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It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental
questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of
academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our
understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25
scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and
archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for
the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about
the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the
domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has
been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and
where it did, and where and why it did not.
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The domestication of plants and animals was
one of the most significant cultural and
evolutionary transitions in the ∼200,000-y
history of our species. Investigating when,
where, and how domestication took place is
therefore crucial for understanding the roots
of complex societies. Domestication research
is equally important to scholars from a wide
range of disciplines, from evolutionary biol-
ogy to sustainability science (1, 2). Research
into both the process and spatiotemporal ori-
gins of domestication has accelerated sig-
nificantly over the past decade through
archaeological research, advances in DNA/
RNA sequencing technology, and methods
used to recover and formally identify changes

in interactions among plants and animals
leading to domestication (2–4). In the spring
of 2011, 25 scholars with a central interest in
domestication and representing the fields of
genetics, archaeobotany, zooarchaeology, geo-
archaeology, and archaeology met at the
National Evolutionary Synthesis Center to
discuss recent progress in domestication re-
search and identify challenges for the fu-
ture. Our goal was to begin reconsidering
plant and animal domestication within an
integrated evolutionary and cultural frame-
work that takes into account not just new
genetic and archaeological data, but also
ideas related to epigenetics, plasticity, gene-
by-environment interactions, gene-culture co-

evolution, and niche construction. Each of
these concepts is relevant to understanding
phenotypic change, heritability, and selec-
tion, and they are all fundamental compo-
nents of the New Biology (5) and Expanded
Modern Evolutionary Synthesis (6).
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This PNAS Special Feature presents a col-
lection of papers emanating from that meet-
ing. Some evaluate past evidence and views
on fundamental aspects of plant and animal
domestication and offer a consensus perspec-
tive through the lens of more recent empir-
ical findings and ideas. Others explore how
best to investigate challenging research ques-
tions. All of the papers provide examples of
how domestication research has illuminated,
and will continue to enrich, our understand-
ing of evolutionary and cultural change. In
this introduction to the Special Feature, we
present an outline of what is currently known
about the pattern and process of domestica-
tion and we discuss foundational issues in
domestication research, both in general and
in light of the collected contributions. We
conclude with a summary of outstanding
questions and challenges.

Spatial and Temporal Patterns of
Domestication
The beginnings of plant and animal domes-
tication related to food production began
globally 12,000–11,000 y ago at the end of the
most recent ice age and during the transition
to the Present Interglacial Period (7) (Figs. 1
and 2). Although often characterized as
rapid and the result of explicit human in-
tention (8, 9), domestication is a complex
process along a continuum of human, plant,
and animal relationships that often took
place over a long time period and was driven
by a mix of ecological, biological, and hu-
man cultural factors (2, 3). The process

encompassed a wide range of relationships,
from commensalism/mutualism to low-level
management, and directed control over re-
production (10, 11), although these stages
did not necessarily progress in a ratchet-like
fashion from wild to domestic.
The addition of a human selective com-

ponent on top of a natural selection regime
has enhanced the power of domestication to
reveal insights into long-standing evolution-
ary issues, including those highlighted be-
low. Although we eschew one-size-fits-all
definitions for either plants or animals, do-
mestication can be generally considered a se-
lection process for adaptation to human
agro-ecological niches and, at some point in
the process, human preferences. Importantly,
the wild progenitor species of domesticated
taxa must have possessed the potential to live
in the context of human ecologies, and to
express traits that were favorable for human
use, harvesting, and edibility. Finally, the
presence of gene flow between populations of
domestic and wild plants and animals [and
members of the same or closely related but
geographically and genetically differentiated
domesticated species (12)] often results in
modern populations that appear as if they
arose outside the regions where the initial do-
mestication process took place (13). As a
result, it is crucial that researchers carefully
evaluate whether multiple domestications of a
single species occurred (13, 14), making sure
to reserve the term “domestication” solely for
the initial independent process, and to avoid

using the term to refer to subsequent ad-
mixture that often incorporated genetic and
morphological characteristics of wild pop-
ulations that were never independently do-
mesticated (12, 13).
An increasingly rich and diverse corpus of

data from molecular and archaeological re-
search generated over the past 15 y now
makes it clear that agriculture began in-
dependently over a much larger area of the
globe than was once thought, and included
a diverse range of plant and animal taxa
(Figs. 1 and 2). At least 11 regions of the Old
and New World were involved as in-
dependent centers of origin, encompassing
geographically isolated regions on most con-
tinents, but several more have been sug-
gested (Fig. 1) (3, 7, 11, 15, 16). Some of these
regions were the sources of major domesti-
cates that spread to adjacent regions, whereas
others involved more regionally important
species often regarded as “minor” crops to-
day (7, 17). The combined data also clearly
show that two major chronological periods
are of greatest interest: the transition to the
Holocene from about 12,000–9,000 B.P.
(all ages are calendar years before CE 1950),
and the middle Holocene between 7,000 and
4,000 B.P. (Fig. 1). Dogs were a significant
exception and were certainly domesticated in
the late Pleistocene before the establishment
of agriculture, although both the geographical
origins of dog domestication and claims for
domestic dogs in ~30,000-y-old contexts re-
main contentious (18). In the New World,
crop domestication occurred thousands of
years before animal domestication, whereas
the opposite was true in areas such as Africa,
Arabia, and India. Some of the asynchronous
patterns in individual plant and animal spe-
cies from different regions may be the result
of patchy evidence, as well as the lack of
a clear distinction between “primary” (truly
independent) vs. “secondary” (e.g., inspired
by diffusionary processes) domestication.
Hunting and gathering was the primary

subsistence strategy for more than 95% of
the time since the origin of Homo sapiens
200,000 y ago (19). Theories and explan-
ations for why human cultures abandoned
this long-term and apparently successful
subsistence strategy and turned to food pro-
duction continue to attract discussion and
intense debate. Traditionally, the transition to
agriculture was viewed as the result of a few
single agents or “prime movers” that oper-
ated at the onset of the Holocene. Climate
change, human population pressure, and cul-
turally driven alternatives, such as “competi-
tive feasting,” are among numerous additional
agents proposed by generations of archae-
ologists (20–24). Simple unidirectional

Fig. 1. A map depicting likely centers where the domestication of at least one plant or animal took place. Black
outlines surround the most widely accepted independent centers of domestication, and sources of major diffusions of
domesticates are indicated by arrows. Green and purple regions, respectively, are those where the domestication
process took place during the late Pleistocene to early Holocene transition (12,000–8,200 B.P.), and in the middle
Holocene (8,200–4,200 B.P.). Brown regions represent areas where, at present, the evidence for domestication is
interpreted based upon the presence of domestic forms indigenous to these regions found outside of their native
distributions. Letters A–H correspond to those listed in Fig. 2. Additional detail and references associated with each
region are found in the SI Text.
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explanations, however, have proved unsat-
isfying for a number of researchers, and
significant tensions remain between camps
advocating different explanatory blueprints.
The issue poses an important remaining
challenge in domestication research (25)
(see below).

Early Domestication Stages
The initial stages of the multispecies net-
works involved in domestication were critical
because humans acted as: (i) dispersal agents
(managing the reproduction of cultivated
plants and controlling the mobility, range
and density of domestic livestock); (ii) agents
of (conscious or unconscious) selection, fa-
voring the reproductive success of particular
behavioral and phenotypic variants); and (iii)
ecosystem modifiers, who (along with natural
environmental changes) alter the develop-
mental conditions and hence the character-
istics of associated organisms.
So what is a domesticated plant or animal

and how does it differ from its wild ancestor?
From a present-day perspective, it is possible
to recognize suites of common traits that
make up the so-called “domestication syn-
drome” (26–28), and presumably many of
these were key to early selection along the
wild-to-domesticated trajectory. In plants, the
syndrome is defined by a wide variety of
traits that, depending on the species, may
include: a reduced ability to disperse seeds
without human intervention, reduction in
physical and chemical defenses, reduction in
unproductive side-shoots, reduction in seed
dormancy, bigger seeds, more predictable
and synchronous germination, and in some
seed-propagated species, bigger and more
inflorescences. In animals, these traits in-
clude: endocrine changes, increased docility,
altered reproduction pattern and output, al-
tered coat color, floppy ears, facial neotony,
usually a reduction in size, and other changes
in body proportions (26). Recent genetic and
archaeological research, however, has dem-
onstrated that not all of these traits arose at
the same time in either plants or animals. In
addition, it has been helpful to separate genes
that controlled the traits that were under
early selection (domestication genes) from
those that were selected later to produce di-
versified and improved crops and animals
(improvement genes) (4).
The strength of selection for “domestica-

tion syndrome” gene variants and their speed
of fixation remains controversial. Although
strong selection with rapid evolution of
domestication traits within as little as 100–
200 y has been suggested (8, 9, 29), recent
archaeological studies have questioned these
conclusions, at least for cereal domestication.

A. Southwest Asia
Wheat
Barley
Lentil

Pea
Chickpea

Broadbean
Flax

Olive
Sheep

Goat
Pig

Cattle (taurine)
Cat

B. South Asia
Tree Cotton

Rice (indica)
Little Millet

Browntop Millet
Mungbean
Pigeonpea

Cattle (zebu)
Water buffalo
C. East Asia

Broomcorn millet
Foxtail millet

Rice (japonica)
Soybean

Ramie
Melon

Pig
Silkworm

Yak
Horse

Bactrian Camel
Duck

Chicken
D. New Guinea

Banana
Taro
Yam

E. Africa & S Arabia
Date Palm

Sorghum
Pearl millet

Fonio
Cowpea

Hyacinth bean
Rice (African)

Oil palm
Cattle (taurine)

Donkey
Dromedary Camel

Guinea fowl
F. North America

Squash
Sunflower

Sumpweed
Pitseed goosefoot
G. Meso-America

Squash (pepo)
Maize

Foxtail millet-grass
Common bean

Avocado
Chili pepper

Turkey
H. South America

Chili pepper
Peanut
Cotton

Coca
Root crops (now minor)

Squash (moschata)
Common bean

Lima bean
Manioc

Sweet potato
White potato

Quinoa
Yam

Llama
Alpaca

Guinea pig
Muscovy duck

689 7 5 4 312 01211 10

Fig. 2. A chronological chart listing the regions where, and the time frames over which, key plants and animals were
domesticated. The numbers in the black circles represent thousands of years before present. Gray dashed lines rep-
resent documented exploitation before domestication or posited as necessary lead-time to domestication. Blue
dashed lines represent either the management of plants or animals (including translocation) or predomestication
cultivation of plants, neither of which were associated with morphological indications of domestication. Red bars
frame the period over which morphological changes associated with domestication are first documented and a short,
solid red bar represents the latest time by which domestication occurred. Although early Holocene plant domesti-
cation took place independently in both the Old and New Worlds, early Holocene animal domestication was restricted
to the Near East. In addition, the majority of plants and animals on this list were domesticated in the middle Holocene.
Additional details and references associated with each taxon are found in Table S1. Letters A–H correspond to those
found in Fig. 1.

Larson et al. PNAS Early Edition | 3 of 8

SP
EC

IA
L
FE
A
TU

RE
:

IN
TR

O
D
U
CT

IO
N

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1323964111/-/DCSupplemental/pnas.201323964SI.pdf?targetid=nameddest=ST1


In wheat, barley, and rice, it took ∼2,000–
4,000 y to fix the nonshattering spikelet
phenotype, a key indicator of cereal domes-
tication (7). There are other indications in the
Near East of long periods of cultivation
without morphological evidence of domesti-
cation, including specific field weed flora as-
sociated with morphologically wild cereals
and legumes, and large stores, suggesting
reliance on cultivated production of mor-
phologically wild species (30, 31). Doust et al.
(32) show that factors previously underap-
preciated, such as GxE (gene-by-environment)
and epistasis (gene-by-gene) interactions
may have been important in slowing do-
mestication rates. A comparison of rates of
phenotypic evolution between wild and do-
mesticated species also indicates that, con-
trary to expectations, evolutionary rates in
domesticated species are not generally faster
than those observed in wild species (7). In-
deed, selection strengths for some traits are
at the same level as the strength of natural
selection acting on wild species, or even
slightly lower (33).
The evidence for a slow pace of domesti-

cation implies a cultural period in agricultural
origins called “predomestication cultivation”
(PDC) (34). These periods lasted for many
centuries before fully domesticated cereals
appeared, as has been inferred from evidence
in the Near East and China (7, 31, 35).
Instances of PDC have also recently been
documented in northwestern South America
(36). Increasing evidence for PDC goes hand-
in-hand with increasing indications of a
nonsimultaneous development of the suite
of traits that make up the domestication
syndrome, in turn raising questions about
when exactly to call archaeological remains
“domesticated” and how and in what order
the domestication syndrome was assembled.
These factors also make it more likely that

crops were independently brought under
cultivation more than once, even within
a given “nuclear region,” then hybridized
with cultivated or domesticated plants from
other regions to become the domesticated
versions we study today (37, 38). Neither
genetic nor archaeobotanical studies can eas-
ily sort out these different activities, which
has led to increased skepticism of the tradi-
tional models that purport rapid events tak-
ing place in a single location to explain
transitions from wild to domesticated species
(39, 40). In addition, the recent reevaluation
of the speed of cereal domestication has led
to a renewed discussion of unconscious vs.
conscious selection. Charles Darwin was the
first to explicitly articulate the difference be-
tween conscious selection during domestica-
tion, in which humans directly select for

desirable traits (called by Darwin “methodi-
cal” selection) (1), versus unconscious selec-
tion, where traits evolve as a by-product of
growth and natural selection in field envi-
ronments, or from selection on other traits.
In rice, for example, glutinous grains most
likely arose from conscious selection by cer-
tain Asian cultures for this cuisine-prized
trait (41). In contrast, seed nonshattering in
cereals is thought to have arisen as a by-
product of stalk-harvesting by sickles or
harvest knives, which select for seeds that do
not readily fall off the stalk, rather than a re-
sult of a conscious strategy associated with
beating seed heads into baskets (29). Other
domestication traits in grasses are generally
thought to result from unconscious selection,
including seed size, seed dormancy, synchro-
nous seed ripening, and apical dominance (27).
Most domesticated plants are not cereals,

and other crops with different domestication
syndromes may have had faster rates of do-
mestication once humans targeted them for
cultivation, and been more prone to have
traits selected by conscious selection. The
great cultural geographer Carl Sauer (42)
insightfully noted that squashes, beans, and
various root crops (along with maize, the
premier cereal crop of the Americas) were
not mass-harvested and mass-planted, nor
likely mass-selected, as the Old World cereals
were. Individual harvesting and selection by
early farmers, who would be expected to
choose and deliberately propagate the crop
attributes most useful to them when they
could distinguish the useful phenotypes, could
foster conscious selection and result in
faster fixation of crucial and preferred do-
mestication traits, such as the loss of toxicity
and increased size of starch storage organs
in tubers and roots. Fruit nonbitterness in
squashes and melons, major early domes-
ticates in all regions of the Americas and
parts of Asia and Africa may also have been
rapidly and consciously selected. For exam-
ple, botanical remains from human teeth
indicate that the loss of fruit bitterness in the
squash species Cucurbita moschata took
place by at least 9200 B.P., only 800 y later
than the first evidence for its domestication.
In fact, the loss may have taken place even
earlier because the seed traits used to doc-
ument domestication do not inform fruit-
flesh characteristics (36, 43). Arguments for
relatively fast, conscious selection have also
been made for the important seed dormancy
trait in Old World lentils and peas (44).
What about conscious vs. unconscious se-

lection in animals? Marshall et al. (12) make
a compelling case that intentional breeding
of females was largely absent during the early
stages of domestication for a wide range

of species. This theory, along with what
probably was considerable gene flow be-
tween wild and early managed animals
(13), poses challenges to a number of
commonly held assumptions about early
domestication in some species relating to
interpretations of genetic bottlenecks and
molecular sequences more generally, the
number of times a species was domesti-
cated, and how various domestication traits
emerged and were maintained in the long
term. Clearly, many questions persist about
the roles of directed vs. undirected selection
across the spectrum of domesticated plants
and animals.
Research over the past few decades has

made it clear that prehistoric humans around
the world significantly modified their envi-
ronments, sometimes before and during the
process of plant and animal domestication,
and the role of humans in the enduring
modification of environments is no longer
underestimated (45–49). A uniquely im-
portant aspect of human environmental
modification is the additional role cultural
transmission plays in maintaining patterns
of enduring local ecologies, resulting in a
strongly enculturated ecological inheritance.
Because they can often be traced archaeo-
logically, cultural transmission processes have
received increasing interest and mathematical
modeling in the social sciences (50–52) and
are embedded both in practice and in mate-
rial settings (e.g., terraces, canals, mounding,
soil management, lassos, penning, somatic
modifications such as castration, food-
processing tools). Although the process of
cultural inheritance differs from that of ge-
netics, it plays a crucial role in maintaining
both cultural practices over generations
and environments in which domestication
and husbandry occurred and were main-
tained. Human intentionality and knowledge
systems must have been key components
among the interacting mechanisms within
these bio/eco-cultural environments, and
cultural transmission provided a basis for
the maintenance of cumulative innovation.
Traditional ecological knowledge over the
longer term has maintained crop landrace
diversity, and remains important for bio-
diversity distribution and ecosystem services
more generally (53).

Genetic and Evolutionary Insights from
Domestication
The study of domesticated species has led
to increased interest in several important
issues in genetics and evolutionary biology,
including the underlying genetic architec-
ture of adaptations and parallel evolution.
Genetic research is increasingly identifying
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domestication genes, especially in plants
(4). By contrast, many fewer domestication
genes have been identified in animals (13).
With the exception of coat-color genes,
genetic variants that can be unambiguously
assigned to early stages in domestication in
animals have not yet been revealed. There
are several possible reasons for this. First,
discovering the molecular basis of domes-
tication traits is relatively easy and in-
expensive in plants compared with animal
populations because early animal selection
likely focused on behavioral and other
characteristics (such as tameness and al-
tered reproduction), with complex genetic
foundations that are more difficult to study
than classic morphological traits (54). Sec-
ond, there may simply be few domestica-
tion loci with major effects in animals.
Early animal domestication may have hap-
pened by shifting the allele frequencies at
many loci, each with small individual
effects, thereby altering the phenotype. This
scenario would be consistent with the ob-
servation that many domestic animals (e.g.,
pigs) can readily establish feral populations
that in many aspects mimic the phenotype
of their wild ancestors (55).
Thus, an important question for both

plants and animals is whether the striking
phenotypic changes seen during domestica-
tion are under the control of single or mul-
tiple genes. Thus far, separate studies have
identified both single (or few) genes and
combinations of numerous genes of small
effect, depending on the approach and spe-
cies in question (4). To some extent, different
inferences concerning the genetic architec-
ture of domestication can be because of dif-
ferent methodological approaches. Forward
genetic approaches, such as quantitative trait
loci (QTL) mapping and genome-wide as-
sociation studies have the capability of find-
ing multiple loci controlling phenotypic
traits, and thus to interpret a domestication
trait as under the control of multiple genes
(4). Reverse genetic approaches concentrate
on particular genes and cannot, by them-
selves, discover multiple loci for a particular
phenotype. Genes in reverse genetic ap-
proaches are often chosen because their
mutant phenotypes in model systems, such
as chicken, mouse, Arabidopsis, maize, and
rice, are analogous to phenotypic differences
between wild and domesticated species. It
is then possible to ask whether sequence
changes in the locus explain phenotypic
differences. An example of this approach in-
volves a mutation of the transcription factor
ramosa1 (ra1) locus in maize that results in
loss of floral branches (56). Differences in the
ra1 locus were later found to be correlated

with differences in floral branching in maize
and other grasses (57). However, it is not the
only gene involved, as shown by QTL studies
that indicated up to five significant QTL
regions controlling these traits (58). Finally,
a recent study (59) demonstrated that the
action of sh4 in rice is not always sufficient to
produce nonshattering phenotypes.
An additional question is whether the

same genes underlie similar phenotypic shifts
in numerous domesticated plants and ani-
mals. In other words, is there parallelism
from the same underlying genetic and de-
velopmental pathways or convergent evolu-
tion of unrelated taxa using unrelated gene
networks (60)? In grasses, such forms are
particularly striking, and similar awned and
awnless spikelets, hulled and free-threshing
grain, black-, red-, and straw-colored seed
coats are found in multiple domesticated
cereals. The geneticist Vavilov termed this
phenomenon the Law of Homologous Series
(61), and the first phase of comparative map-
ping in the grasses, using restriction frag-
ment-length polymorphism markers, infer-
red QTL for shattering in rice, sorghum, and
maize to be at the same location (62). Further
work has proved equivocal, since most genes
for shattering in grasses are unique to each
domesticated lineage (63), though a recent
study has shown that the major locus for
shattering in sorghum corresponds to minor
loci in rice and maize (64). Nevertheless,
some mutations in domesticates are in fact
parallel mutations. For example, variants of
the MC1R locus are responsible for inde-
pendently derived pig coloration patterns
(65). Moreover, mutations at this gene ap-
pear to be associated with difference in color
patterns in numerous domestic animals
(66). A similar example of parallel evolu-
tion is associated with the rise of sticky
cereals in northeast Asia, where glutinous
rice, millets, and barley, among others (41,
67), are the result of alternative mutations
at the Waxy gene (68–70).
Whether mutations selected during do-

mestication were novel or were present as
standing genetic variation in ancestral wild
populations is a question of increasing in-
terest. It has traditionally been assumed that
phenotypic change and new adaptations arise
from new mutations, but recent research in-
creasingly shows that standing genetic vari-
ation plays important roles in a variety of
species (71). For example, traits present as
variants in wild progenitors today include the
gene for tomato fruit size (fw2.2) (72), maize
plant architecture (e.g., teosinte branched1)
(73), seasonality controls (74, 75), and seed
size [usually polygenic (76)]. Fast morpho-
logical evolution in cultivated plant popula-

tions may have ensued as favorable pheno-
types, including those initially exposed by
genetic or external environmental perturba-
tions in response to the new field conditions,
may have been preferentially selected by
farmers who were not constrained by mu-
tation rates (77, 78). Having said that, several
traits in domesticated plants, including those
associated with the reduction of seed-shat-
tering in legumes and grasses, are deleterious
in the wild, and if present, are rarely ex-
pressed phenotypically. In animals, analyses
of modern dog genomes have revealed a
handful of mutations (not found in extant
wolves) with large effects on morphological
variation, although given the predominance
of selection for novel and unusual charac-
teristics in dogs, this pattern is likely the
exception (79). In many other domestic
animals, humans likely selected for trait
variants that were already present in ances-
tral populations, thereby altering the fre-
quencies of the standing genetic variation.
As success in isolating domestication-

related genes proceeds, it should become
easier to distinguish between standing and
new genetic variation, as well as to recog-
nize parallelism in de novo mutations
among domesticated species. Additionally,
as the availability of genome-wide sequence
data for domesticated species increases, it is
becoming increasingly feasible to use se-
lective sweep mapping to identify genomic
regions that have been targets of selection
during domestication without a priori in-
formation on candidate domestication
genes (e.g., ref. 80). Challenges associated
with this approach include the fact that the
trait or traits affected by the selected genes
may not be known, that selection that
favors a de novo mutation during the do-
mestication process will generate a more
conspicuous signature of a selective sweep
than selection for mutations that were al-
ready segregating in populations of the wild
progenitor, and that some demographic
processes can mimic the effects of selection
on patterns of genetic variation. Un-
derstanding the different genetic architec-
ture of domestication across crop types and
in animals remains a major challenge for
genetic research.
One new promising direction is the study

of ancient DNA. Our increasing ability to
identify selected mutations for domestica-
tion-associated traits in archaeological plant
and animal remains is providing a unique
temporal trajectory of the evolution of do-
mesticated species, and the selection strengths
that acted upon selected genes. One such
example tested claims that two different
genes (TSHR and BCDO2) were involved in
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early chicken domestication by typing the
mutations in ancient European chickens.
Because the wild-type alleles of both genes
were segregating at a high frequency as re-
cently as 500 y ago, the ancient DNA evi-
dence demonstrated that the modern ubiq-
uity of a mutation, even one that differentiates
domestic and wild populations, cannot auto-
matically be conflated with an ancient origin
linked to early domestication (81).

Key Challenges for the Future
The enormous amount of empirical data
compiled on domestication and associated
human- and naturally driven circumstances
during the past decades has naturally led to
the generation of a number of questions,
some of which pose key future challenges.

Filling in Gaps on Maps
One of the fundamental challenges of do-
mestication research is filling the gaps that
remain in both geographical and genomic
maps. Genetic research provides a growing
toolkit for elucidating the relationships be-
tween domesticates and their wild ancestors,
and between the traits that make domes-
ticates suited to anthropogenic environments
and their underlying genetic architecture.
The successes of genetics, touched upon
above, at identifying domestication genes
have been numerous and mostly recent.
Expanding this repertoire remains a priority,
but it is increasingly evident that we also need
more evidence from ancient DNA, so that
patterns found in modern populations can be
compared with those of the past, and geog-
raphies and phylogeographic and adaptive
hypotheses can be tested over the evolu-
tionary time period of domestication.
In addition, archaeological research has

many gaps on the chronology and regional
sequences of domestication of plants and
animals, and the contexts of agricultural ori-
gins. Recent research has shown that in-
creased sampling and methodological devel-
opments have made it possible to clearly
document cereal domestication [e.g., rice
(82)], push back the earliest evidence for
both the domestication of maize in southern
Mexico (83) and the arrival of crops in
northern Peru (36), and to recognize the likely
independent processes of agricultural origins
and domestication in New Guinea (45), parts
of India (84), and Africa (85). These research
successes within the past decade imply that
more new information on more species from
more regions and earlier periods can be
expected and should be actively sought.
Related to this are important continuing

challenges in determining why so few of the
animal and plant species that were hunted

and gathered by ancestral human populations
were ever domesticated (86), and whether
most species were domesticated once or
multiple times. We recognize that distin-
guishing these options is complicated, and it
is increasingly clear that incomplete archae-
ological evidence and genetic data are open to
conflicting interpretation. This aspect high-
lights the importance of explicit modeling and
simulation of a range of hypotheses con-
cerning the starting conditions and processes
of domestication (14, 87). Factors poten-
tially leading to confusion include the fact
that multiple domestication episodes may be
hidden from genetic view today as a result
of both bottlenecks (in some cases leading to
extinction) and introgression. Archaeobotany,
for example, has increasingly recognized
extinct morphotypes of domesticated wheat
(88, 89), and ancient DNA can help to
identify lost genetic lineages of crops. In-
troduced domesticates may introgress with
local wild populations, thus capturing ge-
netic and phenotypic variation that can
later be misinterpreted as the independent
domestication of distinct wild animal (13)
and plant (e.g., rice) (90–92) populations.
Resolving these issues requires more tar-
geted ancient DNA research and more re-
alistic and sophisticated modeling.

Environmental and Ecological Contexts
of Agricultural Origins
Although climate change remains the prime
landscape and ecological modifier at the ori-
gins of agriculture, human behavior and the
activities of diverse cultural traditions must be
better understood. Beyond simply collecting
more archaeological and paleoecological evi-
dence, there is a need to broaden the study of
past landscapes and their related ecosystems
for both naturally derived features and the
legacies of past human action. For example,
more research should systematically map local
and regional distributions of enriched soils,
created through human activities, which are
well known from Amazonia and Europe but
much less well documented elsewhere (e.g.,
refs. 93, 94). Vegetation formations studied
by plant ecologists and environmental his-
torians may also be anthropogenic legacies,
as has been suggested for a number of
regions including South Asia and through-
out the Americas (45, 53, 95, 94).
New or underdeveloped fields, such as

ecological developmental biology (eco-devo)
(96) and epigenetics (97)—together with
mechanisms, such as developmental plasticity
(98, 99)—are assuming increasing impor-
tance in the study of diversification, the ori-
gin of novelties, and evolutionary change.
These fields should be extended to the realm

of domestication research, in part because
phenotypic and genetic responses to natural-
and human-created environmental variability
are among the most neglected issues in do-
mestication studies. As recent work with
teosinte has shown, field- and laboratory
controlled experiments are needed to better
understand them (99). Another example is
that although it has been inferred that large
seed size was selected by soil disturbance and
depth of burial (e.g., ref. 100), as presumably
seeds with the largest mass were better able to
emerge from deeper burial depths associated
with cultivation practices, others have sug-
gested that seed size increase may be a plastic
phenotypic response to enriched soils of early
cultivation (101). New experimental research
(102) on different legume crops indicate seed
mass was important for emergence in some
species, including those predicted to conform
to the burial hypothesis (60), but not in
others, suggesting a common single mecha-
nism for seed size increase was not at work.
In another vein, Blumler’s analysis (103),
suggesting that the Near East was unusually
well endowed with large seeded grasses pre-
adapted to domestication, might explain the
early and diverse domestication of plants in
that region. In addition, Marshall et al. (12)
make the point that epigenetic mechanisms
should also be investigated in animal genetic
responses during the domestication process.
A few scholars have discussed the potential

role of climate shifts and atmospheric gas
concentrations on biota at the transition be-
tween the late Pleistocene and early Holo-
cene. More specifically, the authors have
suggested that agriculture was a more favor-
able strategy in the Holocene as a result of
these environmental shifts (e.g., refs. 99, and
104–107). Lower CO2 and temperature re-
duced plant productivity, in part by reducing
photosynthetic efficiency, thus exacerbating
drought stress: effects that were more marked
on C3 plants but also present to a surprising
degree in C4 plants. Did the rapid increase of
CO2 and temperature at the onset of the
Holocene make plants more attractive as
a readily intensifiable resource and make
cultivation more efficient? As plant pro-
ductivity increased, why would some cul-
tural traditions delay the shift in cultivation
until the middle Holocene, and how can we
connect the adoption of animal herding to
changes in plant productivity? Although im-
portant global processes have doubtless im-
pacted foragers and early cultivators, a great
deal more research is necessary to unravel the
causes, constraints, and exceptions to the early
or middle Holocene transitions to farming.
Further experimental data on the impact of

late-glacial and early Holocene temperatures
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and CO2 levels on the biological characteristics
of wild progenitors of crops are needed to
also understand how they may have influ-
enced other phenotypic attributes of crop
and animal progenitors on the eve of and
during agricultural beginnings (99). Just as
genetic studies of domestication have shown
that conclusions drawn only from modern
populations provide an incomplete and
sometimes biased picture of the past (81,
108, 109), we need to better understand the
interplay between past ecology, climate, plant
phenotypic responses, and human activities.

Why Hunters and Gatherers Turned to
Cultivation and Herding
Explaining the origins of agriculture is still
one of the most contentious issues for social
scientists. Few dispute that the interplay of
climate, human demography, and social
systems through time and space played a
significant role (110). Although some con-
sider the primary driving factors to be
patterns of climatic and ecological change,
others argue for the primacy of social
imperatives and changes within social sys-
tems (23, 24, 111). More generally, some
scholars have claimed that no explanations
are likely to be universally applicable (112),
whereas others have adopted an explicitly
comparative approach, identifying parallel
processes and exploring common underlying
patterns (7, 15, 25). Further progress on this
issue should focus not only on the acquisi-
tion of more data, but also on marshaling
and discussing existing evidence, which may
suggest which factors driving agricultural
origins were of greater importance. In a
number of nuclear centers there are now
fewer disagreements about the cultural his-
tory of early agriculture (including the chro-
nology and the organisms involved), which
should make explanatory endeavors less
complicated. As known instances of agri-
cultural origins are further clarified, we will
have more parallel histories of domestica-
tion from which to derive commonalities or
process and patterns of causation.

Conclusions
The collection of papers presented in this
Special Feature attempts to rise to the chal-
lenges outlined above. The articles illus-
trate a range of approaches to the study of
domestication, including genetics, archae-
ological science, and anthropology, and
raise new questions and hypotheses that
are ripe for further testing. Even so, the
new evidence and ideas presented here
highlight a minority of the many species
that were domesticated and subsequently
improved by prehistoric cultures. Domes-

tication remains a vibrant research area in
biology and archaeology 145 y after Dar-
win’s seminal work (1), and the coming
decade will no doubt generate satisfying
and perhaps definitive answers to a wide
range of outstanding questions.
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SI Text
Information Related to Fig. 1.Each of the eight macroregions listed
below correspond with the named regions in Fig. 2. The regions
are then subdivided into the subregions represented on themap in
Fig. 1. The references following each region name represent key
recent studies and good starting points and are not meant to be
comprehensive. In addition to these references, we are indebted
to a large volume of older, prominent, and foundational literature
on early agriculture around the world (1–22). For each region,
a list of key domesticates is given, followed by selected refer-
ences in which more extensive literature sources can be found.
Importantly, not all of the crops listed in reach region were taken
under cultivation and domesticated simultaneously.

North America. 1. Eastern North America (middle Holocene):
squash (Cucurbita pepo ssp. ovifera var. ovifera), sunflower (Heli-
anthus anuus), pitseed goosefoot (Chenopodium berlanderi),
marshelder (Iva annua). Few of these crops become global crops.
Larger scale agriculture developed later with the diffusion of
maize (from Mesoamerica, below) (23, 24).

Mesoamerica. 2. Mesoamerica, lowlands and highlands (early
Holocene): maize (Zea mays), common bean (Phaseolus vulga-
ris), sieva lima bean (Phaseolus lunatus), squashes (Cucurbita
pepo ssp. pepo, C. argyrosperma), avocado (Persea americana),
chili pepper (Capsicum annuum), Guaje tree bean (Leucaena
esculenta), hogplum (Spondias mombin), jicama (Pachyrhizus
erosus), chayote (Sechium edule) (25–31).

South America. 3. Northern Lowland South America (early Ho-
locene): squash (Cucurbita moschata), leren (Calathea allouia),
achira (Canna edulis), cocoyam (Xanthosoma sagittifolium), sweet
potato (Ipomoea batatas). The extent of early cultural connections
or differences with Northwestern Lowland South America
(Northwestern Lowland South America, below) deserves fur-
ther investigation, but independent origins of cultivation in one
or both of these areas in the early Holocene is widely accepted
(28, 32, 33).
4. Northwestern Lowland South America (early Holocene):

squash (Cucurbita ecuadorensis), sea island cotton (Gossypium
barbadense), jackbean (Canavalia ensiformis), cocoa (Theobroma
cacao). The extent of early cultural connections or differences
with Northern Lowland South America (above) deserves further
investigation, but independent origins of cultivation in one or
both of these areas in the early Holocene is widely accepted (28,
32, 34–36).
5. Central/Southern Andes (middle Holocene on current evi-

dence): potato (Solanum tuberosum), quinoa (Chenopodium qui-
noa), Andean grain amaranth (Amaranthus caudatus), oca (Oxalis
tuberosa), Ulluco (Ullucus tuberosus), common bean (Phaseolus
vulgaris), lima bean (Phaseolus lunatus) (probably northern An-
des), squash (Cucurbita ficifolia), guinea pig (Cavia porcellus),
llama (Lama glama), alpaca (Vicugna pacos) (11, 37–39).
6. Southwestern Amazonia: manioc (Manihot esculenta), pea-

nut (Arachis hypogaea), peach palm (Bactris gasipaes), chilis (Cap-
sicum baccatum, Capsicum chinense), squash (Cucurbita maxima).
Although the domestication processes in this region have not yet
been documented archaeobotanically, some crops that originated
here diffused to other regions in the early Holocene, suggesting
that early Holocene evidence should be sought in this region (28,
32, 40–42).

Africa. 7. West African Savannah/Sahel (middle Holocene): pearl
millet (Pennisetum glaucum), fonio (Digitatia exilis), black fonio
(Brachiaria deflexa), African rice (Oryza glaberrima), cowpea
(Vigna unguiculata), bambara groundnut (Vigna subterranea),
baobab tree (Adansonia digitata), kenaf (Hibiscus cannabinus).
Pastoralism based on cattle, sheep, and goat may have arrived
before plant cultivation in this region, but there is no evidence
for introduced crop cultivars (43–45).
8. West African tropical forest: oil palm (Elaeis guineensis),

African yam (Dioscorea cayenensis), hausa potato (Plectranthus
rotundifolius), dazo (Plectranthus esculentus), kola nut (Cola ni-
tida, Cola acuminata). Historical linguistic evidence points to
tree crops and tubers being important before the introduction of
savannah cereals, like millet, although processes of diffusion of
pearl millet from the north (from West African Savannah) are
clear from archaeology (43, 45–48).
9. Sudanic Savannah (probably middle Holocene): sorghum

(Sorghum bicolor), hyacinth bean (Lablab purpureus), roselle (Hi-
biscus sabdariffa), donkey (Equus asinus), African cattle (Bos afri-
canus). African cattle likely result from introgression from a native
African Bos into West Asian Bos taurus. Plant domestication pro-
cesses are poorly documented in this zone (43, 45, 49).
10. Ethiopian plateau (probably middle Holocene): tef (Era-

grostis tef), finger millet (Eleusine coracana), Ethiopian oat (Avena
abyssinica), enset (Ensete ventricosum), yam (Dioscorea cayenensis),
Ethiopian pea (Pisum abyssinicum), achote (Coccinia abyssinica),
noog (Guizotia abyssinica), coffee (Coffea arabica). Historical lin-
guistic evidence points to enset and tubers being important in the
southwest of Ethiopia before the introduction of northern plateau
cereals, like tef or finger millet. It is plausible that pastoralism and
sorghum cultivation was first introduced from the Sudanic sav-
annahs (above). Archaeobotanical and archaeozoological evi-
dence are largely lacking in this zone (45, 50–52).

Southwest Asia. 11. Fertile Crescent (early Holocene): wheats
(Triticum spp.), barley (Hordeum vulgare), lentil (Lens culinaris),
pea (Pisum sativum), chickpea (Cicer arietinum), broadbean
(Vicia faba), flax (Linum usitatissimum), sheep (Ovis aries), goat
(Capra hircus), taurine cattle (Bos taurus), pig (Sus scrofa), cat
(Felis domesticus) (53–57).

South Asia. 12. Savannahs of Western India (middle Holocene):
water buffalo (Bubalus bubalis), chicken (Gallus gallus), little
millet (Panicum sumatrense), sesame (Sesamum indicum), urd
bean (Vigna mungo), horsegram (Macrotyloma uniflorum) and
mungbean (Vigna radiata), melon (Cucumis melo). These domes-
tications may postdate the arrival of domesticated animals, wheat
and barley in the Indus region to the west, and thereby derive
inspiration from West Asia (Fertile Crescent, above) (58–60).
13. South India (middle Holocene): browntop millet (Brachiaria

ramosa), mungbean (Vigna radiata), horsegram (Macrotyloma
uniforum). The crop domestications may occur after the arrival
of sheep/goat, cattle, but appear to precede introduced crops.
14. Ganges and eastern Indian plains: rice (Oryza sativa ssp.),

sawa millet, pigeonpea (Cajanus cajan), cucumber (Cucumis
sativus), and numerous cucurbits (Luffa spp., Momordica char-
antia, Praecitrullus fistulosus, Trichosanthes cucumerina, Coccinia
grandis) (58, 59).

East Asia. 15. Chinese loess plateau (early Holocene): broomcorn
millet (Panicum miliaceum), foxtail millet (Setaria italica), soybean
(Glycine max), hemp (Cannabis sativus), peach (Amygdalus
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persicus), apricot (Armeniaca vulgaris), pig (Sus scrofa). Some
authors regard these regions as incorporating multiple in-
dependent centers of millet domestication (61–66).
16. Western Yunnan/Eastern Tibet: buckwheats (Fagopyrum

esculentum and Fagopyrum tartaricum), yak (Bos grunniens),
inferred from wild progenitor ranges. Possibly secondary
domestications under influence of millets from Chinese loess
plateau (above) (63, 67–70).
17. Lower-Middle Yangtze (middle Holocene): rice (Oryza

sativa spp. japonica), ramie (Boehmeria nivea), silkworm (Bombyx
mori), melon (Cucumis melo), pig (Sus scrofa). Some authors
have argued for early cultural connections between early millet
cultivators in Chinese loess plateau and the early rice cultivators
in Lower-Middle Yangtze (62, 63, 66, 71).
18. Lingnan (tropical south China): yams (Dioscorea spp.), taro

(Colocasia esculenta), sago palms (Metroxylon sagu), ducks (Anas
platyrhynchos), Asian geese (Anser anser). Evidence for vege-
cultural crops has been found from the middle Holocene before
the arrival of rice, although evidence for cultivation is ambiguous

and could be regarded as inspired by earlier rice cultivation to the
north (66, 72–74).
19. Japanese islands (middle Holocene): barnyard millet (Echin-

chloa utilis), azuki bean (Vigna angularis), soybean (Glycine max),
Perilla (Perilla frutescens), burdock (Arctium lappa). Few of these
crops became global crops, and soybean was separately domesticated
in China. Larger scale agriculture developed later with the diffusion
of rice and millets from China (from Chinese loess plateau and
Lower-Middle Yangtze, above) (75–77).

New Guinea. 20. New Guinea (middle Holocene): banana (Musa
acuminata), taro (Colocasia esculenta), giant taro (Alocasia
macrorrhiza), breadfruit (Artocarpus altilis), yams (Dioscorea spp.),
sago (Metroxylon sagu), sugarcane (Saccharum officinarum). Ex-
ploitation of some of these species is documented back to the
early Holocene, although unambiguous evidence for cultivation
systems is present only in the middle Holocene from the high-
lands. Archaeologically documenting morphological changes
associated with domestication in many of these species has
proven difficult (78–80).
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Table S1. Additional details and references to support the table shown in Fig. 2

Region/taxa

Exploitation before
domestication

Management and
predomestication

cultivation
Domestication

change

SourcesStart Finish Start Finish Start Finish

Southwest Asia
Wheat 12,000 11,250 11,250 11,000 11,000 9,000 (1–3)
Barley 12,000 11,250 11,250 10,500 10,500 9,000 (1–3)
Lentil 12,000 11,000 11,000 10,500 10,500 9,000 (1, 3)
Pea 11,500 11,000 11,000 10,000 10,000 8,500 (1, 3)
Chickpea 11,000 10,500 10,500 10,250 10,250 8,250 (1, 3, 4)
Broadbean x x x x 10,500 (1, 4)
Flax 12,000 9,500 x x 9,500 (1, 5)
Olive 10,000 6,000 x x 6,000 (6)
Sheep 12,000 10,500 10,500 9,750 9,750 8,000 (7–12)
Goat 12,000 10,500 10,500 9,750 9,750 8,000 (7–13)
Pig 12,000 11,500 11,500 9,750 10,250 9,000 (9, 10, 12, 14)
Cattle, taurine 11,500 10,500 10,500 10,250 10,250 8,000 (9, 10, 12, 14–16)
Cat x x 10,500 4,000 4,000 (17–19)

South Asia
Tree cotton 8,500 4,500 x x 4,500 (20, 21)
Rice (indica) 8,000 5,000 5,000 4,000 4,000 2,500 (3, 22, 23)
Little millet x x x x 4,500 (23)
Browntop millet x x x x 4,000 (23)
Mungbean x x 4,500 3,500 3,500 3,000 (3, 23)
Pigeonpea x x x x 3,500 (23)
Zebu cattle 9,000 8,000 x x 8,000 6,500 (24)
Water buffalo 6,000 4,500 x x 4,500 (25)

East Asia
Broomcorn millet 10,000 8,000 x x 8,000 (26–28)
Foxtail millet 11,500 7,500 x x 7,500 (28, 29)
Rice, japonica 10,000 8,000 8,000 7,500 7,500 5,000 (3, 22, 30)
Soybean 8,500 5,500 x x 5,500 3,500 (3, 31)
Ramie x x x x 5,250 (32, 33)
Melon 7,000 4,000 x x 4,000 3,500 (3, 34)
Pig 12,000 8,500 8,500 6,000 (35, 36)
Silkworm 7,000 5,250 x x 5,250 (32, 37, 38)
Yak x x x x 4,250 (39)
Horse 7,500 6,750 6,750 5,500 5,500 4,000 (40–43)
Bactrian camel x x x x 4,500 (44–46)
Duck 2,500 1,000 x x 1,000 (47, 48)
Chicken 6,000 4,000 x x 4,000 (49–51)

New Guinea
Banana 10,000 7,000 7,000 4,000 4,000 (3, 52–54)
Taro 10,000 7,000 7,000 4,000 x x (3, 52, 53)
Yam 10,000 7,000 7,000 4,000 x x (3, 52, 53)

Africa and Arabia
Date palm 7,000 6,000 x x 5,000 (55, 56)
Sorghum 8,000 4,000 x x 4,000 (56, 57)
Pearl millet x x x x 4,500 3,500 (3, 58)
Fonio x x x x 2,500 (57)
Cowpea x x x x 3,750 (59)
Hyacinth bean x x x x 3,750 (56, 57)
Rice, African 3,500 2,000 x x 2,000 (57, 60)
Oil palm 9,250 3,500 x x 3,500 (57, 59)
Cattle, African x x 9,000 7,750 7,750 6,500 (61–70)
Donkey 9,000 5,500 x x 5,500 3,500 (71–76)
Dromedary camel 6,500 3,000 x x 3,000 (56, 77–82)
Guinea fowl 2,500 1,500 1,500 (83–85)

North America
Squash 6,500 5,000 x x 5,000 (3, 86, 87)
Sunflower 6,000 4,750 x x 4,000 (3, 86, 87)
Sumpweed 6,000 4,500 x x 4,000 (3, 86, 87)
Pitseed goosefoot 4,750 3,750 x x 3,750 (3, 86, 87)
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Table S1. Cont.

Region/taxa

Exploitation before
domestication

Management and
predomestication

cultivation
Domestication

change

SourcesStart Finish Start Finish Start Finish

Meso-America
Squash (pepo) x x x x 10,000 9,500 (3, 86, 88)
Maize 10,000 9,000 x x 9,000 (89, 90)
Foxtail millet-grass x x x x 6,000 4,000 (91)
Common bean x x x x 3,000 (92)
Avocado x x x x 3,000 (93)
Chile pepper x x x x 3,000 (93, 94)
Turkey x x x x 2,000 x (95)

South America
Chili pepper x x x x 6,000 (96)
Peanut x x 8,500 6,500 5,000 (97)
Cotton x x x x 6,000 (97)
Coca x x x x 8,000 (98)
Now-minor root crops (arrowroot, leren) x x x x 9,000 (99, 100)
Squash (moschata) x x x x 10,000 (97)
Common bean x x x x 5,000 (92)
Lima bean x x 8,250 x 6,000 (92, 101)
Manioc x x x x 7,000 (3, 102, 103)
Sweet potato x x x x 5,000 (104)
White potato 7,000 4,500 x x 4,500 (105)
Quinoa 5,000 x x x 3,500 (106)
Yam x x x x 5,500 (107)
Llama 10,000 6,000 x x 6,000 4,000 (108, 109)
Alpaca 10,000 5,000 x x 5,000 3,000 (108, 109)
Guinea pig x x x x 5,000 4,000 (110, 111)
Muscovy duck x x x x 4,000 2,000 (112, 113)

Dates (in calibrated years before present) listed in each of the three categories: exploitation before domestication, management and predomestic cultiva-
tion, and phenotypic change associated with domestication have been gleaned from the literature and rounded to the nearest 250 y. Cells with an “x” indicate
there is no evidence as yet available for that specific category of management or change. Where there is a date for the start time for domestication change but
the finish time has been left blank, this means that the date in the start time column represents a conservative time by which the organism had been
domesticated, although there is yet no evidence for size or other morphological change following domestication. In addition, the missing end dates for
quinoa and lima bean reflect gaps in the archaeobotanical records of these species. Because the domestication process operates over a continuum, defining
categories and break points during the process is never clear-cut. The precision of numbers provided here should therefore be interpreted as estimates based
upon the best available information, and many may shift as additional archaeological and genetic evidence is collected. Finally, there remain significant
uncertainties and debates regarding whether many of the plants and animals (e.g., African cattle) listed here were domesticated independently in more than
one region (114). In these cases, the listed dates represent those for the earliest domestication episodes in each region, although the processes may not have
been truly independent.
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