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EFFICIENT, LOCALLY-ENFORCEABLE QUERIER PRIVACY FOR DISTRIBUTED

DATABASE SYSTEMS

Nicholas L. Farnan, PhD

University of Pittsburgh, 2014

Traditionally, the declarative nature of SQL is viewed as a major strength. It allows database users

to simply describe what they want to retrieve without worrying about how the answer to their

question is actually computed. However, in a decentralized setting, two different approaches to

evaluating the same query may reveal vastly different information about the query being asked

(and, hence, about the user) to participating servers. In the case that a user’s query contains sensi-

tive or private information, this is clearly problematic.

In this dissertation, we address the problem of protecting query issuer privacy. We hypothesize

that by extending SQL to allow for declarative specification of constraints on the attributes of

query evaluation plans and accounting for such constraints during query optimization, users can

produce efficient query evaluation plans that protect the private intensional regions of their queries

without explicit server-side support. Towards supporting this hypothesis, we formalize a notion

of intensional query privacy that we call (I, A)-privacy, and present PASQL, a set of extensions

to SQL that allows users to specify (I, A)-privacy constraints to a query optimizer. We explore

tradeoffs between the expressiveness of several PASQL variants, optimization time requirements,

and the optimality of plans produced. We present two algorithms for optimizing queries with

attached (I, A)-privacy constraints and formally establish their time and space complexities. We

prove that one is capable of producing optimal results, though at the cost of greatly increased time

and space requirements. We use the other as the basis of PAQO, our implementation of an (I, A)-

privacy-aware query optimizer. We present an extensive experimental evaluation of PAQO to show
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that is is capable of efficiently generating plans to evaluate PASQL queries, and to confirm the

results of our formal complexity analysis.

Keywords Privacy-aware Query Optimization, Private Query Processing.
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1.0 INTRODUCTION

1.1 MOTIVATION

Increasingly, people are moving from operating solely on data stored at a single site to processing

data combined from many different sources. This shift is occurring for a multitude of reasons. The

creation of “mashups” of data and services offered by web sites has become a popular value-added

service that creates a richer experience for users. Statisticians are embracing meta-analysis of large

number of polls and samples from varied sources to increase the accuracy of predictive models.

Different corporations have adopted information sharing programs for mutual benefit on specific

projects and initiatives. The research questions surrounding how to perform distributed query pro-

cessing have been extensively studied in the literature [44]. While research efforts continue to find

new and more efficient ways to perform the types of processing exemplified here, the feasibility

of such operations is well established. The drastically different privacy concerns presented by

this distributed data processing paradigm have received relatively little attention by the research

community, however.

User queries to relational database management systems consist of a list of base data relations

from which data will need to be fetched and a series of specifications about what subset of the data

from each relation should be returned (e.g., return all of the information on red cars from a relation

storing lists of cars for sale), how data from different relations should be combined (e.g., cross-

reference car sale listings with information about the dealership selling them), and what further

operations should be performed on this data to produce the result desired by the user (e.g., count

the number of red cars for sale in a given zip code). Collectively, we will refer to this makeup of

a query as the intension of a query. When using centralized database systems, users issue their

queries to a single site that will perform all required optimization and processing to generate the
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results of that query. As such, when a user issues her query, she knows that the whole intension

of her query will be revealed to this single server. More importantly, she knows that it is the only

server that will learn the intension of her query. In a distributed environment, however, though the

user may issue her query to one server at a single site, many servers that are owned and managed

by different entities could participate in the evaluation of her query. If a user’s query requires data

stored and maintained at multiple different sites, these sites may need to work together to jointly

compute its results. For each operation these sites perform in evaluating the query, they learn more

of its intension.

Query intension could be, in part, comprised of information that users consider to be sensitive

or private in nature. Revealing such private information through the dissemination of query inten-

sion during distributed query processing can very easily lead to violations of user privacy. This

situation is made even more grave in that users are typically left unaware of how their queries will

be evaluated when they issue their queries. Popular relational database systems process queries

specified in declarative languages (e.g., SQL [40]). The declarative model allows users to sim-

ply state what information they would like, and the system processing their query will determine

the best way to retrieve it. While this model is a boon to users in that it frees them from having

to manually determine the fastest way to retrieve the information they desire, in the distributed

setting, it carries the consequence that users are left unaware of what servers, at which sites, are

processing the operations specified in their queries. Without the knowledge of how the intension of

their queries is implicitly revealed to remote servers during query processing, users cannot know if

their privacy will be violated in issuing a query, let alone the extent of the violation that will occur.

To concretely establish how user privacy can be violated over the course of distributed query

processing, the next section presents an example scenario that will be referenced throughout this

dissertation.

1.2 EXAMPLE SCENARIO

Consider Alice to be a low-ranking corporate executive at a large manufacturing company called

ManuCo. Recently, Alice has become concerned that her company may not be following the
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proper procedures for disposing of the industrial solvents used in their many manufacturing plants

located around the world. Specifically, she is worried that her employer may be dumping large

quantities of toxic pollutants into rivers and lakes in the vicinity of ManuCo’s plants. As a first

step in her investigation to determine if her concerns are valid, she wishes to join data stored by her

employer with that of an environmental watchdog group (Pollution Watch) and a waterway

mapping service (Mapper) to see if there is any correlation between where her company has plants

holding industrial solvents and where those chemicals are appearing as waterway pollutants. To do

so, she constructs a query over records describing hazardous solvents owned by ManuCo (stored

in the Supplies table on ManuCo’s Inventory database server), details of ManuCo’s manu-

facturing plants (stored in the Plants table on ManuCo’s Facilities server), water pollution

data (stored in Pollution Watch’s Polluted Waters table), and waterway location data

(stored in Mapper’s Waterway Maps table). Alice expresses her query in SQL as follows:

SELECT *

FROM Plants, Supplies, Polluted_Waters, Waterway_Maps

WHERE Supplies.type = ’solvent’

AND Supplies.name = Polluted_Waters.pollutant

AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name

AND Waterway_Maps.location = Plants.location;

An illustration of how this query could be processed is shown in Figure 1. Solid lines indicate

Alice issuing her query to the query processing system, and the distribution of partial plans to

evaluate her query to each server involved. The final result of the query is passed back to Alice

along the dashed line.

Clearly, Alice would consider portions of the intension of this query to be sensitive. If her

employer were to become aware that she was combining their inventory data with data describing

where the chemicals ManuCo uses are showing at waterway pollutants, her job could be put at

risk because she “knew too much” or was “asking the wrong questions.” Similarly, if Pollution

Watch learned that Alice was cross-referencing her employer’s chemical stocks with known in-

3



Alice

    SELECT * FROM Plants, Supplies, Polluted_Waters, Waterway_Maps
    WHERE Supplies.type = 'solvent'
        AND Supplies.name = Polluted_Waters.pollutant
        AND Plants.id = Supplies.plant_id
        AND Polluted_Waters.name = Waterway_Maps.name
        AND Waterway_Maps.location = Plants.location;

Query 
Optimizer

Mapper

Trusted

Honest but Curious

Join,
name = pollutant,

location = location,
@ Inventory

Join,
name = name,
@ Mapper

Scan,
Polluted_Waters,
@ PollutionWatch

Scan,
Waterway_Maps,

@ Mapper

Scan,
Plants,

@ Facilities

Scan,
Supplies,

@ Inventory

Select,
type = 'solvent',

@ Inventory

Join,
id = plant_id,
@ Inventory

Scan,
Polluted_Waters,
@ PollutionWatch

Scan,
Plants,

@ Facilities

"solvent" ...

"solvent" ...

"solvent" ...

Scan,
Supplies,

@ Inventory

Select,
type = 'solvent',

@ Inventory

Join,
id = plant_id,
@ Inventory

Join,
name = pollutant,

location = location,
@ Inventory

Join,
name = name,
@ Mapper

Scan,
Waterway_Maps,

@ Mapper

Pollution
Watch

Facilities

Inventory

Figure 1: An illustration of processing Alice’s example query from Section 1.2.

stances of chemical pollution, her job could again be put at at risk by external pressure from

Pollution Watch.

If either Pollution Watch or ManuCo were to perform the combination of both parties’

data sets as specified by Alice’s query, Alice would be risking her job simply by issuing this

query. Unfortunately, Alice has no way to express her desire that this sensitive operation should

not be carried out by either ManuCo or Pollution Watch. A traditional query processing

approach would simply devise a plan to return results to Alice in the shortest amount of time and

follow this plan to produce the results to her query. However, doing so could well have ManuCo

or Pollution Watch evaluating sensitive portions of Alice’s query, violating her privacy and

putting her job at risk. The traditional notion of optimizing user queries purely to find the fastest

plan would not work out well for Alice. In this scenario, Alice needs her privacy notions to be

taken into account when a plan for evaluating her query is devised. The best plan from Alice’s

point of view is one that upholds the privacy of the intension of her query.

4



1.3 PROBLEM STATEMENT AND SHORTCOMINGS OF EXISTING APPROACHES

Trivially, Alice could produce the desired result of her query and protect her privacy by using a

technique described in the literature as pure data shipping [32, 44]. Using this approach, Alice

would simply request all of the data stored by each server hosting data that Alice needs to resolve

her query. With all of this data on her personal machine, Alice could combine and process the data

however she wants without revealing her query to any third party.

While this approach will provide the best case in terms of privacy protections, it comes at a

terrible cost to query performance. As the size of the datasets being accessed increases, pure data

shipping quickly becomes impractical as the cost to evaluate the query becomes dominated by the

cost to transfer entire data sets to the user for processing.

Private information retrieval (PIR) has been proposed as an approach to protecting query inten-

sion in very specific circumstances [14, 47, 7, 8, 70, 80, 54, 60, 59, 22]. PIR techniques allow users

to retrieve specific items from a single dataset without revealing to the server or servers hosting that

dataset what item the user was interested in. While PIR has been shown provide the same privacy

guarantees as pure data shipping, it can only protect the intension of relational select operations.

Users that wish to issue general relational queries in a privacy preserving manner are left to process

all operations themselves after retrieving results from the server via PIR.

As another approach to protecting the privacy of users accessing data stored on remote systems,

Oblivious RAM (ORAM) focuses on hiding the sequence of memory locations accessed during the

execution of a program [35, 63, 36, 67, 4, 17, 38, 46, 71]. Through ORAM, users can keep the

actions that they perform on remotely stored data private.

Both of these approaches require explicit server-side support to protect user privacy. Even if

a user wished to issue a simple selection query that could be protected using PIR or ORAM, if

the server she is querying has no vested interest in protecting user privacy (e.g., ManuCo’s servers

from the above example), neither PIR nor ORAM can be of any practical use.

This state of affairs in distributed query processing leaves users with two uncomfortable ex-

tremes: an efficient but potentially privacy-violating approach that has several distributed sites

evaluate different portions of user’s query, and the privacy-preserving but expensive approach pre-
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sented by pure data shipping. This dichotomy leads to the central problem addressed by this

dissertation:

The transition from centralized to distributed database management systems introduces novel

privacy concerns for users in regards to the leakage of the query intension. Without a way to

identify sensitive portions of their queries and specify how intensional revelations could violate

their privacy, users must either sacrifice the efficiency and ease of use that relational database

management systems have offered users for the last 40 years, or suffer privacy violations that they

will not know the existence or extent of.

In this dissertation, we propose to use distribution to solve the very problem that it creates.

We present the novel notion of (I, A)-privacy. Given a user’s specification of what portions of

her query are considered to be sensitive and what remote servers this sensitive query intension

should be kept from, an (I, A)-privacy-aware query optimizer would produce an evaluation plan

upholding the user’s privacy constraints.

Even with a method to communicate notions of privacy to a distributed database system, how-

ever, care must be taken in how such notions are accounted for during query processing to en-

sure that user queries are evaluated in both an efficient and privacy-preserving manner. A simple

approach to accounting for user privacy during query processing would be to use a traditional

database query optimizer to determine the ordering of how a user’s query should be evaluated (i.e.,

the order in which different datasets should be combined, and when other processing operations

should occur), and then simply assign different servers to perform the operations in this ordering

according to the user’s notion of privacy (e.g., Alice would not want either Pollution Watch

or ManuCo to combine the Polluted Waters and Supplies tables). A similar approach

is taken in [18] to enforce access controls on relational data during distributed query processing.

We will show, however, that even a simple example can result in unnecessarily expensive query

evaluation using this approach. In Section 6.2, we will present a counterexample that shows that

users’ privacy notions must be accounted for when constructing a plan to produce the results of a

user’s query. This underpins the hypothesis of this dissertation.
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1.4 ACCOUNTING FOR USER SPECIFIED CONSTRAINTS DURING DISTRIBUTED

QUERY OPTIMIZATION

It is the hypothesis of this dissertation that, by extending SQL to allow for declarative specification

of constraints on the attributes of query evaluation plans and accounting for such constraints

during query optimization, users can produce efficient query evaluation plans that protect the

private intensional regions of their queries without explicit server-side support.

In this dissertation, we present an approach to allow users to protect the intension of queries

that they issue to distributed database systems. Our approach empowers users with the ability to

specifically identify the portions of their queries that they consider to be private or sensitive in

nature, and denote which servers or sites in the system should be given access to this sensitive

intension over the course of query evaluation. As users’ ideas of what is considered to be private

information will vary widely not only from person to person, but also from query to query, we

ensure that our approach enables users to mark any portion of their query as sensitive.

This dissertation further presents an analysis of how such user constraints on query evaluation

plans can be enforced. We show that our approach is locally-enforceable; i.e., users can ensure

the protection of the intension of their queries themselves, without the explicit support of remote

servers. We further develop and analyze algorithms to provide this utility to users.

Finally, we present our work towards making such protections a reality for distributed database

users. To this end, we have developed PAQO, an SQL distributed query optimizer that supports

user-specified constraints.

1.5 CONTRIBUTIONS

To support the hypothesis stated above, in this dissertation we make the following specific contri-

butions:

1. In Chapter 4, we develop a formal definition of intension-based user privacy called (I, A)-

privacy, which allows users to specify that some subset, I , of the intension of their query
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(which we will refer to as an “intensional region”) is kept hidden from some set of adversarial

principals, A.

2. In Chapter 5, we present Privacy-Aware SQL (PASQL), a set of extensions to SQL with the

capability of expressing (I, A)-privacy constraints. We show that that (I, A)-privacy is flex-

ible enough to express private information retrieval (PIR) privacy constraints (Section 5.1.5).

We also develop a preference algebra capable of prioritizing and balancing competing (I, A)-

privacy constraints, thereby allowing users to specify complex privacy preferences in addition

in addition to hard requirements (Section 5.1.3 and 5.1.4). Further, we use this preference alge-

bra to allow users to explicitly balance the often competing goals of privacy and performance

(Sections 5.3).

3. In Chapter 6, we first formally establish that (I, A)-privacy constraints can be locally enforced.

Users wishing to protect their privacy through using (I, A)-privacy techniques can do so with-

out explicit server-side support (Section 6.1). We then examine the tradeoff space of PASQL

constraint expressiveness, query optimization performance, and query plan optimality (Sec-

tion 6.3). Finally, we prove that under certain limits to expressiveness, we can use dynamic

programming-based query optimization to find the fastest of the most preferred query plans

for a given user query with (I, A)-privacy constraints and formally establish a worst case opti-

mization time complexity for our algorithm to do so (Sections 6.5 and 6.6).

4. In Chapter 7, we present our Privacy-Aware Query Optimizer, PAQO. PAQO is capable of opti-

mizing distributed queries with attached PASQL constraints using a heuristic-based algorithm

that is capable of efficiently producing highly-preferred query plans (Sections 7.1 and 7.3). We

formally and experimentally show that this heuristic approach requires only linear overhead to

optimization time (Sections 7.2 and 7.4).

In establishing a syntax and semantics for PASQL, we create a mechanism for users to express

their concerns for the privacy of the intension of their queries such that this privacy can be enforced

by users alone. We show that not only is the problem of finding the fastest plan that best matches a

user’s privacy constraints solvable, but we provide an algorithm that provably solves this problem.

Finally, we implement heuristic support for PASQL queries in PAQO to show that enforcing (I, A)-

privacy constraints is practically feasible. Together, these contributions validate the hypothesis of

this dissertation.
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1.6 OUTLINE

The rest of this dissertation is structured as follows: Chapter 2 overviews background information

on query processing and optimization. Chapter 3 presents a summary of related work to frame

the contributions of this dissertation within the bodies of literature on user privacy and distributed

query processing. Chapter 4 presents (I, A)-privacy, our notion of intension-based user privacy.

Chapter 5 presents PASQL, our set of extensions to SQL that enable users to express constraints

over the queries they use to protect the intension of their queries according to (I, A)-privacy.

Chapter 6 analyzes the enforcement of PASQL constraints, exploring the tradeoffs presented by

different approaches to enforcement, and showing that any approach can be taken without the need

for explicit server-side support. Chapter 7 presents our implementation of a Privacy-Aware Query

Optimizer, PAQO, as well as a comprehensive performance evaluation of this approach. Finally,

Chapter 8 concludes this dissertation with a summary of its contributions, an overview of directions

for future work, and a discussion of its impact on both the research community and society as a

whole.
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2.0 BACKGROUND

In this chapter, we will provide a brief overview of the background knowledge on query process-

ing that will be assumed throughout the rest of this dissertation. Within this summary we present

a classic optimization algorithm for relational queries that is used as the basis for the novel algo-

rithms proposed in later chapters of this dissertation for enforcing (I, A)-privacy constraints.

2.1 QUERY PROCESSING AND RELATIONAL ALGEBRA

The basic processing of an SQL query involves the following steps: parsing, reorganization, op-

timization, code generation, and plan execution. The user query is first parsed based on whatever

input query language was used (in this dissertation we deal exclusively with PASQL, which extends

SQL [40]) and transformed to a representation that the query processor can operate on directly. In

most query processing systems (and further what we will consider for the purposes of this disser-

tation), this representation is a tree of relational algebra operators leafed by read operations on the

source database relations for the query [26].

Although databases must deal with bags of tuples, relational algebra formally operates on sets

of tuples. Relational algebra can be defined in terms of six primitive operators: selection (σ), which

returns only tuples from the input relation that match some given selection criteria; projection (π),

which reduces the arity of the tuples it processes by eliminating unwanted attributes; Cartesian

product (×), which returns all possible combinations of tuples from two input relations; rename

(ρ), which changes the labels of the components of the tuples it processes; set union (∪); and

set difference (\). One notable operator that can be defined in terms these primitives operators

is join (./). Join combines two input relations using selection criteria (e.g., combining a relation
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containing tuples about cars for sale with a relation describing dealerships such that tuples with

matching dealership ID value are combined), as opposed to Cartesian product which does so

exhaustively.

Once the query processor has converted the user query to an internal representation, the query

is reorganized and optimized according to available meta-data (e.g., relation cardinality and at-

tribute selectivities) to ensure its efficient evaluation by the database engine(s). This optimization

is possible because the relational algebra operations used to resolve database queries have great

flexibility in their relative ordering. Different relations needed by a query can be combined in any

order and still produce a correct result. For example, to combine three tables A, B, and C, the same

result will be produced whether A and B are joined first, B and C are joined first, or A and C are

joined first (e.g., (A ./ B) ./ C = A ./ (B ./ C) = (A ./ C) ./ B). Optimization is required be-

cause this ordering will drastically affect the resources required (e.g., CPU time, disk bandwidth,

network bandwidth) required to evaluate the query. If A and B are both very large compared to C,

for example, using C in the first join operation could result in a quicker overall plan by producing

a much smaller intermediate result.

The optimization phase produces a query plan that describes the steps that an execution engine

should take to efficiently compute the result of a query. Formally, we define a query plan as follows:

Definition 1 (Query Plan). A query plan Q = 〈N,E〉 is a directed, acyclic, fully-connected graph

with a single root where N ⊆ N and E ⊆ N × N . An element n of the node set N is a ternary

n = 〈op, params , s〉 that describes a relational operator (op), the parameters to op (params), and

the server at which this operator is scheduled to be executed (s). The edge set E describes the data

flow, i.e., the producer/consumer relation, between relational operators.

Similarly, we define a well-formed query plan as follows:

Definition 2 (Well-Formed Query Plan). A query plan Q is well-formed iff (1) Q corresponds to

a valid relational algebra expression and (2) for each node n = 〈op, params , s〉 ∈ Q, the server

s is capable of both executing the operation described by n and transmitting the result of that

operation to the server annotated to execute the parent node of n in the query plan Q.

Figure 2 is a graphical representation of a well-formed query plan corresponding to Alice’s

query from our motivating example in Section 1.2.
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Join,
name = pollutant,

location = location,
@ Inventory

Join,
name = name,
@ Mapper

Scan,
Polluted_Waters,
@ PollutionWatch

Scan,
Waterway_Maps,

@ Mapper

Scan,
Plants,

@ Facilities

Scan,
Supplies,

@ Inventory

Select,
type = 'solvent',

@ Inventory

Join,
id = plant_id,
@ Inventory

Figure 2: A query plan for Alice’s query. Node borders correspond to evaluation sites.

To complete the processing of a query, a database management system must transform the

query plan generated during optimization into a representation that can be directly evaluated by the

database execution engine through the process of code generation. This code is then evaluated by

the database system to produce the result of the query. This final step is known as plan execution.

For further review of query processing and relational algebra, we refer the reader to [26].

2.2 CLASSIC QUERY OPTIMIZATION ALGORITHM

To describe the classic dynamic programming [10, 16] based query optimization algorithm from

the literature [69, 44, 45], we first present the general approach in Algorithm 1, and then detail the

sub-functions that it calls in Algorithms 2, 3, and 4.

As can be seen in Algorithm 1, the classic dynamic-programming based query optimization

algorithm proceeds as follows. First, the algorithm enumerates all of the base relations containing

data needed to evaluate the query, and then considers all of the ways that this data can be read from

disk (lines 1-3 of Algorithm 1). In some cases, the entire relation will need to be read from disk and
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Algorithm 1 “Classic” dynamic programming query optimization algorithm.
Require: SPJ query q on relations R1..Rn, with selection/projection/join conditions C1..Cm.

1: for i = 1 to n do do
2: optP lan[{Ri}]← ACCESSPLANS(Ri)
3: PRUNEPLANS(optP lan[{Ri}])
4: for i = 2 to n do
5: for all P ⊂ {R1..Rn} such that |P | = i do do
6: optP lan[P ]← ∅
7: for all O ⊂ P do do
8: l← optP lan[O]
9: r ← optP lan[P/O]

10: cs← {C1..Cm}
11: jps← JOINPLANS(l, r, cs)
12: optP lan[P ]← optP lan[P ] ∪ jps
13: PRUNEPLANS(optP lan[P ])

14: PRUNEPLANS(optP lan[{R1..Rn}])
return optP lan[{R1..Rn}]

considered to produce the result of a query. When only a subset of a relation is needed, however,

indexes on base relations can be used to greatly speed up disk reads. An index provides pointers

to on-disk locations of tuples with certain attribute values (e.g., an index on the color attribute of a

relation describing cars for sale would greatly speed up a query that was only looking up red cars).

We refer to these considered approaches for reading data as access paths for the base relations

specified in the query.

The best access paths for the current query are then used to bootstrap the bottom up dynamic

programming approach to generate query plans. Iterating over increasing join levels (the number

of base relations involved in a query plan, line 4), the algorithm combines all feasible previously-

realized subplans towards constructing a plan to evaluate the entire query. For example, the algo-

rithm will combine all possible access plans to find all 2-way joins. It will then look at all feasible

combinations of 2-way joins and access plans to produce 3-way joins. From there it will proceed

to examine all feasible combinations of 2-way joins (bushy joins) and all feasible combinations of

3-way joins and access plans (left/right deep plans) to produce 4-way join plans and so on until

all base relations in the query are joined together. Once all n-way joins have been established, the

fastest plan to resolve the query is returned.
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Algorithm 2 ACCESSPLANS: Access plan enumeration.
Require: A relation Ri to enumerate access plans for.
Require: The conditions C1..CM specified as part of the query.

1: aP lans← ∅
2: c← POSSIBLE CONDS(Ri, {C1..Cm})
3: for each physical scan operator, po do
4: New ← NEW SCAN(po,Ri, c)
5: aP lans← aP lans ∪ {New}

return aP lans

The possible access plans are rather simply enumerated by the ACCESSPLANS function (called

on line 2 of Algorithm 1, and shown in Algorithm 2), while the possible ways of performing the

join of each pair of subplans are enumerated through the use of the JOINPLANS function (called on

line 11 of Algorithm 1, and shown in Algorithm 3). In this classic algorithm, both functions enu-

merate all applicable SQL conditions that can be applied to the result of the join (e.g., selections,

projections, aggregates) and iterate through all possible physical operators for performing the cor-

responding relational operations on their targets (e.g., nested loop joins, merge joins, or hash joins

on two subplans in JOINPLANS; sequential scans, index scans, bitmap scans on individual base

relations for ACCESSPLANS).

In either case, after enumerating potential plans, dominated plans must be pruned so that fewer

options need be investigated in constructing plans at later join levels (lines 3 and 13 of Algo-

rithm 1). As shown in Algorithm 4, one plan dominates another that joins the same set of relations

if it is faster and has at least an equally interesting sort order. Operations producing specific sorted

orders of tuples are said to be interesting if they can be used to speed up later operations in the

query plan (e.g., if tuples are already sorted according to a name attribute, a merge join on the

name attribute can be performed without an explicit sort operation). PRUNEPLANS is also called

at the end of Algorithm 1 to ensure only the best plan to evaluate the query remains. In the classic

case, the best plan is the fastest plan. We formally define the notion of plan domination used in the

Classic algorithm as follows:
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Algorithm 3 JOINPLANS: Join enumeration psuedocode for the classic dynamic programming

query optimization algorithm.
Require: A set of plans that will make up the left side of a new root join Left1..Leftu.
Require: A set of plans that will make up the right side of a new root join Right1..Rightv.
Require: The conditions C1..CM specified as part of the query.

1: joinP lans← ∅
2: for i = 1 to u do
3: for j = 1 to v do
4: c← POSSIBLE CONDS(Lefti, Rightj , {C1..Cm})
5: for each physical join operator, po do
6: New ← Lefti ./po,c Rightj
7: joinP lans← joinP lans ∪ {New}

return joinP lans

Definition 3 (Classic Plan Domination). A plan p is said to dominate another plan p′ in the Classic

algorithm if:

• p and p′ join the same set of tables AND

• p sorts tuples based on an equal or extended list of attributes compared to p′ AND

• p is faster than p′

This notion of plan domination ensures that any plan pruned from the search space can be

completely replaced by another discovered plan anywhere it could have been utilized as the basis

for future plans. Note that the Classic algorithm uses a heuristic of “pushing down” SQL conditions

(e.g., selection criteria, join conditions, projection operations) as far down in the tree as possible.

As soon as one of these conditions can be evaluated, it is added to the plan (lines 2 and 4 of

Algorithm 2 and lines 4 and 6 of Algorith 3). This makes it tivial to see how access plans for

the same table can replace one another. Any plan to read data from a base relation will apply

any necessary selection and projection conditions when scanning the data and, hence, any plan to

access a given table will produce the same resulting tuples.

For all other plans, we note that the subproblems of joining two base relations together, then

three, then four, etc., exhibit optimal substructure. For example, the optimal plan for A ./ B can

always be extended to the optimal plan for (A ./ B) ./ C. As such, there is no harm in pruning
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Algorithm 4 PRUNEPLANS: A function to prune dominated plans from a given join level according

to classic domination metric.
Require: A list Q of query plans joining the same number of base relations.

1: for all p ∈ Q do
2: reject← False
3: for all other ∈ Q|p! = other do
4: if ROOT SITE(p) == ROOT SITE(other) then
5: if p has a more interesting sort order then
6: if cost(p) < cost(other) then
7: Q.remove(other)
8: else if cost(plan) > cost(other) then
9: reject← True

10: break
11: if reject then
12: Q.remove(p)

suboptimal partial plans. Further, any plan that joins the same relations will input all of the same

base relations, and (at varying points) apply the same SQL conditions. Hence, any plans that join

the same base relations will produce the same results. By finding the best plans for joining all

pairs of base relations together, then all sets of three base relations together and so on, the classic

algorithm can cut large number of potential plans from the search space that it must explore while

still arriving at the optimal solution.

We will refer to the overall algorithm realized through the combined pseudocode presented in

Algorithms 1, 2, 3, and 4 as the Classic algorithm.

A simple approach to implementing support for (I, A)-privacy constraints in a distributed

database system would be to take any centralized database management system that implements

this classic query optimization algorithm, and then perform site selection for each operation in the

resulting plan to support the constraints attached to a given query. [18] uses such a two-phase

optimization approach to enforce access controls on relational tuples as they are processed during

query evaluation. As we show in Section 6.2, however, this post-processing approach can result

in woefully inefficient query plans compared to an approach that accounts for constraints during

query optimization (taking, in one case, an estimate of over 24,000 times as long to execute).

Hence, constraint adherence should be accounted for during query optimization.
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2.3 SUMMARY

In this chapter, we overviewed necessary background information assumed throughout the rest of

this dissertation. We formally established the concept of a query plan, which will be used and refer-

enced throughout this dissertation. We also presented the classic dynamic programming algorithm

which is used as the basis for the novel optimization algorithms presented in this dissertation.
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3.0 RELATED WORK

We now overview several areas of recent work related to this dissertation. Specifically, we discuss

the relation of our work to (i) data privacy technologies, (ii) techniques for private database opera-

tions, (iii) private information retrieval, (iv) oblivious RAM, (v) distributed query processing, and

(vi) query optimizers built for other security and privacy goals.

3.1 DATA PRIVACY

Often, discussions of database privacy concerns focus on the privacy of those whose information

is stored in the database. This area of work was founded in response to the discovery that most

Americans can be uniquely identified by their 5-digit ZIP code, gender, and date of birth [68, 74].

This troubling revelation entailed that data releases previously considered to present anonymized

data could be easily deanonymized.

k-anonymity [68, 74] was presented as the first approach to solve this problem of properly

anonymizing data releases. k-anonymity is underpinned by the concept of quasi-identifiers: at-

tributes of the data that could be used to identify the individuals that the data describes. k-

anonymity is a syntactic privacy condition such that a data release is said to be k-anonymous

if there are no fewer than k entries in the release that share a unique set of quasi-identifiers.

A key weakness of k-anonymity is that if all k entries in the release exhibit the same sensitive

trait (e.g., a set of k entries sharing the same quasi-identifiers in a k-anonymized release of med-

ical records are all shown to have cancer), then the privacy of the people represented by those k

entries could still be violated. To address this concern, l-diversity was proposed in [51]. l-diversity

improves upon k-anonymity by stating that all blocks of k similar entries in a data release should
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contain l sufficiently different values for sensitive attributes of the release. This notion was again

refined in [49] to give rise to t-closeness. A release is said to exhibit t-closeness if the l different

values for a sensitive attribute within a block of k entries exhibit a difference from the distribution

of sensitive attribute values for the table as a whole that is no greater than a threshold, t.

A contrasting approach towards a similar goal is presented by work on differential privacy [24,

25]. Differentially private databases aim to maintain the utility of information stored in a database

while ensuring that the answer to a query returned by a database containing information pertaining

to a certain user is indistinguishable to the answer that would be returned had that user’s data not

been in the database. This is accomplished by adding noise to query results according to some

carefully chosen distribution to provide strong, semantic guarantees of privacy for people whose

data is stored in the database. Specifically, a randomized function K gives ε-differential privacy if,

for all data sets D and D’ differing by at most one row, and all S ⊆ Range(K):

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S]

Where the probability is over the coin flips of K.

While protecting the privacy of users whose information is contained within released or avail-

able datasets is still an active and interesting area of research, it solves a problem orthogonal to

that which this dissertation addresses. In this dissertation, we protect the privacy of users who are

querying distributed database systems.

3.2 PRIVACY-PRESERVING JOINS

Work has also been done to allow for set operations or joins to be performed on data sets from

two independent parties while revealing to each party no more about the other’s input data set than

can be inferred from the output of the operation. In [3], it was established that set intersection, set

intersection result size, equijoin, and equijoin result size can be performed and nearly meet such

data privacy-preserving assumptions (the equijoin-size protocol can leak the existence of duplicates
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or even the intersection set). Secure co-processors have been utilized to eliminate such leakages

and allow for more general operations [2].

Similarly, these works are not concerned with protecting the operation being performed or the

arguments to that operation (i.e., the intension of the query), only relational data provided as input

but not present in the result.

3.3 PRIVATE INFORMATION RETRIEVAL

In essence, Private Information Retrieval (PIR) is a technique for retrieving some information from

a database without revealing to the server(s) hosting that database the criteria for selecting items

from that database (the indices of the bits that the querier is interested in). The problem addressed

by PIR was originally formulated as follows: given some l servers that store replicated copies of

a database that is viewed as a length n binary string x = x1 . . . xn, the goal of PIR is to allow a

user to learn the value of some desired bit xi without allowing any server to gain information about

the value of i [14]. Initially, l was specified to be l ≥ 2 to achieve a communication complexity

of less than O(n) bits, where n is the size of the dataset being queried. The approach presented

in [14] requires multiple non-colluding servers to host replicas of the database that a user wishes

to access, and necessitates a communication complexity of O(
√
n) bits. This approach provided

strong information-theoretic privacy guarantees to users, and has appropriately come to be known

as information-theoretic PIR. Recent advances in information-theoretic PIR have focused on not

only improving the required communication complexity, but also improving the robustness of the

schemes in the face of Byzantine adversaries [48]. The issue of robust PIR was first addressed

in [7, 8]. These works established that for l servers, if k of the servers respond to a PIR request and

v of those k respond incorrectly, their scheme will tolerate t colluding servers without revealing the

user’s query if v ≤ t < k/3. In [22], a scheme exhibiting the theoretically maximum Byzantine

robustness is demonstrated (v < k − t − 1) with a communication complexity of O(v(k + l)).

A method for performing information-theoretic PIR using widely implemented database access

methods (hash indices and B+ tree indices) has also been demonstrated in [59].
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PIR using only a single server was established in [47]. Given the proof from [14] that information-

theoretic PIR with a single server requires a communication complexity of O(n) bits, however,

single server approaches instead relax their security assumptions to assume a computationally-

bounded adversary. Hence, the single-server is also referred to as computational PIR. In [47], the

security of the presented scheme is based on the quadratic residuosity problem.

While the practical feasibility of single-server has been called into question [70], more effi-

cient techniques for performing computational PIR schemes have since been proposed. In [55],

an approach to PIR is proposed that bases its security in linear algebra. The authors introduce a

novel security problem, the Hidden Lattice Problem, and show that it is related to NP-complete

coding-theory problems. This approach is especially amenable to implementation on general pur-

pose computing on graphics processing units (GPGPU) as demonstrated in [54]. The authors of

[60] demonstrate that this approach, as well as advanced approaches to multi-server PIR, could

perform up to an order of magnitude faster than a trivial transfer of the entire database for users

operating on sufficiently large databases over an average consumer-grade network connection. Ef-

ficient approaches to computational PIR have also been demonstrated through the use of secure

co-processors [80].

A hybrid information-theoretic/computational PIR scheme is proposed in [21]. This scheme

combines the computational efficiencies established in [55] with the robust, communication-efficient

properties of [22]. The resulting scheme maintains the robustness of [22] and offers performance

superior to either of the base schemes.

Systems implementing (I, A)-privacy support can utilize any of these techniques in the spe-

cial case that (1) the user specifies privacy constraints on the execution of her query that can be

achieved through the use of PIR, and (2) the database servers providing the required data support

a practical technique for PIR. This requirement in and of itself also highlights an advantage of our

work: it allows users to protect their privacy when interacting with database severs that have only

rudimentary query processing capabilities (see Proposition 1 in Section 6.1), while still providing

the capability for users to take advantage of more advanced techniques such as PIR, when they are

available and applicable.
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3.4 OBLIVIOUS RAM

Oblivious RAM (ORAM) algorithms hide the sequence of memory locations accessed during the

execution of a program [35]. These algorithms can be used to protect the privacy of users that

wish to access data that they store on remote servers. By continually shuffling and re-encrypting

data as it is accessed on a remote server, the actions the user performs on that data can be kept

private. Since its initial proposal, a large body of ORAM approaches have been presented in the

literature [63, 36, 67, 38, 46, 71]. The efficiency of these schemes is measured by the amount

of data that must be stored by a client to run an ORAM algorithm, the storage overhead for the

server hosting the data, and the amortized overhead to read and write data to ORAM. While the

security of most ORAM schemes relies on the client having access to a stream a truly random data

(a random oracle), approaches that offer information-theoretic security guarantees have also bee

proposed [4, 17].

Just as was the case for PIR schemes, however, protecting user privacy through ORAM requires

active participation by the server. In this dissertation, we show that our approach to protecting user

privacy can be enforced without explicit server-side support.

3.5 DISTRIBUTED QUERY PROCESSING

Distributed query processing is typically performed by either shipping the data required for the

query back to the site that issued the query for processing (data shipping), or shipping pieces of

the query out to the sites holding the data for parallel processing, returning only the result to the

issuing site (query shipping) [44]. These techniques can further be combined as a form of hybrid

shipping [32]. To date, however, there has not been a realization of a system to evaluate queries

over systems of fully autonomous, heterogeneous, distributed databases.

The closest example of our system model in the literature is that of mutant query plans [65].

Mutant query plans are an extension to XML queries that are partially optimized and evaluated by

several remote servers over the course of their processing. A user may issue a relatively simple mu-

tant query to a single server. That server would then attempt to evaluate what it could of the query,
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reoptimize the query around what remains (i.e., determine a faster plan to evaluate everything else

in the query if such a plan exists), and then forward the query to another server that “knows more”

about the portion of the query yet to be evaluated. Consider the following example. A user wishes

to know the list of highly-reviewed sci-fi movies playing near them. The user could construct a

mutant query plan and send it to a local theater’s server. That server would add information about

the shows playing at the theater and then pass the mutant query plan off to a movie review site.

The review site would then add its information about reviews of sci-fi movies to the plan, combine

this data with what was received from the theater and return the result to the user.

Note that mutant query plans make no effort to protect the intension of user queries. In fact,

they reveal to remote servers more of the intension of the user’s query than the servers need to

know for the query to be evaluated.

In the same manner that our model proposed here is able to glean the advantages of PIR when

possible, however, it can also utilize all of these query processing techniques to construct query

plans that sufficiently balance user privacy preferences with query performance, realizing the pro-

posed hybrid query processor from [30].

3.6 QUERY OPTIMIZATION FOR PRIVACY AND SECURITY

In [18], the authors assume that relational tables in a distributed database system carry strict ac-

cess controls specifying what servers in the system should be able to access the table’s data during

distributed query evaluation. To uphold these access controls, the authors propose to modify the

optimization process to be two-phased. First, an off-the-shelf query optimizer is used to determine

join ordering and produce a query evaluation plan as if the query were to be evaluated in a central-

ized database system. Evaluation sites are then assigned to each of the operations in this plan such

that the table access controls are upheld. The authors do not provide a working implementation of

this system or optimizer, they simply present a framework for enabling such access-control aware

optimization.

The authors of [13] also strive to protect data stored in their system, but from a very different

adversary. The adversary here is a passive piece of malware with access to the memory of a
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database server for a limited period of time. Thus, the authors deal with encrypted databases, and

optimize queries so as to limit the number of tuples that are stored decrypted in memory as well as

the number of decryption keys stored in memory.

While both of these works use a similar approach to the one presented in this dissertation—

i.e., modifying the optimization process to address security and privacy concerns—they solve very

different problems and are thus orthogonal to the work presented in this dissertation.
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4.0 (I, A)-PRIVACY

We begin this chapter by formally establishing the system model that is assumed throughout this

dissertation. With this in hand, we move on to define our novel notion of querier privacy: (I, A)-

privacy. We then define (I, A)-privacy constraints as constructs that users can issue alongside

their queries to specify what portions of their queries should be considered to be sensitive and

what servers this sensitive intension should be kept from. We conclude this section with a for-

mal overview of how a query plan can be determined to either support or violate (I, A)-privacy

constraints.

4.1 SYSTEM MODEL

In this section, Alice’s example query from Section 1.2 is used to assist in defining our system

model. An illustration of the flow of processing Alice’s query through a distributed database

system is shown in Figure 1: Alice issues her query to a query optimizer, which optimizes and

produces an evaluation plan. Each operation in this plan is designated to be evaluated by a specific

database server in the system. The optimizer splits the plan into the subplans to be evaluated by

each server involved in resolving the query, and distributes these plans to their respective servers.

The servers then evaluate their subplans, combine the intermediate results as needed, and return

the final result to Alice via the machine running the optimizer.
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4.1.1 System

We assume that query optimizers in this model produce query plans to be issued over a loosely

federated system of distributed, autonomous, and heterogeneous database servers. These servers

can be located anywhere on the Internet, though we assume that all entities in the system (i.e.,

users, optimizer instances, and database servers) are able to establish private and authenticated

communication channels with one another. Messages sent along these channels should be protected

from eavesdropping, modification, reordering, and replay (e.g., through the use of TLS [23]). We

further assume that all relations in the system are protected by access controls that are specified and

enforced by the database systems that host them (e.g., using the industry standard RBAC [31, 77]).

As such, we assume that users only obtain the results that they are authorized to see.

We further assume that query optimizers know a priori all of the servers participating in the

system via an expanded catalog that includes cached metadata about these remote servers. In addi-

tion to listing participating servers, this catalog details the relations that they make available, and

metadata about these relations (e.g., cardinality, attribute selectivities). This relational metadata

mirrors that stored in the catalogs of the remote servers so that query optimizers can intelligently

process distributed queries. We assume the catalog is kept current with remote servers via periodic

polling or pushed updates since on-demand polling could reveal aspects of a user’s query to remote

servers.

These assumptions comprise a standard approach to distributed query processing discussed in

the literature [44].

4.1.2 Trust Model

We assume that the user has access to a trusted query optimizer running on either a personal

machine or a trusted server. Throughout this disseration we will refer to the optimizer instance

being used for a given query as the querier. We assume the querier to be fully trusted by the user.

We consider this assumption reasonable, not only due to the user’s ability to run and maintain her

own personal optimizer instance, but further because users must reveal their queries to some piece

of software in order to have them evaluated.
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Database servers in the system, on the other hand, we consider to be honest-but-curious passive

adversaries. That is, database servers will correctly evaluate the query subplans assigned to them,

and will return the correct results to the user, but in doing so, they will attempt to learn the query

issued by the user. Techniques for verifiable computation can be used to ensure correct query

evaluation [11]. Though we assume all servers to be honest-but-curious, users may trust subsets of

the servers in the system to learn the makeup of their queries (e.g., patient names can be revealed

to a doctor’s own hospital’s severs). Our model allows individual users to decide which servers

should be trusted to handle sensitive portions of their queries, and which should be treated as

untrusted adversaries.

4.2 QUERIER PRIVACY

The vast majority of research in database privacy deals with preventing the disclosure or inference

of sensitive tuples stored in database systems. By contrast, the focus of this dissertation lies in the

protection of end-user privacy during the execution of distributed queries. In this section, we de-

velop the notion of (I, A)-privacy, in which sensitive portions of a user’s query are protected from

disclosure to a set of colluding adversaries. While query intension is generally represented using

a declarative language like SQL (and, indeed, working knowledge of SQL is the only background

users need in order to author protections over the privacy of such intension through the use of our

model), we focus in this dissertation on how this knowledge is encoded in the actual query plan

used during the distributed query evaluation process, as this is the information that would actually

be gleaned by adversaries according to our threat model.

Assuming that L denotes the set of all SQL queries, we can then formally represent a query

planner as a function plan : L → Q that generates query plan Q ∈ Q from an SQL query q ∈ L.

Note that our system model leads to two additional specifications of a query plan to be consid-

ered. First is that of a locally-expanded query plan:

Definition 4 (Locally-Expanded Query Plan). A well-formed query plan Q is said to be locally-

expanded with respect to a server s ∈ S if every leaf node ` of Q is either (1) an operation
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annotated for execution at some remote server s′ 6= s, or (2) the scan of a table managed by the

server s. We denote the set of all locally-expanded query plans for a query q ∈ L as L (q).

We use the term scan to denote the retrieval of tuples from a database relation without speci-

fying an access method (e.g., the use of a particular index). Given a query q ∈ L, the output of a

query planner plan at a specific server s is a locally-expanded query plan Q ∈ L (q) with respect

to the server s. The annotated leaves of the resulting query plan may be further expanded by other

nodes in the network during query processing (e.g., during the expansion of a remote view). This

leads to the following definition:

Definition 5 (Globally-Expanded Query Plan). A well-formed query plan Q is said to be globally-

expanded if every leaf node ` ofQ represents the scan of a relational table managed by some server

s ∈ S. We denote the set of all globally-expanded query plans for a query q ∈ L as G (q).

Note that a globally-expanded query plan is trivially a locally-expanded query plan relative

to every server s ∈ S. That is, no server can further expand a globally-expanded query plan.

Furthermore, given some initial query, a corresponding globally-expanded query plan may not

ever be learned by any one server in the system: each server generates a locally-expanded query

plan, but may perhaps be unaware of how its plan is further expanded by others.

In general, a user may only consider certain parts of her query to be sensitive. In our example,

Alice may not mind if people know that she is interested in data from the Facilities server’s

Supplies table, but she would certainly want the fact that it will be combined with data from

Pollution Watch to be kept private. To formalize this notion, we introduce the following

term:

Definition 6 (Intensional Region). An intensional region is a countable subset I of the node setN .

Example 1. To illustrate this concept, we can refer back to Alice’s query plan from Figure 2. Con-

sider the case in which Alice wants to keep her use of the Polluted Waters table’s pollutant

attribute secret from ManuCo’s Inventory server. An intensional region which contains the sin-

gle node in her query plan could then be defined to represent the specific portion of the intension of

Alice’s query that she wishes to protect. Similarly, if Alice wanted all parts of her query in which

data from different relations is joined to be kept private, an intensional region containing all join

nodes could be defined.
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The above definition of intensional region is flexible enough to identify very specific descrip-

tions of intension considered to be sensitive, like “all selection operations that involve the constant

‘solvent’.” Given such intensional regions, we can informally say that a query plan Q maintains a

user’s privacy if no adversarial principal can learn information from nodes in intensional regions

identified by the user as sensitive. To continue to reason about this notion of user privacy, how-

ever, we must first define how query intension is revealed to principals in the system during the

evaluation of a user’s query.

Definition 7 (Intensional Knowledge). Given a query plan Q = 〈N,E〉, we denote by κs(Q) ⊆

N ∪ E the intensional knowledge that server s ∈ S has of the query encoded by the plan Q.

At a minimum, κs(Q) contains the set of all locally-expanded query plans for each node n ∈ N

annotated for execution by the server s, and further all edges leaving or entering such nodes.

Given a colluding set of principals A = {s1, . . . , sk}, we can define the combined intensional

knowledge of the colluding serversA in the natural way, i.e., κA(Q) =
⋃

si∈A κsi(Q). For example,

the intensional knowledge of the four principals participating in the evaluation of the query in

Figure 2 is as follows:

κPollutionWatch(Q) = 〈scan, {(Polluted Waters)},Pollution Watch〉

κMapper(Q) = 〈scan, {(Waterway Maps)},Mapper〉

and 〈join, {(name,=,name)}Mapper〉

κFacilities(Q) = 〈scan, {(Plants)},Facilities〉

κInventory(Q) = 〈select, {(type,=, “solvent”)},Inventory〉

and 〈scan, {(Supplies)},Inventory〉

and 〈join, {(id,=,plant id)},Inventory〉

and 〈join, {(name,=,pollutant),

(location,=,location)},Inventory〉

The above definitions enable us to precisely define the notion of privacy that we will explore

in the remainder of this dissertation as follows:

Definition 8 ((I, A)-privacy). Given an intensional region I and a set of colluding adversaries

A ⊆ S , a globally-expanded query plan Q is said to be (I, A)-private iff κA(Q) 6|= I , where |=
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denotes an inference procedure for extracting intensional knowledge from a collection of query

plans.

In the above definition, there are many possible candidates for the |= relation. For the pur-

poses of this dissertation, we will focus our attention on the syntactic condition of the containment

relation w, which we formally define as follows:

Definition 9 (w). Let Q be a globally-expanded query plan, I be an intensional region, A be a set

of colluding adversaries, and κA(Q) = (N,E) be the intensional knowledge that the adversary

set A has about the query plan Q. Then (N,E) w I iff N ∩ I 6= ∅.

This relation denotes whether an intensional region explicitly overlaps some collection of ad-

versarial knowledge. We will be exploring a semantic relation for |= as a subject of future work.

Using the w relation as our inference procedure |= is a natural first step for exploring end-user

privacy as it is expressive enough to encode private information retrieval (PIR) constraints. This

claim will be explored further and proved in Section 5.1.5.

We next overview our approach to empowering users to protect their privacy using (I, A)-

privacy constraints, and show how users can define intensional regions through the use of node

descriptors.

4.3 PROTECTING QUERIER PRIVACY

Our approach empowers users to specifically identify portions of their queries that require special

handling during query evaluation, and then to author conditions that must be upheld by any query

plan nodes operating on an identified portion of the query (e.g., a user could want to ensure that

no operations on the pollutant attribute of the Polluted Waters table are evaluated by

ManuCo’s Inventory server). We refer to such a notion as an (I, A)-privacy constraint:

Definition 10 ((I, A)-privacy constraint). An (I, A)-privacy constraint is a three-tuple 〈I,♦, A〉 ∈

2N × {+,−} × 2S . Such a tuple indicates that the intensional region I is either required to flow

(+) or forbidden from flowing (−) to principals in the set A.
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In order to enforce these constraints during query evaluation, users must be able to express their

specifications and conditions to the optimizer. Having users direct express intensional regions as

they are formally defined (e.g., by having users enumerate the nodes that make up their desired

intensional region) would prove impractical and error prone. Hence, we need some way that users

can succinctly define the intensional regions they wish to use in their (I, A)-privacy constraints.

We have developed the node descriptor for this precise reason.

4.3.1 Defining Intensional Regions

A node descriptor is a matching construct that can be used to define an intensional region. For

a given node descriptor, any query plan node n ∈ (N) that is matched by the node descriptor

is a member of the intensional region defined by that node descriptor. A user could, for exam-

ple, define a node descriptor to match all nodes that operate on the pollutant attribute of the

Polluted Waters table. This node descriptor’s intensional region would contain all query plan

nodes that contain pollutant as part of their params . We formally define node descriptors as

follows:

Definition 11 (Node Descriptor). A node descriptor d ∈ D, is a triple d = 〈op, params , s〉 de-

scribing the relational operator (op), a set of parameters to the given operator (params), and the

principal at which this operator shall be executed (s). A node descriptor is well formed if all of the

following hold true:

• op is either a valid relational algebra operation, free variable, or ∗ (matches any operation)

• params is either a set of sets (any of which may have a free variable) or ∗ (matches any

parameters)

• s is either the location of some server in the system, a free variable or ∗ (matches any server)

We will consider V to be the set of all free variables that can be declared. To determine whether

some query plan node n matches a given descriptor, we define a matching operator (t) as follows:
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Definition 12 (Matching). Given a node descriptor d ∈ D, and a node n ∈ N , d t n if and only if

(d.op = n.op ∨ d.op ∈ V ∨ d.op = ∗) ∧ (d.s = n.s ∨ d.s ∈ V ∨ d.s = ∗) ∧

[∀a ∈ d.params : (a ∈ V ∨ (a ∈ n.params ∨ ∃a′ ∈ n.params : a ⊆ a′)) ∨ d.params = ∗]

Hence, an intensional region I can be defined in terms of a node descriptor d as a subset of N

as: I = {n | n ∈ N ∧ d t n}.

While matching on op or s is rather intuitive, matching on params requires a bit of explanation.

params is a set of sets in both query plan nodes and node descriptors that represents the arguments

to a relational algebra operator. To allow for easy and concise expression of node descriptors, we

state that a node descriptor matches a query plan node based on params if every ordered set in the

descriptor’s params is either contained directly in the query plan node’s params or is a subset of

an ordered set in the query plan node’s params .

Example 2. Our definition of t allows nodes with complex params attributes to be easily matched.

Consider the following query plan node:

〈 select, { (at1, =, 42), (AND), (at2, <, 10) }, example server 〉

Any of the following node descriptors will match this node based on our definition of t:

• 〈 *, { (at1) }, * 〉

• 〈 *, { (at1, =, 42) }, * 〉

• 〈 *, { (at1, 42) }, * 〉

• 〈 *, {(AND) }, * 〉; 〈 *, { (at1, 42), (AND) }, * 〉

• 〈 *, { (at1), (AND), (at2) }, * 〉

Note that this is not an exhaustive list of all node desciptors that would match the node de-

scribed above; they merely present an illustrative sample of possible node descriptors.

With this, we show how node descriptors can allow users to succinctly specify intensional

regions. However, in order for this construct to be useful, we must further demonstrate that node

descriptors offer sufficient utility so as to allow users to protect any portion of the intension of their

queries.
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4.3.2 Proof of Completeness

As has been previously stated, privacy is an inherently personal property, and hence, we must

ensure that our approach of using node descriptors to define intensional regions is sufficiently

general to allow users to define regions based on any part of the intension of their query.

Theorem 1. For any SQL query q ∈ L, it is possible to specify a node descriptor d ∈ D that

identifies any clause of q and/or its components (i.e., table or view names, constraints, constraint

operators, attributes, or constants). Then, for any query plan Q = 〈N,E〉 that materializes q, the

set of nodes C = {n | n ∈ N ∧ d t n} contains exactly those nodes corresponding the specified

clause and/or components of q.

The proof of this theorem is a case-by-case analysis showing that for any valid SQL operator

with any valid set of arguments, there exists a node descriptor that matches the corresponding node

in a query plan:

Proof. To prove our claim, we will first demonstrate the ability of our annotation and matching

scheme to identify any and all query plan nodes resulting from node descriptors flagging spe-

cific clauses of an SQL query q. We then show that this scheme can also annotate any other

semantically-meaningful portion of an SQL query that may span multiple clauses. Specifically,

we show how to define node descriptors annotating a particular table or view name, constraint

operator, attribute, or constant as being of interest.

SQL queries can consist of multiple SELECT statements combined through the use of one of

three set operators (UNION, INTERSECT, or MINUS), each of which consists up to six different

clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. We now demonstrate

the ability to match against any portion of any clause of a SELECT statement, and against the

inclusion of any operators combining select statements.

SELECT: The SELECT clause consists of the optional keyword DISTINCT and a list of

relational attributes and aggregate functions over relational attributes or *.

Case 1. The DISTINCT keyword would add a deduplication operator into the resulting query

plan, and hence a user wishing define an intensional region over query plan nodes resulting from

the inclusion of DISTINCT could identify such a region by a node descriptor matching all dedu-

plication operations as such:
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〈 deduplicate, *, * 〉

By the definition of t, this node descriptor would match only the deduplicate nodes in any

query plan materializing q, which are present iff the DISTINCT keyword is used in q.

Case 2. Should a SELECT clause include any relational attribute names, an intentional region

for each attribute could be identified through a node descriptor of the following form:

〈 project, { (attribute name) }, * 〉

By the definition of t, this node descriptor would match only the project nodes for a specific

attribute in any query plan materializing q. Such nodes are only induced if a projection attribute

list is passed to the SELECT keyword in q.

Case 3. In the case that SELECT clause includes an aggregate function, an intensional region

containing all nodes operating with that function can be identified by:

〈 aggregate, { (function) }, * 〉

Any relations that are aggregated by a function can be identified by:

〈 aggregate, { (relation name) }, * 〉

By the definition of t, this node descriptor would match only the aggregate nodes for a specific

function or relation name in any query plan materializing q. Such nodes are only present in a query

plan if q utilizes an aggregate function in its selection list.

Case 4. Note that a specification of SELECT * would not add a specific projection to the

resulting query plan, and hence there would be no node in the resulting query tree to match against.

This lack of an explicit project operation does not, however, leak user intension as any remote

server evaluating some portion of a query plan would have no way of knowing whether or not the

querier would perform a project operation as a final step in evaluating a query upon receiving all

intermediate results of that query. Since we are optimizing for privacy as well as performance,

query plans containing such project operations that had not been pushed down the plan closer to

operations scanning base relations are quite possible.

FROM: The FROM clause lists the relations that should supply the data for a query to operate

on. As such, any user intension specified in a FROM clause can be easily identified by a node

descriptor of the following form:
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〈 scan/view, { (relation name) }, * 〉

By the definition of t, this node descriptor will match all nodes representing the scan of the speci-

fied view or table for any query plan materializing q. Further, scan/view nodes are only present

in a query plan if the corresponding table or view is listed as a data source in the FROM clause of q.

WHERE: The WHERE clause of an SQL query q specifies conditions to be applied by the

select operations present in any query plan materializing q. These conditions can be quite

complex, consisting of several subconstraints combined through the use of the operators AND and

OR. In the syntax presented in Section 5.1.1, we enumerate all operators that can be involved in such

conditions in the <pop> term. Without loss of generality, we describe how to match a constraint

consisting of a left operand, an operator, and a right operand (e.g., salary > 75,000):

〈 *, { (operand, operator, operand) }, * 〉

A * is used in place of the operation in the node descriptor above, since conditions may appear in

either select or join operations in some query plan materializing q. By the definition of t,

the above node descriptor will exactly match the identified constraint, regardless of the operational

node in which it appear.

GROUP BY: A GROUP BY clause’s presence in an SQL query identifies the relational at-

tributes that will be used to group tuples resulting from an aggregate operation. Node operators

that identify intensional regions containing these relational attributes are formed as:

〈 aggregate, { (attribute name) }, * 〉

By the definition of t, the above node descriptor will match all nodes within any query plan

materializing the query q in which the specified GROUP BY clause was specified. Note that this

does not match aggregate nodes induced by aggregate functions included as part of a SELECT

statement.

HAVING: HAVING clauses are used to specify conditions on the tuples resulting from an

aggregate operation. As a result, their parameters can be identified in a very similar manner to

those of the WHERE clause. Without loss of generality, we demonstrate how to identify nodes

expressing a HAVING constraint consisting of a function, and argument, an comparison operator,

and a constant value (e.g., AVG(salary) > 50,000):
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〈 *, { (function, attrib, operator, constant) }, * 〉

By an argument similar to that given for the WHERE clause, the above node descriptor matches

exactly the nodes corresponding to the identified HAVING of any query plan materializing the

query q.

ORDER BY: An ORDER BY clause in an SQL statement would directly result in an ordering

operation being added to a query plan. As the ORDER BY clause takes as parameters pairs of

attribute names and one of the keywords ASC or DESC, the intension represented by either of these

pieces of a parameter can be explicitly identified by one of the following node descriptors:

〈sort, { (attribute name) }, * 〉

〈sort, { (attribute name, ASC) }, * 〉

〈sort, { (attribute name, DESC) }, * 〉

By the definition of t, the above node descriptors will match all nodes within any query plan

materializing the query q in which the specified ORDER BY clause was specified. Further, the

sort operator will be present in a query plan iff an ORDER BY clause is present in the query that

the plan materializes.

Further Operators: As a query consisting of multiple SELECT statements joined by either

a UNION, INTERSECT, or MINUS operator would directly cause the corresponding relational

algebra operator to be included in a query plan, the intension represented by any of these operators

can trivially be identified by one of the following node descriptors:

〈 union, *, * 〉

〈 intersection, *, * 〉

〈 difference, *, * 〉

In the above cases, we have demonstrated that it is possible to construct a node identifier match-

ing the nodes corresponding to any well-formed clause within a valid SQL query. To complete this

proof, we now show how to express constraints on other semantically meaningful intensional re-

gions. Specifically, to identify a specific view or table name (e.g., all queries to the salary table),

constraint operator (e.g., any use of the function AVG), attribute (e.g., any reference to the age at-
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tribute), or constant (e.g., a particular cutoff threshold) as being of interest, the following node

descriptor can be used, where atom indicates the item of interest:

〈 *, { (atom) }, * 〉

By the definition of t, the above (simple) node descriptor matches exactly the set of all occurrences

of atom in any query plan materializing the query q.

We have thus demonstrated that for any semantically-meaningful fragment of a query q, it is

possible to specify a node descriptor that matches exactly the query plan nodes corresponding to

this query fragment in any query plan Q materializing q.

With this proof, and given that any single node within a query plan can be matched by some

node descriptor, we immediately have the following:

Corollary 2. Any intensional region I ⊆ N can be specified using a collection D ⊆ D of node

descriptors, and detected within any query plan Q ∈ Q using the t operator.

Since it is possible to specify a set of node descriptorsD ⊆ D such that the matching construct

t identifies the corresponding intensional regions contained within a query q, and constraints can

be placed on the location field of any node matching a set of node descriptors D, we trivially have

the following:

Corollary 3. The matching operator t is sufficiently expressive to encode any (I, A)-privacy con-

straint.

4.3.3 Constraining Query Execution Plans

In addition to passing node descriptors to a query optimizer in order to specify intensional regions

that require special handling, users must also be able to state what sites should or should not be

allowed to evaluate nodes in that region. Users can do this by specifying a condition on the free

variable used in the node descriptor. Given a node n that matches a node descriptor, a condition

states what values are allowable for the portion of that node that is matched by free variable in a

node descriptor.

Example 3. Consider nd = 〈 *, {(Polluted Waters.pollutant)}, @f 〉 as a node descrip-

tor paired with the condition cond = @f <> Inventory.
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For the node n1 = 〈 join, ({(Polluted Waters.pollutant, =, Supplies.name),

(AND), (Mapper.location, =, Plants.location)}, Inventory 〉, the condition would

evaluate to false because the free variable in nd in the s position and the s position in n1 is

Inventory, the exact value that is specified not to be allowable by cond.

For the node n2 = 〈 join, ({(Polluted Waters.pollutant, =, Supplies.name),

(AND), (Mapper.location, =, Plants.location)}, Mapper 〉, the condition would eval-

uate to true because there is a free variable (@f) in nd at the s position and the value of the s

position in n2 is Mapper, which is allowable by cond.

Such pairings of node descriptors and conditions is the underpinning for our group of exten-

sions to SQL, Privacy-Aware SQL (PASQL). We formally refer to this simplest example of node

descriptor/constraint pairings as basic PASQL constraints:

Definition 13 (Basic PASQL constraint). A basic PASQL constraint, c is a combination of a node

descriptor, c.nd ∈ D, and a condition, c.cond. c.nd must contain a single free variable as either

c.nd.op, c.nd.s , or as part of c.nd.params . c.cond must be a comparison that can be evaluated to

either true or false consisting of two operands and a comparison operator. The operator can be

one of the following: =, 6=,∈, 6∈. One of the operands must be the free variable from c.nd, while

the other can be either a literal constant or a set of literal constants.

Given a basic PASQL constraint, we can evaluate its condition on a node matching its node

descriptor using the following function:

Definition 14 (evaluate(n, c)). Given the value v from n that corresponds to the free variable in

c.nd, evaluate(n, c) returns True if substituting v for the free variable in c.cond causes c.cond to

be a true statement, and evaluate(n, c) returns False if it causes it to be a false statement.

Note that only nodes that match the node descriptor of a basic PASQL constraint can violate

that constraint’s condition (and hence violate the constraint). Given that we define C to be the set of

all basic PASQL constraints, we define the violation of a constraint by a query plan node according

to the function violates : N × C → B:

Definition 15 (violates(n, c)). Let n be a node in N and c be a basic PASQL constraint in C, n

violates c iff n t c.nd ∧ ¬evaluate(n, c).

38



We say query plan qp violates a basic PASQL constraint if any node n ∈ qp violates that

constraint. Any query plan node that does not violate a constraint is considered to support it:

Definition 16 (supports(n, c)). A query plan node n supports a constraint c so long as that

node does not violate c: ¬violates(n, c), or n 6t c.nd ∨ evaluate(n, c), or, n t c.nd =⇒

evaluate(n, c).

Finally, we state that a query plan upholds a constraint so long as every one of its nodes

supports it:

Definition 17 (upholds(qp, c)). A query plan qp upholds a constraints c iff ∀n ∈ qp : supports(n, c).

This can be equivalently stated as ∀n ∈ qp : ¬violates(n, c), or, ∀n ∈ qp : n t c.nd =⇒

evaluate(n, c)

4.4 SUMMARY

In this chapter, we first formally defined the system model that we assume users to be working

within throughout this dissertation. With this in hand, we formally established concepts of inten-

sional privacy, and how the privacy of the intensions of users’ queries can be violated. This leads

to our formal definition of our novel notion of privacy, (I, A)-privacy. In order to uphold (I, A)-

privacy, we presented the concept of a node descriptor, which users can wield in order to identify

intensional regions of their query that they consider to be sensitive. We showed how node descrip-

tors can be used to match any query plan operations that are members of the intensional regions

that the node descriptors represent, and further proved that node descriptors are powerful enough

to identify any portion of an SQL query. Finally, we showed how users can author conditions on

free variables they include in node descriptors to create (I, A)-privacy constraints and conclude the

section by formally defining how a query plan can uphold or violate a user-specified (I, A)-privacy

constraint. In the next chapter, we will describe extensions to SQL that allow the expression of

these types of constraints.
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5.0 PASQL: PRIVACY-AWARE SQL

In this chapter, we describe three different variants of Privacy-Aware SQL (PASQL): PASQL0,

PASQL1, and PASQL2. Each provides an increasingly expressive syntax. As we discuss in Sec-

tion 6.3, these variants represent interesting points in the tradeoff space between the variety of

constraints that can be expressed, optimization time complexity, and the optimality of query plans

produced.

It should be noted that we define PASQL1 to be a superset of PASQL0, and similarly, PASQL2

to be a superset of PASQL1. Any constraint specification that can be interpreted by an optimizer

supporting PASQL0 will can be correctly parsed by an optimizer supporting PASQL1 (just as

any PASQL0 or PASQL1 constraint specification will be correctly parsed and optimized by an

optimizer supporting PASQL2). Note that constraints unique to PASQL2 do not inherently depend

on those of PASQL1 (i.e., it is not necessary for PASQL2 to be a superset of PASQL1). We define

PASQL2 as a superset of PASQL1 to simplify our presentation of PASQL variants and establish a

continuum of increasing expressiveness.

5.1 PASQL0

PASQL0 allows users to express only basic PASQL constraints. As such, it is the least expressive

variant of PASQL presented here. With PASQL0, basic PASQL constraints can be presented to

the optimizer as either hard requirements that must be supported by any query plan generated to

evaluate the query or as preferences that the user would like to see upheld by resulting query plans

but do not need to be upheld by the plan chosen to evaluate the query (e.g., if two constraints
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conflict with one another, one of them can be ignored, or if a constraint cannot possibly be upheld,

a query plan should still be generated and evaluated).

5.1.1 Requirement Syntax

<rclause> ::= “REQUIRING” <holds>

<holds> ::= <hold> [“, AND” <holds>]

<hold> ::= <cons> “HOLDS OVER” <dnode>

<pclause> ::= “PREFERRING” <prefs> [<cascade>]

<cascade> ::= “CASCADE” <prefs> [<cascade>]

<prefs> ::= <pref> | <hold> [“AND” <prefs>]

<pref> ::= <num>“(”<f>“)”

<cons> ::= <operand> <cop> <operand>

<operand> ::= <fvar> | <literal> | <set>

<fvar> ::= “”<literal>

<cop> ::= “=” | “<>” | “IN” | “NOT IN”

<set> ::= “{” <items> “}”
<items> ::= <literal> | <items>

<dnode> ::= “〈” <op> “,” <param> “,” <p> “〉”
<op> ::= <fvar> | “scan” | “select” | “project”

| “join” | “product” | “rename” | “aggregate”

| “sort” | “deduplicate” | “union” | “intersection”

| “difference” | “*”

<param> ::= “{” <pset> “}” | “*”

<pset> ::= “(” <pitems> “)”

<pitems> ::= <pitem> | <pitems>

<pitem> ::= <pop> | <literal> | <set> | <agg>

| <fvar> | “ASC” | “DESC”

<agg> ::= “MIN” | “MAX” | “AVG” | “SUM” | “COUNT”

<pop> ::= “=” | “<>” | “<” | “>” | “<=” | “>=”

| “IN” | “NOT IN” | “BETWEEN” | “LIKE”

| “IS NULL” | “IS NOT NULL” | “AND” | “OR”

<p> ::= <literal> | <set> | <fvar> | “*”

Figure 3: PASQL0 REQUIRING and PREFERRING clause syntax.

In order for users to be able to express constraints that must be upheld by a plan to evaluate a

query, we propose a REQUIRING clause (REQUIRING <condition> HOLDS OVER <node de-
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scriptor>) as an extension to SQL. We propose this clause for use in two locations: first as an

addition to the SQL SELECT statement, and also as an addition to SQL’s set operators (UNION,

INTERSECT, and MINUS). If it is used in conjunction with a set operator, the requirements ex-

pressed by this clause will apply to both the operator itself, and the two SELECT statements that

it combines. If it is used at the end of a SELECT statement, its requirements apply only to that

SELECT statement. The full syntax for the REQUIRING clause is defined in Figure 3.

This clause explicitly lists the two portions of a basic PASQL constraint, and in parsing the

query, an optimizer supporting PASQL can simply construct basic PASQL constraints directly

from the node descriptor/condition pairs specified in the REQUIRING clause.

Example 4. Alice can use a REQUIRING clause to write her query from Figure 2 to ensure

that any operations on Pollution Watch’s pollutant attribute are not evaluated by the

Inventory server as follows:

SELECT * FROM Plants, Supplies, Polluted_Waters

WHERE Supplies.type = "solvent"

AND Supplies.name = Polluted_Waters.pollutant

AND Plant.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name

AND Polluted_Waters.location = Plants.location

REQUIRING @p <> Inventory HOLDS OVER

<*, {(Polluted_Waters.pollutant)}, @p>;

Such a query upholds (I, A)-privacy for Alice by keeping an intensional region consisting of

all nodes operating on Pollution Watch’s pollutant attribute from being evaluated by the

Inventory database server. Note that the query plan shown in Figure 2 does not adhere to this

requirement because the Inventory server evaluates the root join which contains a condition

on Polluted Waters.pollutant. Hence, it would not be an acceptable query plan for this

new, constrained version of Alice’s query.

Now, this notion of hard requirements for basic PASQL constraints may not always be in the

best interest of the user. What a user considers private and the importance maintaining the privacy

of different aspects of a query can vary widely, not only from user to user but also from query to
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query. To accommodate this, PASQL additionally allows users to specify constraints as preferences

that a PASQL supporting optimizer will attempt to uphold during optimization, will not necessarily

uphold.

5.1.2 Preference Background

In [42, 41], the authors develop a formalism for expressing preferences over the tuples returned by

a relational database query. Rather than requiring that an SQL selection specify an exact match

criteria, the preference SQL described in [42, 41] allows the user to specify a partially-ordered

preference structure over the tuples returned. This is particularly helpful when exact match criteria

cannot be found. Formally, the authors of [41] define a preference as follows:

Definition 18 (Preference P = (R,<P )). Given a setR of relational attribute names, a preference

P is a strict partial order P = (R,<P ), where <P ⊆ domain(R)× domain(R).

Given this definition, “x <P y” is interpreted as “I like y better than x.” For example, a user

querying a database for the cheapest car could express her preference for tuples with the lowest

value for the price attribute as: LOWEST(price), where LOWEST is a base preference defined

such that x <P y iff x.price > y.price and y.price is as low as possible. Using this base preference

constructor, tuple t will be preferred to tuple t′ iff t represents a lower cost car than tuple t′.

We refer the reader to [41] for descriptions of a range of other numeric and non-numeric base

preference constructors.

Similarly, [41] defines complex preferences through the use of complex preference construc-

tors. For example, two preferences that are equally preferred can be combined through the use

of a Pareto preference constructor. Given two preferences P1 and P2 over attributes A1 and A2,

respectively, such a preference is defined for two items x and y containing attributes from both A1

and A2 as:

x <P1⊗P2 y iff (x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨

(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))
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Complex preferences in which one preference is strictly more important than the other can be

defined using the prioritized preference operator, &. For the definitions of other complex pref-

erence constructors, see [41]. As a part of PASQL0, we augment this notion of preferences to

function over the makeup of query plans as opposed to query results.

5.1.3 Preference Syntax

In order for users to express preferred constraints, we now describe the PREFERRING clause—

modeled after the extensions proposed in [42]—that applies to both SELECT statements and set

operators, following a REQUIRING clause if both are used in a given query. Similar to the

REQUIRING clause, the PREFERRING clause allows users to express constraints over the makeup

of plans that evaluate their queries. Preferred constraints however, need not all be upheld for a plan

to be used to evaluate a query. Plans that uphold more preferred constraints, or that uphold pre-

ferred constraints that are more important to users should be used to evaluate their queries over

plans that uphold fewer or less important preferred constraints.

We use of the keyword AND to represent the complex preference constructor ⊗ and CASCADE

to represent the complex preference constructor &. For each basic PASQL constraint listed in a

PREFERRING clause, a plan is considered more preferred if it violates that constraint fewer times.

Consider the following PREFERRING clause:

PREFERRING @p <> Pollution_Watch HOLDS OVER

< *, {(Waterway_Maps.name)}, @p > (1)

CASCADE @p <> Facilities HOLDS OVER

< *, {(Polluted\_Waters.name)}, @p > (2)

AND @p <> Inventory HOLDS OVER

< *, {(Polluted\_Waters.name)}, @p > (3)

In this example, constraint (1) is stated to be more highly preferred than constraints (2) and

(3). Further, constraints (2) and (3) are stated to be equally preferred. Given this specification,

a PASQL query optimizer would be able to construct the lattice shown in Figure 4 to rank query

plans according to the subset of these three constraints they support. A plan that supports all

three constraints is considered to be more highly preferred than a plan that does not, and a plan

44



1 2 3

2 3

1 2 1 3

2 3

1

Figure 4: A lattice to rank query plan by preference adherence.

that supports constraint (1) is considered to be more highly preferred than any that do not. We

formalize our notion of relative preference between query plans in Section 5.1.4.

The full syntax of the PREFERRING clause is presented in Figure 3. To demonstrate the use

of this syntax, let us consider the following example the combines strict requirements on a query

plan with more flexible preferences:

Example 5. Assume that Alice does not want her query to be evaluated if any nodes whose opera-

tions make use of Polluted Water’s pollutant attribute are evaluated at the Inventory

server. Further, she prefers to execute joins on the Inventory server, and she prefers that no

nodes operating on Supplies’ name attribute are evaluated by the Inventory server. She

has a stronger preference for executing joins on the Inventory server than for keeping name

from the Inventory server. Alice could express this combination of preferences using both the

REQUIRING and PREFERRING clauses:
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SELECT * FROM Plants, Supplies, Polluted_Waters

WHERE Supplies.type = "solvent"

AND Supplies.name = Polluted_Waters.pollutant

AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name

AND Waterway_Maps.location = Plants.location

REQUIRING @p <> Inventory HOLDS OVER

< *, {(Polluted_Waters.pollutant)}, @p >

PREFERRING @p = Inventory HOLDS OVER

< join, *, @p >

CASCADE @p <> Inventory HOLDS OVER

< *, {(Supplies.name)}, @p >;

In this example, there is clear conflict in Alice’s constraint specifications. As it stands, a

PASQL query optimizer would be forced to ignore Alice’s preference to perform joins at the

Inventory server in order to ensure that her requirement that operations that make use of

Polluted Waters.pollutant are kept from the Inventory server (note that Alice’s sec-

ond preference could still be supported, however). If this query were issued sans the REQUIRING

clause (i.e., with only the PREFERRING clause listed above), the optimizer should choose to per-

form all joins at the Inventory server at the cost of keeping operations on Supplies.name

from the Inventory server.

5.1.4 Preference Adherence

Here, we formally define the notion of relative preference between two query plans. We first need

to be able to determine how many times a query plan qp violates a single constraint c using the

function single counts : Q× C → Z:

Definition 19 (single counts(qp, c)). This function returns the following result:

∑
n∈qp 1 if violates(n, c) or 0 if supports(n, c)
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Users can specify queries with many attached constraints, and hence we need to consider all

constraints specified for a given query when investigating the relative preference of two query

plans. A constraint specification C is a total order of m lists of equally preferred constraints

(C1, C2, ..., Cm). We refer to constraints in the same list as being part of the same preference level.

All preferred constraints listed before the first CASCADE in a query are considered to be most

important and make up list C1. All constraints between the first and second CASCADEs make up

listC2, and so on with all constraints listed after the last CASCADEmaking up listCm. A constraint

in any given preference level i is just as important as all other constraints of list Ci, less important

than constraints in lists preceding i (i.e., in Cj where j < i) and more important than constraints

of lists following i (i.e., in Ck where k > i). Note that, overall, C describes a partial order of all of

the constraints attached to a query.

Now, in comparing the relative preference of two query plans, since constraints at a given

preference level are equally important to the overall preference of a plan, we account for how

many times constraints in a given preference level are violated by that plan with the function

level counts : Q× 2C → Z:

Definition 20 (level counts(qp, Ci)). This function returns the following result:

∑
c∈Ci

single counts(qp, c)

Hence, we consider a query plan qp1 to be more preferred than another query plan qp2 if qp1

contains fewer violations of more important preferences than qp2. We formally define this notion

of preference using the function preferred : Q×Q× 22C → B:

Definition 21 (preferred(qp1, qp2, C)). qp1 is more preferred than qp2 iff:

∃Ci ∈ C :level counts(qp1, Ci) < level counts(qp2, Ci)

∧ (∀Cj ∈ C : Ci 6= Cj =⇒ (j > i ∨ level counts(qp1, Cj) = level counts(qp2, Cj)))
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5.1.5 Subsumption of PIR

In this section, we show that an important subset of (I, A)-privacy constraints can be easily ex-

pressed using PASQL0: PIR constraints. By constructing node descriptors that define an inten-

sional region as all nodes which contain some part of the selection criteria of a query, users can

constrain this intensional region to ensure that no database servers gain intensional knowledge of

the selection criteria of their queries, and hence use PASQL0 to express PIR privacy constraints on

their queries. This notion is more precisely formalized below.

Theorem 4. Let the inference procedure |= be defined using the containment relation w. In this

case, PASQL0 can be used to express any private information retrieval (PIR) constraint.

Proof. (By construction.) Without loss of generality, consider a user Alice issuing the following

query, q, to an untrusted server S using PIR techniques:

q: SELECT * FROM t WHERE attr = const;

In executing this query, the server S should not be able to learn any part of Alice’s private

selection criteria (attr = const). We now show that this is equivalent to the following (I, A)-

privacy aware SQL query q′:

q’: SELECT * FROM t WHERE attr = const

REQUIRING @p != S HOLDS OVER <*, {(attr)}, @p>,

AND @p != S HOLDS OVER <*, {(=)}, @p>,

AND @p != S HOLDS OVER <*, {(const)}, @p>;

The above query specifies the following set of node descriptors:

D = {〈*, {(attr)},@p〉, 〈*, {(=)},@p〉, 〈*, {(const)},@p〉}

Given any query plan Q = (N,E) materializing the query q′, Theorem 1 tells us that the set

I = {n | n ∈ Q ∧ ∃d ∈ D : d t n} contains exactly the set of nodes in Q defining the intensional

region within Alice’s query that she considers sensitive. Further, the condition p != S ensures

that the server S does not learn any nodes in I ⊂ N , thereby enforcing the PIR constraint on
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Alice’s selection criteria. Now, by Def. 9, we have that κS(Q) 6w I , and thus q′ preserves (I, A)-

privacy (by Def. 8). Thus, (I, A)-privacy can be used to encode the above (and therefore any) PIR

constraint.

5.2 PASQL1 - CONSTRAINING MULTIPLE NODE DESCRIPTORS

To expand upon the expressiveness presented by PASQL0, PASQL1 allows users to author con-

straints with conditions that compare two different free variables from two different node descrip-

tors. We refer to such constraints as a complex PASQL constraint:

Definition 22 (complex PASQL constraint). A complex PASQL constraint, c is a combination

of two node descriptors, c.nd1 ∈ D and c.nd2 ∈ D, and a condition, c.cond. c.nd1 and c.nd2

must each contain a single different free variable as either op, s , or as part of their respective

params . c.cond must be a comparison that can be evaluated to either true or false consisting of two

operands and and a comparison operator. The operator can be one of the following: =, 6=,∈, 6∈,

while the operands must be the free variables from c.nd1 and c.nd2.

Note that supporting complex PASQL constraints would require the syntax presented in Fig-

ure 3 to be amended to allow for multiple node descriptors to be specified.

We allow free variables to be included in the specification of a node descriptor so that con-

straints can be placed on the values of those variables. In the case that a constraint is written over

the free variables in a single node descriptor, ensuring that such a condition holds over a given

query tree is relatively simple: for each node in the query tree that matches the node descriptor,

ensure that the condition holds. In the case that multiple node descriptors are used, however, en-

suring that a condition holds over a query plan is slightly more complicated, as it must be ensured

that the condition holds for all combinations of nodes that match the independent descriptors. This

increase in expressiveness allows users to author new types of policies such as separation of duty

(e.g., any site that performs a scan operation should not also perform a join operation).
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5.3 PASQL2 - PREFERENCES FOR QUERY PLAN EXECUTION

We propose PASQL2 in order to show how the PREFERRING clause could be used to allow users

to balance their privacy with the performance of their queries. We have already established the

relative preference of two plans according to basic PASQL constraints (and implicitly complex

PASQL constraints): a plan that violates more important preferred constraints fewer times is more

preferred. To account for query performance, users must be able to construct constraints using

optimizer estimations about their query plans (e.g., runtime, network traffic generated), and also

preference constructors to define how query plans should be ranked given the respective results

of those optimizer estimation functions (e.g., a LOWEST preference constructor would state that

lower values of a optimizer estimation function would be preferable to higher values). If we con-

sider F to be the set of all optimizer estimation functions, and PC to be the set of all numerical

preference constructors, we can define PASQL performance constraints as follows:

Definition 23 (PASQL performance constraint). A PASQL performance constraint, c is a combi-

nation of a preference constructor c.pc ∈ PC and optimizer estimation function c.f ∈ F .

Example 6. Assume that Alice would like to keep all operations on the name attribute of the

Supplies table from being evaluated by the Inventory server so long as doing so does not

cause her query to take any longer to run. Alice can succinctly state this preference using PASQL2

as follows:

SELECT * FROM Plants, Supplies, Polluted_Waters

WHERE Supplies.type = "solvent"

AND Supplies.name = Polluted_Waters.pollutant

AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name

AND Waterway_Maps.location = Plants.location

PREFERRING LOWEST(runtime)

CASCADE @p <> Inventory HOLDS OVER

< *, {(Supplies.name)}, @p >;
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As can be seen, PASQL performance constraints allow users to explicitly balance the privacy

and performance of their queries. Users can specify different levels of preferences to establish

a performance penalty that they are willing to pay to provide certain privacy protections. In the

previous example, we assume that Alice would not be willing to sacrifice any performance to

keep Supplies.name from being evaluated by the Inventory server. However, PASQL

performance constraints do not limit users to only this all-or-nothing approach. Using PASQL

performance constraints, users establish a sliding scale of performance overheads that they are

willing to pay to uphold their (I, A)-privacy constraints.

Example 7. Assume that Alice would like to keep all operations on the name attribute of the

Supplies table from being evaluated by the Inventory server and is willing to pay a cost to

performance such that her query could take up to two minutes to run so that this constraint can be

upheld. Alice can succinctly state this using PASQL2 as follows:

SELECT * FROM Plants, Supplies, Polluted_Waters

WHERE Supplies.type = "solvent"

AND Supplies.name = Polluted_Waters.pollutant

AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name

AND Waterway_Maps.location = Plants.location

PREFERRING LESSTHAN(runtime, 2)

CASCADE @p <> Inventory HOLDS OVER

< *, {(Supplies.name)}, @p >;

A tradeoff between privacy and performance is to be expected. Extra care must be taken to

protect the privacy of users’ query intension during distributed query evaluation. Through the

use of PASQL performance constraints, users can directly manage this tradeoff and weight the

performance value of each of their privacy preferences.
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5.4 EXPRESSIVE CAPABILITIES OF PASQL

The examples that we have presented in this dissertation so far have served mostly explanatory

purposes, illustrating the mechanics of (I, A)-privacy and further motivating the need for the pro-

tections that it offers. However, the preferences model described in this dissertation is capable

of expressing much more powerful controls over the execution of user queries than have so far

been demonstrated. This section will demonstrate a range of common policy idioms that can be

expressed within the privacy and execution preference framework developed in this dissertation.

5.4.1 Discretionary Access Control (DAC)

In the access control literature, DAC policies allow users to explicitly list the identities of the other

users permitted to access their files [57]. The notion of DAC policies has natural applications to

user privacy in distributed query execution, as users might wish to white- or black-list individual

servers from learning about their queries. In fact, all of the examples presented in previous sec-

tions of this dissertation have encoded very specific DAC policies restricting access to intensional

regions. Users can also require that certain intensional regions be executed by a specific remote

server:

REQUIRING @p = Inventory HOLDS OVER <*, {("solvent")}, @p>

The above requires that any nodes matching the specified node descriptor be executed by the

Inventory server. It is also possible to allow any remote server explicitly identified as belonging to

some set of trusted servers to handle a particular intensional region:

REQUIRING @p IN {P, Q, R} HOLDS OVER <*, {("solvent")}, @p>

This constraint would force all matching query nodes be evaluated by some server in the set

{P,Q,R} of trusted servers.

5.4.2 Mandatory Access Control (MAC)

In contrast to DAC systems, MAC systems rely on a centrally-defined security policy that cannot

be overridden. For instance, the Bell-LaPadula model [9] is a MAC system that enforces access
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controls based on centrally-managed security clearances: e.g., users can read any file with a se-

curity level lower than their security clearance, but cannot read documents with a higher security

level. To enforce MAC constraints, the client software from which queries are issued could auto-

matically apply REQUIRING clauses to all outgoing queries. For ease of use in such cases, we

could allow the use of macros to define collections of principals (denoted here by the prefix “#”)

which could be parsed and replaced with a static list of principals by the trusted query processor

as a first step in parsing.

To illustrate this point, consider an intelligence analyst using a top-secret clearance worksta-

tion looking over field agent reports concerning a certain date (say, 01-01-10). To ensure proper

compartmentalization of the data from those reports, the query issuing client software on that work-

station could ensure that all queries sent out are sent only to servers cleared to handle top-secret

data with the following REQUIRING clause:

REQUIRING @p IN #top-secret-clearance HOLDS OVER

<*,{("01-01-10")},@p>

Note that the framework articulated in this dissertation can allow MAC and DAC constraints

to co-exist, as is often the case in environments using of MAC constraints [9].

5.4.3 Attribute-based Access Control (ABAC)

ABAC policies allow access decisions to be made based upon the attributes of principals in the

system, rather than their identities [78]. The macro mechanism described to support MAC policies

could be leveraged by users—rather than the query issuing client—to enforce ABAC policies. For

instance, Alice could require that any operation on the Salary table only be visible by servers

run by the finance group:

REQUIRING @p IN #finance-group-servers HOLDS OVER

<*,{("Salary")},@p>

In addition to supporting static, user-defined macros to encode server attributes, an interesting

avenue of future work would be enabling support for dynamic macros to be built based upon

unforgeable digital attribute credentials stored in a server’s meta-data catalog. This would allow
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for more flexible ABAC support in which users can rely on the attestations of trusted certifiers to

make attribute-based judgments regarding a server’s characteristics.

5.4.4 Separation of Duty

Separation of duty (SoD) policies are used to require that multiple principals cooperate to carry

out a particular action [12]. In the context of distributed database systems, one could use SoD to

explicitly limit information flow when querying multiple tables replicated across a collection of

servers by forcing each table scan to be performed by a different server. This is easily expressed in

PASQL1 through the use of a single condition over multiple node descriptors:

REQUIRING @p != @q HOLDS OVER <scan,{("Salary")},@p>,

<scan,{("EmploymentHistory")},@q>

The above example would force the scans of the Salary and EmploymentHistory tables

to occur at different sites.

5.4.5 Data Source Preference

In addition to privacy-related constraints, the preference model developed in this dissertation can

also be used to enforce other execution preferences during query evaluation. For instance, users

can specify preferences over the sources used to obtain replicated data:

PREFERRING @p = Q HOLDS OVER <scan,{(A)},@p>

CASCADE @p != R HOLDS OVER <scan,{(A)},@p>

This preference says that a user would prefer to get table A from the server P. If this fails, the

table could be retrieved from any replica other than R. Such preferences would clearly benefit users

who, even though a table is available from multiple sources, wish it to be acquired from a given

source. This type of preference could arise, e.g., due to differing consistency guarantees offered

by various sources. For instance, in the above, we could imagine P being the primary copy of a

relational table, and R being an eventually consistent—and thus potentially out of date—replica.

This example highlights how PASQL can be used not only as a tool for protecting querier

privacy, but also as a tool for use by database administrators to easily tune system performance.
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5.5 SUMMARY

In this chapter, we presented the syntax and specifications of the three variants of PASQL: PASQL0,

PASQL1, and PASQL2. In describing PASQL0, we overviewed the concepts of preferences as used

in the database literature, and how we adapted this formalization of preferences to the specifica-

tion of constraints on the makeup of query evaluation plans. Through this formalization, users can

flexibly specify constraints that they would like to see upheld by plans to evaluate their queries but

whose support is not necessary for the query to be evaluated. We further proved that PASQL0 is

capable of subsuming private information retrieval (PIR): (I, A)-privacy constraints can be used

to encode PIR constraints. With PASQL1, we presented a method for users to author conditions

over the relative values of two different free variables, allowing for the creation of separation of

duty contraints. With PASQL2, we provided a way for users to explicitly balance the privacy and

performance of their queries. Following our descriptions of these three variants of PASQL, we

presented several example policies that can be encoded using PASQL. In the next chapter, we will

discuss how a PASQL query optimizer can enforce PASQL constraints during optimization.
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6.0 ENFORCING (I, A)-privacy

We have so far focused on defining a syntax and semantics for (I, A)-privacy, and on describ-

ing how these types of constraints—and partially-ordered preference structures over many such

constraints—can be modeled and specified using PASQL. We now turn our attention to the en-

forcement of (I, A)-privacy constraints. First, we prove that (I, A)-privacy constraints can be

enforced directly by users without explicit server-side support. We next explore the possibilities

available in implementing an optimizer for queries with attached PASQL constraints. We first

present a straw-man post-processing approach to illustrate the need to account for both querier

privacy and performance during query optimization. With this in mind, we examine the space of

tradeoffs to be considered in implementing such an optimizer to support (I, A)-privacy constraints.

Finally, we conclude this chapter by presenting an algorithm to find the best performing of the most

highly preferred query plans and analyzing its time and space complexity.

6.1 LOCAL ENFORCEMENT OF (I,A)-PRIVACY CONSTRAINTS

The constructions discussed in Chapter 5 certainly make it possible to specify constraints that

cannot be enforced in practice. For instance, one could require a table be retrieved from a principal

that does not maintain a copy of that table. We now discuss how to identify sets of (I, A)-privacy

constraints that can be enforced, and then show that it is always possible for the querier to enforce

these constraints without requiring any server-side support beyond the ability to process standard

SQL queries. To be enforceable, this set of constraints (1) should not preclude the retrieval of any

table required to materialize the query, and (2) must not contain any conflicting constraints.
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Definition 24 (Source Possible). Let tables(q) denote the set of relations and views required

to materialize the results of an SQL query q. We say that it is source possible to uphold a set

of (I, A)-privacy constraints C for a query q iff ∀t∈tables(q)∃s∈S : (s maintains a copy of t) ∧

(〈scan, {(t)}, ∗〉,−, {. . . , s, . . .}〉 /∈ C).

Definition 25 (Conflict Free). Without loss of generality, consider two (I, A)-privacy constraints

c1 = 〈I1,♦1, A1〉 and c2 = 〈I2,♦2, A2〉}. We say that c1 and c2 are conflicting iff (I1 ∩ I2 6=

∅) ∧ (A1 ∩A2 6= ∅) ∧ (♦1 6= ♦2). We say that a set C of (I, A)-privacy constraints is conflict free

iff ∀{cj ,ck}⊆C,cj 6=ck : cj and ck do not conflict.

The notion of source possibility ensures that each relation or view necessary for materializing

a query q can be obtained from at least one server in the network without violating any constraint

in C. On the other hand, conflict freeness ensures that no logical contradictions requiring a given

intensional region to be both visible to and hidden from the same server occur within the specified

constraint set.

Definition 26 (Enforceable). We say that a set C of (I, A)-privacy constraints is enforceable for a

query q iff C is source possible for q and C is conflict free.

(I, A)-privacy is a highly personalized notion of privacy: users are free to define their own

notions of privacy and can explicitly balance various privacy and performance trade-offs. As such,

it is interesting to note that any enforceable set of (I, A)-privacy constraints can be locally enforced

by the querier via intelligent query planning. Informally, local enforceability implies that the

querier can ensure that her (I, A)-privacy constraints are enforced without any server-side support

beyond that required by the SQL standard. As such, (I, A)-privacy constraints can be enforced

by queriers when interacting with any distributed database system. This is in contrast to existing

notions of querier privacy—e.g., PIR ([14, 47, 80, 54, 59]) —which require non-standard, server-

side cryptographic support. We now formalize this notion of local enforceability and prove that all

enforceable (I, A)-privacy constraints are locally enforceable.

Proposition 1 (Local Enforceability). Let us use the set R = {σ, π, ρ,∪, \,×} to denote the six

primitive operations comprising the relational algebra, and servers(Q) to denote the set of server

nodes participating in the execution of a query plan Q. Given an SQL query q and a set C of

enforceable (I, A)-privacy constraints, there exists a query plan QC = 〈N,E〉 for q that upholds
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all constraints in C in which ∀s∈servers(QC)∀〈op,param,s〉∈N : op ∈ R. As such, we say that any

enforceable set of (I, A)-privacy constraints is locally enforceable.

Proof. (Sketch, by construction.) Given a query q and a set of (I, A)-privacy constraints C, the

querier can trivially construct a plan QC that upholds all constraints in C by using a pure data

shipping approach [44]. Specifically, each table t ∈ tables(q) can be retrieved in its entirety by

the querier, and all operations on these base relations can be executed locally by the querier.

Although the construction above is likely to be incredibly inefficient in practice, it is sufficient

for proving the local enforceability of (I, A)-privacy constraints. To improve performance beyond

this baseline, interior operations in the query plan tree must be assigned to be evaluated at sites

sites other than the querier. Plans must be explored that allow partial query processing to occur on

servers that host the relations needed to resolve a query so that intermediate results of the query

can be shipped between sites instead of full base relations. Clearly, this approach to PASQL query

optimization would require great care in performing site assignments to ensure that (I, A)-privacy

constraints are not violated.

6.2 A STRAWMAN APPROACH

An intuitive approach to support most user constraints on query evaluation plans would be to opti-

mize the query using an off-the-shelf query optimizer, and then post-process the resulting plan to

enforce user constraints. This general approach is used in [18] to ensure that their optimizer gener-

ates plans that uphold tuple-level access controls (as defined by the hosts of the relations involved

in the query) during query evaluation. To apply this approach to uphold (I, A)-privacy constraints,

REQUIRING and PREFERRING clauses would first need to be stripped from incoming queries.

The resulting pure SQL query would then be optimized and a plan without any execution loca-

tions would be produced. A second optimization phase would then be performed on this plan,

applying execution locations to each operation according to the user-specified constraints in these

REQUIRING and PREFERRING clauses.
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Figure 5: Traditional optimizer result for the example query from Section 6.2.
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Figure 6: Inefficient site-assigned plan for the example query from Section 6.2.
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Figure 7: Efficient site-assigned plan for the example query from Section 6.2.
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However, this disconnect between optimization and constraint consideration opens the door

for the creation of unnecessarily inefficient query plans. Consider this example:

SELECT * FROM A, B, C

WHERE A.fkey = B.pkey AND C.fkey = B.pkey;

REQUIRING @p <> siteB HOLDS OVER < *, {(A.fkey)}, @p >;

Here, a user wishes to join Tables A, B, and C (stored at siteA, siteB, and siteC, respec-

tively) while ensuring that siteB does not evaluate any operations on A.fkey. We assume that

A has a cardinality of 100 tuples, B 5,000,000 tuples, and C 200 tuples. We further assume that the

joins to be performed link attributes in Tables A and C that are foreign keys to B.

Given the pure SQL version of this query (everything preceding the REQUIRING clause) a

traditional query optimizer (the first phase of a two-phase approach) would first join Tables A and

B, as A is half the size of C, resulting in the query plan shown in Figure 6.2. Post-processing

this plan to support its attached requirement would disallow the join tables A and B at siteB.

Hence, the second phase would logically choose siteA to evaluate this join (as in Figure 6.2),

though this comes at a great cost to query performance. Under this plan, all of B (5,000,000

tuples) must be shipped over the network to siteA, incurring a great cost to not only total query

evaluation time, but also network bandwidth utilization. Further, this prevents all indices for Table

B (assumedly) maintained at siteB from being used during the evaluation of this query at further

cost to evaluation time.

To compare the costs of different optimizer results, we assume that all three servers are capable

of downloading tuples at 50 Mbit/second, that all three tables have a tuple width of 128 bytes, that

scan operations read tuples at a rate of 120 microseconds/tuple, and that join comparisons take

0.028 microseconds/tuple (assumptions on scan and join operation times were gleaned from the

experimental setups described in Section 7.4). Further, we assume that operations executed at

different sites occur in parallel, and tuples are pipelined from one operation to the next as they are

generated.

Given these assumptions, the plan shown in Figure 6.2 would take 711.66576 seconds to ex-

ecute. Without considering constraints, the general plan from Figure 6.2 could be evaluated in

0.02847 seconds. In addition to not having to ship all 5,000,000 tuples of B across the network,
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this unconstrained plan can utilize indices on the primary key of B to quickly scan only the tuples

needed in the process of joining A and B.

Ideally, this preference-aware query would be evaluated using the plan shown in Figure 6.2. By

joining B and C first at siteB, the large network transfer shown in Figure 6.2 can be avoided while

upholding the user’s specified constraint. Further, by joining B and C together at siteB, indices

on B can again be utilized to speed up the join and avoid scanning all of table B. This approach

takes 0.03038 seconds to evaluate. Such a plan can only be discovered, however, by considering

constraints when determining the join order in a query plan.

To avoid the shortcomings of two-phase optimization discussed above, we must take a syn-

ergistic approach to query optimization, accounting for both (I, A)-privacy constraints and query

performance during the query optimization process.

6.3 TRADEOFFS IN CONSTRAINT ENFORCEMENT

We consider the tradeoffs present in optimizing for both privacy and performance. In order to sup-

port (I, A)-privacy constraints, constraint adherence must supplant estimated query performance

as the primary optimization metric for distributed query optimization. This does not make perfor-

mance irrelevant, however. Users will still wish to have low cost plans to evaluate their queries,

we have just shifted the goal of query optimization to be finding the fastest of the most highly

preferred plans for evaluating a user’s query that violates no required constraints. As such, query

optimization must occur over two metrics, both constraint adherence and performance. This shift

leads to the development of an interesting tradeoff space between optimization time, quality of

plans produced, and the expressiveness of the constraint language.

One interesting point in this tradeoff space is the sacrifice of query optimization time to maxi-

mize constraint expressiveness and plan quality. Dynamic programming cannot be used to produce

optimal plans for queries supporting PASQL1 or PASQL2 as the use of such constraints breaks the

optimal substructure properties of SQL query optimization, a requirement for a dynamic program-

ming approach to query optimization. Consider the constraint that any site that performs a scan

should not also preform a join. This constraint can be easily expressed in PASQL1. It is trivial
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to imagine a case where the optimal plan to evaluate a query with such a constraint attached is

built using a seemingly suboptimal 2-way join plan (i.e., a 2-way join plan that pulls data from a

slower replica). PASQL2 exclusive constraints can also break optimal substructure. Consider the

following PREFERRING clause:

PREFERRING LESSTHAN(runtime, 2min)

CASCADE @p = S1 HOLDS OVER < scan, {(T1)}, @p >

If all plans that are leafed by scans T1 at site S1 will take more than two minutes to run, an

optimizer could unknowingly prune all of subplans that form the basis of an overall optimal plan

because they are dominated by plans performing scans of T1 at S1. Because of this, we do not

have an optimal domination metric for PASQL1 and PASQL2 optimization and must take a brute

force approach to optimizing these queries.

By sacrificing expressiveness, however, we can show that optimal plans can be produced with-

out having to resort to brute force optimization. In Section 6.5, we prove that using the algorithm

presented in Section 6.4 (an extension of the Classic algorithm), optimal substructure can be main-

tained throughout the optimization of PASQL0 queries.

The final notable point in this tradeoff space involves minimizing the overhead to query opti-

mization while allowing queries to be expressed using PASQL1 and PASQL2 by sometimes pro-

ducing suboptimal plans. This is the approach that we have taken in implementing PASQL1 sup-

port in PAQO [29]. We sacrifice the guarantee that optimal plans will be produced to maintain

constraint language expressiveness and optimization performance. Note that PAQO supports only

PASQL1 not because PASQL2 support is infeasible, but merely because we leave the implementa-

tion of PASQL2 support to future work.

6.4 ALGORITHM FOR OPTIMAL CONSTRAINT SUPPORT

Before detailing our algorithm for producing the best performing of the most highly preferred

query plans for evaluating a user’s query, we must highlight an important case to be considered
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Join,
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Join,
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Scan,
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Scan,
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@ Mapper
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Scan,
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Select,
type = 'solvent',

@ Inventory
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@ Inventory

Select,
location = location,

@ Facilities

Figure 8: An example plan to evaluate Alice’s query while respecting a specific set of constraints.

in optimizing queries with attached PASQL constraints. Consider Alice’s example query with the

following two constraints:

SELECT * FROM Plants, Supplies, Polluted_Waters

WHERE Supplies.type = "solvent"

AND Supplies.name = Polluted_Waters.pollutant

AND Plants.id = Supplies.plant_id

AND Polluted_Waters.name = Waterway_Maps.name

AND Waterway_Maps.location = Plants.location

REQUIRING @p = Mapper HOLDS OVER

< *, {(Polluted_Waters.pollutant)}, @p >,

AND @p = Facilities HOLDS OVER

< *, {(Plants.location)}, @p >;
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Given these constraints, the plan shown in Figure 2 cannot be produced as a result of optimiza-

tion as each of its two join conditions (Polluted Waters.pollutant = Supplies.name,

and Waterway Maps.location = Plants.location) are required to be evaluated by dif-

ferent sites (Mapper and Facilities, respectively). In fact, if we assume the plan shown in

Figure 8 to be the optimal plan to evaluate this query, it becomes clear that in optimizing queries

with attached PASQL constraints, we can no longer leverage a long-standing heuristic for query

optimization. Pushing selection/join conditions down as close to the base relation scans in a query

plan weeds out unwanted tuples early on in evaluation, avoiding unnecessary processing of those

tuples and resulting in faster query execution time. In accounting for constraint adherence as the

primary optimization metric, however, this example demonstrates that this approach is no longer

sound. Note that a query optimizer following this push-down heuristic could still produce a query

plan that supported both of the specified constraints by producing a query plan with a different

join ordering. However, if we consider the join ordering used by the plan shown in Figure 8 to be

the best performing, plans with a different join ordering would most likely be suboptimal as they

would not be the fastest of the most highly-preferred plans for evaluating Alice’s query.

Algorithm 5 presents a modified version of the classic dynamic programming-based query

optimization algorithm (discussed in Chapter 2) that includes user-specified PASQL constraints

in the optimization process and also accounts for the use of multiple, distributed evaluation sites

in constructing query plans. The set of usable evaluation sites within the distributed system is

taken as input to the optimization process while constraints are, of course, specified as part of

the query using PASQL. In addition to being needed to prune out unusable access paths (line 4 of

Algorithm 5), required constraints are needed by the JOINPLANS function (line 15), while preferred

constraints are needed by the PRUNEPLANS function (lines 17 and 18).

Note that the changes to the Classic algorithm shown in Algorithm 5 do not in and of them-

selves ensure that optimal query plans will be produced (in fact, Algorithm 5 is also used as part

of PAQO’s heuristic optimization algorithm). These changes simply ensure that the functions

called throughout it (ACCESSPLANS, JOINPLANS, and PRUNEPLANS) have access to the con-

straints specified with the query and the list of possible evaluation sites. To ensure production

of optimal plans, each of these functions must be modified, and an additional function must be
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Algorithm 5 Dynamic programming algorithm that accounts for PASQL constriants.
Require: SPJ query q on relations R1..Rn, with selection/projection/join conditions C1..Cm, required con-

straints REQ1..REQr, and preferred constraints PREF1..PREFp

Require: Possible evaluation sites S1..Ss

1: subplans← EMPTY LIST
2: subplans[1].add(EMPTY LIST)
3: for i = 1 to n do do
4: optP lan[{Ri}]← ACCESSPLANS(Ri, {REQ1..REQr})
5: PRUNEPLANS(optP lan[{Ri}])
6: for i = 2 to n do
7: for all P ⊂ {R1..Rn} such that |P | = i do do
8: optP lan[S]← ∅
9: for all O ⊂ P do do

10: l← optP lan[O]
11: r ← optP lan[P/O]
12: rs← {REQ1..REQr}
13: cs← {C1..Cm}
14: ss← {S1..Ss}
15: jps← JOINPLANS(l, r, rs, cs, ss)
16: optP lan[P ]← optP lan[P ] ∪ jps
17: PRUNEPLANS(optP lan[P ], {PREF1..PREFp})
18: PRUNEPLANS(optP lan[{R1..Rn}], {PREF1..PREFp})

return optP lan[{R1..Rn}]

added to account for the deferral of constraints. To accomplish this, we present ACCESSPLANSopt,

JOINPLANSopt, EXTEND, and PRUNEPLANSopt in Algorithms 6, 7, 8, and 9, respectively.

First, ACCESSPLANSopt must iterate through all possible evaluation locations in order to ensure

that efficient, highly preferred plans are found (line 3). Note that the list of sites used here could be

easily shortened to only the sites hosting a copy of the relation currently under consideration. For

the sake of simplicity, and to ease the worst case runtime analysis done in Section 6.6, however,

we assume all sites host a replica of all relations.

An iteration through all evaluation sites is similarly performed in JOINPLANSopt. In this case,

however, there is no easy, practical way to cut down the list of potential sites. All sites must be

explored, not just the sites that evaluate the children of a new join node. Consider two subplans

p1 evaluated at s1 and p2 evaluated at s2. Let us assume that p1 and p2 are significantly faster than

any other plans realize their respective relations. Let us further assume that the condition to be

used in joining p1 and p2 is required by a PASQL constraint to be evaluated at s3. If we make the

65



Algorithm 6 ACCESSPLANSopt: Access plan enumeration.
Require: A relation Ri to enumerate access plans for.
Require: A list of requirements, REQ1..REQr

Require: The conditions C1..CM specified as part of the query.
Require: Possible evaluation sites S1..Ss

1: aP lans← ∅
2: conds← POSSIBLE CONDS(Ri, {C1..Cm})
3: for k = 1 to s do
4: cond sets← 2conds

5: for each set of conditions c ∈ cond sets do
6: for each physical scan operator, po do
7: New ← NEW SCAN(po,Ri, c)
8: aP lans← aP lans ∪ {New}
9: rs← {REQ1..REQr}

10: if not VIOLATES REQ(New, rs) then
11: aP lans← aP lans ∪ {New}
12: lo← conds/c
13: if |lo| > 0 then
14: ss← {S1..Ss}
15: exps← EXTEND(New, lo, rs, ss)
16: aP lans← aP lans ∪ exps

return aP lans

reasonable assumption that the cost to ship the results of both p1 and p2 to s3 and perform a join is

less than the cost to ship only one of the results and perform a crossproduct, then the fastest plan

upholding required user constraints cannot be found by iterating only through sites evaluating the

children of a prospective join.

To further enumerate all new access plans and join plans with all combinations of conditions

applied and deferred for later processing, ACCESSPLANSopt and JOINPLANSopt must both com-

pute the power set of applicable conditions that can be applied to the new plan (lines 4 and 7 of

Algorithms. 6 and 7, respectively), and iterate through them to ensure that no split of conditions is

missed. Then, for each newly realized plan, any usable conditions that are not applied to it should

be added as another parent node atop the new plan (lines 12-16 of Algorithm 6, and lines 14-18

of Algorithm 7). Adding further operational nodes on to new join plans is accomplished though

the use of the EXTEND function presented in Algorithm 8. JOINPLANSopt must further ensure

that no pair of potential left and right subplans to be joined evaluate the same condition (line 4

of Algorithm 7), as doing so would incur unnecessary overall processing in the query plan. Fi-
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nally, ACCESSPLANSPAQO and JOINPLANSPAQO must check to make sure each newly produced

plan does not violate any required constraints (lines 7 and 8). Any plans that violate a required

constraint are promptly pruned from the search space. By iteratively applying all sets of applica-

ble conditions and then recursively extending each plan with additional operational nodes when

needed, we ensure that this algorithm will explore all possible placements of conditions within

the query plan, and hence, be able to find the fastest optimally preferred plans to evaluate a given

query.

Finally, PRUNEPLANSopt must be modified. To start, checks must be made to ensure that two

plans are to be executed at the same site (i.e., both of the root joins are to be evaluated by the same

site)(line 5 of Algorithm 12) and evaluate the same set of SQL conditions (line 5 of Algorithm 9)

before one can be considered to dominate the other. The metric for domination must also be

changed to primarily consider the relative preference of two plans (lines 6-11). In the case that one

plan does not clearly dominate another based on preferred constraint adherence, PRUNEPLANSopt

falls back to the domination metric used by PRUNEPLANS (lines 12-17).

We will refer to the overall algorithm realized through the combining pseudocode presented in

Algorithm 5 with Algorithms. 6, 7, 8, and 9 as the Optimal algorithm.

6.5 PROOF OF OPTIMAL SUBSTRUCTURE USING PASQL0

In this section, we will prove that the Optimal algorithm upholds the optimal substructure proper-

ties of traditional SQL query optimization while upholding user preferences. Key to this proof is

the notion of a preferred coverage set of query plans for number of tables.

Definition 27 (Preferred coverage set). Given a query q and an integer s, the preferred coverage

set pcs(q, s) contains all query plans p for joining any s tables as a basis for evaluating q that

do not violate any requirements and are not dominated by another plan p′. We say that a plan p

dominates another plan p′ if:
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• p and p′ join the same set of tables

AND

• p and p′ evaluate the same selection and join conditions

AND

• The root nodes of p and p′ are evaluated at the same site

AND EITHER

– p is more preferred than p′

OR

– p and p′ are equally preferred

AND p sorts tuples based on an equal or extended list of attributes compared to p′

AND p is faster than p′

In short, pcs(q,s) contains all of the fastest, preference optimal plans for joining s tables in q

and applying all combinations of applicable selection and join conditions at each site, while also

maintaining all interesting tuple sort orderings.

Note that the fastest of the most preferred plans joining all tables in s and applying all selection

and join conditions applicable to s to evaluate q must be a member of the preferred coverage set

for s. Hence the fastest of the most preferred plans to evaluate a query is a member of the preferred

coverage set for all of the tables involved in the query.

Our proof will further make use of the following Lemma and its Corollaries:

Lemma 1. Every n ∈ N can be checked for preference support in isolation. When any n ∈ N

is used as a component in a query plan, the selection of nodes to make up its descendants and

ancestors in that query plan cannot affect the constraints upheld by n.

Proof. Whether or not a node upholds a given constraint is determined as specified in Definition 15

(upholding a constraint is simply the negation of violating a constraint). Note that Definition 15

relies on only the matching operator (t) and the function evaluate. Both of which use only the

constraint and the values of the ternary n. As stated in Definition 1, the ternary representation of

a node contains only: the relational algebra operation represented by that node, the parameters to

that operation, and the execution location assigned to the node. The descendants and ancestors of

a node are not described in this ternary; the relationships between nodes are only encoded in the
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query plan structure (as stated in Definition 1). Hence, the descendants and ancestors of a node

cannot affect what constraints that node violates (and hence also the constraints that is supports)

as they are used nowhere in our definition of constraint violation (Definition 15).

From Lemma 1, we get the following Corollaries:

Corollary 5. A node n ∈ N will uphold and violate the same constraints regardless of the subtrees

that are assigned to it as children in query plan.

Corollary 6. A node n ∈ N will uphold and violate the same constraints regardless of what nodes

are assigned as its ancestors in a query plan.

With these in hand, we can present our proof by induction over the height of the query plans

produced to optimize some query q.

Theorem 7. The Optimal algorithm will always find the preferred coverage set of i tables accord-

ing to some PASQL0 query q given the preferred coverage sets of less than i tables according to

q.

Proof. Base Case To find pcs(q, 2) for a query q, the Optimal algorithm must first construct

pcs(q, 1). To find pcs(q, 1), all access paths to each table needed to resolve q must first be enu-

merated (line 3-5 of Algorithm 5). Each of these plans is checked to ensure that it does not violate

a required constraint in the ACCESSPLANSopt and EXTEND functions (line 10 of Algorithm 6 and

line 8 of Algorithm 8). All that do not violate any requirements are added to the dynamic program-

ming data structure for join level 1 (note that this data structure will eventually hold pcs(q, 1)).

From here, all combinations of applicable selection conditions are applied to each of these access

paths, and the (non-requirement violating) resulting access path/selection combinations are added

to the dynamic programming data structure. At this point, all possible single node plans have been

enumerated by the Optimal algorithm. To determine pcs(q, 1), however, plans containing multiple

nodes evaluated at different sites must be considered (e.g., a plan that accesses a table at one site,

then performs a selection operation at another). Hence, each of the single node plans enumer-

ated must be extended to apply all combinations of applicable conditions not applied to the single

node via another node evaluated at a different site (and further, each of these extended plans is

recursively extended until all applicable conditions are evaluated in the plan). Each extension will
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attempt to apply all combinations of these leftover conditions to selection nodes evaluated at each

possible site. Using this approach, by line 5 of Algorithm 5, all possible single leaf plans will have

been enumerated by the Optimal algorithm. The Optimal algorithm checks whether the plan to

be added dominates or is dominated by any plan already in the dynamic programming data struc-

ture in PRUNEPLANSopt. Note that the domination metric used in PRUNEPLANSopt implements

the exactly the domination metric proposed in Definition 27. In the case that a plan already in

the data structure is dominated, it will be removed (lines 8 and 15 of Algorithm 9). In the case

that the plan to be added is dominated by an existing plan, the appropriate flag is set to ensure

that the new plan is not added to the dynamic programming data structure (lines 10, 17, and 19 of

Algorithm 9). By enumerating all possible plans, the Optimal algorithm must find the fastest of

the most highly preferred plans evaluating all possible sets of conditions and realizing all possible

sort orders. By pruning only plans that violate requirements or are dominated by another plan

according to the domination metric from Definition 27, the Optimal algorithm realizes pcs(q, 1)

by line 5 of Algorithm 5.

From here, the Optimal algorithm will combine all feasible pairs of plans (i.e., plans that scan

different tables) in pcs(q, 1) to form 2-way join plans at all possible sites. To show that pcs(q, 2)

can be constructed from pcs(q, 1), we must show that any potential 2-way join plans that could

have been constructed from single table plans pruned during the construction of pcs(q, 1) would

be dominated by a 2-way join plan constructed from plans in pcs(q, 1).

Since the Optimal algorithm enumerates all possible single table plans and prunes only those

that violate requirements or are dominated by another plan, by showing that using one of these

pruned plans cannot lead to a faster or more preferred 2-way join plan than exclusively using plans

in pcs(q, 1), we will prove that pcs(q, 2) can be generated purely based only plans in pcs(q, 1). The

Optimal algorithm enumerates all possible single table plans, and prunes only those that violate

requirements or are dominated by another plan. Further, by our domination metric, any plan that

is dominated by another can be universally replaced with the dominating plan. Both plans must

join the same sets of tables, evaluate the same selection and join conditions, and be assigned to

be evaluated by the same site, and hence, wherever one can be used as a building block for a new

plan, the other can as well. No plan that is dominated by another could form the basis of a faster,
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equally-preferred plan at later join levels. A dominating plan is defined to be universally better

than a plan it dominates.

By Corollary 6, any constraints violated by a node will continue to be violated no matter what

plans it is used as the basis of. Hence, the use of requirement violating single table plans will be

of no help in constructing 2-way joins as any such 2-way join plans would still violate at least one

required constraint. Similarly, using a plan that was pruned during the construction of pcs(q, 1)

because it was less preferred as the basis of a 2-way join plan would be disadvantageous compared

to the more preferred plan that dominated it.

While the use of a lesser preferred plan could lead to the creation of a faster 2-way join plan

than could be realized using the plans in pcs(q, 1), this is of no consequence because speed is a

less important optimization metric compared to relative preference (i.e., a more highly preferred

plan will dominate a faster, less preferred, plan). Also, by Corollary 5, it is impossible for the use

of a less preferred single table plan to allow for the creation of more preferred 2-way join node (or

extension to a 2-way join node).

Given that no single table plan pruned in constructing pcs(q, 1) can be used to construct a 2-

way join plan that is not dominated by a plan generated using only pcs(q, 1), the Optimal algorithm

will find pcs(q, 2) using pcs(q, 1).

Inductive Hypothesis Assume that the Optimal algorithm will correctly produce pcs(q, i) for

some i < n.

Inductive Step We now show that given pcs(q, i), the Optimal algorithm will produce pcs(q, i+

1). In the general case (i.e., forming plans to join i tables), the Optimal algorithm will continue to

build plans rooted with nodes evaluated at all possible sites and evaluating all possible combina-

tions of selection and join conditions. What must be shown here is that does not exist a plan to join i

tables constructed from one or more subplans pruned in generating pcs(q, 1), pcs(q, 2), ..., pcs(q, i−

2), pcs(q, i − 1) that would not be dominated by a plan in pcs(q, i). Similar to the Base case, the

use of a requirement violating subplan, a lesser preferred subplan, or a slower subplan cannot be

of benefit to the construction of i-way join plan. Though we do not exhaustively enumerate all

subplans joining less than i tables as was done in the base case, this is irrelevant as the PCS plans

that are used to construct i-way join plans consist of plans that cannot be dominated by other plans

by definition.
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It is trivial to see that our arguments for joining i tables will also hold in joining i + 1 tables.

Hence, our argument holds in the general case, and the proof of our theorem by induction over the

the number of tables being joined in a query plan is complete.

This completes our proof of Theorem 7.

6.6 COMPLEXITY OF THE OPTIMAL ALGORITHM

The literature has previously established that the Classic algorithm has a time complexity ofO(3n)

and a space complexity of O(2n) for queries over n base relations in a centralized setting. It has

further been shown that moving this algorithm to a distributed setting (with s possible evaluation

sites) requires a time complexity of O(s3 ∗ 3n), and a space complexity of O(s ∗ 2n + s3) [45]. In

this section, we will formally establish the time and space complexities of the Optimal algorithm.

For each of the proofs in this section, we assume that all sites in the system host copies of

all tables and are capable of evaluating any operation in a query plan. In the interests of avoiding

the discussion and presentation of spurious constants, we further assume that there is only one

physical scan operator and only one physical join operator available to the optimizer, and that no

interesting sort orders can be taken advantage of during optimization. All of these assumptions

are similarly made in [45]. We only add the assumption that no user-specified required constraints

can be violated by any query plans to evaluate their respective queries. That is, considering that

pruning requirement violating plans can decrease the practical time and space need of the running

of our presented algorithms, we make this assumption to aid in defining the worst case time and

space complexities of the Optimal algorithm.

Theorem 8. The time complexity of the Optimal algorithm for queries over n base relations with

r required constraints, p preferred constraints, and c SQL conditions (e.g., selection, projection,

join conditions) that can be evaluated by s potential servers is O(2c2+3c ∗ sc+3 ∗ c ∗ 3n ∗ (r + p)).

Proof. Because the domination metric used in PRUNEPLANSopt has been rewritten such that a plan

cannot dominate another if they are both to be evaluated at different sites and, in the worst case, all
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s sites host a replica of all tables involved in the query, each entry in optP lan must correspond to

at least s plans in the worst case (note there cannot be multiple plans in the same entry that differ

only by sort order or physical operator due to our assumptions). s different scan plans for each

relation, and, s different join plans for each set of base relations. The domination metric was also

changed such that no plan can dominate another if they evaluate different sets of conditions. This,

combined with accounting for evaluation at different sites, requires that each entry in optP lan

to corresponds to, in the worst case, s ∗ 2c different plans. Each of the s different sites must be

considered, and later joins must be able to draw upon a plan upholding any combination of SQL

conditions at any possible site.

The increased size of optP lan further entails that, for each call to JOINPLANSPAQO, all s ∗ 2c

plans in optP lan[O] must be combined with all s ∗ 2c plans from optP lan[P/O] with all s sites

considered for evaluation of the new root join, and all 2c possible combinations of SQL conditions

applied to the join, increasing the runtime complexity by a factor of (s ∗ 2c)3, or 23c ∗ s3.

The only other additional runtime cost incurred by the Optimal algorithm is that required to

call the EXTEND function. In the worst case, EXTEND is called to extend a node with no SQL

conditions applied. In this case all c conditions are passed to EXTEND. Hence, we can upper

bound the cost of all calls to extend as taking in c conditions. Inside of the extend function, two

nested loops are run: one over all possible evaluation sites (O(s)) and one over every set in the

powerset of all conditions passed to EXTEND (O(2c)). Inside of the innermost loop, a new query

plan is created that applies the current set from the powerset of conditions. All leftover conditions

are then passed to a recursive call to extend. At this point, at least one condition must be applied

to the plan created in extend, and hence, we can upper-bound the number of conditions passed to

the recursive call to EXTEND by c − 1. Hence, we can represent the runtime of EXTEND by the

following recurrence relation: T (c) = s ∗ 2c ∗ T (c− 1) + Θ(1).

To solve this recurrence relation, we consider the recursion tree that can be used to represent it.

This tree would be of height c as each recursive call decrements c by 1. A recursive call at level i

of the tree would further make s∗2c−1 recursive calls, itself in addition to doing a constant amount

of work (creating a new query plan and adding it to the list of plans to be pruned). Hence, we can

determine the runtime of the EXTEND function as T (c) = Σc
i=0(s ∗ 2c−i)i, which we can bound as

T (c) < c ∗ sc ∗ 2c2 .
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As per our assumptions, no plans can be pruned due to requirement violation, and hence such

pruning has no effect on the time complexity. Our use of relative plan preference will further

have no effect on the time complexity of our algorithm. Using relative preference as part of the

domination metric will only change which plans are stored in optP lan, it can not effect the number

of plans stored for each entry in optP lan. Constraint adherence must be checked for each plan

that is realized, however, and that does have a slight effect on the runtime complexity. For each

plan realized, it must be determined if it violates any of the r required constraints or any of the p

preferred constraints. This leads to the addition of the (r + p) term in our runtime.

With this, we can bound the runtime of the Optimal algorithm asO(c ∗ sc ∗ 2c2 ∗ 23c ∗ s3 ∗ 3n ∗

(r + p)). Or, equivalently: O(2c2+3c ∗ sc+3 ∗ c ∗ 3n ∗ (r + p))

The space complexity for our optimal algorithms follows rather simply from the previous

proofs.

Theorem 9. The space complexity of the Optimal algorithm for queries over n base relations with

r required constraints, p preferred constraints, and c SQL conditions (e.g., selection, projection,

join conditions) that can be evaluated on s potential servers is O((2c ∗ s ∗ 2n + 2c2+3c ∗ s(c+3) ∗

c) ∗ (r + p)).

Proof. The optimal algorithm must, for each entry in optP lan, store 2c ∗ s times as many plans

as the classic dynamic programming algorithm. Further, additional overhead is incurred in the

JOINPLANSopt function to iterate through all 2c ∗ s left child plans, 2c ∗ s right child plans, 2c sets

of conditions, c ∗ sc ∗ 2c2 extended plans, and s sites. Finally, the Optimal algorithm must save, for

each plan, a record of which constraints it upholds/violates, state which grows in size according to

the number of constraints specified for the query being optimized, specifically (r + p).

6.7 SIMULATED ANALYSIS OF THE OPTIMAL ALGORITHM

As shown in Section 6.6, the Optimal algorithm has time and space complexities that contain an

additional exponential term compared to the classic algorithm for distributed query processing pre-

viously demonstrated in the literature. To further illustrate the effect of this increased complexity
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Figure 9: Log scale graph of runtimes for the classic distributed query optimizer from the literature.

and motivate the development of a greedy heuristic approach to constraint support, we now present

a simulated analysis of the runtime of the Optimal algorithm.

Figure 9 presents a log scale graph of estimated runtimes for the variant of the Classic algo-

rithm capable of optimizing distributed queries that has been proposed in the literature [45]. This

algorithm has been shown to have a runtime complexity of O(s3 ∗ 3n). The graph presented in

Figure 9 simply plots the result of this growth function (assuming 6 possible evaluation sites) mul-

tiplied by a per-realized plan time cost that we gleaned from the experimental setup described in

Section 7.4. We vary the number of tables needed by a query from 1 to 14, as using more tables

results in estimated optimization times of over an hour, which we feel is certainly impractical.

Figure 10 presents a similar simulated evaluation for the Optimal algorithm. Here, both the

number of tables involved in the query and the number of SQL conditions it contains are varied

from 1 to 14. For this experiment, we again assumed the existence of 6 possible evaluation loca-

tions, and further assume that each query has 3 PASQL constraints applied. The results are again

presented in log scale, with all runtime results over an hour shown in red. Just over 6% (12/196)

of the queries simulated would require under an hour to optimize: queries over up to 9 tables with
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Figure 10: Log scale heatmap of runtimes for the Optimal algorithm.

1 SQL condition applied, and queries over up to 3 tables with 2 SQL conditions applied. Note that

most queries with more than 1 more table than SQL condition can prove functionally impractical,

as there would not be enough join conditions specified as part of the query to join all of the ta-

bles. Queries over n tables with any fewer than n − 1 SQL conditions applied must contain cross

products in their result. Because of this, our simulated experiments show the Optimal algorithm

to be bounded in the worst case to optimizing queries over a maximum of 3 tables in a reasonable

amount of time.

6.8 SUMMARY

We began this chapter by formally establishing that (I, A)-privacy is locally-enforceable; that is,

using this privacy notion, users can protect the privacy of the intension of their queries without

the need of explicit server-side support. With this established, we presented a strawman two-
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phase approach to (I, A)-privacy-aware query optimization to illustrate the need to account for

intensional privacy during query optimization. Following this, we discussed the possible tradeoffs

to be considered when implementing such an optimizer, and presented an algorithm for producing

the fastest of the most preferred plans for a PASQL0 queries. We then proved the optimality of

this algorithm, its runtime complexity, and its space complexity. This chapter concluded with a

simulated analysis illustrating the worst case real world performance of this Optimal algorithm.

This simulated analysis demonstrated the intractability of the Optimal algorithm, estimating even

relatively simple queries with three PASQL constraints applied would take millenia to optimize.

This result motivates the need for a practically efficient approach to optimizing PASQL queries,

which we will present in the next chapter.

77



Algorithm 7 JOINPLANSopt: Join enumeration psuedocode.
Require: A set of plans that will make up the left side of a new root join Left1..Leftu.
Require: A set of plans that will make up the right side of a new root join Right1..Rightv.
Require: A list of requirements, REQ1..REQr

Require: Possible evaluation sites S1..Ss

1: jP lans← ∅
2: for i = 1 to u do
3: for j = 1 to v do
4: if APP CONDS(Lefti) ∩ APP CONDS(Rightj) = ∅ then
5: for k = 1 to s do
6: conds← POSSIBLE CONDS(Lefti, Rightj , {C1..Cm})
7: cond sets← 2conds

8: for each set of conditions c ∈ cond sets do
9: for each physical join operator, po do

10: New ← Lefti ./po,c Rightj at Sk

11: rs← {REQ1..REQr}
12: if not VIOLATES REQ(New, rs) then
13: jP lans← jP lans ∪ {New}
14: lo← conds/c
15: if |lo| > 0 then
16: ss← {S1..Ss}
17: exps← EXTEND(New, lo, rs, ss)
18: jP lans← jP lans ∪ exps

return jP lans

Algorithm 8 EXTEND: A recursive function for applying leftover conditions.
Require: A child plan, Plan
Require: A set of conditions, to apply
Require: A set of requirements, REQ1..REQr

Require: A list of possible evaluation sites, S1..Ss

1: newPlans = ∅
2: for k = 1 to s do
3: conds = POSSIBLE CONDS(Plan, to apply)
4: cond sets = 2conds

5: for each set of conditions c ∈ cond sets do
6: New ← NEW ROOT(Plan, c) at Sk

7: rs← {REQ1..REQr}
8: if not VIOLATES REQ(New, rs) then
9: newPlans = newPlans ∪ {New}

10: lo = conds/c
11: if |lo| > 0 then
12: ss← {S1..Ss}
13: exps← EXTEND(New, lo, rs, ss)
14: newPlans = newPlans ∪ exps

return newPlans
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Algorithm 9 PRUNEPLANSopt: A function to prune dominated plans from a given join level ac-

cording to a domination metric that allows for the construction of optimally preferred plans.
Require: A list Q of query plans joining the same number of base relations.
Require: A list of preferences, PREF1..PREFp.

1: for all p ∈ Q do
2: CHECK PREFERENCES(p, P )
3: reject← False
4: for all other ∈ Q|p! = other do
5: if CONDS APPLIED(p) == CONDS APPLIED(other) then
6: if ROOT SITE(p) == ROOT SITE(other) then
7: if p � other then
8: Q.remove(other)
9: else if p ≺ other then

10: reject← True
11: break
12: else
13: if p has a more interesting sort order then
14: if cost(p) < cost(other) then
15: Q.remove(other)
16: else if cost(plan) > cost(other) then
17: reject← True
18: break
19: if reject then
20: Q.remove(p)
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7.0 PAQO: PRIVACY-AWARE QUERY OPTIMIZER

In this chapter we present PAQO, our implementation of an (I, A)-privacy-aware query optimizer.

By taking a greedy, heuristic approach to optimizing PASQL queries, PAQO is able to efficiently

produce highly preferred plans. This approach allows PAQO to protect the intension of reasonably-

sized user queries, something that is highly impractical for the Optimal algorithm as illustrated in

Section 6.7.

We begin by describing the algorithm that underpins PAQO and analyzing its complexity. Fol-

lowing this, we present a review of additional implementation challenges that we faced in realizing

PAQO. Finally, we conclude the chapter with an experimental evaluation of PAQO.

7.1 PAQO’S ALGORITHM

PAQO’s algorithm generally makes use of the same (I, A)-privacy supporting scaffold that was

used by the Optimal algorithm (Algorithm 5). To achieve efficient preference support that can be

practically usable, however, the ACCESSPLANS, JOINPLANS, and PRUNEPLANS functions used

by PAQO differ from those used by the Optimal algorithm. Further, PAQO’s algorithm does not

account for the deferral of SQL conditions so as to avoid the heavy cost of recursive calls to the

EXTEND function. ACCESSPLANSPAQO, JOINPLANSPAQO, and PRUNEPLANSPAQO are presented

in Algorithms 10, 11, and 12, respectively.

As can be seen, ACCESSPLANSPAQO differs only minorly from the ACCESSPLANS function

used by the Classic algorithm. It adds only an iteration through all possible evaluation locations.

Note that just as with the Optimal algorithm, the list of sites used here could be easily shortened to

only the sites hosting a copy of the relation currently under consideration. Again, to simplify our
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Algorithm 10 ACCESSPLANSPAQO: Access plan enumeration with constraint checking.
Require: A relation Ri to enumerate access plans for.
Require: A list of requirements, REQ1..REQr

Require: The conditions C1..CM specified as part of the query.
Require: Possible evaluation sites S1..Ss

1: aP lans← ∅
2: c← POSSIBLE CONDS(Ri, {C1..Cm})
3: for k = 1 to s do
4: for each physical scan operator, po do
5: New ← NEW SCAN(po,Ri, c)
6: aP lans← aP lans ∪ {New}
7: if not VIOLATES REQ(New, {REQ1..REQr}) then
8: aP lans← aP lans ∪ {New}

return aP lans

analysis, we assume all sites host a replica of all relations. An iteration through all evaluation sites

is similarly performed in JOINPLANSPAQO. And again, just as in the Optimal algorithm, there is

no easy, practical way to cut down the list of potential sites.

Both of these functions differ from their counterparts in the Optimal algorithm in that they

do not attempt to defer potentially applicable SQL conditions. PAQO’s algorithm trades off some

measure of quality in the plans produced in order to make use of the classic heuristic of “pushing

down” SQL conditions in a query plan to be as close to the leaves of the query plan tree as possible.

ACCESSPLANSPAQO and JOINPLANSPAQO still ensure that all produced plans do not violate

any required constraints (lines 7 and 8). Any plans that violate a required constraint are promptly

pruned from the search space. This ensure that, even though PAQO’s algorithm may not output

the fastest or most preferred plan for evaluating a PASQL query, it will never output a plan that

violates a required constraint.

PRUNEPLANSPAQO shows that just as in the Optimal algorithm, one plan cannot dominate

another in PAQO’s algorithm if they are evaluated at different sites (line 5 of Algorithm 12). The

relative preference of two plans is again used as the primary focus of plan domination (lines 6-

11), falling back to the classic domination determination for equally preferred plans (lines 12-

17). However, there is no need for PRUNEPLANSPAQO to differentiate between plans that uphold

different SQL constraints because, again, PAQO’s algorithm pushes down all SQL conditions in

the query plan. Hence, any plans that could otherwise dominate one another because they join the

81



Algorithm 11 JOINPLANSPAQO: Join enumeration psuedocode for PAQO.
Require: A set of plans that will make up the left side of a new root join Left1..Leftu.
Require: A set of plans that will make up the right side of a new root join Right1..Rightv.
Require: A list of requirements, REQ1..REQr

Require: The conditions C1..CM specified as part of the query.
Require: Possible evaluation sites S1..Ss

1: jP lans← ∅
2: for i = 1 to u do
3: for j = 1 to v do
4: c← POSSIBLE CONDS(Lefti, Rightj , {C1..Cm})
5: for k = 1 to s do
6: for each physical join operator, po do
7: New ← Lefti ./po,c Rightj at Sk

8: if not VIOLATES REQ(New, {REQ1..REQr}) then
9: jP lans← jP lans ∪ {New}

return jP lans

same sets of relations would evaluate the same set of SQL conditions. As we show in Section 7.2,

maintaining only the fastest, most highly preferred plan for each site in optP lan will lead to

drastically better time and space complexities compared to the Optimal algorithm.

We refer to the overall algorithm realized through the combined pseudocode presented in Al-

gorithms 5, 10, 11, and 12 as PAQO’s algorithm.

7.2 COMPLEXITY OF PAQO’S ALGORITHM

Just as in our analysis of the Optimal algorithm, here, we assume that all sites in the system host

copies of all tables and are capable of evaluating any operation in a query plan. We further again

assume that there is only one physical scan operator and only one physical join operator available

to the optimizer, that no interesting sort orders can be taken advantage of during optimization,

and that no user specified required constraints can be violated by any query plans to evaluate their

respective queries.

As described in Section 7.1, the only changes to the Classic algorithm needed to support

PASQL constraints are the addition of distributed evaluation sites, the use of requirements to prune

violating plans, and the use of preferences to refine the algorithm’s domination metric. Hence, in
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establishing how these changes affect the complexity of the PAQO’s algorithm compared to the

Classic algorithm, we can establish the overall complexity of PAQO’s algorithm.

Theorem 10. The time complexity of PAQO’s query optimization algorithm for queries over n

base relations with r required constraints and p preferred constraints that can be evaluated on s

potential servers is O(s3 ∗ 3n ∗ (r + p)).

Proof. Because, in the worst case, all s sites host a replica of all tables involved in the query,

and the domination metric used in PRUNEPLANSPAQO has been rewritten such that a plan cannot

dominate another if they are to be evaluated at different sites, each entry in optP lan corresponds

to at most s plans (note there can not be multiple plans in the same entry that differ only by sort

order or physical operator due to our assumptions). s different scan plans for each relation, and,

s different join plans for each set of base relations. Hence, for each call to JOINPLANSPAQO, all

s plans in optP lan[O] must be combined with all s plans from optP lan[P/O] with all s sites

considered for evaluation, increasing the runtime complexity by a factor of s3.

As per our assumptions, no plans can be pruned due to requirement violation, and hence such

pruning has no effect on the time complexity. Our use of relative plan preference will further

have no effect on the time complexity of our algorithm. Using relative preference as part of the

domination metric will only change which plans are stored in optP lan, it can not effect the number

of plans stored for each entry in optP lan. Constraint adherence must be checked for each plan

that is realized, however, and that does have a slight effect on the runtime complexity. For each

plan realized, it must be determined if it violates any of the r required constraints or any of the p

preferred constraints. This leads to the addition of the (r+ p) term in our runtime complexity.

PAQO’s algorithm imposes only a linear overhead of checking constraint adherence for each

plan generated over the O(s3 ∗ 3n) bound established in the literature for dynamic programming

based optimization of distributed queries. We experimentally verify this linear overhead to opti-

mization costs in Section 7.4.2.

Theorem 11. The space complexity of PAQO’s query optimization algorithm for queries over n

base relations with r required constraints and p preferred constraints that can be evaluated on s

potential servers is O((s ∗ 2n + s3) ∗ (r + p)).
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Proof. Trivially, PAQO’s algorithm must, in general, store s times as many plans as the classic

dynamic programming algorithm (the s plans in each entry of optP lan), and must further have

s3 memory available for the JOINPLANSPAQO function. PAQO’s algorithm must further save, for

each plan, a record of which constraints it upholds/violates, specifically (r + p).

As [45] presents a space complexity of O(s ∗ 2n + s3), we are again able to show the only

overhead incurred by PAQO’s algorithm is linear (one bit required per constraint). Again, the

linear overhead to optimization space requirements is verified in Section 7.4.2.

7.3 CHALLENGES IN IMPLEMENTING PAQO

In order to realize the efficient support for (I, A)-privacy constraints described so far in this chapter,

we implemented PAQO through extensive modifications to the optimizer from PostgreSQL [75].

PostgreSQL is a widely-used, open-source, transactional, object-relational database management

system. PostgreSQL does not support queries over systems of autonomous, heterogeneous, dis-

tributed database systems, however.

Our first steps towards implementing PAQO was to establish support for distributed query opti-

mization. All query plan nodes were augmented to maintain state about where they were assigned

to evaluated. The join planning algorithm was expanded to iterate though all potential evalua-

tion sites as described in Section 7.1. Most importantly, the cost estimator from PostgreSQL was

rewritten to account for network transfers of data between query plan operations and to consider

the parallel execution of operations occurring at different sites (while PostgreSQL is a threaded

database system, it assigns each query to its own thread, hence, it does not consider parallel oper-

ation execution within the same query during optimization).

With this established, we moved on to enabling support for PASQL1 constraints. The parser

was modified to detect the REQUIRING and PREFERRING clauses and extract the constraints

they contain. We created mechanisms within the optimizer to detect query plan nodes that match

constraint node descriptors. We needed to track down all points where new query subplans are

created within the optimizer to ensure that a plan can be checked for requirement violations and

removed from the search space as soon as possible. Finally, we had to modify the functions to
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check for the domination of one plan by another to primarily consider preference support as outline

in Algorithm 12. To efficiently keep track of what preferences a plan supports, we store a list

of bitmaps with each plan representation. Each bit in these bitmap stores whether a query plan

supports a given preference, and each bitmap corresponds to a different preference level (i.e., the

first bitmap represents all of the constraints listed before the first CASCADE keyword, the second

bitmap represents all of the constraints listed between the first and second CASCADE keywords,

and so on). The relative preference of two query plans can then be quickly compared by iteratively

comparing their bitmaps.

7.4 EXPERIMENTAL EVALUATION

All of the experiments presented in this section were conducted on a single machine running Arch

Linux with an Intel i5-2500 processor, 16GB of RAM, a 2TB hard disk dedicated to database ta-

bles and configuration files, and a 500GB hard disk to hold everything else on the machine (e.g.,

OS files and database binaries). For experiments comparing PAQO’s performance to PostgreSQL’s

standard optimizer, the optimizer from PostgreSQL version 9.1.1 (which serves as the basis for

PAQO) was used. Optimization times, memory utilization statistics, and query plan makeups are

gathered from logs produced by PAQO and PostgreSQL during optimization. Due to the difficulties

of gathering accurate measurements of PostgreSQL’s memory usage (see [56, 1]), the memory uti-

lization statistics presented here were gathered via modifications to PostgreSQL’s internal memory

allocation functions. Hence, they precisely show the amount of memory allocated by the optimizer

to evaluate the presented queries. Estimated query execution costs are presented in generic units.

These units relate directly to the time required to evaluated the query plans produced, though the

exact relationship between the estimation units and real time will depend on the machines eval-

uating the query (i.e., processor speeds, disk speeds, etc.). Note that this is the same way that

estimated costs are reported by PostgreSQL’s EXPLAIN statement, and for more information we

direct the reader to [76]. The query plan visualizations presented in Figures 19, 20, and 21 were

generated using a GraphViz ([39]) script operating on PAQO’s logs.
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Table 1: Distributions used to generate relation cardinalities.

Class Relation Size (Cardinality) Distribution

S 10 - 1,000 15%

M 1,000 - 10,000 30%

L 10,000 - 1,000,000 35%

XL 1,000,000 - 100,000,000 20%

As most of our experiments optimize for data stored at multiple sites, a distributed database

system was simulated within the PostgreSQL DBMS. Each relation used by PAQO is assumed

to be stored at a single site in the system, and this site is annotated as the execution location of

all scans of the relation. We treat PostgreSQL’s system catalog as the catalog of metadata from

remote databases maintained by PAQO. Because we aim only to evaluate the performance of our

optimizer, this simulation does not affect the results we present here. Optimization occurs at a

single site with access to a single metadata catalog before distributed query evaluation.

7.4.1 Baseline Comparison to PostgreSQL

These experiments were performed on randomly generated queries over randomly generated rela-

tions following the experimental model used in [72, 45, 66]. The relations over which these queries

are defined are sized according to the distribution shown in Table 1, and composed of attributes

whose size follows the distribution shown in Table 2. The experiments were run on queries over

an increasing number of relations (from three to eleven). Queries were generated according to

three join topologies: CHAIN, STAR, and CLIQUE. Each query was run once to warm caches,

and again to be averaged into the data point value. Each of these data points represents the average

of 20 runs of different randomly generated queries.

For a fair comparison, PAQO assumes that all relations are stored at a single site. As such,

all points where multiple execution locations must be considered are effectively avoided. Fur-

ther, in order to be processed by PostgreSQL’s standard optimizer, none of these queries had
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Table 2: Distributions used to generate relation schemas.

Class Attribute Domain Size (Bytes) Distribution

S 2 - 10 5%

M 10 - 100 50%

L 100 - 500 30%

XL 500 - 1,000 15%

any constraints attached. Figures 11(a), 12(a), and 13(a) show the optimization time (in mil-

liseconds) required by queries of CHAIN, STAR, or CLIQUE topology (respectively) while Fig-

ures 11(b), 12(b), and 13(b) show the memory (in bytes) required to optimize these queries.

These graphs clearly demonstrate the negligible overhead that PAQO incurs on the optimiza-

tion process. With this data, we establish that any increases in optimization time and memory

usage shown in later experiments are a result of site assignment and constraint processing. Our

implementation of PAQO does not inherently necessitate an increase in optimization cost, it only

requires more time and space to perform additional processing that PostgreSQL cannot provide.

7.4.2 Processing Constraints

To demonstrate the effects of constraint processing on optimization time and memory utilization,

we randomly generated a query over six relations and nine constraints on the optimization of

that query. This query is issued over the same randomly generated relations used in the previous

experiments. Here, though, the relations are considered to be stored at different sites, allowing for

meaningful use of constraints. We optimized this query by itself and with the generated constraints

attached to produce the graphs displayed in Figures 15(a) and 15(b). Each data point is the average

of five runs of this query with a given number of constraints attached (six runs were performed in

total for each data point, one to warm caches and the five to gather data).

In these graphs, the Baseline curve shows the performance of PAQO when given the query

without any constraints. The Required curve shows the results of adding each of the nine con-

87



3 4 5 6 7 8 9 10 11

Tables in Query
100

101

102

M
il
li
s
e
c
o
n

d
s
 (

m
s
)

Baseline Optimization Time: CHAIN
PAQO single site
Standard PostgreSQL

(a) CHAIN Optimization Time

3 4 5 6 7 8 9 10 11

Tables in Query
104

105

106

107

B
y
te

s

Baseline Memory Use:  CHAIN
PAQO single site
Standard PostgreSQL

(b) CHAIN Memory Usage

Figure 11: Results of comparing CHAIN optimization times and memory usages of PAQO and the

optimizer from PostgreSQL

straints as a requirement. The rest of the graphs show the results of adding these constraints as

preferences according to different shapes. Different shapes were created by varying the use of the

AND and CASCADE keywords to for each additional constraint. Figure 17 illustrates the shapes

used in this experiment. Each node in Figure 17 represents a constraint. Equally preferred nodes

(joined by an AND) are shown on the same level, while nodes higher in a given structure are consid-

ered more preferred than those lower (i.e., each change in level represents the use of a CASCADE).

It should be noted that the graph of required constraints shows no data for any more than five

constraints because the sixth constraint generated conflicts with a previous constraint, and hence it

is impossible for PAQO to generate query plan that upholds all user-specified requirements. Note

that this conflict is only an attribute of the specific constraints generated, this is not an inherent

limit in the number of requirements that can be applied to a given query. As these constraints

are randomly generated, however, there is an increasing probability of conflict between required

constraints as the number of random constraints applied to a query increases. The inclusion of

conflicting constraints in this experiment further showcases PAQO’s ability to handle conflicting

preferred constraints.
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Figure 12: Results of comparing STAR optimization times and memory usages of PAQO and the

optimizer from PostgreSQL

While this experiment does confirm the expectation that optimization cost increases with the

number of constraints attached to a query, more importantly, it shows that optimization time and

space requirements increase linearly with the number of constraints. Hence, while an overhead is

incurred to account for user constraints during query optimization, this overhead scales well as the

number of constraints specified increases.

7.4.3 Case Study Performance

We have further run a series of experiments evaluating the performance of Alice’s query from

Section 1.2 with the requirements listed in Table 3. The results of these experiments are shown in

Figures 18(a) and 18(b). The constraints from Table 3 are applied one at a time as requirements, and

each data point is the average of five runs (preceded by a cache-warming run). Figure 18(a) further

presents the optimization time needed to process each requirement alone in addition to combining

it with previous requirements (i.e., the results for optimizing both Alice’s query with just the second

requirement attach and with the first and second requirements attached are both presented, as are

the results for the third and the first, second, and third, etc.). The sixth requirement, limiting all

joins on Polluted Waters.name to be evaluated by the Querier is highly restrictive. With
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Figure 13: Results of comparing CLIQUE optimization times and memory usages of PAQO and

the optimizer from PostgreSQL

this constraint, PAQO is able to prune large portions of the optimization search space (i.e., all plans

with another site annotated to evaluate an operation on Polluted Waters.name), resulting in

a clear decrease in optimization time.

7.4.4 Query Plan Cost and Correctness

None of the queries and requirements used in our baseline and constraint experiments had any

semantic meaning. Hence, for those experiments, comparing the tradeoff between constraint ad-

herence and the estimated cost of executing a query plan similarly would have no real meaning.

To explore this tradeoff, we further utilize the case study to demonstrate the cost and correctness

of plans generated by PAQO.

The query plans presented in this section are a direct representation of the plans produced by

PAQO. As such, the nodes in these query plans display the method for evaluating the relational

algebra operation needed as opposed to just the general relational algebra operation (e.g., sequen-

tial scan as opposed to scan, hash join as opposed to join). The first line of each node lists the

method and the estimated cost of evaluating the entire subtree rooted at that node (hence the cost

of the entire plan is displayed in the root node). It should be noted again that these costs are given
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Figure 14: Results of comparing CHAIN optimization times and memory usages of queries with

varying shapes of constraints

in PostgreSQL’s computational units. The real world time required to evaluated these plans will

depend on the computational power of the servers they are evaluated by, the speeds of network

connections between these servers, etc. The middle lines of each node represent the parameters

to the operation while the final line indicates the execution location assigned to that operation.

Note that PAQO will choose to evaluate some operations together by combining select and project

operations with other operations. This is a performance improving technique that saves making

an extra pass over the intermediate relation. As a final note, network transfers are indicated via

annotations to the right of edges linking two operations to be performed at different sites.

First, we show the result of optimizing Alice’s base query (from Section 1.2), in Figure 19.

PAQO’s estimated cost to evaluate this query is 6189.25, while, on average, optimizing this query

with PAQO took 6.34ms and utilized 218680 bytes of memory.

The first requirement from Table 3 states that operations on Polluted Water.pollutant

should be hidden from the Inventory server. To accommodate this, PAQO chooses to evalu-

ate the root of the query plan at the Querier as shown in Figure 20. PAQO took an average

of 12.013ms and 488808 bytes of memory to produce this plan and it has an estimated cost of

51097.00. This plan has a higher estimated cost than the base plan, though that is exactly why it

91



0 1 2 3 4 5 6 7 8 9

Number of Constraints

0

200

400

600

800

1000

1200

1400

1600

M
il
li
s
e
c
o
n

d
s
 (

m
s
)

Constraint Optimization Time: STAR
Baseline
Requirements
Horizontal
Vertical
Pyramid
Iverted Pyramid 
Diamond

(a) STAR Optimization Time

0 1 2 3 4 5 6 7 8 9

Number of Constraints

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B
y
te

s

1e8 Constraint Memory Use:  STAR
Baseline
Requirements
Horizontal
Vertical
Pyramid
Iverted Pyramid 
Diamond

(b) STAR Memory Usage

Figure 15: Results of comparing STAR optimization times and memory usages of queries with

varying shapes of constraints

was not selected as the plan to evaluate Alice’s query without constraints. With this requirement,

Alice is adding an optimization metric that is considered more important than the otherwise as-

sumed “lowest cost” metric. As such, this tradeoff between constraint adherence and plan cost is

expected.

Applying both Requirements 1 and 2 similarly shifts the evaluation of the join on the con-

dition waterway maps.name = polluted waters.name from Pollution Watch to

Mapper as shown in Figure 21. It is interesting to note that, though this requires another large

network transfer of tuples from Pollution Watch to Mapper, this transfer can be performed

in parallel with the transfer from Inventory to the Querier, and hence has only a small impact on

the overall plan cost. This plan has an estimated cost of only 54064.34. PAQO is able to produce

this query plan in an average of 16.02ms using 738052 bytes of memory.

Requirement 3 explicitly disallows Mapper from performing both of the operations that it does

in Figure 21, and hence the evaluation of the join on the condition waterway maps.name =

polluted waters.name is shifted again to the Facilities server. Requirements 4 and 5

similarly adjust the site selected to evaluate this join to the Inventory server and a third party

computation server, before Requirement 6 finally forces it to be evaluated by the Querier.
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Figure 16: Results of comparing CLIQUE optimization times and memory usages of queries with

varying shapes of constraints

The inclusion of Requirement 7 creates a conflict among the requirements. If all joins are to

be performed by the Querier, Requirement 3 cannot be upheld as the attributes it covers are

both used as join conditions. Given this query, PAQO returns an error informing the user that it is

unable to produce an evaluation plan for the supplied query.

7.4.5 Discussion of Experimental Results

Requirements as Pruning Rules While PAQO incurs a negligible overhead on plans with no con-

straints attached, optimization time of constrained queries increases with the number of con-

straints applied to the queries. As requirements are used as additional pruning rules, queries

with larger numbers of requirements should be able to use them to decrease the number of

potential plans created during query optimization, and hence, decrease optimization time. Our

selection of randomly generated constraints (from the experiments presented in Section 7.4.2),

by their random nature, rarely affected the query evaluation plans generated by PAQO (e.g.,

they prohibit joins at sites that were not selected to perform joins anyway as there was another

site that could perform joins more efficiently). As such, the optimization time results from Sec-

tion 7.4.2 serve as a worst-case experimental result. Lacking sufficient actual pruning, these
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Figure 17: A visualization of the different preference shapes used in Section 7.4.2’s experiments
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Table 3: Requirements applied to our case study of Alice’s query from Section 1.2

Number Constraint
1 @p <>Inventory HOLDS OVER 〈 *, {(Polluted Waters.pollutant)}, @p 〉
2 @p <>Pollution Watch HOLDS OVER 〈 *, {(Waterway Maps.name)}, @p 〉
3 @p <>@q HOLDS OVER 〈 *, {(Polluted Waters.name)}, @p 〉, 〈 *, {(Plants.location)}, @q 〉
4 @p <>Facilities HOLDS OVER 〈 *, {(Polluted Waters.name)}, @p 〉
5 @p <>Inventory HOLDS OVER 〈 *, {(Polluted Waters.name)}, @p 〉
6 @p = Querier HOLDS OVER 〈 *, {(Polluted Waters.name)}, @p 〉
7 @p = Querier HOLDS OVER 〈 join, *, @p 〉;
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Figure 18: Case study performance results with varying numbers of requirements

queries are subject to the additional overheads imposed by constraint checking while achieving

only minimal benefits.

Effect of Preference Shape In contrast to requirements, preferences have two factors that could

contribute to their complexity: the number of preferences attached and their shape. Fig-

ure 15(a), however, clearly shows that shape has a negligible effect on optimization time. This

is an intuitive conclusion, as in checking preference adherence, all preferences are iterated

over without regard to the ranking relative to one another. The shape of the ranking of prefe-

rences attached to a query only affects the comparison of the relative preference of two plans

in that each CASCADE keyword used in a PREFERRING clause necessitates the use of another

bitmap to store the preferences upheld by a given plan. This effect is negligible, however,

due to the efficiency of bitmap comparisons and the fact that comparisons can stop as soon as

a difference in the preferences upheld at a given level is found (i.e., an increased number of

CASCADEs does not have as much of an impact on the average case plan comparison times as

it does on the worst case).

Efficient Preference Support Figure 15(a) further shows PAQO is able to optimize queries with

attached preferences with performance competitive to queries with the same number of require-

ments. Recall that, though the cost of constraint checking takes its toll on optimization with
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Figure 19: Query plan to evaluate Alice’s query produced by PAQO with no constraints.

requirements, they are used as pruning rules when exploring the optimization search space.

Because of this, additional requirements can only decrease the size of the search space that

must be explored during query optimization. By showing that PAQO’s optimization of queries

with preferences takes little more time than for those with requirements, we can validate our

intuition that our use of a heuristic for emitting highly-preferred query plans limits the number

of query plans maintained during optimization, and hence, maintains lower optimization times.

7.5 SUMMARY

In this chapter, we presented PAQO, our implementation of an (I, A)-privacy-aware query opti-

mizer. We began by describing the algorithm that underpins PAQO and analyzing the complexity

of this algorithm. We detail the challenges in rewriting the optimizer from PostgreSQL in order

to realize PAQO. We presented an extensive experimental evaluation of PAQO. This evaluation

verified the linear overhead of PAQO’s algorithm compared to the Classic algorithm that we the-
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Figure 20: Query plan to evaluate Alice’s query produced by PAQO with a single constraint.

Figure 21: Query plan to evaluate Alice’s query produced by PAQO with two constraints.

97



oretically established. It further showed that PAQO is able to efficiently produce highly preferred

plans to evaluate PASQL1 queries, and that the “shape” of a preference specification does not af-

fect optimization time. Finally, we presented the results of a case study analysis optimizing Alice’s

query with a number of different constraints attached to show that highly restrictive requirements

can cut down on optimization time. Together, these results showed that PAQO is capable of effi-

ciently optimizing PASQL queries to provide distributed database users with practical protection

of their query intension.
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Algorithm 12 PRUNEPLANSPAQO: A function to prune dominated plans from a given join level

according to PAQO’s domination metric.
Require: A list Q of query plans joining the same number of base relations.
Require: A list of preferences, PREF1..PREFp.

1: for all p ∈ Q do
2: CHECK PREFERENCES(p, P )
3: reject← False
4: for all other ∈ Q|p! = other do
5: if ROOT SITE(p) == ROOT SITE(other) then
6: if p � other then
7: Q.remove(other)
8: else if p ≺ other then
9: reject← True

10: break
11: else
12: if p has a more interesting sort order then
13: if cost(p) < cost(other) then
14: Q.remove(other)
15: else if cost(plan) > cost(other) then
16: reject← True
17: break
18: if reject then
19: Q.remove(p)
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8.0 CONCLUSIONS AND FUTURE WORK

8.1 SUMMARY OF CONTRIBUTIONS

In this dissertation, we address the following hypothesis:

By extending SQL to allow for declarative specification of constraints on the attributes of query

evaluation plans and accounting for such constraints during query optimization, users can produce

efficient query evaluation plans that protect the private intensional regions of their queries without

explicit server-side support.

To support this hypothesis, we first needed to formalize an approach for users to specify privacy

constraints on plans to evaluate their queries. We then needed to show that not only could these

constraints be enforced, but that they could be enforced locally. Finally, we needed to show that

users could practically realize the privacy protections offered by our approach. These goals are

achieved by the following specific contributions of this dissertation:

Chapter 4 formally established the concept of intensional privacy and how the privacy of the

intensions of users’ queries can be violated. It presented a formal definition of our novel notion

of privacy, (I, A)-privacy, and contained a proof that our constructs for describing (I, A)-

privacy constraints are identify any portion of an SQL query.

This proof allowed us to state that our approach can be used to protect the intensional pri-

vacy of user queries. Privacy is an inherently personal concept that can vary greatly not only

from person to person but also from query to query. By ensuring that our formalization of

(I, A)-privacy constraints is flexible enough to cover any portion of user query, we ensured
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that regardless of what piece of a query a user would consider to be sensitive they can author

an (I, A)-privacy constraint to protect it.

Chapter 5 presented a set of extensions to SQL that allows users to express (I, A)-privacy con-

straints over the queries that they issue. Specifically, the syntax of three variants of PASQL are

presented: PASQL0, PASQL1, and PASQL2. It contained a proof that PASQL0 (and hence

PASQL1 and PASQL2) is capable of subsuming private information retrieval (PIR): (I, A)-

privacy constraints can be used to encode PIR constraints. A preference algebra was presented

that is utilized by all three variants of PASQL to prioritize and balance competing (I, A)-

privacy constraints. These preference constructs are further used by PASQL2 to allow users to

explicitly balance privacy and performance when evaluating their queries.

Formally establishing a syntax and semantics for the three variants of PASQL is a necessary

step towards enforcing (I, A)-privacy and supporting the hypothesis of this dissertation. In

order for (I, A)-privacy constraints to be enforced, users must have a way to communicate

their privacy concerns to the system processing their queries. PASQL provides exactly this

functionality in declarative way, maintaining the boon that declarative languages have provided

to database users for the last 40 years.

Further, by showing that PIR constraints can be expressed using PASQL, we ensured that

PASQL users will be able to take advantage of PIR techniques whenever they are applicable

to the user’s query and supported by the remote servers being queried, while still being able to

utilize the novel privacy enforcement techniques presented in this dissertation anytime PIR’s

necessary pre-conditions are not met.

Chapter 6 first formally established that (I, A)-privacy is locally-enforceable. That is, using this

privacy notion, users can protect the privacy of the intension of their queries without the need

of explicit server-side support. The fact that (I, A)-privacy constraints are locally-enforceable

is a key distinguishing advantage of our approach to protecting querier intension, and a direct

condition of supporting the hypothesis of this dissertation.

Chapter 6 further illustrated the need to account for intensional privacy during query opti-

mization via a strawman approach to (I, A)-privacy support. The tradeoffs to be considered

in accounting for (I, A)-privacy during query optimization were described, and, with them in

mind, our novel Optimal algorithm for producing the fastest of the most preferred plans for
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PASQL0 queries was presented. We proved this algorithm to be optimal, and formally estab-

lish its runtime complexity and its space complexity. Chapter 6 concluded with a simulated

analysis illustrating the worst case real world performance of this Optimal algorithm.

We not only showed that the problem of finding the fastest optimally-preferred plan for eval-

uating a PASQL0 query solvable, but further presented an algorithm for solving this problem.

Combined, these two points clearly established that users can generate efficient plans that pro-

tect the private intensional regions of their queries, the final component of the hypothesis of

this dissertation. In analyzing the time and space requirements of running this algorithm, how-

ever, we showed that such optimal support comes at a great cost. We further established a

space of tradeoffs to be considered in enforcing (I, A)-privacy constraints that presents a large

potential for exploration in future work.

Chapter 7 presented PAQO, our implementation of an (I, A)-privacy-aware query optimizer. The

novel algorithm that underpins PAQO was described, and its time and space complexities were

analyzed. It further presents an extensive experimental evaluation of PAQO. This evaluation

verified the linear overhead of PAQO’s algorithm compared to the Classic algorithm that was

theoretically shown in our analysis. It further showed that PAQO is able to efficiently pro-

duce highly preferred plans to evaluate PASQL1 queries, and that the “shape” of a preference

specification does not affect optimization time.

By implementing heuristic support for PASQL1 in PAQO, we showed that not only is it possi-

ble for users to efficiently protect their query intension, but further that it is practical.

With these contributions, we are able to support the hypothesis of this dissertation. In Chap-

ters 4 and 5, we showed how users can express (I, A)-privacy constraints using PASQL. In Chap-

ter 6, we proved that these constraints can be locally enforced and provided an algorithm for

producing the fastest, most highly preferred plan for a given PASQL query. Finally, we presented

PAQO, a practical implementation of an (I, A)-privacy-aware query optimizer, in Chapter 7.
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8.2 FUTURE WORK

By presenting the novel privacy notion (I, A)-privacy and further exploring the potential tradeoffs

to be considered in enforcing (I, A)-privacy, this dissertation sets the stage for a large body of

future work.

8.2.1 Distributed Query Execution Engine

PAQO makes relatively simple assumptions about the capabilities of remote database servers pro-

cessing the query plans that it generates. They do not need to take any role in actively ensuring that

users’ intensional privacy is being protected, or even know whether or not the queries that they are

processing have PASQL constraints attached to them. Remote servers are only assumed to accept

and process query evaluation plans optimized elsewhere, accept relations streamed to them from

other servers/sites that require further processing, and ship generated results either to other remote

servers or back to the querier. However, there are currently no such deployed systems that can

accomplish these tasks.

While motivating use cases for such a system were clearly outlined in Chapter 1, and the

research community has developed the techniques for enabling distributed query processing, a

distributed system of heterogeneous and fully autonomous database servers has yet to materialize.

By ensuring that the intensions of users’ queries can be protected throughout the query evaluation

process, we have removed one hurdle to the adoption of such a distributed database system.

Aside from the adapting the inputs and outputs of the execution engine to receive and transmit

query plans and tuples from/to the network in addition to disk, each entity in the system must

also be modified to allow for the maintenance of a distributed catalog of all of the data stored in

the distributed system. Data storage servers will have to export their locally stored catalogs and

statistics (e.g., selectivities and cardinalities) so that remote query optimizers such as PAQO can

make accurate runtime estimations during query optimization. As mentioned in Section 4.1, these

updates should occur either as pushed updates in response to changes to data stored in the system,

or by having optimizers perform periodic polling of all data hosts in the system.
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8.2.2 PASQL2 Implementation

Implementing support for PASQL2 within PAQO would allow users to practically bound the cost

in terms of estimated query performance that they are willing to pay for the privacy-preserving

evaluation of their queries. Examples of how users can wield PASQL performance constraints to

directly manage this tradeoff between privacy and performance are presented in Section 5.3.

To enable support for PASQL2 within PAQO, the sets of exposed optimizer estimation func-

tions,F , and numerical preference constructors, PC, would need to first be established. In [41], the

authors present a number of numerical preference constructors that can be used to create PASQL

performance constraints, and hence populate PC. With this in hand, PAQO could be modified

to check the corresponding metadata generated during query optimization to check whether any

specified PASQL2 constraints are upheld on the plans it generates. While there are no theoretical

obstacles to enabling such checks, some usability concerns need to be accounted for. As described

in Section 5.3, PASQL performance constraints on estimated query runtime would require users

to specify a direct bound for the overall runtime of their queries (e.g., that it be less than two min-

utes). While it is straightforward to see how this could be implemented, it would require users to

be aware of reasonable bounds for each of their queries. It may be more accessible to have users

establish preferences over relative performance metrics (e.g., that a query should take less than

twice as long to run).

The use of relative performance constraints raises several interesting questions. First, what

query plan should be used as a basis for comparison? A plan to evaluate the base query without

any PASQL constraints may be the intuitive interpretation of a plan taking x times as long to ex-

ecute for many users. In this case, the constraint would be interpreted as performance relative to

issuing the query to a system that is fully trusted. Another interpretation would be to consider

performance relative to a plan that supports all constraints that are more important the given per-

formance constraint. Through this lens the performance constraint indicates the cost the user is

willing to pay just to support a specific set of constraints. This second interpretation more closely

models the use case we outline when describing PASQL2 throughout this dissertation.
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A second question to be considered is how this baseline measure should be determined: should

PAQO perform multiple optimizations of a single query to account for PASQL2 constraints? These

questions will be the focus of future work on implementing PASQL2 support within PAQO.

8.2.3 Further Analysis of the Runtime of the Optimal Algorithm

In Section 6.6, we clearly establish the extreme performance cost to optimal support of PASQL

constraints using, to the best of our knowledge, the most efficient algorithm for finding the fastest

of the most highly preferred plans for evaluating PASQL0 queries. We have not, however, produced

a lower-bound on the time required to produce optimal plans for queries with attached PASQL

constraints. While it is well-established that query optimization in and of itself requires exponential

time to perform, it is important to also bound the time requirements of the overheard to query

optimization necessitated by optimal PASQL constraint support. Such a bound could formally

confirm that the Optimal algorithm presented here is the best approach for finding the fastest of the

most highly preferred plans for evaluating PASQL0 queries. A different result from this analysis,

on the other hand, could open the door for further work in developing optimal approaches for

PASQL support.

8.2.4 Analysis of the Quality of Plans Produced by PAQO’s Algorithm

PAQO is able to efficiently produce highly-preferred query plans for queries with attached PASQL

constraints. However, we have yet to establish a bound on how close the quality of these plans

comes to the quality of the optimal plans for user queries. The results from Section 6.6 establish

that implementing the optimal algorithm for an experimental comparison of output plans would

be infeasible for reasonably sized queries. Hence, a theoretical bound must be established on the

quality of plans produced by PAQO’s algorithm compared to the optimal.

8.2.5 Alternative Implementations of a Privacy-Aware Query Optimizer

In parallel with efforts to analyze the quality of plans produced by PAQO’s algorithm, future work

will explore the possibility of implementing a Privacy-Aware Query Optimizer based on query

105



optimization approaches other than dynamic programming. Being based on dynamic program-

ming, PAQO is subject to the same limitations in terms of query size as the Classic algorithm.

PostgreSQL, for example, only uses the Classic algorithm for queries over fewer than 12 tables.

After this hard cutoff, PostgreSQL switches to a heuristic approach (a genetic query optimization

algorithm). Through the use of a randomized query optimization algorithm, for example, it may

be possible to efficiently produce fast, highly-preferred query plans. To provide practical protec-

tions for the intensional privacy of large queries, alternative heuristic approaches to (I, A)-privacy

constraint support need to be explored.

8.2.6 Evaluation of Interactive Query Optimization Interfaces

There are two concerns that could hamper the widespread adoption use of PASQL. First, users

would have to learn the syntax and semantics of PASQL in addition to SQL. Incurring such a

burden detracts from the usability of our proposed approach and its practical ability to protect user

privacy. Second, users would need to anticipate possible intensional leaks that could violate their

privacy. To address both of these concerns, a more user-friendly approach to specify (I, A)-privacy

concerns is needed.

Towards this ends, we have developed an interactive approach to query optimization that allows

users to ensure that the intension of their queries is protected by (I, A)-privacy without the need

to learn PASQL. Our general approach to interactive query optimization is illustrated in Figure 22.

To begin the interactive query optimization process, users simply issue their queries in SQL to a

interactive query optimization client. This client will then proceed to optimize the user’s query

and produce a plan to evaluate that query. Before passing this plan off for evaluation, however,

the client will present a representation of that plan to the user. This allows users to directly see

how the intension of their queries will be disseminated during the evaluation of the displayed

query plan. In response to this information, users can inform the client of what portions of the

generated query plan are unacceptable (i.e., users can identify portions of the query plan that they

feel violate their privacy and ensure that the client will correct them before issuing the query plan

to be evaluated). The client will then take this collection of user constraints and the originally

specified query, produce a new query plan that does not violate the constraints, and present this
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SELECT * FROM Plants, Supplies, Polluted_Waters, Waterway_Maps
WHERE Supplies.type = 'solvent'
    AND Supplies.name = Polluted_Waters.pollutant
    AND Plants.id = Supplies.plant_id
    AND Polluted_Waters.name = Waterway_Maps.name
    AND Waterway_Maps.location = Plants.location;

?

?

Figure 22: An overview of our proposed interactive optimization process.

new query plan to the user for review. This interactive process will continue until an acceptable

query plan is produced (i.e., the user does not feel it violates her privacy). Once such an acceptable

query plan is generated, the client will issue this plan to all of the remote sites needed to evaluate

it and return the result to the user.

Currently, we have developed two different client applications for performing interactive query

optimization [61]. Both of these clients take user feedback and generate PASQL constraints ac-

cordingly. These constraints are then attached to the original SQL query and passed to PAQO

for optimization. Each of the two clients then takes a different approach to presenting the plan

to the user. The two main graphical user interfaces presented by these clients are show in Fig-

ures 23 and 24.

Figure 23 presents our query view approach to interactive query optimization. After a query

plan is produced, the user is presented with an interactive version of their original query. The user

can highlight any portion of the query and be shown what site (or sites) is assigned to evaluate oper-

ations on involving that portion of the query. Specifically, Figure 23 shows a user highlighting the
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relational attribute Supplies.name while the client indicates that only Pollution Watch’s

server is assigned to evaluate any operation on that attribute in the current plan. Similarly, if a user

were to highlight a server in the system, the client would be shown what portions of the query that

server is assigned to evaluate.

Our second client interface, the hierarchical view interface is shown in Figure 24. With this

interface, users are presented with lists of all of the servers in the system and and all of the parame-

ters (e.g., attribute names, selection conditions, join conditions) of the query. Users can either start

by selecting a server or a parameter, and be shown either a list of all of the parameters operated

on by that server, or all of the servers that evaluate an operation on that parameter. Selecting both

a server and parameter will present the user with the list of operations in the current query plan

that operate on the selected parameter at the selected site. In Figure 24, for example, the user

has selected the Mapper server from the “Sites” hierarchy, and the location attribute of the

plants table from the “Parameters” hierarchy. In response to this, the client displays the only

operation node form the current plan that operates on the location attribute of the plants

table, and is evaluated by the Mapper server (far right). If the user changed the selection under

the “Sites” hierarchy to be the Pollution Watch server, the entire parameters hierarchy would

update to reflect all of the relations and attributes evaluated at the Pollution Watch server, and

the “Query Plan Nodes” pane would be blank until the user selected an item from the “Parameters”

hierarchy.

Both of these interfaces further assist users in crafting constraints in response to their viewing

of the current query plan. Figures 25 and 26 present the dialogues for constraints creation for the

query view and hierarchical view interfaces (respectively). After specifying new constraints to be

applied to their query, the user can instruct either interface to produce a new query plan. After

applying PASQL constraints to the user’s query and having PAQO reoptimize the query with the

new constraints, the interfaces not only present the new query plan to the user, but further highlight

the differences between the previous and current query plans (as shown in Figure 27).

While these interfaces represent a represent a very strong first step towards ensuring the us-

ability of (I, A)-privacy, we currently have no evaluation to verify their usability. As the subject

of ongoing work, feedback from demonstrating these interfaces will be used to drive a future user

study to evaluate the usability that they provide.
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8.3 IMPACT OF THIS DISSERTATION

The impact of this dissertation can be described according to two different metrics:

Impact on science and technology. This dissertation opens a new area of research in privacy-

preserving distributed query processing, and poses several avenues of future work in this area as

described above. First, this dissertation presents a novel notion of user privacy, (I, A)-privacy.

(I, A)-privacy adds to the body of literature describing how users can protect their privacy in

online interactions with remote parties. By incorporating (I, A)-privacy into the design of software

systems and programs, designers and developers are provided a new approach to ensuring that the

privacy of the users of their systems and applications will be protected.

In proposing (I, A)-privacy, this dissertation also describes the problem of enforcing (I, A)-

privacy constraints on user queries during query optimization. This dissertation presents not only

algorithms to solve this problem, but theoretical analysis and bounds on the performance of algo-

rithms for solving this problem. This dissertation takes the important first steps to exploring the

solutions to the problem of enforcing user-specified (I, A)-privacy constraints.

Impact on society. This dissertation takes a rather forward-thinking approach of addressing

the privacy concerns of distributed database systems that have yet to achieve widespread popular

use. This is a major strength of the work. History is littered with examples of widely used computer

systems and protocols that were deployed and widely adopted without concern for security and

user privacy. Attempting to address these concerns after widespread adoption can be an arduous

process if successful at all [6, 79]. By analyzing the privacy issues involved in querying distributed

systems of fully autonomous and heterogeneous database system now, we allow for such systems

to account for these issues and protect users from the start.

This dissertation additionally furthers this goal by ensuring the usability of our approach to

protecting querier privacy. First of all, the techniques presented here are locally-enforceable. While

this has the clear benefit to users of being able to protect their privacy independently, without

explicit server-side support, it also bodes well for widespread adoption of a privacy-preserving

system. Entities that will host the database servers described in our system model can focus entirely

on creating a service that provides utility to users without the additional concern or justification

109



of cost to support user privacy. The database servers can be set up purely to process incoming

relational query plans without any concern for supporting (I, A)-privacy.

To ease user adoption of (I, A)-privacy support, this dissertation presents an initial look at

ongoing work to ensure the user-friendliness of (I, A)-privacy constraint specification. In propos-

ing interactive query optimization, this dissertation takes the first steps towards easing adoption

of (I, A)-privacy by users, ensuring that users will easily be able to make use of the approaches

presented here to protect their privacy.
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Figure 23: The main view of our query view interface for interactive query optimization.
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Figure 24: The main view of our heirarchical view interface for interactive query optimization.

Figure 25: Our query view interface’s dialog for creating a new (I, A)-privacy constraint.
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Figure 26: Our hierarchical view interface’s dialog for creating a new (I, A)-privacy constraint.

Figure 27: Our query view interface’s display reporting the changes between a past query plan and

the currently displayed query plan.
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