogeneous tiles [15, 16]

for optimization. Thus, there is a missing link between modern CAD tools and requirements

of PR including the modular placement and PR region-aware routing.

1.1.1 Challenge 1: High Density On-chip Memory System

To improve modern on-chip memory systems, which includes SRAM, FLASH, anti-fuse, in

FPGA, it should be high density, low power, CMOS-compatible process, or even nonvolatility.

Among emerging nonvolatile memory devices, resistive random access memory (ReRAM) is

a promising candidate with above features. To improve memory density, 3D stacking that

builds up multiple memory layers vertically is an e�cient way. Conventionally, there is

an isolation layer between two adjacent memory layers in order to avoid the malfunctions

caused by the signal interference when simultaneously accessing multiple memory layers [17].

However, manufacturing the isolation layers introduces potential reliability issues, such as the

melting (or even destruction) of metal interconnects during the annealing step. To prevent

this from happening, a low thermal budget process, e.g., undoped Methylsilsesquioxane

(MSQ) Spin-on-Glass (SOG) technology [18], is required, which could significantly increase

the process complexity and the fabrication cost [19].
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We introduced high-density interleave memory (HIM) structure for ReRAM. HIM is a

monolithic stacking crossbar structure and there is no isolation between memory layers.

ReRAM cells are located at cross point of crossbar arrays. Then, it stacks multiple layers as

a 3D structure by sharing wordlines and bitlines. Meanwhile, HIM controls memory access

with a bi-group operation scheme. Area cost of a ReRAM cell in a crossbar structure is 4F 2,

where F is feature size of technologies. From the layout point of view, 4F 2 is the smallest

area cost for a memory cell in one layer memory array. For HIM, it further improves area

cost to 4F 2/N , where N is numbers of stacking layers.

1.1.2 Challenge 2: Components of Nonvolatile FPGA and Large Local Memory

As changing the memory system of FPGA to ReRAM, we have to modify components’

circuits to adapt ReRAM in FPGA. Design of a ReRAM LUT is di↵erent from a conventional

SRAM LUT. It has decoders to access the configuration bits while the SRAM LUT uses a

multiplexer. ReRAM needs a sense amplifier (SA) to read out a cell. It is a huge area

overhead by using a multiplexer since each cell needs its local SA. To reduce numbers of

SA, ReRAM cells of a LUT share a SA with decoders to access the targeting cell. To

construct nonvolatile routing system, we also introduced a 2R1T switch with ReRAM cells

as the main component of connection block (CB) and switch block (SB). With forward and

reverse biasing, it programs the switch open and close, respectively. To further reduce

area cost, we aggregated switches into a crossbar array for sharing peripheral circuits, e.g.

programming drivers, etc. With ReRAM, the FPGA only needs one time initialization

compared to initialization after every power resuming of SRAM FPGAs.

We introduced unified block random access memory (uBRAM) with ReRAM for enhanc-

ing FPGA’s performance and functionality. The main di↵erence is that uBRAM can acts

as both temporary data storage and configuration memory. As a temporary data storage,

uBRAM is similar to a conventional BRAM as a local and wide-distributed memory, how-

ever, it has much higher density than a conventional BRAM. Large data can be stored in a

local memory rather than an external RAMs. It reduces tra�cs through IO, which degrades

system performance with IO latency and increases extra power consumption on buses. As a
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local configuration memory, it configures logic and routing components through special tracks

to corresponding ReRAM cells. Therefore, configuring logic is much faster than conventional

FPGAs that loads configuration through external resource. For a PR operation, it reduces

stall time between loading configurations. Meanwhile, it can store multiple configurations

in FPGA because of its large capacity.

1.1.3 Challenge 3: CAD tools for Partial Reconfiguration

Modern CAD tools were developed to optimize synthesis, place, and route of homogeneous

logic tiles of FPGAs. For PR, circuits between static and reconfigurable logic regions need to

be partitioned from hardware description language (HDL) to floorplan. After partition, ba-

sic elements are logic modules, which should have their own preserved regions in placement.

These modules of various functions are quite di↵erent in area, shape, delay, etc. Connections

between the modules should be carefully designed to prevent computation from interruption

during PR. All these resource management steps still mainly rely on manual e↵orts, which

prolong design time and significantly lower e�ciency. Thus, there is a missing link between

modern CAD tools and requirements of PR applications. The missing link should com-

pose of CAD tools for modular placer and reconfiguration region-aware router for PR. We

introduced B*-Tree modular placer (BMP) and PR-aware router, which are modified from

academic CAD, Versatile Place and Route (VPR), to support PR. BMP automatically gen-

erates floorplan of modules, which is partitioned by designer from HDL source or reference

library of logic modules. Meanwhile, it kicks in a context-selecting algorithm to guarantee

that all contexts of a module can be fitted in the designed PR region. PR-aware router then

guides routes based on the placement and maintains signal integrity for PR operations.

1.2 RESEARCH APPROACH AND DISSERTATION OUTLINE

There are three parts to this research: high density ReRAM memory, design of ReRAM

FPGA with dedicated PR, and CAD tool for PR FPGA. At the Chapter 2, we go through

previous works related to the research. We discuss design idea and results in the rest chapters.
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We introduce high density ReRAM in Chapter 3. Building up ReRAM in a 3D stacking

structure boosts its advantage in array density. Conventionally, multiple bipolar ReRAM

layers are piled up vertically by with isolation material to prevent signal interference between

the adjacent memory layers. The process of the isolation material increases the fabrication

cost and brings in the potential reliability issue. To alleviate the situation, we introduce a

novel 3D stacking structures built upon bipolar ReRAM crossbars that eliminate the isolation

layers. The bi-group operation scheme dedicated for the proposed designs to enable multi-

layer accesses while avoiding the overwriting induced by the cross-layer disturbance is also

presented. Our simulation results show that the proposed designs can increase the capacity

of a memory island to 8K-bits (i.e., 8 layers of 32 ⇥ 32 crossbar array) while maintaining

the sense margin in the worst-case configuration greater than 20% of the maximal sensing

voltage.

In Chapter 4, we demonstrate ReRAM crossbar structure in FPGA to develop LUT and

uBRAM. A nonvolatile pass gate switch (2R1T) in complementary resistive switches (CRS)

structure [20] is introduced as a basic component of nonvolatile SB and CB. The memory cells

of switches are further integrated in a crossbar structure for reducing area cost. Compared

to a conventional 6-input SRAM LUT [1], the ReRAM LUT cuts o↵ 60.4% of layout area

for a 180 nm technology node. Maximal operating frequency reaches 1 GHz at 10 mV input

di↵erence. The SB and CB can save 58.6% and 67% area cost for the 180 nm technology

node. Our simulation results demonstrate that the FPGA achieves 62.7% area reduction

and 34% access latency improvement compared with the conventional SRAM FPGA. The

introduction of uBRAM enables runtime reconfiguration in a few µs. The case study on a

orthogonal frequency-division multiplexing (OFDM) [21] module shows 34.5% and 17% saving

in chip area and power consumption, respectively. Overall, the ReRAM FPGA demonstrates

advantages such as a eliminating initialization stage, a fast runtime configuration scheme,

and power saving with a deep sleep mode.

Place and route tool to support PR on FPGA is illustrated in Chapter 5. PR demon-

strates significance in high performance systems, e.g. reconfigurable processor, customized

computing system, etc. However, there is a lack of placer and router to support PR on

FPGA. Conventional implementation of reconfigurable applications usually relies on man-
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ual partition and floorplan, which requires huge e↵orts and long development period. To

address this problem, we introduce a PR mapping flow, BMP, and PR-aware router based

on an academic place and route tool, VPR [16]. The major function of the PR mapping

flow is to support of PR logic for design automation. Moreover, it supports general logic by

loading logic modules from a logic library, e.g. IP-core, pre-synthesized modules, etc. The

flow helps designers to explore future architectures of PR FPGA and evaluate performance,

cost, etc., of a PR logic. BMP is a modular placer that takes static and reconfigurable

functions as modules and performs modular placement to minimize total area and delay of

the application. The modular information is represented in B*-tree structure [22] to allow

fast searching of solution space. We amend the operations of B*-Tree to fit hardware char-

acteristic of FPGAs. Di↵erent aspect ratios of the modules are explored during simulated

annealing to achieve area-delay product optimization. The PR-aware router di↵erentiates

routing resource of static and PR logic while searching solution space. We introduce pseudo

ports, which is based on idea of port-over-track, as connecting abutments between PR and

static logic. Together of the two schemes, it guarantees signal integrity of the static logic

during a PR operation. After the global place and route, it performs local place and route

for modules of multi-context to complete place and route of the PR logic.
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2.0 PREVIOUS WORK

2.1 RESISTIVE RANDOM ACCESS MEMORY (RERAM)

2.1.1 Resistive Random Access Memory

ReRAM is a two terminal memory device based on di↵erence of resistance to store logic

binary data ”1” or ”0.” It can be realized by various materials of widely storage mecha-

nisms [23]. Generally, all of these materials fall into only two operation types – unipolar

switching and bipolar switching. Within this context, unipolar operation executes the pro-

gramming/erasing by using short/long pulses, or by using high/low voltage with the same

voltage polarity. In contrast, bipolar switching is implemented by short pulses with opposite

voltage polarity for programming and erasing [24]. Popular bipolar ReRAM devices has an

oxide layer as an insulator [25], which is ,by natural, high resistance state after fabrication.

Redox, reduction and oxidation, is main switch mechanism of the type of devices. For major

ReRAM devices today, redox is forming/disforming small conducting path, which known as

filament, within oxide layer [26]. With filament, electronics pass though oxide layer so we

can observe low resistance of he device, comparing to the one without filament. For modern

applications, we only take ReRAM as two states device, high and low, device regardless

unstable intermediate states.

In this work, we target mainly on 3D structures with bipolar ReRAM devices for their

fast switching speed and the less power consumption in RESET (that is, erase) opera-

tion [27]. For demonstration purpose, we use the material Cu-Ge0.3Se0.7-SiO2-Pt [28] as

example. However, the proposed design concept can be easily extended to the other bipolar

ReRAM devices.
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Fig. 1(a) illustrates the structure of Cu-Ge0.3Se0.7-SiO2-Pt [28]. It is a programmable

metallization cell device formed in a sandwich structure with heterogeneous solid metal

electrodes at two poles. One pole is relatively inert Pt (called as the bottom electrode,

or BE), the other is electro-chemically active Cu (called as the top electrode, or TE). A

thin electrolyte film composed of ternary glass Ge0.3Se0.7 with added dissolved active metal

Cu is placed between the two electrodes. The SiO2 is used as a bu↵er layer to improve the

endurance in the electrolyte [29]. The Ge0.3Se0.7 and SiO2 are the places where the resistance

changing happens.
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Figure 1: (a) Structure of Cu-Ge0.3Se0.7-SiO2-Pt [28]. (b) The complementary cell struc-

ture [20].

For convenience, we define Ron and Roff as the resistance value at the low resistance state

(LRS) and at the high resistance state (HRS), respectively. The Roff/Ron is an important

device parameter representing the di↵erence between HRS and LRS. In general, a high

Roff/Ron is more preferable.

When a negative bias is applied to the BE during a SET operation (that is, the device

changes to the LRS), the dissolving Cu reacts with Se in electrolyte compound to generate

cation conductors which forms a filament between two electrodes for electron transportation.
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As a result, the resistance between two electrodes is dramatically reduced. To RESET a cell

(to change the device to the HRS), a positive bias can be applied on the BE and remove the

random dissolving Cu from Cu-Ge-Se compound filament. The resistance becomes relatively

high once the filament disappears in the electrolyte [29].

2.1.2 Crossbar Array

Crossbar array is widely used in ReRAM design for its simple structure and high density.

Crossbar was firstly initiated and demonstrated in a telecommunication switching system,

which contained two sets of wires and switches at cross points. Signal routing is controlled by

properly selecting switches. In the nanometer-scale high-density memory design, the similar

structure is maintained – a storage element is placed at each cross point of two sets of metal

wires [30]. Generally, the two sets of wires are called wordlines and bitlines. Fig. 2 shows a

3X3 crossbar array. Blue wires and red wires are wordlines and bitlines, respectively. The

storage devices are showed in yellow pillars at cross points. Theoretically, using crossbar

array structure can achieve the smallest memory cell area 4F 2, where F is the minimum

feature size [24].

+

–

Figure 2: 3X3 crossbar array.

However, the crossbar array also results in sneak path in which three or more cells are

connected in series as shown in Fig. 3. To guarantee the proper functionality in both write

and read operations, the voltage/current across the selected memory cell must be much

higher than the overall amount of current absorbed by the unselected cells [24]. On the
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other hand, the voltage across an unselected cell must be smaller than the threshold of the

SET/RESET operation to avoid the unwanted resistance change. To control the impacts of

sneak paths within an acceptable range, the size and hence the capacity of a crossbar array

is limited.

W
L0

W
L1

BL0

BL1

Sneak Path

Figure 3: ReRAM crossbar array and the sneak path.

2.1.3 Complementary ReRAM

Recently, E. Linn, et al. proposed a complementary ReRAM cell structure, which is made

of two anti-serial ReRAM devices as illustrated in Fig. 1(b) [20]. Under all the possible

operation conditions, at least one of the two ReRAM devices in this complementary cell

exhibits the HRS state, which can dramatically reduce the impact of sneak paths. However,

any single data recording has to be associated with a multi-step write procedure which

requires a careful and complex operation configuration. This design also brings in severe

issues in terms of the high power consumption and the degraded device reliability. Moreover,

considering that each memory cell includes two complementary ReRAM devices, the memory

capacity is only half of a conventional 3D ReRAM design.
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2.1.4 Stacking of ReRAM

Simply stacking multiple memory layers vertically is a common way to construct 3D design

with bipolar ReRAM devices [31]. Fig. 4 illustrates the structure. Each memory layer has

its own set of storage elements and interconnects. An isolation layer is inserted between

two neighboring layers to prevent the signal interference. Recently, an improved design was

proposed by Kugeler et al., which the word lines (WLs) between two memory layers can be

shared [32]. The two memory layers sharing the same WLs can be accessed and programmed

simultaneously. However, bit lines (BLs) cannot be shared, and hence, the manufacturing of

isolation layers are still needed.

Figure 4: Stacking crossbar array.

SOG with MSQ etc. materials can be used to form isolation layers. However, there

are some critical di�culties from a process development point of view, including device

degradation due to thermal processing [33], misalignment of vias due to SOG [34], poor

adhesion of SOG material [18], and heat accumulation because of the low conductivity of the

isolation material [33][35]. Consequently, a 3D memory design excluding isolation process

is preferred for lower fabrication cost and process complexity. Previously, Jonson et al.

presented a bipolar multi-layered conductive metal oxide memory without isolation layer,

but it can be applied only to one-time programming ROM applications [36].
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2.2 NOVEL FPGA COMPONENTS

With emerging non-volatile memory technologies, such as phase change random access mem-

ory (PCM), spin-transfer torque random access memory (STT-RAM) [37] [38], ReRAM [26],

etc., configuration can be retained in emerging FPGAs without power supply.

New opportunities are provided to improve the reconfigurable system with nonvolatile

memory. Di↵erent hybrid FPGA architectures were introduced by substituting computation

and storage elements with PCM, STT-RAM, or ReRAM. J. Cong and B. Xiao introduced

memristor devices into routing components design that usually are built with SRAM cells

and multiplexers [39]. Memristor acts as a switch to connect and disconnect a route by low

resistance and high resistance state of memristor, respectively. C.-Y. Wen, et al. proposed

a PCM LUT to improve logic density compared to modern LUTs [40]. However, the large

power consumption in PCM programming cannot be avoided. Meanwhile, H. Yan, et al. pro-

pose a unconventional LUT which is a programmable nanowire circuit [41] similar to nanoF-

PGA/nanoPLA [42]. Main structure of nanoFPGA/nanoPLA is a mesh structure. It con-

tains programmable logic place and restore plane. A nanoFPGA/nanoPLA has back-to-back

NOR logic planes to realize any logic function as conventional AND-OR programmable logic

array (PLA). A nanowire field e↵ect transistor (NWFET) is introduce at each cross point

to restore the signal in the restore plane. Inputs traverse though the nanoPLA/nanoFPGA

between programmable logic and restore plane to generate corresponding logic at output. It

acts like a conventional LUT and is capable multi-layer stacking to increase logic density.

However, fabrication problems of NEWFET have not yet been well addressed.

Y. Chen, et al. demonstrated 3D architecture for FPGA with MLC PCM [43]. The

work has separated layers for routing and logic elements. TSV is applied for connections

between the two layers. However, MLC PCM needs extra logic for controlling programming

and sensing of the cell. On the other hand, dense logic requiring high density TSV and

heavy tra�c incurring huge power consumption on TSV are not well addressed in the work.

S. Paul, et al. illustrated STTRAM FPGA with novel components’ design [44]. STTRAM

LUT has a decoder to share sense amplifier for saving area cost. Switch of CB and SB is

composed of complementary STTRAM cells and a NMOS. Design di�culty of STTRAM
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in FPGA is small sensing margin. Meanwhile, area saving with STTRAM is not obvious

since the STTRAM still needs NMOS under each cell as well as complex peripheral circuit

of STTRAM. S. Tanachutiwat, et al. demonstrated ReRAM FPGA with novel 2T2R and

2T1R switch as basic components for logic and routing elements [45]. They further esti-

mated die to die stacking for increasing density of ReRAM FPGA. However, the ReRAM

FPGA of a simple architecture is hard to compare performance, area, and power with mod-

ern sophisticated SRAM FPGA. Furthermore, 2T2R or 2T1R for all elements still has large

CMOS portion indicating less e�ciency of reducing area cost with ReRAM. Y. Y. Liauw,

et al. showed a device level 3D stacking ReRAM FPGA in fabrication. The components

are based on the 1T2R switch [46]. The work demonstrated possibility of stacking ReRAM

FPGA with distinct reduction of power and area. It consisted of basic and important design

concepts of 3D ReRAM FPGA. W. Zhang, et al. developed a nano/CMOS hybrid dynami-

cally reconfigurable architecture based on nano memory and CMOS logic that supports the

runtime reconfiguration and logic folding [47]. However, SRAM cells are still needed in the

architecture limiting design capacity.

Our work further reduces area cost of ReRAM FPGA from other works. We introduce

a new LUT design and the ReRAM switch with a sharing peripheral circuit. A high density

ReRAM block memory is also introduced to accelerate computation by reducing IO access

to external memory.

2.3 PLACE AND ROUTE FOR FPGA

Commercial place and route tools for FPGA are based on homogeneous units to map the

logic functions [48][49]. VTR [16], as an academic tool, gives a complete flow from hardware

description language (HDL) to physical mapping on FPGAs of various hardware architec-

tures, where VPR is used inside to perform the tile-based placement and routing.

Ideas of PR was introduced and evaluated on reconfigurable computing system by Comp-

ton and Hauck [50]. Vendors of modern FPGA provide CAD tools for supporting PR appli-

cations [11, 12]. Most of the tools were designed for specific products provided by vendors.
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Users had to follow the tools’ flow and manually input information, such as floorplan, con-

texts, etc., requiring knowledge of FPGA’s hardware for designing PR applications. Xilinx

Early-Access (EA) PR design flow [11] [51] [52] is commonly used in PR applications. It

requires that PR regions are manually defined in terms of shape, size, and physical location.

Hence, it needs extensive knowledge on the PR design flow and low-level architecture from

the designer to produce a good quality design. Xilinx PlanAhead [51] is the tool behind the

EA flow creating floorplan for a PR design with users’ specification of PR regions’ informa-

tion and allocation. In order to reduce the manual e↵orts, various works introduced with

automatic floorplanning for modules. In an earlier work [53], each PR module is modeled as

a fixed-size block and floorplanning of a PR logic is formulated as a 3D template placement

problem. However, the assumption is hard to be applied in practical applications. Later

works [54, 55] developed an automatic flow for PR floorplan based on Xilinx process and

special bus is needed to connect modules and support PR. S. Yousuf, et al. [54] introduced

DAPR, a partial reconfiguration design flow which automates Xilinx intricate design process

for PR designs. The work of C. Beckho↵, et al. [55] focused more on interface generation

for PR after floorplanning. Other than the flows provided by white papers and tutorials

from vendors, D. Koch further introduced optimization of the flow for decreasing designers’

e↵ort [56]. However, the techniques were still based on the vendors’ tools for specific prod-

ucts. A broad survey of PR operation and performance analysis with various techniques on

commercial tools were summarized by K. Papadimitriou, et al. [57].

Recently, researchers introduced new tools and flows of PR logic based on a academic

tool, VPR [16], to explore future architectures and to map PR applications. Generally,

the works were from two aspects, PR placer and PR router. R. He et al. introduced a

new placer for PR applications on VPR [52]. The logic was decomposed into modules by

designers and automatically optimized placement in terms of size, shape, and location for

all modules, including non-PR and PR modules. It costed huge e↵ort for searching solution

space and needs a better flow for reducing the space. For example, size of each module could

be estimated by synthesis rather than run-time calculation. B. A. Farisi, et al. introduced a

novel router with an extended routing resource graph [58]. Switch nodes were inserted in the

graph to identify dynamic or static routes. By applying the graph and the corresponding cost
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function, the router generates connections of PR logic. On the other hand, N. Shah and J.

Rose illustrated ping-to-wire and its di�culty of routing for PR applications on FPGA [59].

Routes through abutments around PR modules had various scenarios of routing resource,

which results di↵erence of critical oath delay, number of tracks, etc.
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3.0 HIGH DENSITY RERAM

3.1 3D HIGH-DENSITY INTERLEAVED MEMORY

3.1.1 The Proposed 3D-HIM Structure

Figure 5 illustrates the proposed 3D-HIM structure. For simplicity, only six memory layers

are demonstrated. A crossbar array is utilized in each layer. The basic design concept of 3D-

HIM is to employ complementary material stack structures, i.e., the regular memory stack

and the one with a reversed deposition order, to the memory cells in neighboring layers.

For instance, all the memory cells of Layer 1 in Figure 5 use the regular deposition process

(purple pillars), and those of Layer 2 are made by reversing the deposition sequence (yellow

pillars). The two types of memory stacks are applied to the odd and even layers alternatively.

This process has been successfully demonstrated by Linn et al. and the memory cells made

with regular and reversed depositions present the same device properties [20].

In the proposed design, memory devices and metal wires form a memory island without

isolation layers. Any two adjacent memory cells at the same x � y location are connected

back to back, and hence, share the metal wire in between.

Some terms are defined to help understand the proposed structure and corresponding

operations.

• Bitlines (BLs): A set of metal wires connected to TEs of ReRAM devices, which route

along the y�axis as shown in Figure 5.

• Wordlines (WLs): A set of metal wires connected to BEs of ReRAM devices, which route

along the x�axis. There are two sets of WLs, names as WL1 and WL2.

• WL1s and WL2s: We number the WL layer at the bottom of the 3D-HIM structure as

16



VW_bias

D
ec

od
er

D
ec

od
er

VW_bias

Layer 1

Layer 5

Layer 4

Layer 3

Layer 6

Layer 2

WL11
WL12

WL13

WL21
WL22

WL23

Here, we use pull down resistors to represent BLs (read line) peripheral design, 
which contain a sense amplifier and a mos driver controlled by BL decoder.

BLs
BLs

BLs

z
y

x

Figure 5: 3D-HIM structure.

‘0’ and continue counting the other WL layers from bottom to top. We define WL1s

(WL2s) as those WL layers with odd (even) numbers.

• WL1iGC and WL2jGC: we name the group of memory cells connected to a given WL1i

or WL2j as WL1iGC (WL1i group cells) or WL2jGC (WL2j group cells), respectively.

Totally, three sets of control signals, i.e., BL, WL1 and WL2, are utilized. Each of them is

responsible to the related operations to the memory layers above and below it.

3.1.2 Memory Density Improvement

Figure 6 illustrates the layout of a 3D-HIM from top view. The cell area is A3D�HIM = 4F 2,

which is the same as the cell size of the conventional crossbar array (Aconv = 4F 2). Note

that for a 3D memory, its density is determined not only by the single memory cell area,

but also by the the allowable number of memory layers. By sharing BEs and TEs between

neighboring layers, 3D-HIM can reduce the overall number of conduction layers and remove

isolation layers. For a given height of a 3D structure, which usually is a major limitation

in fabrication process, more memory layers can be stacked up vertically. Thus, the memory

capacity increases.
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Figure 6: Layout of 3D-HIM design.

3.1.3 Memory Accesses in 3D-HIM

3.1.3.1 Bi-Group Operation Scheme In 3D-HIM, there are two sets of group cells

– WL1iGC and WL2jGC. Only one of them can be accessed at once during read or write

operations. We called it as “Bi-Group Operation Scheme.”

This scheme has several advantages: (1) It increases throughput by simultaneously ac-

cessing multiple memory cells within either WL1iGC or WL2jGC. (2) The unselected groups

can be biased to ground and taken as the signal isolators. Thus, we can avoid the unex-

pected overwriting caused by the write operations on di↵erent memory layers. (3) The BLs

are shared by the ReRAM layers above the BLs, and below BLs. The peripheral circuitry

connected to the BLs are also shared by two ReRAM layers to reduce area cost. Further-

more, WL1 and WL2 can be driven from the opposite sides of the memory island as shown

in Fig. 5 to distribute the layouts of peripheral circuitry.

3.1.3.2 Read Operation To read out the stored data in a ReRAM cell, we provide a

sense voltage (Vsense) to the corresponding WL, and measure the current through the cell.

To prevent the unexpected overwriting, Vsense should be much smaller than the threshold

voltage of ReRAM device. A sense amplifier is connected to the BL and shared by two

group’s cells WL1iGC and WL2jGC. Based on the Bi-Group Operation Scheme, only one

group’s cells can be sensed out at one time.
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Fig. 7 shows an example of reading out the cells in WL11GC. Accordingly, WL11 is raised

to Vsense and all the other WL1i are tied to 0 V . To prevent the disturbance from/to WL2

groups, all the WL2s are forced to 0 V . Similarly, the read operation of WL2jGC on the

x � y plane can be accessed simultaneously. It sends a Vsense to selected wordline of WL2

groups while tying all wordlines of WL1 and rest of the WL2 to ground.

An active load (Rsense) is used at the end of BL to transfer current through the memory

device to the input voltage of a sense amplifier VR�sense. To simplify the evaluation of the

read operation in this work, we apply a 100 ⌦ resistance (Rsense) as the input resistance of

sense amplifier, and define the sensing margin (SM) by normalizing VR�sense with Vsense.

Assume that a 3D-HIM memory island has H memory layers, and each of them includes

a N ⇥ N array. The capacity of such a memory island is MC = N2 · H and the read

bandwidth is BWRead = N ·H/2.
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3.1.3.3 Write Operation As we state above, Bi-Group Operation Scheme needs to be

used in write operation to increase throughput and prevent unexpected overwriting. There

are two possible write procedures – SET and RESET. Like all the bipolar ReRAM crossbar

design, these two procedures have to be separated because they require the opposite driving

polarities. In 3D-HIM, the cells that programmed at the same time must locate in the same

group and have the same incoming value.

The driving conditions need to be carefully controlled to avoid unexpected overwriting

caused by sneak paths and to minimize the total write current. It has to maintain program-

ming voltage across non-targeted cell smaller than threshold voltage of SET and RESET.

The ideal bias voltages when performing SET and RESET are summarized in Table 1 [60].

All the other WL1s, WL2s and BLs that are not related to the writing operation are forced

to 0 V .
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Table 1: Driving Conditions of Writing Operations

Data Cell Group Driving Conditions

LRS WL1iGC WL1:�0.5VSET, BL:0.5VSET

LRS WL2jGC WL2:�0.5VSET, BL:0.5VSET

HRS WL1iGC WL1:�0.5VRESET, BL:0.5VRESET

HRS WL2jGC WL2:�0.5VRESET, BL:0.5VRESET

Fig. 8 illustrates an example of WL11GC during a SET operation. For illustration

purpose, we assume half of the cells in WL11GC are in the SET procedure. WL11 are forced

to �0.5VSET, the BLs connected to the cells to be programmed are forced to 0.5VSET, and

the unrelated control signals are set to 0 V . As shown in Fig. 8, a unselected cell within

WL11GC have only 0.5VSET voltage drop across the cell, which is not big enough to change

its content. The RESET procedure is similar to the SET in the example. The corresponding

bias voltages are summaries in Table 1 [60]. To program WL2jGC on the x� y plane, it has

the similar setup requirement. It biases the selected cells corresponding WL2j to �0.5VSET

and corresponding BLs to 0.5VSET.

The average write bandwidth of 3D-HIM is BW = N · H/4, while the maximal write

bandwidth could be N · H/2 when all the cells in the given group are programmed to the

same content.

3.2 SIMULATION RESULT & DISCUSSION

We did simulations for the proposed 3D-HIM structure by using Spectre on Cadence CAD

platform. The characteristic parameters of ReRAM are summarized in Table 2 [61]. To

be more realistic, we embedded interconnect resistance (IR) in the simulation model. The

existence of IR on control signals can result in voltage drop and decreases the real driving

voltage delivered to the target memory cells. Based on the DRAM interconnect requirement
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at 22nm technology node from ITRS 2009, we set IR per memory cell RInterconnect = 2.5⌦ [62].

Considering the limitations of back-end process, we assume up to eight memory layers can

be stacked up in 3D-HIM.

Table 2: Parameters of ReRAM and 3D-HIM

Parameters Value Parameters Value

VSET 1.5 V RInterconnect 2.5 ⌦

VRESET -1 V Vsense 0.1 V

Ro↵(HRS) 1 M⌦ Rsense 100 ⌦

Ron(LRS) 5 k⌦

3.2.1 Impact of Data Pattern and Cell Location

3.2.1.1 Impact of Data Patterns The e↵ectiveness of read and write operations in

3D-HIM depends on the memory data pattern. To investigate the impact of data pattern,

we divide all the cells in a memory island into three catalogs: the target cell, the cells along

the driving path (i.e. WL1 or WL2), and all the other cells. Figure 9 shows an example

of the WL11GC in the sensing operation: the target cell highlighted in PURPLE, the cells

along the driving path (WL1) highlighted in BLUE, and all the other cells not highlighted.

Four data patterns can be introduced – “LL”, “LH”, “HH” and “HL”. Here, the first letter

stands for the status of the target cell (‘L’=LRS, ‘H’=HRS), and the second letter stands

for the cells along driving path, either WL1s or WL2s.

Our work shows that the cells along the driving path and the rest cells dominate the

SM rather than the target cell. The worst case happens when the driving path cells and the

rest cells are all at LRS. In such situation, the conducted current from the sneak paths and

leakage current are maximized. The corresponding data pattern are “LL” or “HL”. The

impact of data patterns to the SM in our design is further discussed in the next section.
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3.2.1.2 Impact of Cell Location The physical location of a cell could a↵ect its op-

eration scenario. For example, Fig. 10 illustrate a two-layer 3D-HIM in read operation of

WL11GC. The driving current flows from the leftmost side of WL11 to the rightmost of the

array along the x-axis. Due to interconnect resistance, the real voltages applied on the cells

along WL11 are not same. The worst case scenario happens at the cell in the right corner

(highlighted in RED) because it goes through the longest path from the driver to the sense

circuitry. In the contrast, the cell located in the left corner (highlighted in BLUE) is a↵ected

least by the interconnect resistance, and hence, becomes the best situation.

Fig. 11 shows the SM di↵erence between the worst scenario and the best scenario of cell

locations with di↵erent data patterns in a four-layer 3D-HIM. As shown in the results, the

impact of array size to the ‘LL’ pattern is much larger than the other patterns: the location

di↵erence incurs more than 10% SM di↵erence. This is because the target cell at LRS su↵ers

from high interconnect resistance and the other cells on sneak path at LRS sink a big portion

of currents. To ease impact of location di↵erence, ReRAM of high Ron which su↵ers less

impact of IR is promising for large scale array.
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3.2.2 Read operation

Fig. 12 compares the SMs of conventional 3D ReRAM and 3D-HIM under di↵erent memory

parameters. The worst case scenario of cell location and data pattern is assumed in the

simulation.
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Figure 12: SM of 3D-HIM

The SMs of a conventional 3D ReRAM at di↵erent array sizes are shown in Fig. 12 by

the BLUE curve. The BLACK curves demonstrate the SMs of a 3D-HIM with di↵erent layer

numbers. The curves for 4-layers and 8-layers merged together. Compared to the conven-

tional 3D ReRAM, 3D-HIM loses 10 ⇠ 20% in SM. This is because that the conventional 3D

ReRAM inserts a isolation layer between any two memory layers, hence, the SM is deter-

mined only by one crossbar array. The control signals (e.g., WLs) in 3D-HIM have to drive

twice number of memory cells than the conventional design, which introduces more sneak

paths. However, because of the interleaved design, stacking more layers in 3D-HIM only

induces slight degradation on SM. The SM decreases obviously as the array size increases.

For example, in a four-layer 32⇥32 3D-HIM, the SM is about 20%. When array size increases

to 64⇥64, the SM significantly reduces to 3%, which means the status of memory cells are

hard to be detected.
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The small footprint of via could introduce a large resistance on the driving path, which

incurs performance degradation in the upper layers. Based on ITRS 2009 – DRAM Intercon-

nect technology requirements for 22nm technology [62], we approximate the via resistance

as 14⌦. The RED lines in Fig. 12 shows the simulation results of 3D-HIM after including

the impact of via resistance in small footprint.

Fig. 13 shows the composition of the sensing current under ‘HL’ pattern. As the array

size increases, the percentage of the sneak path conducting current raises. In a four-layer

64 ⇥ 64 3D-HIM, the conducting current in the sneak path contributes 99% of the sensing

current in ‘HL’ data pattern, which makes it hard to detect the correct memory status and

reduces the SM significantly. To further increase the SM in 3D-HIM, we have to suppress

sneak path current. By increasing Ron at LRS, the impact of sneak paths can be dramatically

relieved. In Fig. 13, we compare the simulation results of Ron=10k⌦ with the results of using

the original value Ron=5k⌦. Increasing Ron to 10k⌦ can eliminate 35% and 5% of the sneak

path conducting current in a 16 ⇥ 16 and 64 ⇥ 64 array, respectively. Correspondingly, the

sense margin of the 64 ⇥ 64 and 16 ⇥ 16 array improves to 11% and 20%, which increases

the margin of the sense amplifier design of 3D-HIM. We can conclude the increasing sensing

voltage of HL data pattern has significant impact to SM degradation. To suppress sneak

path conducting current is a promising method to improve SM degradation.

3.2.3 Write operation

The cell location and data pattern also a↵ect the write operations. The worst case happens

at the same location and with the same data pattern as in the read operation. Due to

space limitation, we only discuss the worst case scenario and follow the explanation for read

operation.

Enlarging array size of 3D-HIM increases the total IR in a driving path. To compensate

the impact of the increasing voltage drop on IR and properly program the target cells,

a higher bias between WLs and BLs (VSET or VRESET) is required. The corresponding

simulation for a four-layer 3D-HIM with various array sizes is shown in Fig. 14.
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The two dotted GRAY lines are the required SET and RESET voltages across a ReRAM

cell, which are exactly VSET�bias and VRESET�bias in the ideal condition without IR. However,

the impact of IR cannot be ignored in a real design and it results in the increase of program-

ming voltages as array size increases as demonstrated by the BLACK curves. The dotted

RED lines constrain the safe margins of programming voltages, which double the range of

the GRAY curves. If VSET or VRESET exceeds the safe margins, some unselected cells may

be overwritten since their voltage drop are higher than the threshold. As a result, the proper

programming voltage (BLACK curves) and safe programming margins (RED lines) confine

the array size. Our simulation shows that the maximal allowable array size of 3D-HIM is

32⇥32 to satisfy the constraints in write operations.
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4.0 RERAM FPGA

4.1 RERAM LOOK-UP TABLE

4.1.1 Conventional LUT in FPGAs

A LUT is a memory-based logic element applied in modern FPGAs, which is usually con-

structed by memory cells to store logic configuration in boolean logic. As shown in Fig. 15(a),

a multiplexer e.g., 16:1, is demonstrated to access the target with inputs of the LUT acting

as a address. Popular design of the LUT contains 6T SRAM cells, and pass gate based

multiplexer to select configured logic in a reconfigurable system [15]. Each 6T SRAM cell

works independently in the LUT with a bu↵er in the read scheme. SRAM cells of LUT oc-

cupy more than 50% of LUT’s area. Based on the white paper of the Xilinx and the Altera,

6-input LUT is a trade-o↵ design between delay and area of the LUT [63][64]. The LUTs

in FPGAs are sequentially programmed every time when the chip powers up. This proce-

dure is called as initialization. Conventionally, the LUT does not support local addressing

for dynamic programming. The whole chip shares one SRAM programming circuit in the

initialization. In modern FPGAs, vendors provide flexible configurations for LUTs. Some

of LUTs can be configured as a Distributed RAM (D-RAM), which uses LUTs as a RAM to

store temporary data. To realize the D-RAM function, address decoder and programming

circuit for dynamically configuring SRAM cells are added in LUTs [65]. However, the extra

circuits induce significant area overhead. Therefore, only a portion of a FPGA chip can

adopt the dynamic configurable LUTs.
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Figure 15: (a) A SRAM LUT. (b) The proposed ReRAM LUT.

4.1.2 Design Concept and Overview

Fig. 15(b) shows the proposed ReRAM LUT to substitute various LUTs in modern FPGAs.

It composes of four main parts: memory cells, a decoder, a sense amplifier (SA), and a SR

latch. Comparing designs in Fig. 15(a) and (b), main di↵erence is that the proposed one has

ReRAM cells rather than SRAM cells. Therefore, component for inputs as a address selection

changes from a multiplexer to a decoder. Because the ReRAM needs a sense amplifier to

sense the data in each cell, the design of the decoder helps all of the ReRAM cells share one

sense amplifier for saving area. The proposed LUT has no D flip-flop (DFF), but, there is a

combination of a latch comparator as sense amplifier and a SR latch as the same function as

DFF. In the section, we would first introduce a 4-input LUT to explain the basic operation

of the proposed LUT. Then, we extend the design to a 6-input LUT with the HIM structure

mentioned in the previous section. Area cost of a ReRAM 6-input LUT in HIM structure

does not linearly increase much area compared with a 4-input LUT as LUTs with SRAM

cells. It is because the ReRAM cell is in monolithic stacking crossbar indicating that there

is no area cost of memory cells on substrate. Only the peripheral circuit occupies area in

the design. Therefore, it saves total area cost of a large LUT.

The proposed LUT has inputs, outputs, and control pins as introduced in the following:

• Logic block has six inputs (A-F ) and two outputs (O1 and O2 ).
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• clk is provided within CLB for timing control.

• RE and WE are read enable and write enable signals, respectively.

• Din is the data to be written into the memory. The location of the target cell is deter-

mined by A-F.

• Vprg is the required programming voltage of ReRAM memory. Its level is determined

by device characteristics.

• Vt is supplied to the unselected cells in write operations to prevent undesired overwriting.

• tbias is connected to sense amplifier inside LUT to fine tune the performance at di↵erent

operating frequencies.

• vdd and gnd represent power supply and ground, respectively.

The LUT has three operation modes: read, write (dynamic program), and sleep. For the

read operation, it pulls the RE to high and pulls low the WE. The LUT acts as a conventional

LUT to read out logic configuration from memory cells. The address is based on inputs to

select the target cell as the output. In the write (dynamic program) operation, it pulls the

RE low and pulls the WE to high. Since it is bit-addressable in the design, the proposed

LUT can be used like D-RAM in the modern FPGA. D-RAM is an internal memory, which

uses LUT to store temporary data. Inputs are the address bits and Din is the data input we

attempt to store in the LUT. With the proposed LUT, all LUTs on a FPGA are dynamic

programmable without adding extra cost. In modern SRAM FPGA, only half of LUTs can

be used as D-RAM [66]. The sleep mode is a specific operation with the proposed ReRAM

LUT by pulling the RE and the WE to low. We can cut o↵ power supplying on idling LUTs.

Once the resource is needed, it works immediately by turning on the LUTs.

Compared to a conventional SRAM LUT, our design has three advantages: (1) “initial-

ization free”: since the ReRAM is nonvolatile, configured logic can be retained after powering

o↵ the system. Once the power is resumed, the system starts immediately. Thus, an ex-

ternal Flash memory for the initialization used in the conventional FPGA is not necessary.

(2) “deep-sleep mode”: when a SRAM FPGA is confined by critical energy environment,

e.g. mobile applications, it can switch unused LUTs into sleep mode for saving static power

consumption. To prevent data loss on the SRAM cells, power supplies of those LUTs have

to maintain at a certain level [67]. With advanced feature of ReRAM cells’ nonvolatility, a
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FPGA with the proposed LUTs can shut down unused LUTs completely and eliminate the

corresponding static energy consumption. We name the operation to “deep-sleep mode”.

(3) “high density”: significant area reduction can be achieved by applying ReRAM cells to

replace SRAM cells. So, a FPGA with the proposed ReRAM LUT has more LUTs than a

SRAM FPGA.

Compared to the SRAM, programming the ReRAM is relatively slow. Very recently,

Samsung reported 10ns device switching [68], which meets the prediction of ITRS 2011 [69].

However, the write performance in a FPGA is not that critical especially considering that

the proposed ReRAM LUT supports bit-addressable programming and it does not need

initialization when powering on. In this work, we focus on improving the speed of read

operations. Our target operating frequency is 500MHz, which is compatible to modern

FPGAs’ operating frequency. The proposed peripheral circuit functions well up to 1GHz.

4.1.3 Read Scheme Design

To simply demonstrate the proposed sensing scheme, here we demonstrate a 4-input LUT

which has one layer crossbar rather than four layers crossbar of a 6-input LUT. The 6-input

LUT can be constructed in a similar method. We propose a expanded crossbar array with an

extra column of reference cells to enhance sensing speed and noise margin. A corresponding

sense amplifier is demonstrated to sense di↵erence between data cells and reference cells.

4.1.3.1 ReRAM Crossbar Access Control Fig. 16 is a detailed of Fig. 15(b) show-

ing that the proposed array access control scheme includes decoders, wordline drivers, and

bitline selectors. In the the Fig. 16, a yellow block and a green block show wordline drivers

and bitline selectors, respectively. A wordline driver can be constructed by two inverters.

Transistors MPDR and MNDR are shared by all wordline drivers. The read enable signal

(RE) is applied to turn on drivers or to force it into power save mode. A bitline selector is

a NMOS transistor. It passes selected sensing current to a NMOS load.
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During a read operation, only a cell is accessed based on inputs of the LUT as an address.

For example, to access the blue cell showed in Fig. 16, it has to access the wordline W1 and

the bitline B4. The wordline decoder turns on the wordline driver at the W1 based on the

inputs of a and b. The selected wordline driver raises up to a sensing voltage. The unselected

wordlines are forced to ground. Meanwhile, the bitline decoder turns on the bitline selector

at the B4 based on the inputs of c and d. The unselected bitlines are floating. Since only

one bitline is activated, the sensing current concentrates along the driving path, highlighted

in blue, and conducts a larger voltage across the NMOS load.

4.1.3.2 Expanded ReRAM Crossbar Structure Data patterns of a crossbar array

have a great impact on sensing margin because of sneak path conducting current [70]. For

example, when sensing data from the target cell R14, highlighted in blue, in Fig. 16, cor-

responding equivalent resistance between wordline W1 and bitline B4 is defined as R14,eq.

Lines of hollowed symbols in Fig. 17(a), whose labels start with “D”, represent R14,eq under

di↵erent data patterns. The second letter in the label is resistance state of R14 – the LRS

(L) or the HRS (H). The third letter represents resistance state of the other cells along the

driving path, highlighted in the blue path of Fig. 16, are all in L or H. X � axis is numbers

of memory cells in LRS in the crossbar excluding the target data cell and the cells along the

driving path. We name these cells are rest cells.

For data patterns of DHH and DLL, there is always a gap of equivalent resistance. It

indicates no matter how many cells of LRS among the rest cells, we still has a margin to

find a reference resistance for sensing HRS or LRS of the target cell. DLH or DHL represent

content of the target cell in HRS or LRS, respectively. Considering data patterns of DHL and

DLH in Fig. 17(a), there is a cross between the two lines stating that equivalent resistance

might be the same under these two data patterns. So, there is no resistance as reference to

di↵erentiates DLH and DHL under various numbers of the rest cells in LRS. In other words,

even if we know the equivalent resistance of the target cell, there is no way to determine

whether the target cell’s state is LRS or HRS.
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Figure 17: The impact of data pattern on (a) R14,eq and Rref1,eq, and (b)

�R = R14,eq � Rref1,eq.

To solved the problem illustrated in the previous paragraph, some previous designs have

a specific current or voltage as reference to detect the stored data [71]. The extra circuitry

requires complicated control and results in high area cost. Therefore, it is not a proper

design for the LUT.

We propose a expanded crossbar array with a reference cell as shown in Fig. 16. Re-

sistance of reference cells should be between LRS and HRS of data cells to be applied as

reference for di↵erentiating states of the data cell. In this work, the resistance of reference

cells are set to RH/2. Based on a characteristics of ReRAM cells, resistance of a ReRAM cell

is inversely linear proportion to footprint [72][73][74]. Thus, reference cells can be fabricated

by doubling the footprint of the data cell and set to HRS.

For a read operation, the driving current from the same wordline driver flows through

the data cell and the reference cell to loads as an example showed in Fig. 16. The current

flows through reference cell is highlighted in red. We also shows equivalent resistance of the

reference cell under various data patterns in the solid symbols in Fig. 17(a). Labels “R**”
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represent Rref1,eq. The second and the third labels have the same definition as the data

cell’s. Simulation results show that Rref1,eq follows similar trends as R14,eq, that is, data

patterns have similar impact on both the target cell and its corresponding reference cell.

There is always a gap and no cross between the data cell and the reference cell under any

data patterns. So, we can always sense a resistance di↵erence between the two cells.

Fig. 17(b) shows �R = R14,eq � Rref1,eq under di↵erent data patterns. The first letter

of labels represents resistance state of the target cell. The second letter is resistance state

of cells along the driving path. X � axis indicates numbers of the rest cells in LRS. When

the target cell is at HRS (LRS), �R is always positive (negative) and maintains enough

di↵erence for sensing scheme.

4.1.3.3 Sense Amplifier Fig. 18 shows the proposed sense amplifier scheme with three

main parts: a latch comparator [75], a nose cancellation, and a SR latch. The following

section introduces functions of these three parts.

Figure 18: The proposed sense amplifier in ReRAM LUT.
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Voltages across the loads of the data and the reference cells’ sensing paths generate a

voltage di↵erence reflecting the �R. We apply a latch comparator to sense voltage di↵erence

at loads. The detailed schematic of the latch comparator is shown in the red block of

Fig. 18. The latch comparator has sensing and non-sensing phases in the operation. NMOS

transistors, N7 and N8, are in charge of phase control: when clock signal, CLK, is ‘1’, the

circuit is in the sensing phase; otherwise, the latch comparator enters the non-sensing phase.

In the sensing phase, N1 and N2 capture two input signals, i.e., in and ref generated by

the data and the reference cells, respectively. Decreasing widths of the N1 and the N2 result

in smaller parasitic capacitance and fast operating speed. N3, N4, N5, and N6 together

form a feedback loop. PMOS transistors P1 and P2 are active loads to amplify latched

signals. External voltage bias Vtbias controls the resistance of N9 and hence tunes active

loads – P1 and P2. We can optimize sensing latency by controlling Vtbias. Although the latch

comparator generate rail-to-rail output signals, we add two inverters INVA and INVB at

complementary outputs to reduce sensing latency, improve rising/falling slope and increase

the driving ability.

Noise interference has significant impact on the latch comparator’s operation. Charge

capacitance in the sensing phase may induce kick-back noise in the non-sensing phase. Thus,

we built a noise cancellation circuit surrounding inputs of the latch comparator. NC1 and

NC2 are added to cancel the noise. In the non-sensing phase, we turn on both NC1 and NC2

to tie in and ref to ground. So, the kick-back noise from the charge capacitance of N1 and

N2 are also ground. We also introduce a power save mode by deactivating NP1 and NP2

with RE.

A modern LUT usually has a DFF for output synchronization. Since the proposed sense

amplifier includes a latch comparator, we can simply utilize a SR latch at outputs of the

latch comparator to realize the DFF. The SR latch is controlled by an inverted clock clk.

This design can balance capacitive loads at the outputs of the latch comparator and reduce

layout area compared to the DFF.
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Figure 19: Write scheme of 6-input LUT. The function decoding and driving source are

shared by four LUTs within one LB. The thick lines represent multiple interconnection

signals.

4.1.4 Write Scheme Design

Fig. 19 shows a conceptual diagram of the proposed write scheme. It contains local address

decoders in each LUT and a shared driving source by four LUTs. The proposed LUT has

decoders to access ReRAM cells in the read operation. In the write scheme, these decoders

address the target cell and trigger programming drivers based on input of data, logic ‘0’ or

‘1’. ReRAM cells are integrated in the 3D-HIM structure which is based on a crossbar array

without selecting devices. To have a better driving ability and low area cost, the proposed

LUT can only program one bit in each program cycle. Thus, there is an isolation at every

wordlines and bitlines. The target cell related wordline and bitline would be connected to

programming drivers while programming. Meanwhile, it provides a bias Vt to unselected

wordlines (WLs) and bitlines (BLs). So, voltage and current across nontarget cells are not

large enough to program cell. The accident fault programming on nontarget cells incurred

by programming bias is known as unexpected overwriting.
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To program a ReRAM cell, we provide a forward and a reverse currents from wordline

to bitline for programming logic ‘0’ and ‘1’, respectively. Since the ReRAM cell is integrated

in a crossbar, numbers and data patterns of all the other ReRAM cells in the crossbar may

influence the driving current. Because of leakage and sneak path current incurred by the

other ReRAM cells, large transistors are required in a write circuit to provide proper voltage

or current to program the target ReRAM cells. We propose a shared write scheme as shown

in Fig. 19. The large transistors for programming are shared by four LUTs in one logic block

(LB). The reason we have such a design is because write operation of a LUT is fewer than

read operation. Sharing scheme may prolong write time, but it is an acceptable trade-o↵ for

the LUT. Although it needs extra controlling circuit, it still saves 33% area compared to a

non-shared design in a 6-input LUT.

Fig. 20 shows the write scheme of one programming example. One crossbar array layer

is shown in the figure for simplifying illustration. The 6-input LUT should has four layers

crossbar array. All interconnections of the 3D-HIM should route to corresponding layers.

There are three kinds of write circuits in the proposed write scheme: WLs’ drivers, BLs’

drivers for data cells, and BLs’ drivers for reference cells. They only have slightly di↵erence

showed in a green block of Fig. 20. They all have transmission gates as isolation [60]. The

isolation circuit needs large size of transistors because it guarantees a su�cient voltage and

current supply across the ReRAM cell during a write operation. For WLs’ and BLs’ drivers,

the drivers’ source are di↵erent. To program logic ‘1’ into a ReRAM cell, the WL and the BL

drivers should be ground and Vprg, respectively. On the other hand, programming logic ‘0’

needs the WL and the BL drivers to be Vprg and ground, respectively. Since we set reference

cells HRS, we also program logic ‘0’ to the reference cell shared the same WL of the target

cell. Programming scheme of the reference cell shares the WL driver with data cell, but it

requires a separated BL driver. The operation makes sure reference cells are always HRS

which act as a precise reference for sensing. Control of the above three drivers are local

which is showed in the green block of Fig. 20. All of the WLs and the BLs need these control

transistors.

39



W
L

s d
eco

d
er 1

BLs decoder 1

BLs decoder 2

WE
Din

Input C

Vt

Vprg

Vprg

WE2

W
L

s d
eco

d
er 2

WE3

WE4
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isolation part. The purple block is driving part, which can be shared by multiple LUTs.
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A purple block in Fig. 20 shows the shared drivers. They are shared by four LUTs in a

LB. Example driving paths are highlighted in red lines. The drivers has a ⇠10X transistor

than a unit transistor to provide voltage and current for programming. With isolation of

the transmission gates, the driver provides proper voltage or current to program a cell. WE

represents write enable. A OR4 gate with WE signals from four LUTs controls activation

of the write scheme. Din is an 1 bit input data which controls forward or reverse bias to

program cells. The blue lines are a address from decoders, WL decoders and BL decoders

(see Fig. 16). Input C, which is a selection of determining the layer using bitlines, is included

in the drivers’ control because of the sharing bitlines structure of the 3D-HIM.

4.1.5 Memory Configuration

Fig. 21 illustrates memory configuration of the proposed design. We take a 6-input LUT as

an example. A LUT with 6 inputs and 2 outputs can be implemented with a 4-layer 3D-HIM

structure. Layer 1 & 2 shares the same BL’s (bitlines) and outputs O1. Similarly, O2 comes

from Layer 3 & 4. In each sensing cycle, the 6-input LUT generates 1 bit data to O1 and

O2 from cells in layer 1 (2) and cells in layer 4 (3), respectively.

Address inputs A-F is applied to select data cells in the read and the write operations.

Fig. 21 explains decoding definitions of the LUT. We use A, B, and C to control selection

of BLs, while drivers of WLs are determined by D, E, and F. As illustration in Fig. 21,

combinations of C and F decide a selected layer of the 3D-HIM. For example, when C=0

and F=0, the BLs shared by Layer 1 & 2 and the WLs shared by Layer 2 & 3 are activated.

Therefore, the target cell should be in the crossbar array on Layer 2 because both the WL

and the BL are activated. Its exact location is determined by A, B, D, and E.

4.1.6 Flexible Configurations

The proposed LUT can support various configurations as a conventional LUT design does.

For example, possible configurations of a LUT with 6 inputs and 2 outputs include:

• A 5-input LUT with two outputs: Two sets of independent logic functions are controlled

by five common inputs A, B, D, E, and F. It’s similar to the conventional LUT [63].
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Figure 21: Address of the proposed 6-input LUT.

• A 6-input LUT with one output: Similar to the first configuration. But input C is in

charge of a multiplexer to select O1 or O2 as a final output.

• LUT with less than 5 inputs: The first configuration can be downsized by fixing or

discard usage of some of the inputs.

• Two small LUTs, each with no more than 3 inputs: Two outputs come from two sets of

independent logic functions.

The above configurations are based on the decoding definition in Section 4.1.5. If the

decoding definition is changed, configurations of corresponding inputs need to be modified.

Various configurations provide design flexibility to utilize resource on a FPGA.
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4.1.7 Simulation Results

In this section, we first evaluate the proposed sense amplifier for sensing ReRAM cells in

a crossbar array with TSMC 0.18µm technology. Area, delay, and impact of process vari-

ation are included in discussions. Second, we compare the proposed ReRAM LUT with a

conventional SRAM design. A system level exploration with benchmarks are introduced to

evaluate area and delay. We show comparison results for 4-, 6- and 8-input LUTs.

4.1.7.1 Sense Amplifier Fig. 22(a) shows waveforms of the proposed sense amplifier at

500 MHz clock frequency. SA and SR represent sense amplifier and SR-latch, respectively.

Nodes are corresponding to definitions in the Fig. 18. SA out is the output of INVb. SR out

is the same as O1. To demonstrate e↵ectiveness of the design, we assume the configuration

in a critical data pattern: the target cell and all the other cells are in LRS resulting in the

smallest sensing margin. Signal di↵erence at the inputs of the sense amplifier is enlarged

and shown in Fig. 22(b). Under the worst scenario, there is 18 mV di↵erence at 500 MHz

operating frequency. SA a and SA b are two complementary results by the sense amplifier.

After INVa and INVb, latency of the signals are improved showed in SA out. With the SR

latch, it shows logic ‘1’ at SR out which shows results of the sensing phase are correct.

Process variation induced resistance shifting of ReRAM cells is a severe issue. We conduct

an evaluation on impacts of the process variation to the ReRAM cells. To verify the design,

the critical data pattern is applied in the process variation’s simulation which is similar to

the previous simulations. We set extreme conditions by increasing resistance of the data

cells and decreasing resistance of the reference cells. Thus, sensing margin of the data cells

and the reference cells reduces.

Fig. 23(a) shows sense amplifier inputs SA in and SA ref with 5% to 30% variation

of ReRAM resistance from its mean value at a step of 5%. Corresponding output results

of the sense amplifier are shown in Fig. 23(b). Simulation results show that the proposed

scheme can successfully read out stored data with up to 20% variation on the ReRAM

cells’ resistance. When variations are more than 20%, readout data are errant. The results

in Fig. 23 demonstrates the proposed sense amplifier has a sensing margin limitation on
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Figure 22: (a) Simulated waveforms of sense amplifier in a 4-input LUT under critical sensing

condition of data pattern. (b) An enlarged view of sense amplifier’s inputs.

⇠ 10 mV di↵erence. When the signal di↵erence between the two inputs is smaller than

10 mV , i.e., the two fail cases which ReRAM resistance deviates 25% or 30% from its

designed value, the sensing operation fails. A better noise cancellation circuit can further

improve the sensing margin with price of area.

At last, we compare various sense amplifier designs [60] applied in a ReRAM crossbar

array in terms of sense speed and design area. Summarized results in TABLE 3 show that

the latch comparator and the expanded array in this work over performs the other sense

amplifier designs. Voltage divider and TIA schemes generate reference signals by using a

reference resistor, which costs a large area in modern CMOS technology. Sigma delta designs

use an internal capacitor for integrating generated current that significantly slows down the

sensing speed and increases the design area. Besides the latch comparator, the proposed

design also benefits from the expanded crossbar array structure, which can better trace the

impact of data patterns with a negligible area overhead.
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Figure 23: ReRAM resistance varies 5% to 30% from its design value. (a) The waveforms

of sense amplifier inputs under the worst case data pattern. (b) The corresponding sensing

result.

Table 3: Comparison of Various Sense Amplifier Designs

Sense Speed Area (normalized)

Latch Comparator (this work) <4 ns 1.00

Voltage Divider [60] <50 ns 1.78

TIA-based [60] <100 ns 1.78

Sigma Delta w/ Bu↵er [60] <10 us 7.29

Sigma Delta w/o Bu↵er [60] <50 us 8.51
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4.1.7.2 Area and Delay First, to verify functionality of the proposed LUT, Fig. 24

shows a simulated timing diagram of the 6-input LUT in read operations. Clock frequency

is set to 500 MHz. Input signals change every clock cycle. It reads a serial of data from

”000X00” to ”000X11” and repeats it. Since it generates 2 outputs in each clock cycle,

input C is not in usage. Data stored in addresses ”000000” to ”000011” and ”000100” to

”000111” are ”1110” and ”1011”, respectively. Before 12 ns, output signals are based on

content stored in the memory cells. The data are successfully read out and latched on the

flipflops. After 12 ns, RE is tied to ground and the LUT is powered down. So, there is no

signal after 14 ns. Similarly, write operation can be performed successfully at the frequency

of 500 MHz.
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Figure 24: Timing diagram of 6-input LUT with 2 outputs at 500Mhz.
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Area cost is one of major concerns in a LUT design. Fig. 25(a) compares area estimations

of the proposed ReRAM LUT to a conventional SRAM LUTs, and a nanoPLA/nanoFPGA

with various input numbers. Here, 4 ⇥ 5, 4-layer 4 ⇥ 5, and 4-layer 8 ⇥ 9 ReRAM crossbar

arrays are used to construct 4-, 6-, and 8-input LUTs, respectively. The conventional SRAM

LUT has corresponding 16, 64, and 256 SRAM cells. The nanoPLA/nanoFPGA has 4-input,

6-input, and 8-input PLA array [42].
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Figure 25: (a) Area comparison of various LUTs. Area estimations normalized to conven-

tional 6-input LUT. (b) Delay of LUT with proposed sensing scheme for di↵erent operation

frequency.

From Fig. 25(a), area of the proposed LUT is fully dominated by peripheral circuits

because ReRAM crossbar array can be made in back end of line (BEOL) process which has

no area cost on substrate. In the SRAM LUT, SRAM cells occupy more than 50% of overall

area. The 4-input ReRAM LUT, which includes decoders for dynamic configuration, achieves

23.6% area saving compared to the SRAM one without supporting dynamic configuration.

The SRAM LUT with decoders for dynamic configuration costs extra ⇠ 23% of the area.

When input number of the LUT increases from 4 to 6, the area of the ReRAM LUT is

only 39.6% of that of the SRAM one. And the area saving grows to 75% in the 8-input

LUT. Obviously, the area increases with increasing input numbers, however, the LUT with

more inputs is able to realize larger function. Compared to the nanoPLA/nanoFPGA, the
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ReRAM LUT has larger area when input number is 4 or 6 because of small area cost on

the peripheral circuit of the nanoPLA/nanoFPGA. The area of the 8-input ReRAM LUT

is slightly better than that of the nanoPLA/nanoFPGA. It is because the area of the nano-

crossbar in the nanoPLA/nanoFPGA increases exponentially as increasing input numbers.

Though the area of the proposed LUT is larger than that of the nanoPLA/nanoFPGA for

the small LUT, the ReRAM is already close to fabrication while the device at cross points

of the nanoPLA/nanoFPGA in still under development.

Fig. 25(b) shows access latency of the proposed read scheme when varying operating

frequency. Delay time is measured from a rising edge of clk to a rising edge of the SA outs.

The LUT functions well at up to 1GHz clock frequency. The given sense amplifier design was

fine tuned at 500 MHz. So, the best performance at this frequency is observed. Increasing

input numbers from 4 to 8, read delay grows from ⇠ 370ps to ⇠ 450ps. As increasing

crossbar array size, sensing currents decrease which incurs degradation of sensing margins.

So, it takes longer time to sense the di↵erence. The access latency of the sense amplifier

at the other operating frequencies can be improved by carefully adjusting Vtbias. Through

simulations, the SRAM LUT delay is around 500ps � 700ps for 0.18µm technology. It can

be seen that our LUT can achieve even faster speed than the conventional LUT at the same

technology node. Compared to the delay of the nanoPLA/nanoFPGA, a fulladder’s delay

is 491ps [41]. The fulladder can be realized by using the 4-input proposed LUTs with the

delay of 370ps. The proposed one is comparable to the nanoFPGA or slightly better.

To summarize, the proposed LUT achieves delay improvement, 2X-4X area reduction

compared to the conventional LUT, as well as realization of the dynamic programming. By

introducing the power saving mode for non-usage resource, it saves static power. Meanwhile,

with less NMOS in the design, leakage power of the LUT is further reduced than that of the

SRAM LUT. Compared to the nanoPLA/nanoFPGA, our design can achieve comparable or

better area-delay results in addition to advantage of a mature fabrication.

4.1.7.3 System-level Exploration: ReRAM LUT Various LUT sizes, i.e., input

numbers, have significant impact on FPGA’s architectures in terms of logic area e�ciency.

With increasing numbers of input, area and interconnections of the LUT grow fast [76]. Since
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the LUT with more inputs can implement a larger function in one LUT, if total number of

LUTs decreases for a logic function, overall area of the logic function’s implementation may

reduce. Many logic functions do not need to be implemented by large LUTs. In other words,

utilization rates of the large size LUTs may be low. Area of a conventional SRAM LUT

increases exponentially with more input numbers. Modern FPGAs usually use a 6-input

LUT as a fundamental logic element to achieve the best logic utilization. In this section, we

will explore trade-o↵ for di↵erent LUT sizes of the proposed LUT design in a system level

view. Design space exploration is needed to determine a optimal size for the proposed LUT.
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Figure 26: (a) Delay comparison. (b) Area estimation.

Fig. 26(a) and (b) show delay and area estimations of the proposed LUT on part of

MCNC benchmarks [77], respectively. It also evaluates 4-, 6-, and 8-input of the proposed

LUTs. From the previous section, we know that the area of the proposed LUT increases

linearly with input numbers. We assume similar interconnections of modern FPGAs are

used to connect the proposed LUTs. To demonstrate real area and delay of the proposed

LUT with various input numbers, we set interconnections has no area and delay. So, the

estimations of the area and the delay are only related to the LUTs. Meanwhile, corresponding

results of the area and the delay are normalized to the 4-input LUT, which is a baseline for

comparisons. Since the proposed LUT has two outputs, two small functions can share one

big LUT by using the flexible configuration as described in Section 4.1.6.
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From Fig. 26, some benchmarks, such as “alu2” and “x1”, can e�ciently utilize the large

LUT to reduce mapping the area and the delay. For benchmarks of ‘alu4” and “x3”, small

LUTs are better because the large LUTs cannot be fully utilized and idle inputs result in

resource waste. For benchmarks “apex” and “rot”, the 6-input LUT is the most e�cient. We

can see that e�ciency of LUTs’ usage is determined by whether LUTs can e↵ectively reduce

numbers of the LUT in need and critical depth in a network. From these benchmarks, the

system-level explorations and the preliminary mapping results introduce that the 6-input

LUT is a promising design.

Figure 27: Area and delay of di↵erent sizes of LUT.

We explore the impact of di↵erent sizes of the proposed RRAM-based LUT at system

level. Fig. 27 demonstrates comparisons of delay and area of MCNC benchmarks [77] and

sample applications provided by VPR suite [16]. The results are normalized to the averages

of each benchmarks and di↵erent sizes of LUT. To make fair comparison of all designs,

numbers of track are fixed for all simulations and the routing system is designed of SRAM.

The simulations focus on impact of sizes of LUT. The black and blue line are area and delay
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of benchmarks in 4, 6, and 8-input LUT, respectively. The simulation results show that the

trends of area and delay are similar to SRAM-based LUT that is larger LUT has larger area

cost and better delay [63]. However, since area costs of 4-input and 6-input LUT are not

linear increment, the area trend is relatively flat compared with SRAM-based LUT. From

performance and area perspective, 6-input LUT is an optimized design for RRAM-based

LUT. It has acceptable area increment and huge delay improvement of the applications.

4.2 RERAM ROUTING COMPONENTS

4.2.1 Connection Blocks

CB is applied in the FPGA to select inputs of a LB (CLB) from tracks and output of the LB to

the target tracks. The modern CB has two types of design: memory cells with a multiplexer

or memory cells with pass gates. The CB with the multiplexer has less memory cells for

a configuration. However, the multiplexer itself needs more MOSFETs than pass gates to

control signal. And, the pass gate design has better performance in delay. Considering

tradeo↵ between cost and performance, the multiplexer design is popular in the modern

SRAM FPGA.

Fig. 28 shows the proposed connection block with ReRAM cells for LB inputs. The CB

for LB outputs can be built in a similar fabric. Since the ReRAM cells do not cost as SRAM

cells, the proposed CB is designed with pass gate to save area of a mosfet and to have better

performance. Moreover, the power consumption incurred by leakage current of mosfets is

improved.

Fig. 29 demonstrates a ReRAM pass gate switch used in the CB. To program the switch

short/open, it programs complementary cells to LRS+HRS or HRS+LRS by supplying a

voltage pulse more than double threshold voltage, Vth, to the target cells. Fig. 29.(a) and

(b) show the proper bias voltage to short or open the pass gate, respectively. For normal

operations, operation voltage, Vop, across complementary ReRAM cells gives a voltage bias

at gate of the NMOS to short or open the pass gate showed in Fig. 29.(c) and (d), respectively.
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Figure 28: The CB is designed with pass-gates and bu↵ers. The green lines show connections

of ReRAM cells in CRS and pass-gates. The ReRAM cells in CRS can open or close the

pass-gate based on resistance di↵erence.

The data pattern in the complementary cell is LRS+HRS or HRS+LRS to properly control

the NMOS pass gate. The LRS+LRS [20] is not a proper operation in the switch application

which makes the pass gate unknown status. The Vop should not be larger than Vth to avoid

programming complementary cells into LRS+LRS.

We gather multiple switches into a CRS structure [20] to further improve area cost and

simplify control. Cells of the same wordline or bitline can share peripheral circuit to save

area cost. For the normal operation, we can simply drive all wordlines to Vop and all bitlines

to ground to make switches work properly. We do not read out data from bitlines as sensing

data in the crossbar array, so controlling voltage at gate of the mosfets has no problem of

interference. To program switches, it still has to program complementary cells one by one

selecting the wordline and the bitline of the target cell [20].

4.2.2 Switch Blocks

SB links connections between tracks which is set to be the commonly used Wilton switch [78]

for e�ciency. It has multiple switch macros to bridge tracks to and from di↵erent directions.

Switch macro has design of memory cells with multiplexers or memory cells with pass gates

52



off

+

–

GND

Vop

LRS

HRS

c)

GND

Vop

HRS

LRS

d)

on

normal normal

–

+

+

–

–

+

Vth

-Vth

LRS

HRS

a)

-Vth

Vth

HRS

LRS

b)program program

+

–

–

+

+

–

–

+

Figure 29: ReRAM pass gate switch: a) program short. b) program open. c) short in normal

operation. d) open in normal operation.

to configure connections [79]. The pass gate design needs more memory cells but it has better

performance [79]. Meanwhile, a pass gate itself has fewer mosfets comparing to multiplexer.

Fig. 30 illustrates a proposed switch macro of the SB architecture. It has 10 ReRAM pass

gate switches with complementary cells to control connections. The pass gate switch with

complementary cells is the same as we mentioned in the previous section. Because the

ReRAM has no area cost, ReRAM pass gate in a switch macro has advantage of area and

performance comparing to design of multiplexer. Meanwhile, it can also be integrated into

CRS structure for further saving cost of peripheral circuits and improving controllability

which is similar as we mentioned in the previous section.

4.2.3 Discussion – ReRAM FPGA

In this section, we demonstrate characteristics of the proposed ReRAM FPGA with various

technologies. We introduce performance of the purposed CB and SB with complementary

memory cells in the CRS structure. The power consumption of the proposed components,

LB, CB, and SB, are compared to SRAM design. We compare our work to other FPGA
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Figure 30: The SB is designed with pass-gates and bu↵ers. The green lines show connections

of ReRAM cells in CRS and pass-gates. The ReRAM cells in CRS can open or close the

pass-gate based on resistance di↵erence.

hardware with emerging memory technologies. Percentage of compositions would be included

in discussion among various designs. Area and delay comparisons based on benchmark

mappings from MCNC are included for analysis [77]. Finally we discuss pros and cons of

the proposed design and propose possible methods and devices for future improvement.

Table 4: Delay of the SB and the CB

180 nm 90 nm 65 nm 45 nm 32 nm

(TSMC) (PTM) (PTM) (PTM) (PTM)

SB 164.9 ps 64.3 ps 67.7 ps 81.4 ps 144.6 ps

CB 69 ps 26.3 ps 23.3 ps 22.9 ps 24 ps

4.2.3.1 Delay and Area of the Proposed CB and SB Delay of the proposed CB

and the SB with di↵erent technology nodes [80, 81] are given in Table 4. With shrinking of

technology, it improves the delay time. The delay of the CB and the SB are similar to the

conventional FPGA because we do not change the pass gate design. The main confinement

54



of the delay is still on the CMOS technology. Since we replace SRAM cells with ReRAM cells

which are close to no area cost, 58.6% and 67% area cost on the CB and SB can be saved for

a 180 nm technology node, respectively. For the other technology nodes, the ratio is similar

because most of the CMOS devices are the smallest pass gates of various technology nodes.

With advanced technology, area overhead of the bu↵er, which is a trade-o↵ between area

and delay time, could be alleviated because the delay time is smaller since the signal path

is shorter.

4.2.3.2 Power Consumption of Components Table 5 lists power consumption of

each components, LUT, CB, and SB, compared to the corresponding SRAM design at switch-

ing frequency of 500MHz. We normalized the results to the SRAM FPGA. Significant saving

from the ReRAM design can be observed from power consumption on tracks and the LUT.

However, the CB and the SB have worse power consumption. They need static voltage

across ReRAM cells of CRS to turn on/o↵ the switches so static current leakage across the

complementary cells consumes extra power.

Table 5: Power Comparison: SRAM and ReRAM

LUT SB CB Tracks

SRAM (45 nm) 1 1 1 1

ReRAM (45 nm) 0.90 1.68 1.11 0.62

4.2.3.3 Various Comparison of Compositions in One Tile Fig. 31 demonstrates

the power distribution of components in each tile. The 2D CMOS and 2D rFPGA are from

works of S. Tanachutiwat, et al. in 32nm technology [45]. The 2D CMOS is the conventional

FPGA, and the 2D rFPGA is ReRAM FPGA with NOR ReRAM cells and 2T2R switch. The

hardware architecture of the two designs are simple without complicated LBs. The ReRAM-

32nm is the proposed design in the 32nm technology. The 2D CMOS, the 2D rFPGA, and

the ReRAM-32nm are the same design as we mentioned before. The ReRAM-180nm is the

tile of the proposed architecture in the TSMC 180nm technology.
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Figure 31: Power distribution of components in one tile.

There is a large di↵erence on the SB between the proposed architecture and works of S.

Tanachutiwat. It is because the proposed architecture has more tracks than the tile of the

simpler design. The extra tracks causes more switches on the CB and the SB. It is resistive

load to drive the ReRAM cells, so static current to maintain switches on/o↵ is needed

which causes larger power consumption. Comparing the 180 nm and the 32 nm technology,

percentage of power distribution of the CB and the SB in the 32 nm technology increases

since there is large amount of the CMOS devices in the the CB and the SB incurring more

gate leakage than the LB does.

4.2.3.4 Benchmark Mapping Fig. 32 shows a software platform used for benchmark

mapping and simulation. We apply a modified flow of CAD tools for the benchmark mapping

and the simulation [16]. The flow begins from ODIN II [82] to read in HDL description and

translates into Boolean network. Then tool ABC synthesizes the Boolean network to a

network of LUTs used in FPGA [83]. Following it, T-VPACK is used to group the LUTs

into LB. Finally VPR [16] is used to accomplish placement and routing.

For interconnection hierarchy, we use more short wires in a mixed segment scheme and

localize communication to fit size of the RU. We assume 96 tracks in each channel with

setting of VPR: Fc-in = 0.15, Fc-out = 0.1, and Fs = 3 [16, 84]. The wire distribution is

with 80% length-1 wires and 20% length-4 wires [16]. It is known that the interconnection

parameters have great impact on area, delay of the architecture.

56



HDL Front End

(ODIN II)

Logic Optimization

(ABC)

ABC Correction

(Patch)

Packing

(AA-Pack)

Place and Route

(VPR6)

Parsing HDL logic into 

Boolean logic
Verilog with

Heterogeneous module

Correct clock network

Optimize boolean 

network for LUT

VPR 6 Architecture

(Heterogeneous)

Group LUT into LB

Place and Route

Definition of 

Heterogeneous 

module

Figure 32: CAD and corresponding file in this work.
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The proposed structure investigates 20 big benchmark mappings from MCNC [77] to

show area, performance, and power of the ReRAM architecture. We assume the architecture

instance with following parameters: LB, CB, and SB are the same as described in the previous

discussion. The technology node is PTM 45nm [81]. Meanwhile, various architectures with

either SRAM and other ReRAM memory systems are simulated for comparisons. Although

architectures of each design are di↵erent, we can observe overall performance based on the

MCNC benchmarks. Benchmarks are selected from 20 big in the MCNC benchmark suite

[77] and mapped to the proposed architecture and the conventional SRAM architecture.

Fig. 33 shows results of area comparisons of various architectures including the SRAM

and the ReRAM FPGA with 4-input and 6-input LUT. In general, the 4-input LUT has

smaller area compared to 6-input LUT on both architectures. Comparing the 6-input

ReRAM and SRAM FPGA, the ReRAM FPGA has 62.7% improvement in area because

it has the ReRAM cells in a 3D stacking structure. By using the 6-input ReRAM FPGA,

average of increasing area compared to 4-LUT is 40.4% rather than 60.9% of the SRAM

FPGA. We can even compare the proposed ReRAM 6-input LUT to other works of the

ReRAM 4-input FPGA, the 2D rFPGA [45]. The proposed one have extra 52.9% area. Our

design has a bit-addressable LUT with more tracks, which incurs more area on the CB and

the SB. However, it enables all LUTs for D-RAM usage. Meanwhile, from general idea,

architecture of the 6-input LUT costs more area than that of the 4-input LUT. Overall, the

ReRAM FPGA still has benefit in cost.

Fig. 34 demonstrates delay of critical path in MCNC benchmarks. The 6-input ReRAM

FPGA has 34% improvement in the delay because the tracks of the ReRAM FPGA is

smaller than the SRAM FPGA. The circuit delay is similar in two designs. The delay along

the tracks dominates the results. The 6-input LUT has better performance than the 4-input

LUT, because the routing path is smaller. The average delay of the critical path improves

57.2%. Comparing the 6-input ReRAM FPGA to the 2D rFPGA [45], the proposed design

has extra 19.8% delay time. The delay results from longer tracks of the proposed FPGA.

By comparing average power consumption of the proposed FPGA to 2D rFPGA archi-

tecture [45] in 32nm technology, the proposed one is 5X power consumption than the 2D

rFPGA in 32nm technology. However, by comparing to work of Y. Liauw et al. [46], the
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Figure 33: MCNC Comparison: Area (µm2)

Energy-Delay-Product of the proposed architecture is only 17% of the Y. Liauw’s work in

65nm technology. Apparently, power consumption of our work is between the two works.

The di↵erence is that we include a static analysis on the proposed model simulated by Spec-

tre, Cadence. In the CB and the SB, static power is important since the complementary

ReRAM cells have static leakage currents. Meanwhile, the LB has di↵erent design than the

other works, which has smaller leakage power.

4.2.4 Power Estimation and Comparison

In the section, we demonstrated the power estimation between SRAM and ReRAM FPGA.

The architecture of both FPGA are similar. The only di↵erence is the memory device and

corresponding peripheral circuit. As the method in the previous section, we have 20 big

benchmarks from the MCNC suite [77] to show the results.
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Figure 34: MCNC Comparison: Delay of Critical Path (ns)

First, we introduce the power estimation tool of the work. Since the components of the

ReRAM FPGA is di↵erent from SRAM FPGA, an academic power estimation tool [85] is

not proper to estimate the results. Thus, we proposed a power estimation tool which is

based on trace results from the VPR 6 [16] and dynamic and static power information of

the components provided by users. In general, FPGA power is divided into three parts,

routing power, logic power and clock power demonstrating in Eq. 4.1. The power estimation

of these three parts are further decomposed into multiple components in calculation. Eq. 4.2

to Eq. 4.4 explain the break down of these four components. The su�x .D and .S presents

dynamic power and static power of a component respectively. Among them, clock network

power is special that it was calculated separately with methods introduced by [85]. Things

seem to be very easy if all the power information in the library are just absolute numbers.

However, in order to preserve certain accuracy, we require more information from the library

of power components. For example, for primary component routing track, the capacitance
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of length-1 segments Cwire should be provided by the library or in the architecture file.

Meanwhile, switching activity is needed information which can be acquired from the VPR.

PTRACK.D is obtained by calculating Eq. 4.5 and PTRACK.S is usually zero.

PFPGA = Prouting + Plogic + Pclock (4.1)

Prouting = ⌃PCB.D + ⌃PSB.D + ⌃PTRACK.D

+⌃PCB.S + ⌃PSB.S + ⌃PTRACK.S

(4.2)

Plogic = ⌃PCrossbar.D + ⌃PLUT.D + ⌃PDFF.D

+⌃PCrossbar.S + ⌃PLUT.S + ⌃PDFF.S

(4.3)

Pclock = ⌃Pclock.D + ⌃Pclock.S (4.4)

PTRACK.D = 0.5 ⇤ activity ⇤ Vdd
2 ⇤ Cwire ⇤ length ⇤ f (4.5)

Fig. 35 shows power estimation of the SRAMe and ReRAM FPGA. The architecture of

both FPGAs are similar and designed in 45 nm technology node of PTM [81] as the same

manner in the previous sections. We provide design information, which can be obtained in

architecture files of FPGAs, and power estimation of components, including LUTs, CBs,

SBs, tracks, etc., based on Cadence EDA Tools [86]. Result shows that ReRAM FPGA

consumes more power in all benchmarks. The track power is reduced by shorter segment

length and the power of LUT is slightly smaller than SRAM LUT. However, the extra power

is because of static bias to switch on/o↵ of the pass gate switch. It can be improved by

substituting a high resistance ReRAM device to reduce the static current across the ReRAM

cells in CRS structure. Meanwhile, ReRAM FPGA can partially enter deep sleep mode to

reduce power of idle logic.
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Figure 35: Power estimation of 45nm SRAM and ReRAM FPGAs.

4.2.5 Miscellaneous Discussion

We discuss design considerations of the ReRAM FPGA and propose possible methods for

improvement. In the power comparison, the SB and the CB cost large power because of

the switch design. However, we can change the ReRAM cells to a high resistance device

such as Al2O3 to suppress the leakage. Meanwhile, a high Roff/Ron ReRAM is preferred in

the design to control leakage of the pass-gate by giving gate voltage close to vdd or gnd to

throttle the leakage. To reduce the delay of a LUT, the read scheme of the ReRAM cells

should be improved in both the circuit and the device. A fast sensing device is promising

for the proposed architecture since we already design the peripheral circuit to support it.

The proposed architecture is the bit-addressable design on every LUTs which is di↵erent

to conventional FPGA. The design of the conventional FPGA needs extra area to achieve

the function with a decoder and a local programming circuit. The bit-addressable LUT is

not only for the D-RAM as we have in commercial FPGAs, but also for runtime configuring

function.
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Another improvement is nonvolatility of tiles since it substitutes all memory cells of the

FPGA to the ReRAM cells. We can add a novel function which is called deep-sleep mode

to the FPGA by partially powering o↵ unused tiles. Unlike the conventional SRAM FPGA,

there is no need to maintain any energy to keep data. Meanwhile, an initializing step can

be omitted if a copy of configuration is available in the FPGA. The area and the cost are

not only saved by the ReRAM cells within the FPGA, but it also saves design of an external

FLASH. The FPGA can be standalone system after the first initialization.

4.3 UBRAM AND RECONFIGURATION

Fig. 36 gives an overview of a reconfiguration unit (RU), the basic building component in the

proposed ReRAM FPGA. In our design, each RU is composed of eight tiles and one unified

block RAM (uBRAM). As a basic functional unit, a tile comprises a LB, two CBs, a SB, and

a set of segment-based interconnecting routing tracks. The uBRAM is a storage component

saving configuration functions as well as temporary data. In the following subsections, we

will describe design details of these building blocks and the operation of the ReRAM FPGA.

4.3.1 Architecture of Unified Block Memory

A modern SRAM FPGA needs an external FLASH to store configurations. Meanwhile, it

contains SRAM embedded memory blocks for on-chip temporary data storage. For example,

Virtex-7 contains more than one thousand 18Kb memory blocks [87]. We propose a uBRAM

with the ReRAM cells to function as both a configuration memory and a data memory at

di↵erent time.

Fig. 37 shows the proposed uBRAM architecture. The uBRAM contains n memory

islands to increase its data bandwidth. The number of memory islands is set to be equal to

the number of tiles in the RU to ease data transmission. Each memory island is composed

of an 2l-layer 2m ⇥ 2m array in the 3D-HIM [70] structure. For a 8 islands uBRAM, each

island includes 8k ReRAM cells, ratio of the uBRAM size to the tile size is estimated to be
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Figure 36: This is a RU of the proposed architecture composed of eight tiles. The blue area

is a tile comprising LB, SB, and CB.

Figure 37: The proposed ReRAM uBRAM with eight memory islands and a set of shared

address lines.
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615%. All the memory islands will be accessed at the same time, hence, address decoders

can be shared by all memory islands in the uBRAM. To address one bit in a island, 2m+ l

number of address lines are needed.

uBRAM

General Interconnect

General Interconnect

MUXMUX

Ring 
counter

External
address

Address

External
control

Read/Write
enable

Data-inData-out

DEMUX
Specific tracks

 to tiles

MUX

External
data

Operation 
mode

Figure 38: The interconnections of uBRAM for data/configuration mode.

Fig. 38 shows connections of the uBRAM. Data input has two sources, an external

communication port or general tracks. Address is from the external communication port, an

internal ring counter, or general tracks. Control signal is from the communication port or

general tracks. The outputs could be special tracks to the tile or general tracks. The external

communication port are special tracks and circuits needed to write configuration bits into

uBRAM from the external communication port. It is managed by FPGA communication

units.

When the uBRAM functions as a data memory in a logic operation, the inputs/outputs

of the uBRAM have to connect general tracks to feed/fetch data from the LBs. Input

bandwidth is related to numbers of memory islands in the RU since we program one bit

per clock cycle to one memory island for area and power reduction. Output bandwidth of

the uBRAM is flexible to configuration depending the bandwidth requirement and available
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resource of general tracks. One island can output 1-2l�1 bits per cycle by adjusting number

of address inputs. The uBRAM can generate maximal output of n⇥ 2l�1 bits data per clock

cycle which enables fast data accessing for high performance application. Hence, there are

2l�1 + 1 data lines (2l�1 for outputs and 1 for input) for one memory island.
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Figure 39: Special tracks from uBRAM to each tile.

To configure LB, CB, and SB from uBRAM, special tracks are used to connect the

uBRAM to the ReRAM cells in the tile, i.e., the ReRAM cells in the LB, the CB, and the

SB. As demonstration in Fig. 39. Each blue line represents four tracks that connect four

data lines of the uBRAM to each tile. The special tracks are small area overhead since they

are direct connections from uBRAM to tiles. While in configuration mode, partial address

lines are needed to select di↵erent configuration copies in the memory islands controlled by

logic. Moreover, to read the selected configuration copy, bits can be read out sequentially

and controlled by a simple ring counter for the address. The maximum number of bits, i.e.,

2l�1 bits per island, will be output per clock cycle to speed up a reconfiguration. Multiple

bits output per island will need extra sensing amplifiers, however, it only costs small area

increase. Taking an example of 8 layers, where l = 3, there is only 13% area increase.

The design of the special tracks, the local addressing method, and the burst outputs has

advantage in speeding up the configuration while avoiding interference routing or adding

interconnection complexity.
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We use an example to illustrate data mapping in the uBRAM and calculate the reconfig-

uration delay. It assumes 8 tiles are contained in one RU here. Hence, there are also 8 islands

in the uBRAM. Assuming parameter setting for the island is l = 3,m = 5, then capacity of

one island is 8K bits. A 11-bit ring counter is needed to supply the address to sequentially

read out 4 bits per cycle from the 8K island. Based on the LB design, four 6-input LUTs

need 256 configuration bits and a 15 to 24 fully populated crossbar needs 360 bits. As for the

interconnection, 96 tracks, Fc-in = 0.15, Fc-out = 0.1, and Fs = 3 [16, 84], the configuration

bits needed for the SB and the CB are 960 and 305, respectively. Hence, one configuration

copy for the tile is 256+360+960+305 = 1881 bits. The address distribution is as follows:

0-255 for the LB, 256-615 for the crossbar, 616-1575 for the SB, and 1576-1880 for the CB.

Since the burst mode has 4 bits output in one cycle, it takes 471 cycles to finish the pro-

gramming. Assuming per cycle needs 4ns to program one ReRAM cell, total configuration

time is 1884 ns. It is better than modern FPGAs which takes couple of seconds to finish

programming.

4.3.2 Reconfiguration with uBRAM

4.3.2.1 Initialization The uBRAM introduces two stages reconfiguration. The first

stage is to load the configuration uBRAM. Data and address are sent to the uBRAM through

the communication interface of the FPGA under control of an external controller. Control

signals specify the specific uBRAM to write to and provide write address. In the second

stage, the control signal from the communication port triggers the configuration. It only

takes couples of micro seconds for programming as we mentioned in the Section 4.3.1.

4.3.2.2 Runtime Partial Reconfiguration There are two types of runtime reconfig-

uration with the proposed FPGA: an external and an internal. The external configuration

denotes the reconfiguration data which is from an external source in the first stage. Internal

reconfiguration is defined as loading configuration copies from the uBRAM in the first stage.

In both methods, the data is not directly programmed into logic and route elements. As

a result, loading configuration to the uBRAM does not stall the system in the first stage.
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It is only about 0.2% of the conventional partial reconfiguration delay, which is around

milliseconds. The external runtime reconfiguration loads configuration from external com-

munication port. We monitor the system and load the corresponding synthesized logic into

the uBRAM. The data and address are packed into bitstream and sent to target uBRAMs.

The step is similar to initialization of the proposed FPGA. The di↵erence is that we only

send data to the target uBRAMs rather than all of the uBRAMs on the FPGA. The pro-

cedure is similar as the partial reconfiguration in modern FPGAs. However, modern FPGA

will directly program the SRAM cells. Hence, the computation has to be halted during

reconfiguration. With uBRAM, the system loads the configuration in the first stage, then

programming programming data in the second stage which only causes 2 µs.

The internal runtime reconfiguration loads configuration from the uBRAM. There is

a synthesized monitor function to control the runtime reconfiguration internally. The 8k

uBRAM island can store maximum four copies of configuration, bit (0-1880), (2048-3928),

(4096-5976), and (6144-8024). The configuration stored in the uBRAM has two sources:

pre-stored logic and runtime synthesized logic. The pre-stored logic is from the initialization

or runtime external loading in the first stage. The uBRAM has multiple copies of the logic.

While doing the internal runtime reconfiguration, it proceeds the second stage and selects the

target logic from configurations in the uBRAM. The runtime synthesized logic is generated

on chip. We configure the target RU’s uBRAM as a data memory. The data of the first

stage is generated by other logic function. Once, the monitor function decides to reconfigure

the system, it directly proceeds the second stage to configure the tiles.

Comparing the external and the internal configuration, the external configuration pro-

vides an e�cient way of supporting more possible configuration copies and fully utilizing

all resource for logic function. With limited numbers of reconfigurable copies, the internal

reconfiguration can form a standalone system by choosing copies from the uBRAM. It can

be a self-adapting system while loading the runtime synthesized logic. However, the design

costs large resource for generating the logic function. System designers can determine the

proper configuration method based on the available resource and system’s requirement.
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In our design, the first stage acts as a bu↵ering time for loading configurations into the

uBRAM. There is no system stall in the first stage to disturbing concurrent computation.

Through this approach, the loading delay is capable to be hidden. The real reconfiguration

happens in the second stage which only takes less than 2 µs. The programming mechanism

can be performed in parallel among RUs. With the uBRAM, eight 8k islands, maximum four

copies of logic functions can be performed indicates that four times of more logic, 4⇥ 8(tiles

per RU)= 32 tiles, can be implemented. Relative area saving obtained is 32/6.15 ⇡ 5.2

times. Note that more reconfiguration copies stored, more reconfiguration can be performed

and more area saving can be achieved.

4.3.3 Case Studies – FPGA with uBRAM

We evaluate two examples to demonstrate the flexibility of runtime reconfiguration and the

benefits on area, delay and power. To set up the experiments, we assume the architecture

instance with the following parameters: The LB, SB, CB, and uBRAM are the same as

described in the work. CMOS technology node in the following simulations are based on the

PTM 45 nm technology [81]. CAD tools are the same as Section 4.2.3.4.

Fig. 40 illustrates a synthesis flow for applying run-time reconfiguration in an application.

System designers identify run-time reconfigurable modules on HDL by tracing through task

graph or manual noting by designers. Logic function is then decomposed into modules of

one and various contexts. All of the modules and their contexts are synthesized separately

and given indices for their corresponding configuration contexts. For design automation

consideration, each module has the specific context as a representation of the module in

global place and route stage. We apply local place and route for rest of the contexts to their

designed region from the result of global place and route. Configurations of contexts would be

stored in the uBRAM of the designed region and then be loaded while in need. Corresponding

control unit, such as micro-controller, would monitor logic function and schedule run-time

reconfiguration. According to the required reconfiguration contexts and available uBRAM

size, either the external configuration or the internal configuration can be determined. Both

methods still apply two stages reconfiguration for reducing reconfiguring time and simplify

the control of reconfiguration.
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Figure 40: The rough flow for optimizing, controlling, and monitoring reconfigurable logic.
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4.3.3.1 Case Study–Dynamic Loading Pre-Synthesized Configurations We have

a case study on software defined radio to evaluate the proposed design for the external

configuration and the internal configuration with pre-synthesized configuration bits. The

uBRAM stores multiple contexts which are runtime loaded to the corresponding tiles to

change logic function and reuse the same resource of the FPGA.

In software defined radio and other wireless applications, it requires a dynamic load-

ing of di↵erent modulations according to runtime conditions. We take dynamic switching

of modulations in Orthogonal frequency-division multiplexing (OFDM) communication as

an example. The system is illustrated in Fig. 41. According to di↵erent signal modula-

tion requirements, three modules including QAM16, QPSK, and BPSK will be dynamically

switched. First, if three configuration copies for three modules are already contained in

the uBRAM, only internal configuration is needed. An on-chip controller can generate the

control signals for configuration copy selection and a start/stop of the internal configuration.

FIFO buffer

OFDM Modulation block

QAM16 QPSK BPSK

Modulation 
Selection

Modulated 
Signal

Figure 41: Signal flow of OFDM.

Table 6: Mapping results of OFDM modulations

tiles RUs Area (normalized to tile)

QAM16 34 5 40 + 30.75(uBRAM)

QPSK 35 5 40 + 30.75(uBRAM)

BPSK 33 5 40 + 30.75(uBRAM)

non-reconfigurable 108 – 108

Table. 6 shows mapping results of OFDM modulations in the proposed architecture. Ac-
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cording to mapping results, QAM16, QPSK, and BPSK need 34, 35 and 33 tiles, respectively.

However, through reconfiguration, the tiles can be reused and shared between di↵erent mod-

ules. Five RUs, which includes 8 LBs in each RU, would be needed because we use RU as the

smallest reconfigurable unit. In contrast to it, if no reconfiguration is allowed, total 108 tiles

are needed for mapping the three modules. Since internal configuration delay is determined

by the configuration time of a tile in the second stage configuration, switching time between

modules takes 471 clock cycle as described in Section 4.3.1. Data rate for software defined

radio is typically around 20ms [88]. Hence the switching time does not a↵ect data process-

ing. Since the uBRAM has 6.15X area to the size of a tile, if assuming no uBRAM contained

in the non-reconfigurable architecture, 34.5% area saving is obtained without degrading the

data processing throughput compared to the non-reconfiguration case. However, embedded

memory are sometimes used even for the non-reconfigurable architecture for data storage.

Comparing with the non-reconfigurable architecture with block memory, the area saving can

be 2.7X. Considering extra area reduction because of replacing the SRAM with the ReRAM,

the area saving achieved by the proposed architecture using dynamic reconfiguration com-

pared to current FPGAs can be significant.

Through performing the dynamic reconfiguration, leakage power can be saved because

of reduction of tiles in usage. However, at the same time, we need to consider uBRAM’s

read power and ReRAM cells’ write power in RUs. Each reconfiguration in the ReRAM

system is about 1.90X power consumption to the tile’s leakage consumption. Experimental

results show 17% power consumption can be reduced in the reconfigurable case. Compared to

the SRAM FPGA with no reconfigurable application, it increases 4.3% power consumption

because of larger power consumption of the CB and the SB. Since the power increase is

small, it still can be considered comparable.

If modules exceeds the uBRAM capacity, the external configuration will use dedicated

addressing circuit to select the uBRAM to load new reconfiguration bits under external

control as discussion in Section 4.3.2. Taking the biggest reconfiguration copy of QAM64 as

an example, it takes less than 4ms to finish loading in the first stage of configuration. Since

the loading will not stop the current computation, the external reconfiguration delay can be

hidden and area saving can be obtained while performing proper predicted prefetch.
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4.3.3.2 Case Study–Runtime Calculating Configurations In some applications,

e.g. weighting calculation, synapse, self-adapted circuit, etc., runtime adjustment of the

parameters or functions is needed. It would be good if the current configuration bits can be

modified or generated according to a runtime calculation result. However, it is hard to achieve

the function for previous works without the two stage configuration to store configuration

in the internal memory and configure the logic function later. Otherwise, it takes system a

large stall for the runtime calculation. The internal configuration with runtime configuration

calculation supported by our proposed architecture makes it feasible. Next, we will use two

examples to illustrate the runtime adjusting of parameters and functions.

Figure 42: The internal logic generates weighting to uBRAM for later configuring.

The first example for weight calculation is shown in Fig. 42. The logic function varies

slightly based on results of runtime weighting calculation. Such application is no need to

do runtime synthesis for logic function, hence, it requires small resource. Here we simplify

control signal as a input/output pin and emphasize the uBRAM of fetching and configuring.

As shown in the figure, The LBs, highlighted in blue, function as monitoring and generating

the weighting data to uBRAM. The LB which needs an adaptive weighting as configuration

bits and stores the weighting related function is highlighted in red. The functions of the

rest LBs are not a↵ected. First, the logic function generates the weight and stores the data
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into uBRAM. After the data is stored to the uBRAM, the monitor control the uBRAM to

configure the logic. After the configuration, the system continues with the newly adapted

weighting. The system functions as a self-adaptive system. The application can be used

in large coe�cient system, e.g. real-time compress sensing [89]. In the application, two

dimensional local uncorrelated coe�cients are needed for compress sensing. Previous works

use DFF to locally store values which cost large area. With the proposed reconfiguration

scheme, the new value can be self-calculated and stored in a fine-grained ReRAM system to

generate a logic function.

Fig. 43 shows a mapping result of the internal configuration with the runtime function

synthesis. Since the synthesis of logic function is relatively complicated, the resource within

the FPGA are most occupied by the synthesis module rather than the targeted logic module.

Only one tile highlighted with red is the logic function to be loaded and used there. The

corresponding uBRAM showed in orange are accessed by the synthesis module for storing

the runtime calculated configuration. Rest of them belong to lib-synthesizing modules which

can fetch pre-synthesized modules to help on the runtime synthesis of functions. We can see

that for function generation, large computation resources are needed. In this example, only

3.7% of the resource is for implementing the generated logic function. Similar reconfiguration

procedure will need to be followed to accomplish the runtime functionality update. These two

examples showed the di↵erent self-adaptive application mapping and demonstrate flexibility

of the proposed architecture to support various reconfiguration requirement.
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Figure 43: The internal runtime logic is generated to uBRAM for later configuring.
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5.0 PLACE AND ROUTE OF PR FPGA – PR-AWARE ROUTER AND

LOCAL APR

5.1 MAPPING FLOW

In the section, we introduce our CAD flow for PR logic in Fig. 44 [90]. The flow has two main

parts: logic and place and route. Each part has further two stages in process. Generally,

the flow is based on logic modules. Thus, we assume that designers decomposed PR logic

into multiple modules at the beginning of logic synthesis. Since modern logic are composed

of sub-modules, it does not need much extra e↵ort by using the flow. Designers give a

list of modules in usage and information of connection between modules to run the flow.

For supporting PR logic, designers should also identify multi-context modules and provide

corresponding contexts. Connection information between modules can be easily done by

naming ports of the same connection into the same and the unique name. A useful tool of

fast renaming can be found in Verilog-Perl [91].

At the stage one, the flow checks availability of physical information of each module

in a logic library. The logic library contains pre-synthesized modules’ information, e.g.

delay, area, netlist, etc. The flow gathers information of modules in usage from the library

to proceed to rest stages. Otherwise, designers should provide HDL of modules in usage,

including various contexts, for a trial round to gather physical information. The second stage

collects netlist files from modules and combines these netlist files into a new global netlist.

Unlike general flow of VPR, there is no need of combining netlist from a top level HDL. It

only takes physical information of connection rather than the whole logic.
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Figure 44: Mapping flow for PR logic.
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In the stage three, it generates a global placement and routing of PR logic. A B*-tree

Modular Placer (BMP) [90] is modified in the work for supporting multi-context modules. In

the work, we add a context-selection mechanism, which identifies the featured context for a

multi-context module. The mechanism chooses the largest area of the contexts as the featured

context. By placing the modules with the featured context, it guarantees that all contexts

can be placed in the designed region for the module. We also introduce PR-aware router to

generates global connections. Comparing to general router of VPR, the main function of PR-

aware router is to maintain signal integrity while system in PR operation. PR-aware router

manages routing resource of the modules. Modules of one and multiple contexts has di↵erent

routing resource and PR-aware router carefully avoid cross usage of resource while seeking

solution from solution space for a routes. Thus, routes of a multi-context module would not

a↵ect routes of static modules in a PR operation, which guarantees signal integrity of the

system. At the stage, it also extracts information of pseudo ports by using the technique,

port-over-track, which are then used as source and sink for local routing. The forth stage

is local place and route. To place and route a di↵erent context of a multi-context module

into the PR FPGA, the only change is placement and routing of the designed region. Thus,

to complete place and route, it has similar technique as we mentioned in the stage three

by using resource management while seeking solution in solution space. Once we limited

the resource, the stage is very similar to conventional/general place and route, however, the

source and sink is from and to pseudo ports as source and sink, respectively. Then, the flow

iteratively executes stage four until finishing all contexts of multi-context modules.

5.2 LOGIC SYNTHESIS

5.2.1 Preliminary Logic Library

As we mentioned in the previous section, the logic library stores physical information of

various logic modules and we can reuse the information to fast generate place and route

result for an application [90]. Of course, the information is for a specific architecture family
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rather than a general architecture. For example, a synthesis result for an application on a

4-input LUT FPGA is definitely di↵erent from the application on a 6-input LUT FPGA.

We have to re-synthesis all logic modules from HDL and acquire new physical information.

Modern FPGA has architecture family and FPGA of the same family has similar fabric.

They can share the same logic library. Fortunately, each FPGA company only has couples

of family in the whole product lines. To create a whole library for all product lines is not a

huge task.

Physical information for a logic module stored in the logic library is area, geometric shape,

numbers of CLB, numbers of heterogeneous block, critical path delay, netlist, blif [92], posi-

tion of IOs (ports), position of CLB, and position of heterogeneous block. Since our modules

are all in rectangular shapes, area is di↵erent from CLB numbers because area of a logic

module may include some waste area. However, we still need numbers of CLB while selecting

featured context as a double check and make sure all context can be loaded into designed

region decided by featured context. Critical path delay is used for fast estimation of delay

cost in cost function while placing. As we showed in Fig. 45 (a) 1-4, modules of the same

size (without no waste CLB) may have di↵erent geometric shapes. Through our exploration,

we found out the same logic module with di↵erent shapes may have di↵erent delay and area

cost [90]. To generate a placement as we would mention in Section 5.3.1, providing more

selections of shape increases chances to have better area cost and delay. IO position is also

needed for better delay estimation for fast estimation in cost function. Fig. 45 (b) illustrates

wirelength estimation for delay with IO position in solid red line. Otherwise, we can only

use Manhattan, center to center, for delay estimation in placement, which is fast but it is

not very precise for a large module. Position of CLB is used for completing placement by

mapping CLB on floorplan. Netlist and blif are for merging logic modules together and

generating global connection among logic modules. In Section 5.2.2, we would detailed in-

troduce merging technique. Numbers and position of heterogeneous blocks are needed to

map heterogeneous blocks such as memory, DSP, etc., from a logic module to global place-

ment at specific locations. We only provide very limited function for mapping heterogeneous

blocks by replacing all heterogeneous modules in the global placement regardless position

information stored in the logic library.
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Figure 45: (a) Various shape of the same module. (b) Solid and dash red line shows wire-

length estimation from two modules.

5.2.2 Netlist Combination Tool

With the stored information from logic library or a trial around, a complete netlist needs

to be created to support global placement and routing by connecting all the modules. We

introduce an auxiliary tool called netlist combining tool (NCT) to combine netlist from

multiple logic modules to form a complete logic. Besides netlist or blif from each modules,

the tool also needs a list of modules in usage and IO information of top-level to complete

the task. Fig. 5.2.2 demonstrates a general flow of NCT. To create the top-level logic, the

following steps are needed:

• S.1 Creating a list of modules.

• S.2 Collect and modify netlist or blif of modules.

• S.3 Identifying the IO of top-level logic.

• S.4 Combining modules’ netlist.

S.1 is to identify which modules are needed for the function. The list of modules can be

obtained by using the scripts VTR provided to parse the top-level logic file, where each

module is a subfunction. Or, designers should manual input the list. To identify connection

80



between modules, name of IO (ports) of each module should be well designed in the stage

since NCT would connect IOs with the same name among modules and recognize it as the

only connection among the top-level logic. A fast renaming tool of IO for HDL, which is

very helpful, is provided by Verilog-Perl [91]. Or, if the logic modules is loaded from logic

library, swapping old IO name to new one in blif file is even easier. We collect and modify

collected netlist or blif in S.2. The modification is needed because we have to give a specific

name to each instance in netlist for avoiding repeated name among instances as well as fixing

legacy naming rule of VPR. A patch is provided for blif in NCT. It checks all random names

created by the VPR and traces corresponding nodes to name a specific and meaningful name.

For some nodes as internal nodes without connection from source or to sink, it adds-on the

module name after its original name for avoiding repeating name in top-level netlist. Here,

it does not rename IO of logic modules since name of IO is linked for global connections.

Top-level IO is introduced in S.3. The information should be provided by system designers.

It should follows the same format of netlist. NCT would directly load it to the global netlist

without modification. In S.4, NCT gathers all netlist of logic modules and IO definition to

create the top-level netlist. NCT also support PR applications to create the new netlist after

PR operation if global netlist is in need. Designers can simply swap netlist of new context

to part netlist belong to the old context. Though the overall optimization is not performed

in the step, the step is needed for giving the detail connection information for estimating

wirelength in the next stage of placement.

Note that in the original flow of VPR, combining logic function needs integration of the

modules verilog codes to get a complete logic function. Now, for a library based design,

designers do not need to get the original verilog files for combining the netlist. It saves

synthesis time and provides more flexibility. To design a new function, designers only needs

to list modules in usage, provide connection port name and top module IO information,

which are highlighted in red of Fig. 5.2.2. Then to finish the design, only results of modular

place and route is needed. For example, designers can fast create a new function by merging

multiple IP-cores into a new function. Generally, designers has no idea of detailed logic

design of IP cores but know function of IP-core. Linking all IP-cores together is easier and

faster than building logic from HDL in design consider point of view.

81



List of module

in usage

IO Definition

Input

Output

Global

Block A1 

Block B1 

Block C1 

Block D1 

Logic Library

(netlist, blif) Modification

Patch.

Top-level IO

Definition

Pre-synthesis Designers' Definition Patch & netlist Global Netlist

Blif to netlist

(optional)
IO renaming

(optional & 

Automation)

Reuse New Design

Figure 46: A general flow of NCT.

82



5.3 PLACE AND ROUTE OF PR

In the section, we would go through detailed design ideas of the place and route flow for

mapping PR logic on VPR. Referring to Fig. 5.1, the place and route flow is from stage three

to stage four. We start from modified version of BMP supporting PR, exploring types of PR

routes, PR-aware router, to local place and route.

5.3.1 Preliminary - BMP

BMP was introduced as a new type placer for placing heterogeneous modules based on

VPR [90] and logic library. It supports heterogeneous logic blocks while original VPR only

supports homogeneous logic blocks for placement [16]. The heterogeneous logic blocks may

have various shape. size, delay, etc. Di↵erent from previous works, BMP has B*-tree rep-

resentation [22] for improving searching in solution space. Fig. 47(a) illustrates a pseudo

floorplan result. Based on B*-tree representation, it can be converted into a binary tree

demonstrated in Fig. 47(b). For a logic module in floorplan, which is represented as a node,

may has an adjacent module at right side and the other adjacent module at up side repre-

senting as left and right son in the binary tree, respectively. For example, b1 module has

modules of b8 at right side and b0 at up side. In B*-tree, n8 and n0 are left and right son

of node n1, respectively. By using the B*-tree representation and corresponding physical

information from the logic library, and cost function [93], BMP completes floorplan.

Fig. 48 shows a floorplan of BMP with benchmark boundtop and Fig. 49 demonstrates

the the mapping result from BMP to VPR. The position of CLB from each module is loaded

back from logic library. As demonstration in Fig. 49, placement may contain some waste

area. There are two type of area, blank tile of logic module and modular placement incurring

waste area. One way to ease the penalty is through modifying parameters of cost function.

It makes BMP run more iterations to cool down in simulated annealing [90].

Modular placement is important for a PR logic function since it helps identify PR re-

gions, manage routing resource in advance, and maintain signal integrity while PR operation.

With modular placement, it is easier for designers to swap a new context to the targeting
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Figure 47: A placement and corresponding B*-tree representation.

area for PR operation. Signal interference happens at routes between modules of one and

multi-contexts. While PR operation, if routes pass through one-context modules, the routes

corresponding route components, e.g. switch and connection blocks, are also configured.

Designers should avoid these configurations since we have maintain signal integrity of one-

context modules. Therefore, modular placement is a solution to maintain signal integrity by

constraining routes of multi-context modules in the designed regions. Once it needs connect

to other modules, no matter modules of one or multiple contexts, it connects through pseudo

ports that we would introduce in the following sections.

5.3.2 BMP supporting PR

As illustration in the Section 5.3.1, we know that BMP [90] supports placement of hetero-

geneous logic blocks, a.k.a. logic modules, on VPR [16]. To further support PR logic, BMP

should access physical information, especially CLB numbers and area of logic blocks, of all

contexts of all modules. For dealing modules of one and multi-context, we discussed them
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Figure 48: Boundtop floorplan.

85



Figure 49: Boundtop placement.
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separately and derive the work from the original work of BMP [90]. For modules of one con-

texts, it is the same as the work of BMP [90]. It loads physical information fro logic library

to complete the work. For multi-context modules, an extra selecting mechanism is kicked

in to determine the featured context of each module. The featured context represents the

module with corresponding physical information while running global placement. Therefore,

it should guarantee that all contexts is able to be loaded in the designed region after global

placement. We applied an area-dominate mechanism to select the featured context among

various context of the multi-context module. The mechanism takes modules’ size rather

than CLB numbers as the condition. It is because a logic module has the same number of

CLBs but di↵erent area in various shapes caused by waste area. Therefore, the largest area

guarantees all contexts with various shapes can be loaded in the designed region. Of course,

there is a double check mechanism to make sure that CLB numbers of di↵erent contexts is

smaller or equal to the designed region.

5.3.3 Exploring Types of PR Routes and Port-Over-Track

As we discussed in the previous section, signal integrity while PR is an issue for designing

CAD supporting PR. Otherwise, it might accidentally change signal of static function and

cause unknown, wrong, or unstable signal causing system failed. To maintain signal integrity

while PR, we start to avoid the situation from very beginning stage of placement and routing.

Modular placement completed by BMP helps identifying regions for multi-context modules.

Thus, to manage routing resource becomes easier by restricting designed related resource. In

the routing stage, we search the designed region related routing resource and manage usage

of the resource under di↵erent connection condition. Routes may have di↵erent types of

connections resulting di↵erent routing resource of solution space. In the section, we discuss

the types of connections and provide port-over-track, which acts as quarantine or abutment

for routing between di↵erent types of connection, to manage routing.

Fig. 50 shows a FPGA having 6x6 logic element (LE), routing tracks, and IOs. It has

static logic regions and two PR regions. In the routing stage, even there is multiple regions

of static logic, we discards the definition of static regions but take all static LEs as the
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static type to simplify the routing process. In Fig. 50, LE in orange color indicates that

LE is in usage. For LE in PR regions, LE in blue and green indicate they are two di↵erent

PR logic functions located in di↵erent regions. LE in white is blank LE, which have no

configuration. Types of routes are classified into static to static, static to PR, PR to static,

and PR to PR. A tile located in a static region and to be connected to another tile located in

the same/another static region belongs to type of static to static connection. We illustrate

routes of the type with black lines in Fig. 50. To route a connection of the type, it is similar

to VPR with constrain of extra resource confinement. The routes have to avoid regions of

PR, which are blue and green regions in the figure.

Routes of static to PR or PR to static are similar. They are showed as magenta and

green lines from di↵erent PR regions in Fig. 50. While the source is a tile located in a static

region, it is not directly routed to a tile of sink located in a PR region. At beginning. the

route has resource of all of static regions for routing. Once it has to connect to any resource

within the PR region, the routing resource would be limited to the PR region for maintaining

signal integrity while PR. At the boundary between resource of static regions and the PR

region, we introduce pseudo port as abutment by technique called port-over-track. We would

detailed illustrate pseudo port later in the section. For PR to static routes, the scheme is

quite similar. At beginning, resource is limited to the PR region. After it traverse though

pseudo ports, it has full routing resource for all static regions.

PR to PR connection is further classified into two sub-type: two tiles in the same or

di↵erent PR regions. For a routes of two tiles of the same PR region, the router works as

VPR with resource limited to the same region. The blue route showed in Fig. 50 belongs

to the type. It can only use the resource within the regions. Rest of the resource, including

static regions and other PR regions, is forbidden in the routing. A net of two tiles from

di↵erent PR regions needs two nearby pseudo ports as source and sink for the route. We

showed it as the red route in Fig. 50. Again, pseudo ports are applied for connections from

PR regions to static regions, or vice versa. For the part between two pseudo ports, it is the

same as static to static connection. Resource confinement of PR regions still applies on it.
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From the above discussion, we know any routes traversing through both PR and static

regions need a quarantine to maintain signal integrity while run-time PR. We introduce

pseudo ports as the quarantine. In Fig. 50, thick lines with hatching around the PR regions

are quarantines and red points upon them are active pseudo ports. Pseudo ports separate

static and PR regions. A route passing through two regions has to be connect at a pseudo

port. From hardware point of view, we introduce technique port-over-track as pseudo ports.

We use tracks as abutments for connecting two type of regions. To access the tracks, designers

control connection blocks to access these pseudo ports. These ports can be used as either

pseudo source or sink in the routing. While run-time configuring logic, it only programs

tiles [15] of a PR region. Through well management of routing resource by avoiding tracks

as pseudo ports, it guarantees signal integrity of static routes while run-time PR.

5.3.4 PR-aware Global Routing

We introduce a new router called PR-aware router with resource management for seeking

solution in solution space. It is slightly di↵erent from the router of VPR by limiting resource

of PR regions and adding a new type of tracks acting as pseudo ports. After BMP finishes

floorplan and mapping the result back to VPR for generating placement, the flow kicks in

PR-aware router to complete global routing. Input files are the top level netlist creating by

NCT, the placement with featured contexts of multi-context modules, and the list of PR

modules.

Algorithm of PR-aware router is summarized in the Alg. 1. For each net, it starts from

the source of the net and searches its neighbor nodes to reach the proper sink of the net.

Each neighbor node is picked up according to the evaluation of cost and PR-aware router

checks whether the node is capable for the route. Here, PR-aware router kicks in the routing

resource management for checking the routes. If it finds a proper route, it records the

current node and search next node for another route. Otherwise, the tool discards the node

and choose another one. Besides original definition of source and sink in VPR, PR-aware

router also takes pseudo ports as sink or source in searching solution. The situation happens

if it has a source node located in the static and seeks sink node inside the PR regions.
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Then, it seeks the ports name of the PR region, by using pseudo port of port-over-track,

as substitution solution. The reverse step of seeking sink from a node located in PR to

static regions is similar. As we summarized in Section 5.3.3, PR-aware router generates a

route based on routes’ classification and rules. Since PR-aware router limits some resource,

possibility of routing fail is larger than general routing. Moreover, PR-aware router has an

extra checking step to check signal integrity after finishing routing stage. It simply checks

if routes stay in the same type of region. For example, if a route is from a source to a sink

within a PR region, the routes should not pass through any static regions nor other PR

regions.

We demonstrates routing results of two extreme cases by PR-aware router. For routing

considering no PR regions, which indicates all of the modules are static, is showed in Fig 51.

The router operates in certain case is very similar to VPR. The di↵erence is that the router

supports the flow of modular placement. For the other extreme case, we assume that all the

modules are PR regions demonstrating in Fig. 52. Once we preset all regions of logic modules

are PR regions, the routing resource are very limited. Any resource inside of any regions

are forbidden for global routing between modules. Therefore, available routing resource are

tracks between modules, tracks closing to IO, and tracks of blank tiles. Tracks between

modules are generally meant connection through pseudo ports here. They are connection

abutment, which can be used for connecting routes going into modules or out of modules.

Therefore, the abutments does not cost much resource on tracks compared to separated in

and out special tracks. For modern FPGA architecture with direct connection [94][66] to

adjacent logic blocks, resource confinement incurring congestion along tracks can further

be improved. Even though tracks closing IO might also be adjacent to PR regions on the

other side, they are like free tracks without resource confinement since IO are always taken as

mutual type, not static nor PR. For tracks around blank tiles, here it is waste area caused by

placement, the resource is like static region without any confinement. Through comparison

of Fig 51 and Fig. 52, it shows that routes congest around modules, which is benchmark

boundtop showed in Fig. 49. Since all connections between modules are crowded into limited

routing tracks, time-driven algorithm for routing used in VPR may not be not applicable

under the certain case. Congestion-driven algorithm to improve routability might be proper.
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Algorithm 1 PR-aware routing Flow
1: get module-based placement result, reconfigurable regions information and top-level

netlist

2: for current iteration number less than maximum iteration number do

3: for each net[i] of the net set do

4: check the source and sink of net[i]

5: For case 1: if source and sink in two reconfigurable regions A and B respectively

During route, the path, from source to sink of net[i], can go through PR region A

and B and all other static regions, but can not go through any other reconfigurable

regions

6: For case 2: if source and sink are all in a reconfigurable region A

During route, the path, from source to sink of net[i], can only go through PR region

A, but can not go through any other regions.

7: For case 3: if source in the PR region A, but sink in static region C

During route, the path, from source to sink of net[i], can go through PR region A

and all other static regions, but can not go through any other reconfigurable regions

8: For case 4: if source and sink all in the static regions

During route, the path, from source to sink of net[i], can go through all the static

regions, but can not go through any other reconfigurable regions

9: end for

10: check whether route successful or fail (check resource overused or not)

11: If route successful and meet the requirement, stop

12: end for

13: If route successful, get the route result

14: else route fail

92



Figure 51: General.
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Figure 52: PR-aware.

94



5.3.5 Local Place and Route

After finishing the global placement and routing with static modules and PR modules of

featured contexts, we then perform local place and route to optimize PR modules with

various contexts in stage four. The tool select one of unfinished PR module, and, each time,

it swap a new context into the designed region. Within the designed region, the tool place

CLB first and then routes connections. After it finishes the current context, it processes

next context until all contexts being done. Then, it iteratively go though every PR modules

of the design. Information of pseudo ports from previous stage is applied here as source and

sink for local place and route. The idea is di↵erent from conventional routing by searching

source and sink from IO. The are all substituted by pseudo ports for local routing. From

PR pointing of view, we only need the specific physical information and logic content, which

can be loaded from logic library, for swapping a new context for an old one of a PR module.

From system point of view, designers only need to send the piece of bitstream to complete

PR operation.

5.3.5.1 Local Place To perform local place for PR regions, we need position of pseudo

ports of a PR module and contexts’ netlist or blif. Here we provide two methods for local

placement: modified VPR and B*-tree. For the method of modified VPR, we create a VPR

architecture with the same area and aspect ratio as the PR module. Position of the pseudo

ports of the PR module is also mapped into VPR as IOs of the floorplan. Cost function and

simulated annealing follows general VPR’s setting for optimizing placement. Thus, VPR

places CLBs as general flow with constraint of preset IOs position, aspect ratio, and netlist

or blif for connection information. The second approach is to use BMP as a independent

placer. It also loads information of IOs position and aspect ratio. However, the approach

reuse BMP rather than VPR. It omits operations of reshape and rotation [90] since CLBs are

homogeneous in FPGA. Aspect ratio confines available floorplan area and shape. Connection

information are still needed by using netlist or blif. BMP optimizes the placement according

wirelength, delay, etc. After the floorplan generated by BMP, it maps the result back to

VPR as the new placement for the PR module.
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5.3.5.2 Local Route After the flow finish local placement and maps it back to the top

level placement, it then routes connections by a modified router of VPR. The di↵erence of

the modified router is that pseudo ports as source and sink of some nets are introduced

to the resource management. Inputs and outputs of a PR module act as source and sink,

respectively. Also, resource outside of the designed region, except tracks for pseudo ports,

for the PR module is restricted because we do not want routes to traverse outside of the PR

region. For each net, the router checks available routing resource of the PR module and seek

solution for successful routing. Here, it generally applies time-driven algorithm [16] for all

case as VPR.

5.3.6 Results and Demonstration

In the section, we show place and route of the PR mapping flow step by step. Benchmark

boundtop is demonstrated with a PR logic module of two contexts. FPGA architecture is set

to 45 nm technology with LE of four 6-input LUT set with 200 length-4 tracks [69][84]. To

simplify demonstration, there is no heterogeneous block, such as memory and DSP block.

Fig. 53 shows global placement of benchmark boundtop. The placement is assembled

from logic modules. In the figure, we can roughly identify each module’s region. There

are white CLB on the placement indicating waste resource, which is inevitable for modular

placement. The region highlighted in red is the only PR region. The following steps focus

on the region.

Fig. 54 is global routing of benchmark boundtop. The PR-aware router has routing

resource confinement at the PR region. It first routes all connections outside of the PR

region, which is known as static region, and then it routes the internal connections of the

region. The blue region of the Fig. 54 is the PR region. The routing is not condense since

only the PR logic could be routed inside the region. Between the red and blue lines, it

is routing channel around the PR region. The routes are intense since they have to pass

through PR region without go insides the region. Outside of region highlighted in red is

similar to the non-PR routing and relatively relax comparing to channels around the region.
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Figure 53: Global placement of PR boundtop.
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Figure 54: Global routing of PR boundtop.
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Here we demonstrate to load a new context into the PR region. Fig. 55 shows the

placement of the new context. Obviously, it only needs place CLB of the new context to

the designed region rather than the whole FPGA. As demonstration, the CLB is close to

boundary of the region. It has pseudo ports just around the boundary to connect source

or sink out of the PR region.. So, CLB would be placed into available resource close to

the boundary for better optimization. Fig. 56 demonstrates routing results of the current

context. As we mentioned, there is no need to route the whole FPGA. For local routing,

intense routing happens at tracks close to boundary. Because the flow has good optimization

on placement, routes around boundary with shorter length are good enough for routing

optimization. Meanwhile, because the PR region has limited resource for source and sink,

which are pseudo ports, most connections go through these ports incurring intense routing

around boundary.

5.3.7 Verification of the Work

The proposed scheme is based on VPR [16], where the netlist, placement, and routing files

are done using VPR’s rules, which can be briefly summarized as follows:

VPR first checks legality of the netlist by checking for duplicate declarations of blocks,

block types, and IO status - such as floating inputs or outputs, multiple connections to a

single output, duplications of an IO pad, etc. The corresponding rule definitions are located

in the file at ‘\base\check netlist.c.’ A similar check is performed on the placement results,

with the rules stored in ‘\base\read place.c’ used to read in and check the placement result for

legality. For example, duplicate name of blocks, illegal subblocks based on the architecture,

etc. would all fail the check. After this step, the placement results generated by BMP

would be taken as nodes in the routing graph. VPR’s router then checks legality of all

routing resources before generating routes. Here, we provide some information regarding

routing rules in VPR. The VPR routing rules check are stored in ‘\router\check router.c’

and ‘\router\check rr graph.c.’ It reuses the netlist again to check legality of the routing

resource. The placement result is verified in this stage to make sure that it matches the

description in the netlist file. In VPR’s source files, it mentions that the router checks two
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Figure 55: Local placement of a new context of the PR region.
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Figure 56: Local routing of a new context of the PR region.
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major rules: proper description for each net in the netlist files and proper connections of pins

spanned by the net. It checks a sink for two things: early termination of the sink without

connection to IO pad and no sink for the net. For the source of a net, it checks if a source

is valid for the net and if there is any fan in for the net. Similar to sink check, the source

should be from IO pad at some initial point. With all above rules of netlist, VPR guarantees

the netlist integrity before it actually generates routes. After the final routing, VPR checks

if it has exhausted net and routing resources. The corresponding rules are stored in the

‘\router\route common.c’. The step guarantees that the routing matches description of

netlist. Otherwise, it shows error to tell the user the resource is not empty indicating that

it does not match the netlist. Since our routing result passed all checks from VPR, we can

assume that the routing result is correct and matches the netlist.
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6.0 CONCLUSION AND FUTURE WORKS

6.1 DISSERTATION SUMMARY

Modern FPGAs introduce various opportunity of post-fabrication reconfigurabiliy for sys-

tem design. Our work demonstrates improvement of large area cost introduced by memory

system of modern FPGAs. We start from a monolithic stacking memory with an emerg-

ing nonvolatile memory device, ReRAM. Then, we introduce peripheral circuit designs of

FPGA’s components, i.e. LUT, CB, and SB, as well as uBRAM for both configuration and

temporary data storage. At the final part, we introduce CAD tools to support PR FPGA

for evaluating architectures and mapping applications.

In Chapter. 3, we proposed a 3D stacking structures built upon bipolar ReRAM crossbar

arrays, called 3D-HIM. The design is performed by alternating the deposition of ReRAM

materials in forward and reverse sequences. As demonstration of the simulation results,

the interleaved structure helps to maintain sensing margin and proper programming volt-

age while suppressing impact of sneak paths and leakage current. Compared with other

ReRAM structures, the proposed designs have advantages of simple fabrication and higher

memory capacity. Intuitively, 3D-HIM can be utilized in any bipolar ReRAM, especially

those materials with a higher resistance of LRS are preferable.

Chapter. 4 demonstrates a ReRAM FPGA with uBRAM, which is a combination of

FLASH of configuration storage and BRAM for temporary data storage. LUT and uBRAM

are based on 3D-HIM structure to save area cost. CB and SB are based on CRS structure to

maintain performance and share peripheral circuit in a crossbar for saving area cost. With

uBRAM as internal memory, the two stage configuration scheme is introduced to perform

fast PR. The data can be load into uBRAM in the first stage without stalling the current
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computation. In the second stage, it configures the FPGA in a very short time. Compared

with SRAM FPGA, ReRAM FPGA has 62.7% area reduction and 34% delay decreasing. We

demonstrate external and internal PR, which shows greater design flexibility than previous

manners.

Chapter. 5 demonstrates a PR mapping flow and corresponding tools for place and route

of PR FPGA. The tools are BMP and PR-aware router to support modular place and route

of FPGA. It is the first design automation PR flow and tools for academic usage. Meanwhile,

we minimize designers’ e↵orts of manually inputting information. The flow needs only a list

of modules and connection information between modules to complete the design. Designers

can use the flow to evaluate new architectures of FPGA and to map PR applications. Even

though we discussed ReRAM FPGA through the dissertation, the PR flow and CAD tools

are able to apply on modern FPGAs.

6.2 FUTURE WORK

The work presented here is cross multiple domains. It starts from structure of high density

ReRAM, circuit with ReRAM, system of FPGA, application with ReRAM FPGA, to CAD

tools for FPGA. Some works are still needed to refine the current work and make progress

of ReRAM FPGA to be realized to real products and improve modern FPGAs. We discuss

these topics from device and circuit level, system and application, to CAD tools in following

paragraphs.

6.2.1 Device and Circuit studies of ReRAM

With more researches on ReRAM, many novel materials have better characteristics, such

as power, latency, resistance of HRS and LRS, etc., circuit design of ReRAM needs an

improvement for these devices and advanced technology nodes. ReRAM with integrated

selector is a new research topic since good selector helps to enlarge size of array for increasing

memory density. The sense amplifier of the 3D-HIM should be improved to further reduce
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area cost and improve delay. Since area cost of ReRAM are area of CMOS components, to

save area of peripheral circuit, such as sharing drivers, reducing numbers of decoders, etc.,

is very important.

6.2.2 System and Application

By using ReRAM as memory components in FPGA, architecture studies of FPGA should

be involved to build FPGA of better performance or e�ciency in design. In Chapter. 4, we

have eight LE and an uBRAM as a RU for PR FPGA. Numbers of LE inside a RU and

corresponding size of uBRAM need further discussion for e�cient design. The discussion

requires realistic applications to determine better architecture. Even though PR operation

attracts many research works, a benchmark suite for verifying PR FPGA is still unavailable

as well as academic version of HDL designs for PR applications. Scheduling and loading

contexts to a PR FPGA is another study topic we might have in the future. Based on

di↵erent applications and various architectures of PR FPGA, issues of scheduling becomes

an optimization problem for specific occasions.

6.2.3 CAD for FPGA

We have done an initial work of CAD tools to support PR FPGA. However, optimization

and algorithm behind the tools still need refinement. Even we integrated current work with

VPR, however, a lot of temp files and patch are generated by our tools since VPR has no

support of PR. Deep integration with VPR should be provided soon. In the near future, a

research topic for CAD tools is to map result of place and route from the software platform

to a real FPGA product. We successfully mapped result of modular placement to Xilinx

board [95] based on the work from E. Hung, et al. [96] and our modifications. So, we can

verify and fine tune the tools for better estimation in delay, area cost, and power dissipation.

Next step, research work should map PR applications into commercial evaluation boards.
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