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Abstract

Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the
oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA
polymerase beta (Polb). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency,
the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An
alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle
consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining.
These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the
hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polb null cell lines
complemented with active site point mutants of Polb. A DNA synthesis defective mutant, but not a 59dRP lyase mutant,
rescued HIV infection efficiency to wild type levels; this suggeted Polb DNA synthesis activity is not necessary while 59dRP
lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence
HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of
these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in
wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in
OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair
of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference
at the sequence level.
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Introduction

Retroviruses are defined by two enzymatic activities, reverse

transcription and integration [1]. The viral enzyme reverse

transcriptase copies the viral genomic RNA to a linear double

stranded cDNA. The cDNA is part of a pre-integration complex

(PIC) that is poorly understood. The PIC travels to the nucleus

where the viral protein integrase mediates the covalent joining of

the viral cDNA to the host chromosome. The two ends of the viral

cDNA are joined to the host DNA 4–6 base pairs apart, depending

on the retrovirus. In the case of HIV, 5 base pairs separate the

points of joining, the distance across one major groove (Figure 1A).

The process of integration yields an integration intermediate

comprised of the viral cDNA flanked by 5 base gaps of host

sequence and 59 dinucleotide flaps of viral sequence. Host enzymes

are assumed to repair this integration intermediate, but identities

of the specific repair proteins remain unknown [2].

The host protein PSIP1/LEDGF p75 is the major host co-factor

for HIV integration [3–7]. This protein specifically binds HIV

integrase with an integrase-binding domain (IBD) and binds to
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chromatin via a PWWP domain and two AT hook motifs [8–16].

Studies of LEDGF depletion and deletion cells have shown that

LEDGF is required for efficient integration to chromatin in vivo
[4,5]. LEDGF also enhances integration by recombinant integrase

in vitro [17–19].

Integration sites from multiple retroviruses have been sequenced

and mapped in relation to chromatin features such as transcription

units, promoters, CpG islands, and local G:C content [5,20–23].

Retroviruses have distinct integration site preferences. For

example, HIV preferentially integrates to transcription units but

does not favor promoters while MLV favors integration near

promoter sequences. The sequence at the site of integration,

including the 4–6 base pairs between and up to three base pairs

flanking the points of joining, show a palindrome of preferred and

disfavored nucleotides (Figure 1B, [24,25]). Sequences from

cytoplasmic HIV PICs integrated to a naked DNA target showed

that the central 5 base pairs retained the sequence preference as

well as positions 23 and 6 [25]. This comparison suggests that

many base pairs at the integration site are recognized by integrase,

but additional host factors may also influence integration at some

flanking nucleotides. While deletion of LEDGF leads to significant

differences of integration targeting to genomic features in vivo, it

had no effect on the palindromic sequence preference [5,26].

The short patch oxidative base excision repair (BER) pathway

has been implicated in the integration of HIV [27,28]. The BER

pathway recognizes damage on individual bases, including

deamination, alkylation, and oxidation [29–31]. Glycosylases

recognize specific damages of DNA bases. The damaged base is

removed by a glycosylase leaving an abasic site. The essential

enzyme apurinic/apyridimic endonuclease (APEX1) recognizes

the abasic site and cleaves the DNA backbone at the 59 side of the

lesion to generate a 39 hydroxyl and a 59 deoxyribose phosphate

(59dRP) flap. In the short patch BER pathway, DNA polymerase b
(Polb) synthesizes one base and also removes the 59dRP lesion.

Repair is completed when the remaining nick is ligated by a

heterodimer of Lig3 and XRCC1 or via LigI [32]. Proteins

throughout the pathway from oxidative base damage recognition

through the final ligation step were identified in an siRNA screen

for DNA repair factors affecting HIV infection [27]. Reduced

expression of oxidative BER genes led to a decrease of HIV

infection efficiency. The absence of BER proteins was character-

ized to reduce HIV integration [27,28].

The mechanism of BER mediated effects on HIV integration

has not been shown. One formal possibility is repair of the gapped

integration intermediate by BER. We have further explored the

effects of BER proteins on HIV integration with well-defined BER

mutant cell lines. The previously observed effects of the BER

pathway on HIV integration do not appear related to gap repair of

an integration intermediate. Instead, oxidative glycosylases with

specific base recognition may affect the sequence preference of

HIV integration. This suggests that integration may be favored at

sites of oxidative DNA repair intermediates.

Materials and Methods

Cell lines
Matched wild type and Polb null murine embryonic fibroblasts

were derived from littermates and have been previously described

[33]. The Polb null cell line was stably transfected with an empty

vector (Polb2/2 Neo) or the same vector expressing the wild type

Polb cDNA (PolB2/2 +PolB), a polymerase defective

Polb(D256A) mutant cDNA (PolB2/2 +PolB (pol-)), a lyase

defective Polb(K35,68,72A) mutant cDNA (PolB2/2 +PolB

(lyase-)), or a completely inactive Polb(K35,68,72A, D256A)
mutant cDNA (PolB2/2 +PolB (pol-lyase-)) [33]. Nuclear extracts

were used to determine the protein expression of the endogenous

and transgenic Polb proteins in established stable cell lines.

Nuclear extracts were prepared with the NucBuster protein

extraction kit and protein concentration was determined as

described previously. 20–30 mg nuclear extract proteins were

loaded on a precast 4–12% NuPAGE Tris-glycine gel, run 2–3 h

at 100 volts. The gel was transferred to a 0.45 mm nitrocellulose

membrane (Bio-Rad) at 0.2 mA for 2–3 hours. The membrane

was blotted with anti-Polb (1:5000, Clone 18S) or anti-PCNA

(1:2000, SC-56, Santa Cruz Biotechnology), followed by the

secondary antibody Immun-Star goat anti-mouse HRP conjugate

(Bio-Rad). After washing, the membrane was illuminated with

Immun-Star HRP peroxide buffer with luminol/enhancer (Bio-

Rad).

Matched wild type, OGG1 null, and MYH null murine

embryonic fibroblasts were also derived from littermates and have

been previously described [28,34]. All cells were grown in DMEM

supplemented with 10% fetal bovine serum, GlutaMAX gluta-

mine, and Penicillin-Streptomycin (Gibco, Life Technologies). The

media of transfected Polb null cell lines was supplemented with

600 mg/ml geneticin. Cells were grown at 37uC with 10% CO2.

HIV vector particles
HIV lentiviral vectors expressing GFP were generated by triple

transfection of human fibroblast 293T cells with a packaging

construct DR9, a viral genomic RNA plasmid

p156RRLsinPPTCMVGFPPRE, and a plasmid expressing the

envelope gene VSV-G [35,36]. Supernatants containing vector

particles were sterile filtered to remove producer cells and treated

with DNaseI to digest producer plasmids. Target cells were plated

in 6 well dishes at a density to achieve 26105 cells 24 hours after

plating. Cell density was verified by counting with trypan blue

(Gibco, Life Technologies). Vector particles were added to target

cell media in the presence of 10 mg/ml DEAE-Dextran (Sigma

Aldrich). The MOI of wild type Polb cells in Figure 2 was 0.4 and

in Figure 3 was 0.3. Cells were analyzed for infection efficiency 72

hours post infection by fixing with 4% paraformaldehyde (Sigma

Aldrich) and scanning for GFP expression with a FACScalibur

(BD Biosciences). Flow cytometry data was analyzed with FlowJo

software. Cells were exposed to varying concentrations of H2O2

(Sigma Aldrich) in PBS for one hour at 37uC prior to infection.

Figure 1. Retroviral integration. (A) Viral cDNA is depicted by a thin
line and host target DNA is indicated by a thick line. Base pairs in the
host target DNA are numbered. The HIV LTR ends are covalently joined
to the target DNA 5 base pairs apart. The intervening host DNA
denatures yielding an integration intermediate with two 5 base pair
gaps. (B) The sequence preference observed at HIV integration sites.
The numbering is identical to (A) and the points of joining are indicated
by ‘‘IN’’. Base pairs in green are favored and base pairs in red are
disfavored at HIV integration sites.
doi:10.1371/journal.pone.0103164.g001
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Viability was measured by trypan blue exclusion at 72 hours post

infection.

Integration site sequencing
Cells were infected at a 0.8 multiplicity of infection and grown

for 7 days. Genomic DNA was harvested by DNeasy (Qiagen) and

prepared for sequencing as described [37,38]. All sequences had

perfect homology to the terminal 18 bp of HIV U3 and mouse

sequences were at least 20 bp with .98% identity. Sequences

were mapped to the mouse genome using BLAT [39]. The

number of individual integration sites analyzed included 240 from

untreated wild type cells (GenBank Accession numbers

KG960523–KG960762), 105 from wild type cells treated with

10 mM H2O2 (GenBank Accession numbers KG960306–

KG960410), 112 from wild type cells treated with 30 mM H2O2

(GenBank Accession numbers KG960411–KG960522), 245 from

OGG1 null cells (GenBank Accession numbers KG960986–

KG961230), and 223 from MYH null cells (GenBank Accession

numbers KG960763–KG960985). The frequency of G or C in

these murine cells is 0.205 and the frequency of A or T is 0.295.

The observed frequencies in integration sites are expressed as the

difference from random frequencies 0.205 or 0.295. Statistical

significance of deviations of base frequency was determined by a

two-tailed binomial test in Microsoft Excel. Statistical analysis of

integration sites compared to genomic elements was by Fisher’s

exact test using GraphPad Prism version 4.0 for Macintosh

(GraphPad Software).

Results

Polb 59dRP lyase activity, but not polymerase activity, is
necessary for efficient HIV infection

An HIV integration intermediate may be repaired in vitro by

any combination of a polymerase, flap endonuclease, and ligase

[2]. The host DNA repair polymerase Polb could repair a model

HIV integration intermediate in vitro by synthesizing nascent

DNA at the gap. Single deletion of oxidative BER genes OGG1,

MYH, or Polb reduces HIV infection to approximately 40% of

wild type cells [28]. Polb null murine embryonic fibroblasts were

complemented with an empty vector or the wild type Polb cDNA

(Figure 2A, B) [33]. The cells were infected with an HIV based

retroviral vector expressing GFP following successful integration

[36]. Infection efficiency was measured by flow cytometry of GFP

positive cells. Complementation with the wild type Polb cDNA,

but not the empty vector, completely rescued infection efficiency

(Figure 2F, Polb2/2 compared to Polb2/2 complemented with

an empty expression vector p = 0.91, Polb2/2 compared to

Polb2/2 complemented with a wild type Polb transgene p,

0.0001).

Polb has two distinct enzymatic activities which may be

distinguished by mutations at two separate active sites [33]. In

addition to polymerase activity, the lyase activity of Polb cleaves a

59dRP flap that occurs during BER. DNA synthesis activity is

abolished by the mutation Polb(D256A); a triple mutation

Polb(K35A/K68A/K72A) abrogates the 59dRP lyase activity

[33]. Polb null cells were complemented with mutant transgenes

affecting only the polymerase or the 59dRP lyase active site

(Figure 2C, D). These cells were infected with an HIV based

retroviral vector expressing GFP and assayed by flow cytometry.

Complementation with a polymerase defective, 59dRP lyase active

Polb transgene was able to rescue HIV infection efficiency to wild

type levels (Figure 2F, Polb2/2 compared to Polb2/2 comple-

mented with a Polb(D256A) transgene p = 0.01). However, a

polymerase active, 59dRP lyase defective transgene was unable to

rescue HIV infection efficiency (Figure 2F, Polb2/2 compared to

Polb2/2 complemented with a Polb(K35A/K68A/K72A) trans-

gene p = 0.21). This data suggests that the polymerase activity of

Polb is not necessary for HIV integration and does not support a

model for BER repair of a gapped integration intermediate. The

data does indicate that the 59dRP lyase activity of Polb is necessary

for efficient integration. A combination mutant protein defective

for both 59dRP lyase and polymerase activities was also unable to

rescue the HIV infection phenotype (Figure 2E, F, Polb2/2
compared to Polb2/2 complemented with a Polb(D256A,
K35A/K68A/K72A) transgene p = 0.14). The presence of enzy-

matically inactive Polb protein is not sufficient to support HIV

integration.

Figure 2. Polb polymerase activity is not required for efficient
HIV infection. Murine embryonic fibroblasts with a deletion of the
Polb cDNA (PolB2/2) were complemented with (A) an empty vector
(Neo), (B) the wild type cDNA (PolB), (C) a polymerase defective point
mutant gene (PolB (pol-)), (D) a lyase deficient mutant cDNA (PolB
(lyase-)), or (E) an enzymatically dead mutant (PolB (pol-lyase-)). (F)
These cell lines and a matched wild type cell line were infected with an
HIV based vector expressing GFP following integration. Cells were
analyzed by flow cytometry for GFP expression, an indicator of
successful infection efficiency. Results are from three independent
experiments of duplicates and are expressed relative to wild type cells.
Error bars indicate the standard deviations.
doi:10.1371/journal.pone.0103164.g002

Figure 3. Oxidative damage during HIV infection. (A) OGG1 and
MYH both recognize 8-oxo-dG damage (shown as Go). OGG1 repairs 8-
oxo-dG to G. Replication of 8-oxo-dG results in an 8-oxo-dG:A mispair,
which is recognized by MYH. The MYH glycosylase initiates repair of the
mispaired A to C yielding an 8-oxo-dG:C base pair. The product of the
MYH repair reaction must still be repaired by OGG1. (B) Wild type cells
were infected with an HIV based vector expressing GFP. Cells were
treated with increasing concentrations of H2O2 immediately prior to
infection. Viability in the absence (open diamonds) or presence of HIV
(closed diamonds) was measured by trypan blue exclusion. Error bars
indicate the standard deviations from three independent experiments.
doi:10.1371/journal.pone.0103164.g003
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BER proteins and oxidative damage influence HIV
integration site sequence preference

If the oxidative BER pathway is not repairing the integration

intermediate, it must enhance integration by an alternative

mechanism. The most common form of oxidative DNA base

damage is 8-oxo-guanine (8-oxo-dG) [29]. The sequence prefer-

ence at HIV integration sites includes multiple G:C base pairs

(Figure 1B). This observation suggested that sites of oxidative DNA

base repair might influence HIV integration; the sequence

preference at integration sites could be 8-oxo-dG:C base pairs,

which are not detectable by sequencing integration sites. Of the

oxidative BER proteins, OGG1 and MYH have specificity for

only 8-oxo-dG [30]. OGG1 directly recognizes 8-oxo-dG and

initiates repair by removing the damaged base (Figure 3A). During

replication 8-oxo-dG mispairs with A, resulting in an 8-oxo-dG:A

mismatch. MYH specifically recognizes and binds both bases in

this mismatch, but does not remove the damaged base. Instead

MYH excises the mispaired A and leaves the damaged 8-oxo-dG,

allowing a subsequent round of repair by OGG1 that will remove

the 8-oxo-dG (Figure 3A) [40]. The remaining BER proteins,

including Polb, participate in repair of multiple oxidatively

damaged bases.

Murine embryonic fibroblasts with deletions of OGG1 or MYH
and matched wild type cells were infected with an HIV based

retroviral vector. The genomic DNA of infected cells was purified,

integration sites were subcloned, sequenced, and mapped to the

mouse genome [37]. The sequence preference of integration sites

from wild type cells was similar to that previously observed during

HIV infection (Figure 4, [24,25]). In the absence of OGG1 or

MYH there was no change of the integration site base preference

within the central 5 bp duplication.

In OGG1 null cells integration sites showed a loss of any

statistically significant preference for G at position 21 or C at

position 22 (Figure 4). In MYH null cell lines there is a loss of base

preference for C at positions 22 and 7. Although C is not

recognized by either repair protein, MYH or OGG1 would

recognize 8-oxo-dG on the opposite strand (Figure 3A). Thus the

deletion of 8-oxo-dG specific glycosylase genes MYH and OGG1
specifically alters the HIV integration site preference at G:C base

pairs near the points of joining. These changes are reminiscent of

the HIV PIC integration sequence preference in vitro which also

loses preference for G:C base pairs at positions 22, 21, and 7

[25].

Wild type cells were also treated with the oxidative damage-

inducing agent H2O2 immediately before HIV infection. Treat-

ment of wild type cells with 10 mM H2O2 has no effect on viability,

but treatment with 25 mM H2O2 reduces viability to less than 40%

(Figure 3B). Thus 10 mM H2O2 is less than and 25 mM H2O2 is

greater than the 50% lethal dose in this cell line. The sensitivity of

these wild type cells to H2O2 is not affected by HIV infection

Figure 4. Effects of 8-oxo-dG specific glycosylases or hydrogen
peroxide on HIV integration site sequence preference. Wild
type, OGG1 null, MYH null, and wild type cells treated with 10 mM or
30 mM H2O2, were infected with an HIV based retroviral vector at 0.8
MOI. 10 mM H2O2 is less than the 50% lethal dose for the wild type cells
and 30 mM H2O2 is greater. After 7 days, genomic DNA was purified. HIV
integration sites were subcloned, sequenced, and mapped to the
mouse genome. The random frequency of G or C in the mouse genome
is 0.205 and A or T is 0.295. The differences in observed base
frequencies relative to the random frequencies are shown. Base
numbering relative to the HIV points of joining is as in Figure 1. Boxes
indicate the known HIV integration base preferences for wild type cells.
Green, red, and gray highlights indicate a statistically significant
difference of .0.10 from random frequency with a p value of ,0.005.
Green highlights are positive differences and red highlights are
negative previously published palindromic prefered bases. Deletion of
the OGG1 gene leads to a loss of HIV sequence preference at positions
22 and 21. Deletion of the MYH gene also leads to loss of the HIV
sequence preference at positions 22 and 7. While treatment of wild
type cells with 10 mM H2O2 did not dramatically alter the sequence
preference at integration sites, treatment with 30 mM H2O2 led to the
disfavor of C at position 23 and disfavor of G at position 8, highlighted
in red.
doi:10.1371/journal.pone.0103164.g004

Figure 5. HIV integration near genomic elements. HIV integration
sites were mapped to genomic elements in OGG1 null cells, MYH null
cells, untreated wild type cells, and wild type cells treated with 10 mM or
30 mM H2O2. (A) HIV has a preference for integration to transcription
units. (B) HIV shows no preference for integration to promoters. (C)
There is no preference for HIV integration within 5 kb of CpG islands.
doi:10.1371/journal.pone.0103164.g005

Figure 6. G:C content surrounding HIV integration sites. The
percentage of HIV integration sites compared to the percentage of G:C
base pairs within a 5 kb window is shown for wild type cells compared
to (A) OGG1 null cells, (B) MYH null cells, (C) wild type cells treated with
10 mM H2O2, and (D) wild type cells treated with 30 mM H2O2. The
frequency of G:C base pairs in the mouse genome is 0.41. There is no
significant difference between HIV integration sites in untreated wild
type cells and OGG1 null (p = 0.96), MYH null (p = 0.99), 10 mM H2O2

treated (p = 0.67), or 30 mM H2O2 treated cells (p = 0.88).
doi:10.1371/journal.pone.0103164.g006
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(Figure 3B). The major base damage induced by H2O2 is on

guanines [41]. The integration site sequence preference for 10 mM

or 30 mM H2O2 was similar to untreated wild type cells (Figure 4).

However, the sequence preference observed in 30 mM H2O2

treated cells was expanded to the 23 and 8 positions. While T and

A continue to be favored at positions 23 and 8, respectively, H2O2

treatment led to a statistically significant disfavor of C at position

23 and G at position 8 (Figure 4). Increased oxidative damage at

the time of infection appears to augment the HIV integration site

sequence preference.

Integration sites were also analyzed for their proximity to

genomic level elements. HIV shows a preference for integration in

transcription units, but not near promoters. Deletion of the known

HIV integrase co-factor LEDGF dramatically changes the

integration preference for these elements [5]. The integration

sites from all of these cell lines or wild type cells treated with H2O2

showed a preference for integration to transcription units

(Figure 5A, p,0.05 for all cell lines), but no preference for

integration near promoters or CpG islands (Figure 5B and C, p.

0.2 for all cell lines at both promoters and CpG islands). Deletion

of LEDGF significantly alters the integration profile of G:C

content surrounding the integration sites [5]. The profiles of G:C

content within 5 kb around the integration sites are similar for all

the BER cell lines (Figure 6). Thus the chromatin markers of

integration sites are not affected by deletion of OGG1 or MYH or

treatment with H2O2.

Discussion

DNA repair proteins throughout the oxidative BER pathway

were identified in an siRNA screen for factors affecting HIV

infection [27]. Other members of the BER pathway that mediate

repair of methylation, alkylation, or deamination base damage had

no effect on HIV infection efficiency. Oxidative damage of DNA is

always present in cells and BER proteins are expressed throughout

the cell cycle [42,43]. Presence of oxidative damage and oxidative

DNA damage repair proteins appear to correlate with successful

HIV infection.

One obvious mechanism for the role of a DNA repair pathway

during HIV infection could be the repair of the gapped integration

intermediate. However, several observations argue against this

hypothesis. First, deletion of BER proteins does not affect infection

efficiency of a gamma retrovirus [28]. It seems probable that the

DNA repair pathway responsible for repair of integration

intermediates would broadly repair this structure for all retrovi-

ruses. Second, there is no obvious role for glycosylases during gap

repair. Finally, the polymerase activity of Polb has no effect on

HIV infection efficiency (Figure 2). Instead the 59dRP lyase

activity of Polb appears to be important. The Polb 59dRP lyase

active site is not likely able to accommodate the 59 dinucleotide

flap present in the HIV integration intermediate [44,45]. A

previous study of this repair event shows that wild type

recombinant Polb was not able to digest the 59 dinucleotide flap

of a model gapped integration intermediate in vitro [2]. Thus the

role of the Polb 59dRP lyase activity is also not likely part of the

integration gap repair event. While oxidative BER proteins may

participate in repair of retroviral gapped integration intermediates,

they are not absolutely required; there are likely multiple

redundant proteins that participate in this repair [2]. Instead it

appears that oxidative BER proteins identified in an siRNA screen

may directly affect integration targeting at the sequence level.

The host protein LEDGF has been shown to directly bind the

HIV integration complex and direct integration to sites within

chromatin [46–48]. However, LEDGF has no effect on the

sequence preference at the site of integration [5,49,50]. Deletion

or reduced expression of the LEDGF gene leads to significantly

decreased HIV infection [4,5]. However, cytoplasmic or nuclear

pre-integration complexes from LEDGF null cells show integra-

tion efficiency to a naked DNA target equal to PICs from wild type

cells [5]. PICs from BER null cells show reduced integration

efficiency to naked DNA targets compared to PICs from wild type

cells, which can be rescued by addition of recombinant Polb
protein [28]. LEDGF appears to mediate HIV integration by

tethering the PIC to chromatin, but not naked DNA [18]; BER

proteins appear able to affect HIV integration targeting in naked

DNA. Thus LEDGF affects HIV integration targeting on a

chromatin scale, while BER proteins may affect integration

targeting on a nucleotide scale.

One model for BER protein effects on targeting HIV

integration is for direct protein binding with the integration

complex. This model seems unlikely due to known binding of

LEDGF to integrase and steric interference [46–48,51–54].

Alternatively, the oxidative BER proteins may affect the DNA

or chromatin in a way that enhances HIV integration efficiency.

Oxidative damage of genomic DNA is constant and BER proteins

are constitutively expressed [42,43]. Glycosylases that do not

recognize oxidative damage were shown to have no effect on HIV

infection efficiency [27]. A major difference between oxidative

glycosylases and all other glycosylases is their DNA product. All

glycosylases remove a base leaving an abasic site. Oxidative

glycosylases have AP (apurinic or apyridimic) lyase activity which

nicks the sugar phosphate backbone at the abasic site. MYH is the

only oxidative damage glycosylase that does not have AP lyase

activity; however, MYH must always act in concert with OGG1

which does have AP lyase activity (Figure 3A). Hence, all oxidative

base excision repair will result in an abasic site with a nick. HIV

infection efficiency is reduced in the absence of glycosylases that

have AP lyase activity or in the absence of Polb 59dRP lyase

activity ([27] and this work).

An alternative model for the role of oxidative BER proteins

during HIV integration is based on the nature of the oxidative

BER DNA intermediates. In this model BER single base gap DNA

intermediates, rather than the BER proteins, are the true

mediators of enhanced HIV integration. The single base gap of

short patch BER increases the local flexibility of DNA more than a

nick or an abasic site [55–57]. HIV integration is enhanced by an

obtuse angle of bent DNA and inhibited in an acute angle [58].

Thus HIV strand joining may be favored on a helical strand with

local oxidative base repair (such as positions 21 and 6) and

disfavored on the opposite strand (such as positions 23, 22, 7 and

8). The base preference of HIV integrase is subtle, requiring

analysis of many integration sites. The observed differences in

sequence preference are also subtle due in part to the apparent

inherent promiscuity of HIV integrase as well as the redundancy

of BER pathway proteins. For example, OGG1 only recognizes

oxidatively damaged guanine, but other glycosylases also recog-

nizes damaged guanine.

Additional studies are required to elucidate the roles of DNA

lyase activity during HIV integration. Only glycosylases with AP

lyase activity enhance HIV infection efficiency. While it is

impossible to isolate the lyase activity of bifunctional glycosylases,

it is possible to differentiate the DNA synthesis and 59dRP lyase

activities of Polb. Whether the AP lyase activity of glycosylases and

the 59dRP lyase activity of Polb play the same function during

integration also requires further investigation. However, this data

suggest the intriguing possibility that DNA lyase activity may be a

novel enzymatic target for anti-retroviral therapies.
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Conclusions

HIV integration has a preference for both nucleotide sequence

and chromatin features. The host protein LEDGF targets HIV to

integrate near genomic elements but has no effect on the

consensus sequence preference of integration sites. The oxidative

BER pathway may influence the sequence preference at HIV

integration sites. Additionally, host DNA lyase activity is a

potential target for novel HIV inhibitors.
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