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Abstract. We believe that providing assessment on students’ reviewing
performance will enable students to improve the quality of their peer
reviews. We focus on assessing one particular aspect of the textual feed-
back contained in a peer review – the presence or absence of problem
localization; feedback containing problem localization has been shown to
be associated with increased understanding and implementation of the
feedback. While in prior work we demonstrated the feasibility of learn-
ing to predict problem localization using linguistic features automatically
extracted from textual feedback, we hypothesize that inter-annotator dis-
agreement on labeling problem localization might impact both the accu-
racy and the content of the predictive models. To test this hypothesis,
we compare the use of feedback examples where problem localization is
labeled with differing levels of annotator agreement, for both training
and testing our models. Our results show that when models are trained
and tested using only feedback where annotators agree on problem local-
ization, the models both perform with high accuracy, and contain rules
involving just two simple linguistic features. In contrast, when training
and testing using feedback examples where annotators both agree and
disagree, the model performance slightly drops, but the learned rules
capture more subtle patterns of problem localization.

Keywords problem localization in text comments, data mining of peer
reviews, inter-annotator agreement, natural language

1 Introduction

Computer-supported peer-review has become more and more popular in various
classroom settings. Peer-review is helpful not only because it provides learning
opportunities as students play the role of reviewers, but also because it typically
generates feedback from multiple reviewers for each student, which is likely to
cover broader aspects of both domain knowledge and writing issues compared
with a single instructor review. However, the quality of peer-review feedback
varies with students’ reviewing skills [1]. To better control the quality of peer-
review feedback, we hypothesize that it would be beneficial to assess students’
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reviewing performance and provide proper guidance for students to give more
helpful feedback for their peers. To date no peer-review software is capable of
responding to students’ reviewing performance. Instead, most software is used
as a document management and work allocation tool; for example, the SWoRD
system[2] collects students’ essays, automatically assigns each student’s essay to
multiple students for reviewing, and then collects feedback and gives feedback
back to the corresponding students.

[3] studies how feedback features affect the helpfulness of peer-review feed-
back in terms of feedback implementation, and finds that problem localization is
the feature (of those studied) that most significantly correlates with the likeli-
hood of implementation. Problem localization means pinpointing the source of
the problem and/or solution with respect to the associated essay (in other words,
whether students can find the problem in their essay based on the feedback). One
example of problem-localized peer-review feedback is given below:

Example of problem-localized peer-review feedback: On the 5th
page, when the author is talking about the European immigrants who
spoke out in favor of the principles of the US, it would be nice for the
author to name a few.

“On the 5th page” gives the explicit location of the problem, and “European
immigrants who spoke out in favor of the principles of the US” provides the
context for locating the problem. Localizing the problem in this way rather than
simply saying “It would be nice for the author to give some examples when
making the arguments.” makes the problem easier to identify, and thus helps
feedback receivers understand the feedback.3

Our ultimate goal is to automatically predict peer-review feedback quality so
that software such as SWoRD could be able to provide assessment and tutoring
on students’ reviewing performance. Currently we focus on predicting the partic-
ular feedback feature “problem localization” that was shown to be most impor-
tant in [3]. In previous work, we demonstrated the feasibility of using supervised
machine learning and natural language processing to develop a classification
model that predicts problem localization from linguistic features automatically
extracted from textual feedback [4, 5]. Our feature set included regular expression
features (RegularTag) to capture the usage of canonical location phrases such as
“On the 5th page” in the example above. We also used domain lexicon features
(e.g. #DomainWords), and syntactic features (e.g. SO domain – whether there
is a domain word between the subject and the object, #demDeterminers – the
number of demonstrative determiners) to identify other patterns of problem lo-
calization such as indirect quotation. In the example above, domain words and
phrases such as “European immigrants” and “US” are buried in a prepositional

3 One solution to supporting localization is to allow direct annotation in the margins
rather than use the more typical end-node approach. However, marginalia tends to
lead reviewers to focus on low-level writing problems. Therefore, we wish to support
written localizations.
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phrase that serves as the object of the verb “talk”, which is an opinion verb of
the subject “author”.

While our learned classification model predicted problem localization with
nearly 80% accuracy, misclassification errors still remain. However, judging prob-
lem localization is not easy even for humans, given the fact that the inter-
annotator agreement between two trained annotators as measured by Kappa
is only 0.64 (Section 3). We thus hypothesize that the performance of the clas-
sifier might not only have been limited by the features it used, but also by the
disagreement between the two annotators. Therefore, before developing more so-
phisticated features to cover more problem localization patterns, we would like
to investigate the types of text feedback that human annotators find difficult
to annotate, and the impact of including such difficult to annotate feedback
examples when learning predictive models. Our results show that when models
are trained and tested using only feedback where annotators agree on problem
localization, the models both perform with high accuracy, and contain rules in-
volving just two simple linguistic features. In contrast, when training and testing
using feedback examples where annotators both agree and disagree, the model
performance slightly drops, but the learned rules capture more subtle linguistic
patterns of problem localization. Our quantitative results shed light on how an-
notation disagreement impacts the automatic prediction of problem localization,
while our qualitative results suggest how localization is signaled linguistically,
and which signals are more straightforward for human coders to use.

2 Related Work

Since problem localization is defined as a binary feature that is true when the
problem/solution in the feedback can be easily located in the relevant essays with
the given feedback, by nature identifying problem localization involves detecting
reference information from one document to another, such as indirect quotation
of certain content of the associated essay. One area of related work to our task
is identifying quotation from reference works in primary materials for digital
libraries [6]. This work is similar to ours since it also considers quotation as
reference from one document to the other, although in their case most quotations
are direct while quotations in the peer-review feedback are more likely to be
indirect. They proposed an overlapping-window algorithm that searches for the
most likely referred window of words through all possible primary materials to
match a possible citation in a reference work. We applied this algorithm for
our purpose, and developed features from information on the window that the
algorithm retrieved (e.g. window size, the number of overlapped items).

There is some other related work on peer-review corpora that tries to predict
certain feedback features automatically. [7] worked on a corpus that SWoRD
collected, and compared three supervised learning algorithms in classifying peer-
review comments with respect to several feedback issues (not including problem
localization) separately, by means of features obtained using a text classification
system which is based on non-semantic information in text. We instead only
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focus on problem localization, and explore features that capture both syntactic
and semantic information of text. Also they did not consider the impact of
annotation disagreement, which is focused of in this paper.

The reliability of inter-annotator agreement is a common issue that has been
analyzed in various domains. [8] evaluated an annotation scheme with respect
to both inter-annotator agreement and the use of the annotations for training
predictive models, by performing the same machine learning experiment using
both agreed and consensus data. Agreed data contained only the examples where
both annotators originally agreed on the annotation [9]. Consensus data in addi-
tion contained the originally disagreed examples; however, these examples were
relabeled by the original annotators with a single consensus label after discus-
sion [10]. The use of consensus data not only increased the amount of training
data for machine learning relative to just using original agreement cases, but
also provided more subtle training examples. Our analysis of inter-annotator
disagreement will similarly compare the use of (double-coded) agreed and con-
sensus data in machine learning experiments, and in addition will examine the
use of single-coded data (labeled by only one annotator).

3 Data and Methods

In this work, we use the same corpus examined in our prior study of problem
localization [4, 5]. This corpus was collected using SWoRD in a college level
history introductory class, and first used to study the relationship between feed-
back features and helpfulness [3]. In [3], all the textual reviews were manually
segmented into 1045 idea-units (defined as contiguous feedback referring to a
single topic). These units were then annotated by two independent annotators
for various feedback features. For our work, we try to automatically predict the
particular feedback feature that was found to be most predictive of helpfulness
– problem localization (pLocalization). According to the coding scheme, pLo-
calization is only applicable for criticism feedback, which constitutes 875 of the
1045 feedback idea-units. Among the 875 criticism feedback (for the rest of the
paper, feedback is used to refer to the feedback idea-unit), 52.8% were annotated
as “True” for pLocalization (the majority class).

Since not all feedback were double-coded by the two annotators, [3] analyzed
the reliability of the annotations on the subset of data that were annotated
by both annotators, in which 338 of them are criticism feedback. Within the
338 double-coded criticism feedback, both annotators agreed on the label of
pLocalization for 277 cases. For the remaining 61 disagreed cases, the annotators
later determined a consensus annotation. The rest of the annotations remained
singly annotated. In their study of feedback helpfulness [3], all 875 criticism
feedback were used by combining the consensus labels of the double-coded subset
with the rest of the labels on the single-coded subset; we will refer to this set as
the “combined” criticism feedback. Relevant statistics are listed in Table 1.
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Table 1. Descriptive statistics of annotations for pLocalization in different data sets

pLocalization True False Total True %

Double-coded agreed 154 123 277 55.6%

Double-coded consensus 182 156 338 53.8%

Combined criticism 462 413 875 52.8%

Table 2. Confusion matrix of the double-coded pLocalization. Kappa = 0.64

Coder 2
Total

Coder 1
True False

True 154 15 169
False 46 123 169

Total 200 138 338

In this paper, we mainly focus on the 338 double-coded criticism feedback
for our analysis of the impact of annotation disagreement. The confusion matrix
summarizing the inter-annotator agreement is presented in Table 2 (Kappa =
0.64). To illustrate the subtleties between agreed and disagreed annotations for
pLocalization, we present 3 examples as follows.

1. Agreed: pLocalization = True
On the 5th page, when the author is talking about the European immigrants
who spoke out in favor of the principles of the US, it would be nice for the
author to name a few.

2. Disagreed: pLocalization = True or False
Just when bringing up each topic try to bring up things that one would not
normally think about, make your essay a little more interesting by doing this,
but besides that, great job!

3. Agreed: pLocalization = False
Again, be careful about time frames and about well-articulated introductions
to and interconnections of arguments to reach maximum clarity for all as-
pects of your paper, including complex and significant historical and contem-
porary insight.

Since our goal is to analyze the impact of annotation disagreement on learn-
ing to predict problem localization, we will use the same feature set and learning
algorithm as in our prior work [4]. As discussed in Section 1 (and detailed in [4]),
our feature set includes regular expression features, domain lexicon features, syn-
tactic features, and overlapping-window features. For supervised machine learn-
ing we use the Decision Tree (J48) algorithm provided by WEKA.4

4 Experiments

We conducted several experiments to investigate the impact of coders’ annota-
tion disagreement on both the predictive power and the content of the learned
4 http://www.cs.waikato.ax.nz/ml/weka/
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models. We first compare the quantitative impact of using the double-coded
agreed data, the double-coded consensus data, and the combined data (Ta-
ble 1), by training and testing on each data set separately and comparing model
performance using standard metrics. Next, we evaluate how the model learned
from the agreed data (which performed best in the first experiment) general-
izes when tested using noisier examples from the consensus and combined data.
Finally, we present a qualitative analysis of our learning experiments, by com-
paring how the linguistic features used to predict problem localization change
when the model is trained from agreed versus consensus versus combined data.

4.1 Learning using Agreed vs. Consensus vs. Combined Labels

In this experiment we use supervised machine learning to predict problem lo-
calization (pLocalization) from each of our data sets separately. For all learned
models, we perform 10-fold cross validation to evaluate performance. We also
compare each model against a majority class baseline (always predict the class
that constitutes the major part of the data) with respect to the data from which
the model is learned. Our first learned model (agreed model) was trained and
tested on the 277 examples where both annotators originally agreed on the label
of pLocalization. The second model (consensus model) was trained and tested
using the consensus labels of all 338 double-coded instances (the 277 originally
agreed examples, and the 61 originally disagreed examples). Results are pre-
sented in Table 3. To save space we abbreviate precision of the true class of
problem localization to be P true, and the corresponding recall and F-measure
to be R true and F true, respectively. We also do the same for the false class.

Table 3. Performance of agreed and consensus learned models (cross validation)

Model No. Accuracy P true R true F True P false R false T false Kappa

agreed baseline 277 55.6% 0.56 1 0.69 0 0 0 0

agreed model 277 81.6% 0.97 0.69 0.81 0.71 0.98 0.83 0.64

consensus baseline 338 53.8% 0.58 1 0.70 0 0 0 0

consensus model 338 74.6% 0.79 0.72 0.75 0.70 0.78 0.74 0.49

Comparing each model against its baseline, Table 3 shows that both models
outperform the corresponding baseline with respect to the two overall perfor-
mance metrics, namely Accuracy and Kappa (p < 0.05). Comparing the agreed
and consensus models,5 Table 3 in addition shows that the agreed model out-
performs the consensus model for these two metrics, although the differences
are not statistically significant. We also see that for the metrics that evaluate

5 Since the baselines of the agreed and consensus models differ, we also compared each
model’s relative improvement over its baseline error. Since results using normalized
versus absolute values were the same, we only discuss the absolute values here.
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each type of prediction separately, the learned models outperform the baselines,
and the agreed model outperforms the consensus model, for all metrics except
R true. In sum, our results suggest that for identifying problem localization over-
all, models that are learned from agreed data are most accurate. However, when
evaluating each class separately, while the agreed model has better results for
predicting “false” and better precision for predicting “true”, the consensus model
has better recall for the “true” class. This suggests that consensus models might
capture more information about the problem localization that is introduced by
the originally disagreed cases (the agreed data is a subset of the consensus data).

Recall that in our prior work [4], our model was learned from the combined
labels of all 875 criticism feedback (combined model). We can compare the per-
formance of this combined model (again evaluated by 10-fold cross validation,
results in Table 4) with the agreed and consensus models. Comparing Tables 3
and 4 shows that for Accuracy and Kappa (and for most of the other metrics),
the agreed model still performs better than the combined model, despite the
much smaller number of training examples in the agreed data set. This further
confirms that training from agreed data yields higher predictive accuracy com-
pared to training from consensus or combined data. In contrast, the combined
model outperforms the consensus model for all metrics, which suggests that
when noisier training data is involved, we can continue to improve our model’s
performance by increasing the number of training examples.

Table 4. Performance of combined learned model (cross validation)

Model No. Accuracy P true R true F True P false R false T false Kappa

combined baseline 875 52.9% 0.53 1 0.69 0 0 0 0

combined model 875 78.5% 0.84 0.73 0.78 0.74 0.85 0.79 0.57

Finally, it is important to point out that the Kappa of the combined model
(0.57) is close to what human annotators achieved (Kappa = 0.64 in Table 2).6

This implies that our model is not so far off from the upperbound of human
annotations. On the other hand, since human agreement is relatively low, the
annotation scheme could be improved to increase reliability.

4.2 Training on Agreed, Testing on Consensus vs. Combined

In this experiment we investigate whether the high predictive accuracy of the
model learned from the agreed data in the prior section generalizes when tested
on more difficult examples Our first testing set (disagreed set) contains the
consensus labeled 61 double-coded criticism feedback, where the two annotators
originally disagreed on pLocalization. The second testing set (combined set) was

6 The human Kappa should be compared to the combined or consensus Kappas, but
not the agreed Kappa, because the human annotators agreed on all instances in the
agreed data set (thus for agreed, human Kappa = 1).
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constructed to be of the same size as the disagreed set, by randomly selecting
61 instances from the 875 examples in the combined set, after removing the
277 agreed examples used for training the agreed model. Note that since the
combined test set could be a mixed set of originally disagreed as well as single-
coded feedback, it might have higher inter-annotator agreement (however, we
cannot verify this given the single-coding).

Table 5. Testing the agreed model on consensus and combined data (held-out)

Testing Set No. Accuracy P true R true F True P false R false T false Kappa

disagreed set 61 55.7% 0.52 0.43 0.47 0.58 0.67 0.62 0.10

combined set 61 72.1% 0.81 0.48 0.61 0..69 0.91 0.79 0.41

Experimental results presented in Table 5 show that the agreed model per-
formed better (for all metrics) on the combined set, which might potentially
have higher inter-annotator agreement. It is reasonable that the disagreed set is
harder to predict in the supervised learning scheme, since the labels of the dis-
agreed set were all originally disagreed by human annotators. Comparing Table 5
with the agreed model entry in Table 3 shows that the agreed model performed
much better when tested on the agreed data (although it should be noted that
Table 3 results were obtained using 10-fold cross validation while Table 5 results
were obtained using held-out test sets). Our interpretation is that the agreed
model was trained from only the agreed data, which is likely to only capture
simple patterns of problem localization that humans can easily agree on; thus
the agreed model is not able to recognize the other underlying patterns that are
not as straightforward as what the agreed model is trained from. When there
are easier cases in the testing set such as in the agreed set and likely in the
combined set, the agreed model predicted more accurately in general. These re-
sults further support our hypothesis that annotation disagreement does indeed
impact the predictive power of learned models.

4.3 Analysis of the Learned Trees

Interestingly, there is a great difference in the corresponding decision trees of
the models that are learned from different data sets. Fig. 1 contains the decision
trees of the agreed and consensus models, while Fig. 2 is the decision tree of the
combined model. For prediction, the model will go through one particular path of
the tree from the root to the leaves, where each node corresponds to one feature in
the data set. For example, the model in part (a) of Fig. 1 first looks at whether
any regular expression matches the feedback: if yes, it stops and predicts the
feedback as problem-localized (“True”); if no, it continues and looks at the second
feature – #DomainWords. If the number of domain words is greater than the
threshold of 8, the model predicts the feedback as problem-localized, otherwise
it predicts not problem-localized (“False”). The numbers (x/y) following the
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decision conditions represent that there are x instances predicted at this node
while y of x are predicted wrong. Values in Fig. 1 and Fig. 2 are the results when
models are tested on themselves, thus these values represent the fitness of the
learned decision trees with respect to the corresponding training data sets.

Since the decision tree algorithm embeds feature selection in its learning
process, it will automatically select the most discriminative features regarding
the training set. Thus, even though we extract the same features across train-
ing sets, the decision tree algorithm could selectively use different features, thus
the learned tree structures could be quite different. Furthermore, the predictive
power of a feature might not be the same even when it appears in different mod-
els, due to the differences in the training corpora. Note that features selected by
the two trees in Fig. 1 are exactly the same, suggesting that when the training set
is small, the usage of localization expressions (RegularTag) and domain lexicons
(#DomainWords) are the main factors to separate problem-localized feedback
from the others. But when the model needs to consider more examples as in
Fig. 2, it has to rely on more sophisticated features (i.e. the syntactic features
(SO domain, #demDeterminers) and overlapping-window features (windowSize
– the size of the overlapped window) introduced in Section 1) to detect more
subtle expressions of problem localization.

(a) the agreed model (b) the consensus model

Fig. 1. Decision trees of the agreed and consensus models.

Fig. 2. Decision tree of the combined model.
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5 Conclusion

In this paper we investigated whether and how the disagreement of annotations
affects the models we build for identifying problem localization in peer-review
feedback. The quantitative results as well as the learned models (decision trees)
suggest that while agreed data can achieve higher predictive accuracy in gen-
eral (Section 4.1), it cannot be generalized well to consensus data or combined
data that might involve inter-annotator disagreement (Section 4.2). Furthermore,
while the model learned from pure agreed data performs well using only regu-
lar expressions and domain lexicons for identifying simple localization patterns,
more sophisticated features are necessary to capture more subtle expressions in
general problem localization cases (Section 4.3). This might indirectly reflect
that different localization patterns have different difficulty for annotators repre-
sented as inter-annotator disagreement. In sum, we have shown that annotation
disagreement does exert an impact on the predictive power and content of the
learned models. Our work also suggests how localization is signaled linguisti-
cally, and which signals are more easily used by human coders. We hope to use
these insights in future work to refine our annotation manual, to improve both
inter-annotator agreement and ultimately model performance.
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