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ABSTRACT 

 
While highly active antiretroviral therapy has resulted in slowing the rate of progression to AIDS 

among individuals infected with human immunodeficiency virus, it has also resulted in 

detrimental metabolic lipid changes.  As this dyslipidemia is not observed for all individuals 

receiving antiviral therapy, genetic factors likely influence the increased susceptibility for some.  

We designed this study to investigate the role of human gene copy number variation (CNV) in 

therapy associated dyslipidemia and risk assessment as well as investigating mRNA expression 

levels to identify new genetic variants associated with this lipid dysfunction. 

 

A custom multiplex ligation dependent probe amplification assay was developed to analyze CNV 

of reverse cholesterol transport pathway (RCT) genes within individuals (n=320) enrolled in the 

Multicenter AIDS Cohort Study (MACS).  The resulting analysis demonstrated that CNV was 

present in extremely low levels within these genes as the only loss identified and verified was 

observed for CETP in one individual.  To further identify lipid metabolism associated genes, 

blood-derived RNA from 437 MACS participants was analyzed using the Illumina Human HT-

12 microarray.  Significant transcripts were present only for variation in HDL-C and Triglyceride 

levels with 4 differentially expressed transcripts (HDC, CPA3, GATA2 & SLC45A3) repeatedly 

identified.  Finally, to determine if CNV can alter the functionality of single nucleotide 
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polymorphism (SNP) genotyping, we analyzed SNPs in regions with/without CNV by 

Fluorescence Polarization, TaqMan SNP genotyping assays and Sanger Sequencing.  SNPs in 

regions of no CNV were observed to have 3 distinct genotype groups but in the presence of 

CNV, this distinction was lost resulting in a continuous spread of allele values. 

 

These results show that CNV is not a major factor in the development of antiviral therapy-

associated dyslipidemia.  Other genetic variants, such as HDC, may explain some of the 

variability.  Furthermore, when CNV is present it hinders the ability to SNP genotype when 

using the standard assumption of three genotype groups. As antiretroviral therapy is becoming 

more available for the over 35 million living with HIV-1, identification of factors leading to 

antiviral-associated dyslipidemia is important for Public Health.  Here, we have identified genes 

that could serve as markers for lipid level changes helping physicians custom tailor therapy and 

care for these individuals. 
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1.0  INTRODUCTION 

1.1  HUMAN IMMUNODEFICIENCY VIRUS  

Human immunodeficiency virus (HIV) is a single-stranded, positive-sense, enveloped RNA 

lentivirus of the Retroviridae family.  This family of viruses reverse transcribes their RNA 

genome to double-stranded DNA using an RNA-dependent DNA polymerase, reverse 

transcriptase (RT), packaged in the mature virion.  Once transcribed, the 10kb viral genome is 

then integrated into the host genome of the infected cell using the virally provided integrase 

enzyme at which point HIV is completely dependent on the host cell for transcription and 

translation of its genome during replication.   

1.1.1.1 Types 

There are two types of HIV; HIV-1 is a highly infectious global pandemic[1]  while HIV-2 is 

endemic mainly in West Africa due to reduced pathogenicity and poor transmission rates[2] .  

Classification of HIV-1 subgroups is based upon genetic sequence differences.  There are 4 HIV-

1 lineages, of which group M represents the predominant (~90% of HIV-1 infections) while 

groups N, O and P have extremely low prevalence[3].  Within group M, there are subtypes A-H 

that vary in prevalence based on geographical location across the world.  Phylogenetic analysis 

of HIV-1, HIV-2 and various lineages of SIV (chimpanzee, gorilla, sooty mangabey) have 
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illustrated that HIV-1 and HIV-2 lineages are products of multiple cross-species transmission 

events[3].  HIV-1 groups M and N are most closely related to the chimpanzee SIV (SIVcpz) and 

are likely to originate from SIVcpz while group P appears to be of gorilla SIV (SIVgor) origin[3-

6].  The outlier group O appears does not distinctly resemble any of the SIV lineages analyzed 

and appeared to be of either SIVcpz or SIVgor origin[3].  HIV-2 groups A-H (only A-B have 

spread to humans) on the other hand are of sooty mangabey origin[2, 3, 7, 8].   

 

Figure 1.1:  AIDS Epidemic Statistics 

1.1.1.2 Global Burden 

The burden of HIV infection is evident in the 2013 statistics released by the World Health 

Organization (WHO) that illustrated an estimated 35 million people worldwide were living with 

HIV-1 and that 2.1 million people were newly infected that year.  Those that had AIDS related 

deaths were 1.5 million, a lower number than those infected indicating that the number of those 

living with HIV will continue to rise.  The majority of individuals for each of these stats were 
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adults as illustrated in the WHO table shown in Figure 1.1.  But roughly 9% of those living with 

HIV were children under the age of 15.  The regions (Africa and South East Asia) with the 

highest prevalence of HIV-1 infection also have the highest rates of AIDS associated death as 

illustrated in the 2012 WHO world maps in Figure 1.2.   

 

 

 

Figure 1.2:  World Maps of HIV Burden and AIDS Deaths 
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1.1.1.3 HIV-1 Life Cycle 

HIV-1 is transmitted through direct contact of blood or bodily fluids. The primary modes of 

transmission are through unprotected sex, interaction with infected blood (accidental or 

intentional needle prick) and mother to child.  Initial infection occurs with the CCR5-trophic 

strain of the virus that predominantly infects macrophages.  The HIV infects the target cell 

through interaction of the viral envelope protein gp160 (comprised of gp120 dimer & gp41 

heterodimer) with the cell surface. Initially gp120 binds with the CD4 surface protein and then 

binds to one of two chemokine coreceptors (CCR5 or CXCR4) based on the tropism of the 

infecting virus.  Binding of the coreceptor triggers gp41 mediated fusion entry.  Following 

fusion, the viral genome is uncoated and released into the cytoplasm where the positive-sense 

single stranded RNA virus is reverse transcribed using the viral reverse transcriptase into double 

stranded DNA.  The provirus is then migrated into the nucleus where the viral genome is 

integrated into the host cell genome using viral integrase.  Once integrated, the viral genome is 

transcribed by the host cellular machinery with the aid of viral accessory protein Tat.  Some of 

the resulting transcripts are then cleaved into mRNA, while others are left as whole transcripts 

(full length RNA genome for new viruses) before moving out to the cytoplasm.  The viral 

mRNA is then translated into viral proteins using host machinery in the cytoplasm (Gag-Pol 

precursor polyprotein: capsid, matrix, integrase and RT) or endoplasmic reticulum (Envelope 

polyprotein precursor).  Viral proteins derived from the Gag-Pol precursor polyprotein form a 

complex that migrates to the host cellular membrane for viral assembly while Envelope proteins 

are transported to the Golgi apparatus for glycosylation and cleavage into mature Env proteins 

before being transported to the cellular membrane.  The viral proteins and genome assemble at 
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the membrane and then bud from the cell.  The now free virus uses its viral protease, packaged 

during assembly, to cleave Gag-Pol generating a mature virus capable of infecting other cells.  

1.2 HIGHLY ACTIVE ANTI-RETROVIRAL THERAPY 

Prior to the advent of anti-retroviral therapy, the only outcome for individuals diagnosed with 

HIV was progression to AIDS and succumbing to opportunistic infections.  The remaining 

lifespan after infection without treatment is generally short. 

  

Antiretroviral drugs are divided into 5 classes based on how they interfere with the life cycle of 

HIV-1.  These include entry inhibitors, fusion inhibitors, reverse transcriptase inhibitors, 

integrase inhibitors and protease inhibitors. 

Entry inhibitors  –  Prevent binding of the virus to surface receptors. 

Fusion inhibitors – Interfere with virus’ ability to fuse to the cell membrane. 

Reverse transcriptase inhibitors  

Nucleoside Reverse Transcriptase Inhibitors (NRTI) – compete with cellular 

deoxynucleotides during reverse transcription.  Incorporation results in truncated 

sequence. 

Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) – Bind to site on 

reverse transcriptase changing its confirmation and inhibiting its function 

Integrase inhibitors – Prevent integration of viral dsDNA transcript from integrating 

with the host genome. 

Protease inhibitors – Inhibit viral protease from cleaving Gag-Pol during maturation. 
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As reverse transcriptase is highly error prone, the viral genome is mutated regularly resulting in 

escape mutants that are no longer affected by antivirals in the way that they were initially.  In 

some cases the drug is completely ineffective against the new mutant virus.  Because of this, 

drug therapy for HIV infection combines a cocktail of antiviral drugs that is adjusted per patient 

basis to avoid drug resistance.  This combination therapy that began in 1996 is called highly 

active antiretroviral therapy (HAART) and consists of at least two or more classes of antivirals.  

Use of HAART has been effective of reducing viral loads in patients to undetectable as well as 

elevating CD4+ T-cell counts. 

1.3 HAART-ASSOCIATED DYSLIPIDEMIA 

1.3.1 Infection Alone 

HIV-1 infection alone has been shown to result in metabolic changes.  Before the advent of 

HAART, as infected individuals progressed to AIDS they were observed to have decreases in 

high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total 

plasma cholesterol, apolipoprotein-A-1 and apolipoprotein-B-100, as well as increases in 

triglycerides, free fatty acids and very low density lipoprotein (vLDL)[9].  This combination of 

hypertriglyceridemia (increase in vLDL and triglycerides) and decrease in HDL-C has been 

shown to increase susceptibility to atherosclerosis[10].  A possible genetic component to 

metabolic changes is suggested by Grunfeld’s study observing that only 53% of patients 

experienced hypertriglyceridemia.  Additionally, during autopsies of children who died of AIDS 

prior to HAART, damage to the vascular endothelium was observed.  As these children lack the 
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traditional risk factors (smoking, high blood pressure, obesity, etc) for coronary heart disease, 

HIV-1 infection related changes are implicated in their abnormal development of endothelial 

damage[11, 12]. 

1.3.2 HAART-Associated 

Following development of HAART, particularly use of protease inhibitors, individuals 

experience changes in lipid levels observed as increases of triglycerides, cholesterol, vLDL and 

LDL along with increased incidence of hypertriglyceridemia.  Of those receiving therapy in a 

study by Carr et al, 74% of patients experienced triglyceride and cholesterol increases.  As HDL 

levels remain decreased in these individuals, this lipid triad of decreased HDL and increased 

triglycerides and LDL is deemed atherogenic dyslipidemia due to the increased risk of 

atherosclerosis known to be associated with this combination of lipids.  In addition to serum lipid 

alterations, some experience redistribution of body fat termed lipodystrophy, a combination of 

lipoatrophy and lipohypertrophy.  Lipoatrophy is observed as fat loss from regions of the body 

(arms, legs, buttocks and face) while lipohypertrophy is excessive fat accumulation in the dorso-

cervical region as well as hepatic, cardiac, intra-thoracic and subcutaneous regions.  The 

prevalence of lipodystrophy ranges from 11 to 88% in several studies and is a consequence of a 

lack of any standard set of criteria defining lipodystrophy[13-15].  Despite this, the abnormal fat 

distributions in conjunction with metabolic changes in HDL and triglycerides along with insulin 

resistance (observed to increase in those on HAART as well) are some of the criteria that define 

metabolic syndrome, which is a combination of abnormalities known to increase risk of CVD in 

the general population.  Traditional risk factors for CVD in the general public include 
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hypertension, smoking, diabetes, obesity, family history of CVD, total cholesterol, LDL-C, 

HDL-C, lipoprotein (a), triglycerides.  

 

Furthermore, multiple studies have reported increased CVD risk and myocardial infarction (MI) 

incidence in those on therapy exhibiting characteristics of dyslipidemia.  Janizewski et al 

evaluated the hypertriglyceridemic waist phenotype, a screening tool that had reliably identified 

visceral adiposity[16] and elevated CVD risk in the general population[17], for its ability to 

identify CVD risk among those infected with HIV.  In doing so they not only showed that the 

screening tool was effective, but also found that individuals with the highest triglyceride levels 

and waist circumference had the highest levels of adipose tissue, metabolic syndrome, type 2 

diabetes and highest Framingham risk score for CVD risk[18].  They also observed that 

increased visceral fat accumulation and peripheral fat atrophy as seen in decreased subcutaneous 

leg fat are associated with elevated triglycerides and decreased HDL.  Furthermore, individuals 

without lipodystrophy were observed to have reduced CVD risk factors, except for HDL levels, 

when compared with individuals with fat redistribution[19]. 

 

Within the data collection on adverse events of anti-HIV drugs (DAD) study group, a steady 

increase in incidence of MI was observed as exposure to antiretroviral therapy increased before 

plateauing off at the 4yr mark[20].  They also observed an increased MI incidence, partially 

explained by dyslipidemia, for individuals exposed to protease inhibitors for more than 6 years 

when compared to those with no exposure[21].  No association of MI was observed for non-

nucleoside reverse-transcriptase inhibitors.  Other factors identified to have an association with 
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increased incidence of MI were higher total serum cholesterol, triglycerides and the presence of 

diabetes[20].     

   

Other studies investigated HDL particle size identifying that HAART naïve individuals had a 

subpopulation of HDL particles similar to those with coronary heart disease and significantly 

different from healthy controls[22].  Furthermore, various forms of HDL particles (large and 

small) were shown to be significantly associated with CVD and non-fatal coronary heart 

disease[23]. 

 

As the impact of HIV infection on CVD risk is unknown in those who are aging while infected 

with HIV, it is imperative to understand the mechanisms behind HAART-associated 

dyslipidemia.  Because the occurrence of dyslipidemia, while having high prevalence, is not seen 

in the entire HIV-1 infected population, it suggests that other factors such as genetic variation 

play a role.  

1.4 GENETIC VARIATIONS ASSOCIATED WITH DYSLIPIDEMIA 

The impact of genetic variations on lipid levels within the blood is a major topic of current 

research. In the broad sense of genetics, gender and ethnicity have both been shown to have an 

association with serum lipids.  Women generally have lower total cholesterol and LDL as well as 

higher HDL when compared to men[24].  As observed in our recent study, when investigating 

ethnicity those of European ancestry have the more atherogenic phenotype (higher LDL and 

lower HDL) while those of African European or Asian ancestry are observed to have an 
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atheroprotective phenotype (lower LDL and high HDL)[25]. Previous studies had similar 

findings[26-28].  These results would suggest that women of African descent generally have the 

best serum lipid profiles while Caucasian males have the worst. 

 

Another well-studied genetic variation in the role of lipid levels is that of single nucleotide 

polymorphisms (SNPs) which are individual based changes within the genome that can result in 

one of 3 genotypes at the site of the SNP.  Initially studies involved identifying candidate genes 

and performing small (<50 SNPs) scale investigations of the variations within.  With the advent 

of array-based SNP genotyping platforms, the number of SNPs that could be studied at one time 

quickly rose exponentially from those smaller scale investigations to the current assays that can 

detect over a million SNPs.  And thus, the genome wide association study (GWAS) was born.  

This type of study is an approach using the array-based platforms to examine an extremely large 

number of SNPs at once in order to find new associations between common disease states and 

SNPs on the array by analyzing samples from individuals with the condition of interest and 

healthy controls.   

 

Various GWAS studies have identified polymorphisms associated with cardiovascular disease 

risk.  Of the polymorphisms identified, many of these are involved with lipid and glucose 

metabolism with numerous genes falling in the reverse cholesterol transport pathway.  This 

pathway depicted in Figure 1.3 transfers cholesterol from the periphery to the liver for 

degradation or recycling and is key for keeping cholesterol levels balanced in the body. 
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Variation within genes of and those that act upon members of the reverse cholesterol transport 

pathway have been shown to have a direct impact on lipid levels as well as expression levels of 

some of the RCT genes.  Studies by Morabia and Knoblauch shown that SNPs within the RCT 

genes are directly associated with lipid levels[29, 30]. 

 

 

“Graphical representation of the reverse cholesterol transport (RCT) metabolic pathway, from which we selected 11 genes: 
ABCA1, APOA1, APOE, CETP, EL, HL, LCAT, LDLR, LPL, PLTP and SR-BI. Dietary free fatty acids and monoglycerides 
form triglycerides (TG) in the intestine, which are transported by chylomicrons. TG are also transported as very low-density 
lipoproteins (VLDL) formed in the liver. LPL releases free fatty acids from chylomicrons and VLDL in peripheral tissues (heart, 
muscle, adipose). The TG-depleted ‘chylomicron remnants’ take on APOE and serve, in the macrophages, as a basis for the 
construction of APOA1 and APOE-containing HDL particles. These nascent HDL particles interact with peripheral cells and 
acquire cholesterol and phospholipids through a transport process facilitated by ABCA1. Nascent HDL evolves into mature HDL 
in part via the PLTP-mediated transfer of phospholipids and free cholesterol from TG-rich lipoproteins to HDL, and via the 
esterification of free cholesterol within the HDL particle by the LCAT enzyme. These cholesteryl esters (CE) form the core of the 
mature HDL, which can be further enriched with APOE prior to their uptake as particles in the liver. CEs can also be selectively 
transferred, in exchange for TG, to TG-rich lipoproteins through the action of CETP. These TG-rich lipoproteins can then 
undergo hepatic endocytosis via the action of LDL-receptors. HL and EL hydrolyze HDL-TG and phospholipids, thereby 
reducing the size of HDL and stimulating the SR-BI-mediated selective hepatic uptake of CE.”   

Morabia A et al.  Hum. Mol. Genet. 2003;12:2733-2743 

Figure 1.3:  Reverse Cholesterol Transport Pathway 
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In particular, Knoblauch’s study revealed that SNP haplotypes within these genes explained a 

substantial portion of the genetic variability for LDL (67%) and HDL (58%) levels.  

Furthermore, mutations within the LDL-receptor (LDLR) have been identified to be the 

underlying cause of familial hypercholesterolemia (FH), a rare autosomal dominant 

hypercholesterolemia disorder [31, 32].  Over 1000 mutations have been reported within this 

gene, of which the deleterious forms result in non-functional truncated versions of LDLR that are 

no longer capable of binding LDL-C for transport and degradation in the liver[33].  The resulting 

consequence of decreased levels of functional LDLR is hypercholesterolemia, an increase of 

LDL-C within the plasma, which is a risk factor for atherosclerosis and cardiovascular disease.  

Another set of mutations that can have a dramatic impact on the RCT pathway and lipid levels 

are those of proprotein convertase subtilisin/kexin type 9 (PCSK9).  The product of PCSK9 binds 

to the cell surface LDL receptor molecules, targeting them for removal from the surface and 

subsequent degradation.  Individuals who exhibit gain of function mutations are observed to have 

increased LDL-C levels while those with loss of function mutations have decreased levels, along 

with reduced risk of coronary heart disease[34-38].  Mutations within PCSK9 have also been 

shown to modify LDLR expression levels. 

 

An additional form of variation that is becoming a popular candidate for study is copy number 

variation (CNV).  This type of variation involves a duplication, deletion or inversion of a section 

of DNA that can range in size from 50bp to entire sections of a chromosome.  When the 

variation contains an entire gene including the promoter and 3’ UTR, activation of transcription 

for the original gene can result in transcription of all of its copies provided they have the same 

promoter sequence of the original copy.  The end result is an increase of protein product directly 
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proportional to the number of gene copies if no other stringent post-translation regulation exists 

to reduce the amount of mRNA produced.  This exact phenomenon has been illustrated for 

CCL3L1 and DEFB4, where increased copy number resulted in higher mRNA levels and 

increased protein levels to a point of saturation after a certain copy number has been reached, at 

which point the amount of protein produced reaches a plateau[39-42].  Such a variation in any of 

the RCT genes could disrupt the delicate balance of the reverse cholesterol transport influencing 

serum lipid levels (similar to that seen for PCSK9 SNPs).  Unfortunately, little is available in the 

literature regarding CNV in genes associated with lipid metabolism, except for rare variants in a 

few genes (LDLR, LPL, ABCA1 and LIPC)[43, 44].  It should be noted that while LDLR does 

have an extensive amount of literature pertaining to CNV, those variants are found as insertion 

and deletion events within the gene rather than encompassing the whole LDLR gene, and are 

primarily seen in familial hypercholesterolemia patients[43-49].  Therefore, they are unlikely to 

have an impact on RCT in the general population.  Furthermore, the Database of Genomic 

Variants (DGV), a collection of structural variation data among healthy individuals, has rare 

CNV documented for the RCT genes, but this primarily consists of insertions and deletions 

rather than whole gene duplications[50].   

1.5 WHOLE-GENOME EXPRESSION 

Advancing technology in the area of whole genome sequencing has made large scale genetic 

analysis more accessible to the scientific community.  The use of this sequencing data combined 

with whole-transcriptome profiles can provide a more complete picture of the associations drawn 

during a study.  However, transcriptome studies require the use of tissues specific to the analysis 
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at hand as gene expression varies in a tissue-specific manner.  Collection of such material can be 

difficult if the tissue is not easily accessible, volunteers are not willing to donate or the procedure 

itself is too risky to undertake.  Consequently, studies have sought out a surrogate for tissue 

specific RNA and used whole blood (PBMCs) derived RNA.  Studies using circulating blood 

have been able to identify biomarkers and predictors of disease outcome for cardiovascular 

disease.  And, gene expression profiles in leukocytes have identified lipid level associations with 

genes in lipid metabolism and the inflammatory response.  These findings indicate that the use of 

blood derived RNA for a transcriptome analysis on CVD and atherosclerosis could produce 

viable targets for therapy and risk assessment. 

 

For this reason, we designed a study to analyze CNV within the reverse cholesterol transport 

pathway in an effort to identify if such variation could alter expression levels of RCT genes 

thereby having an effect on serum lipid levels and potentially CVD risk.  Additionally, we aimed 

to determine if whole blood derived RNA was sufficient to identify differences in expression in 

genes, particularly among those with extremely altered lipid levels.  We also aimed to illustrate 

how varying copies of a gene could influence SNP genotyping, as nucleotide variation within 

these genes have already been shown to have associations to serum lipids.  If CNV is present in 

these genes that hinders accurate SNP genotyping then use of those SNPs to assess disease risk 

would be inaccurate. 
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2.0  STUDY PREMISE 

2.1 HYPOTHESIS 

Copy Number Variation (CNV) in genes associated with lipid and glucose metabolism can alter 

levels of gene products, thereby disrupting the functionality of metabolic pathways and leading 

to HAART related dyslipidemia. This CNV may also impair SNP-based assays for disease 

association in these genes.  

2.1.1 Specific Aim 1:  Copy Number Variation in Reverse Cholesterol Transport Genes 

Quantify Copy Number Variation in lipid metabolism genes and determine its association with 

dyslipidemia. 

2.1.2 Specific Aim 2:  Transcriptome Analysis 

Identify gene transcripts that are differentially expressed between the atherogenic and 

atheroprotective phenotypes.    

 

2.1.3 Specific Aim 3:  Single Nucleotide Polymorphisms and CNV 

Determine the effect of Copy Number Variation on the functionality of Single Nucleotide 

Polymorphism (SNP) genotyping. 
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3.0  MATERIALS AND METHODS 

3.1 SAMPLES 

3.1.1 MACS Sample Description 

Experimental samples were obtained from the Multicenter AIDS Cohort Study (MACS).  The 

MACS is a four center (Baltimore, MD; Chicago, IL; Pittsburgh, PA; and Los Angeles, CA) 

ongoing prospective study, founded in 1984, of the natural and treated histories of HIV-1 

infection in homosexual and bisexual men.  Participants attend clinics bi-annually for a physical 

exam and sample collection, and complete extensive questionnaires about their medical history, 

behavior changes, and overall quality of life.    

3.1.1.1 Cross-Section from 2005 

Blood samples were drawn from MACS participants in 2005, their Peripheral blood 

mononuclear cells (PBMC) were spun down into pellets and subsequently frozen at each center.  

We received pellets from 1,945 individuals (HIV seropositive n=955 & seronegative n=950) that 

were matched.  DNA was extracted from these samples using the Qiagen kit, as described on 

page 19. 
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3.1.1.2 ARRA Cross-Section 

As part of the American Recovery and Reinvestment Act, funding was granted to perform 

transcriptome analysis using a large sample set to identify genes involved in dyslipidemia that 

may or may have not been previously identified.  Samples for this part of the study were 

collected from the Pitt Men’s Study, the Pittsburgh site of the MACS.  The 437 subjects that 

attended the clinic between August 2010 and July 2011 had blood drawn into a PAXgene tube 

for whole transcriptome analysis.  Three participants had two tubes collected at the initial time of 

blood draw while 50 individuals had their blood sample collected during two separate visits and 

3 individuals had blood collected during three separate visits.  These additional samples served 

as quality control samples for the transcriptome assay. 

3.1.1.3 Laboratory Control Samples 

Control samples used for this study consisted pre-existing laboratory controls (n=5) and samples 

from the Coriell repository with known amounts of DEFB103 gene CNV (n=4).  The 5 pre-

existing controls were initially collected as blood samples in 2004 from individuals at the 

Graduate School of Public Health.  DNA was extracted using the Phenol Chloroform method.  

Samples from the Coriell Institute cell repository (NA07048, NA10846, NA10861, and 

NS12911) were obtained as extracted DNA. 
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3.1.2 Nucleic Acid Extraction 

3.1.2.1 DNA 

Phenol chloroform 

DNA was extracted from control blood samples using a phenol chloroform extraction protocol.  

Blood (3-10mL) is transferred into 50mL Falcon tubes and filled with sterile distilled water to 

hemolyse the red blood cells. Tubes are placed on ice for 5-10 minutes then centrifuged at 

3000rpm for 10min to pellet the white blood cells.  The supernatant is discarded before the pellet 

is resuspended in 25mL of the Triton/Sucrose Buffer to lyse the white cell membrane while 

leaving the nuclear membrane intact.  Once again the tubes are set on ice for 10min then spun at 

3000rpm for 10min to pellet the white cell nuclei.  The supernatant is discarded and the pellet of 

cell nuclei is now rinsed in 5mL of PBS before being spun at 3000rpm for 5min.  The 

supernatant is discarded again and the pellet is resuspended in 10mL of a lysis buffer containing 

Proteinase “K”, then incubated at 50-60 °C for 1 hour with occasional shaking.  Once the 

incubation period has ended, 10mL of the phenol/chloroform/water mix (70:20:10 v/v) is added 

and shaken to emulsify before centrifuging at 3000rpm for 10min.  The upper aqueous layer is 

transferred to a fresh 50mL Falcon tube and 10mL of chloroform is added, shaken and spun at 

3000rpm for 10min.  The upper aqueous layer is again transferred to a new Falcon tube and 1mL 

of 4M sodium acetate is added then mixed gently.  In order to precipitate the DNA, 25mL of 

100% ethanol is added to each tube and mixed.  This tube is held at 4°C and spun at 3000rpm for 

10min.  The supernatant is discarded and the pellet is then washed in 10mL of 70% ethanol and 

spun again as above.  The tubes are then inverted and allowed to air dry for 30-60 minutes before 
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resuspending the DNA in 1mL of 1X TE buffer.  DNA concentration is either determined by 

Quant-iT PicoGreen dsDNA Assay Kit [Life Technologies, Carlsbad CA] described in Section 

3.1.3 or A260 spectrophotometry.  These samples were subsequently stored at 4°C. 

Qiagen QIAmp 

When samples were received as PBMC pellets, the Qiagen QIAamp DNA Blood Mini Kit 

[Qiagen Inc., Valencia, CA], utilizing the Blood or Body Fluid Spin Protocol, was used to extract 

DNA following the manufacturer’s protocol. DNA yield from this procedure generally ranges 

from 3-12ug in an elution volume of 400uL 1X TE.  Resulting genomic DNA was quantified by 

Quant-iT PicoGreen dsDNA Assay Kit [Life Technologies, Carlsbad, CA] and stored at -20 °C.   

3.1.2.2 RNA 

Blood samples from MACS participants were collected in PAXgene tubes (PreAnalytix/Qiagen, 

Valencia, CA) to stabilize intracellular RNA prior to processing.  Tubes were inverted 8-10 times 

upon collection then stored upright for a minimum of 2 hours and a maximum of 72 hours to 

allow full stabilization of RNA before freezing at -20°C.  Frozen samples were brought to room 

temperature prior to RNA extraction and purification with the Qiagen PAXgene Blood RNA Kit 

IVD that is specifically designed for extracting intracellular RNA from blood stabilized in the 

PAXgene Blood RNA tubes.  Following extraction, samples were placed back in -20°C before 

being taken to the University of Pittsburgh Genomics and Proteomics Core Laboratories (GPCL) 

for quantification and further sample processing.  Samples are currently being stored at -80°C. 
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3.1.3 Nucleic Acid Quantification 

Quantification of double stranded DNA was performed using the Quant-iT PicoGreen dsDNA 

Assay Kit supplied by Life Technologies (Carlsbad, CA).  This method of quantification is 

dependent on the ability of the PicoGreen dsDNA quantification reagent to fluoresce once it has 

bound DNA and a standard curve for a comparative quantification. A standard curve is generated 

by performing a serial dilution of the Lambda bacteriophage DNA (100ug/mL in TE) supplied in 

the kit.  The Lambda DNA is first diluted to a concentration of 1000ng/mL by adding 1911uL of 

1X TE to 39uL of the stock Lambda DNA in a 2.0 mL microcentrifuge tube.  The tube is mixed 

and 1300uL are transferred into a new microcentrifuge tube containing 650uL of 1X TE.  This 

process is repeated until 15 separate dilution tubes are generated.  To avoid issues with retention 

differences between pipette tips, the same tip is used to perform the serial transfer between tubes. 

 A 16th tube containing only 1X TE is also filled as a DNA blank.  From these dilutions, a 100uL 

volume is aliquotted vertically within a Greiner U-bottom clear 96-well plate with triplicate 

samples running horizontally such that the first 8 dilutions fill columns 1-3 while the following 8 

fill columns 4-6.   

 

To prepare the sample DNA for quantification, 99uL of 1X TE is added to each well of a new 

Greiner U-bottom plate and 1uL of sample DNA is added.  As with the standard curve, these 

samples were also analyzed in triplicate.  The sample DNA was also mixed using a 200uL 

pipette containing a filter tip to ensure even consistency.  Previously, freezing of DNA samples 

was observed to clump the DNA at the bottom of stock plate wells resulting in inaccurate 

concentrations that ranged the extremes depending on the well height from which the sample was 

taken. 
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Once the standard curve and samples were sorted out, the thawed PicoGreen dsDNA 

quantification reagent is diluted by adding 172.5uL of the reagent to 34.328mL of 1X TE in a 

50mL Falcon tube.  The tube is gently inverted to evenly distribute the reagent before 100uL was 

added to each well of both the standard curve and sample plates.  The plates are then sealed with 

AlumaSeal II [Excel Scientific/AF-100/non-sterile] and wrapped in aluminum foil to protect 

from light.  They were allowed to incubate for a minimum of 5min at room temperature before 

being spun down at 1000rpm and read spectrophotometrically at the GPCL facility located on the 

University of Pittsburgh campus. From the standard curve a best-fit linear line was determined 

and from the line’s equation sample DNA was quantified.   

3.2 MULTIPLEX LIGATION-DEPENDENT PROBE AMPLIFICATION 

3.2.1 Sample Selection 

Samples (n=366) were identified on the basis of serum lipid measures obtained in their 2005 

visit. We used the Third Report of the National Cholesterol Education Program (NCEP) Expert 

Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult 

Treatment Panel III) [51] to identify lipid levels associated with higher risk of heart disease 

(HDL-C <40 mg/dL and/or LDL-C > 130 mg/dL) or with lower risk (HDL-C > 60 mg/dL and/or 

LDL-C < 100 mg/dL). DNA was extracted from frozen PBMC pellets using the Qiagen QIAamp 

DNA Blood Mini Kit, following the Blood and Body Fluid Spin Protocol. DNAs were stored at  

-20°C.   
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We also obtained 4 DNA control samples (NA07048, NA10846, NA10861, and NS12911) from 

the Coriell Institute cell repository.  Three of these individuals served as reference samples, as 

the CNV of their Defensin B103A gene DEFB103A was already known[52-54].  We also used 5 

laboratory reference DNA samples as additional controls.  

 

3.2.2 MLPA Probes 

3.2.2.1 Reverse Cholesterol Transport Pathway  

As MRC-Holland does not supply probes for all of the genes within the Reverse Cholesterol 

Transport pathway, we opted to use their P300 Human DNA Reference-2 probemix and 

augmented this with a custom probe set.  Our custom RCT probes were designed according to 

the MRC-Holland Synthetic Probe Design Manual criteria (v10-update 04-02-2009) using the 

human genome 18 reference assembly for gene sequences and the SUNY Stony Brook MAPD 

browser (http://bioinform.arcan.stonybrook.edu/mlpa2/cgi-bin/mlpa.cgi) with the following 

conditions: (Hyb Temp = 60°C; Min Tm = 70°C; [Na+] = 0.35M; [Mg2+] = 0; Min delta G = 0 

kcal/mol; Protocol = Electrophoresis: stuffer (JS98_v1)). [55, 56]  The top ranked probe pairs 

(LPO & RPO) were selected and UCSC Blat searches were performed to identify oligos and 

complete probes that exclusively bound only the gene of interest.  We designed one probe for 

each of our RCT genes under the assumption that if CNV encompassing a whole gene were 

present then a single probe would initially detect this variation, and this could be further 

investigated.  Sequences can be found in Appendix Section: MLPA Probe Oligos on page 132. 
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3.2.2.2 Positive Control Copy Number Assay 

To ensure our MLPA conditions were able to detect a range of CNV when a gold standard CNV 

reference sample is not available, we genotyped the Defensin B103A gene DEFB103A and the 

chemokine receptor gene CCR5 in a subset of our experimental samples, and in samples from the 

Coriell repository that have known genotypes for these genes (NA07048 – DEFB103A 4 

copies/CCR5 wt/Δ32, NA10846 – DEFB103A 5 copies/CCR5 wt/wt, NA10861 – DEFB103A 3 

copies/CCR5 wt/wt).  The MRC-Holland P139 Defensin probemix set was selected as a positive 

control to type the defensin cluster based on its previous use to type CNV in these samples [3-5].  

In addition to the predesigned defensin MLPA kit, we took our original P300/custom RCT probe 

mix and exchanged 3 of the lipid probes (APOC2, APOA1, and APOE) for a DEFB103A probe 

and another two custom probes designed to detect the full and Δ32 deletion forms of CCR5[6].  

The DEFB103A probe used was a shortened form of the 04389-L03745 probe from the MRC-

Holland P139 probemix, as the original probe length would have conflicted with another 

reference probe in the P300.  The CCR5 probes consisted of one left hand probe oligo that 

stopped at the site of the Δ32 deletion and two right hand oligos that were specific to either the 

wild type sequence or the sequence directly following the Δ32 deletion. With these probes, a 

wt/wt homozygote has two copies of the wt probe target and zero copies of the Δ32 target, a 

Δ32/Δ32 homozygote has zero copies of the wt target and two copies of the Δ32 target, and a 

wt/Δ32 heterozygote has one copy of each probe target.  

 

All probes were synthesized through Integrated DNA Technologies (Coralville, IA) as DNA 

oligos.  Additional 5’ phosphorylation of the right-hand probe oligo was performed in our 

laboratory for probes that were ordered lacking this modification.  This was accomplished using 
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T4 Polynucleotide Kinase (New England Biolabs, Ipswich, MA).  Standard conditions for a non-

radioactive phosphorylation call for up to 300pmol of 5’ termini in a 50uL reaction volume that 

contains 1X of the Kinase buffer (supplied), 1mM of ATP (NEB Adenosine 5’ Triphosphate – 

P0756S) and 10 units of T4 Polynucleotide Kinase.  We followed this protocol with the 

exception that we used between 13-30pmol of each RPO oligo, as this was the amount present in 

10uL of our rehydrated IDT RPOs.  The reactions were ran for 1hr at 37°C in 8-strip tubes 

followed by a 20 min 65°C enzyme deactivation.  Appendix Section A.1 on page 132 lists all the 

probe oligos and specifics about each.  

3.2.3 MLPA Procedure 

3.2.3.1 MLPA Hybridization and Amplification 

On the first day, 5uL of ~15ng/uL DNA was added to a well within a 96 well low profile PCR 

plate for each sample.  The plate was sealed with a polymer PCR plate sealing mat and place in 

an Applied Biosystems Incorporated GeneAmp PCR System 9700 thermocycler (Life 

Technologies, Carlsbad CA).  The samples were denatured at 98°C for 5 minutes and cooled to 

25°C.  Once at room temperature, 3uL of the vortexed hybridization master mix was added to 

each sample using an 8-channel pipette containing filter tips.  To ensure proper mixing of the 

probes with the sample, pipette mixing was used when the master mix was added and the 

samples were then spun down in the centrifuge to remove air bubbles.  The plate was once again 

placed into the thermocycler, this time with a compression pad on top of the polymer sealing mat 

to ensure a tight seal.  The samples were then incubated for 1 minute at 95°C and then incubated 

at 60°C for 18-19 hours overnight. 
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On the second day, the samples were cooled to and held at 54°C in the cycler while 32uL of 

Ligase-65 mix (3uL Buffer A, 3uL Buffer B, 25uL sterile distilled H2O, & 1uL Ligase-65 

enzyme) was added to each well then mixed gently in with the pipette.  To ensure as little 

evaporation as possible, eight-strip caps were used to cover each column of the plate when the 

compression pad and sealing mat were removed.  The cycler program was continued at 54°C for 

15 minutes followed by an enzyme heat inactivation at 98°C for 5minutes.  The samples were 

then cooled down and held at 15°C.  At this point, 20uL of the ligation product was transferred 

to a new plate for the one-tube PCR protocol (MDP-v001, update 17-06-2011).  At room 

temperature, 5uL of the polymerase master mix containing a FAM labeled PCR primer was 

added to each sample and mixed with a pipette.  The plate was then spun and placed in a cycler 

preheated to 60°C where the ligation products were then amplified using the cycling program 

listed below.  Following amplification, 5uL of the PCR product was added to a plate containing 

15uL of sterile distilled water in order to dilute the brightness of the product before the plate was 

sealed with AlumaSeal II [Excel Scientific/AF-100/non-sterile] and wrapped in aluminum foil. 

 

3.2.3.2 MLPA Fragment Separation Conditions 

Fragment separation was performed at the University of Pittsburgh Genomics and Proteomics 

Core Laboratories, using an ABI 3730xl Genome Analyzer (Life Technologies, Carlsbad, CA) 

with the following conditions: 1.6 kVolts injection voltage; 25 kVolt run voltage; 50cm 

capillary; 10 sec injection time; POP7 column; LIZ labeled GS-500 size marker standard. 
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3.2.4 MLPA Analysis 

The Coffalyser.net software (http://wiki.coffalyser.net) was used to perform fragment and 

comparative analysis.  Initially, no reference samples were indicated, and samples with average 

signal across all probes were selected as references for each of the four 96 sample runs.  

Fragment analysis was then performed for a second time with default settings.   Samples with 

poor reference probe quality and reproducibility were removed before comparative analysis was 

performed for a second time.  Final ratios and standard deviations were analyzed with the R 

statistical software package[57] and the following modules (ggplot2[58], reshape[59], & 

gridExtra[60]) 

3.2.5 Copy Number Calling  

For probes that lacked reference samples with known copy number levels, discrete copies were 

not calculated.  Instead, the default ratio thresholds (0.7, 1.3), defined by MRC-Holland and 

based on a 2-copy reference sample (MLPA Results Interpretation – V02.2;11-02-2010)[61],  

were used to identify individuals who exhibited a gain (>1.3) or loss (<0.7) of copy number.  The 

interquartile range (IQR) of each probe was also compared to that of the reference probes to 

identify experimental probes with potential CNV that did not cross the default threshold. 

 

When a reference sample containing a known amount of copies was available for a probe, copy 

number was initially called by multiplying the ratio with the number of copies in the reference 

then rounding to get a discrete copy.  When this method produces inconsistent results, copy 

number was typed by applying a k-means clustering algorithm to the raw copy number calls[62].  
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Additional reference samples with differing copies of the gene of interest served to verify group 

calls when they clustered with their expected group (Figure 3.1). 

 

 

 

 

 
 
The P300/RCT MLPA assay was extended to include the shorter DEFB103A probe from the P139 Defensin assay.  
Both assays were run simultaneously on 14 samples, including 3 Coriell samples previously typed for DEFB103A.  
Each Coriell sample was set as a reference in separate analyses and the resulting ratios were converted to raw copy 
numbers by multiplying them with the known number of copies in the reference. The column titles indicate each of 
the 3 DEFB103A probes analyzed while the shape of each point represents the copy number called by k-means 
clustering.  Most copy number groups clustered around a whole integer value, with the exception of the 5-copy 
group.  This group skewed towards the 4-copy group, and at times a few samples crossed the halfway point between 
the two groups resulting in incorrect copy number calls when raw copies were simply rounded to whole integers.  
Use of a k-means clustering algorithm allowed correct calls each time.  All of the raw copy number calls seen for 
the DEFB103A probe in the 3-copy reference sample using the P300/RCT probe set were lower than expected.  The 
run for this sample was of poor quality and therefore ratios generated using it had the potential to fluctuate.  Even 
so, cluster analysis still resulted in proper calls. 

 

Figure 3.1:  Reproducible Typing of Copy Number Calls depends on the Distribution of Raw Copy 

Numbers around Whole Integer Values 
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3.3 POLYMERASE CHAIN REACTION (PCR) 

3.3.1 Primer Design 

Primers were designed using the Primer3 design tool in MacVector v11.0.2 utilizing default 

parameters.  The reference sequences of genes in this study were acquired from GenBank and 

used in MacVector to generate a list of potential primer pairs for each region of interest.  The 

resulting primer pairs were further analyzed to identify primers with similar annealing 

temperatures that formed no self 3’-dimer, hairpin, or self duplexes and generated PCR 

amplicons that ranged from 300-600bp.   

3.3.2 Primary Amplification 

Initial PCR products for both Fluorescence Polarization and Sanger Sequencing were generated 

in the same fashion in which optimal amplification conditions were first identified before 

amplifying all samples.   

3.3.2.1 Optimization 

Magnesium titrations and temperature gradients were performed simultaneously for each set of 

primers to identify their optimal magnesium concentration and annealing temperature for PCR.  

To perform this optimization, 4 individual mastermixes containing a range of magnesium were 

made using a polymerase reagent kit (Applied Biosystems AmpliTaq Gold or Sigma Taq DNA 

Polymerase #D4545-250UN), 1X TE primer mix containing both the forward and reverse 

primers ordered as oligos from Integrated DNA Technologies (Coralville, Iowa), dNTPs 
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(Invitrogen), sterile distilled water and control DNA.  Enough mastermix was made to perform 

10 individual reactions per Magnesium concentration and Table 3.1 lists the reagent volumes per 

individual sample.   

 

 

Table 3.1:  Magnesium Gradient Mastermix Setup per Individual Tube 

  Volume per PCR Reaction Tube (uL) 

 Stock Magnesium Concentration 

Reagent Concentration 1.0mM 1.5mM  2.0mM 2.5mM 
Buffer 10X 1.0 1.0 1.0 1.0 
MgCl2 25mM 0.4 0.6 0.8 1.0 
Primer Mix 50mM each 

 

0.2 0.2 0.2 0.2 
dNTPs 25mM 0.1 0.1 0.1 0.1 
Taq Polymerase 5U/uL 0.1 0.1 0.1 0.1 
Sterile Distilled H2O  7.2 7.0 6.8 6.6 
DNA 5ng/uL 1.0 1.0 1.0 1.0 
 Total Volume 10 10 10 10 

 

 

 

Each mix was then aliquotted at 10uL/tube into separate 0.2mL 8-tube strips (ISC Bioexpress, 

Kaysville UT) that were placed in an Eppendorf Mastercycler Gradient where the gradient 

cycling program amplified each sample of the strip at a separate annealing temperature ranging 

from 57°C to 63°C in the PCR reaction.  Touchdown PCR cycling programs were design to 

enhance the specificity of amplification when regular Taq was used.  These programs begin 7°C 

above the recommended annealing temperature and decrease 0.05°C degrees every cycle until 

cycle 15 where they remain at their optimal annealing temperature for the remainder of the PCR.  

As touchdown programs would not harm amplification with hot-start Taq Polymerases such as 

AmpliTaq Gold, they were used for all of our PCRs.  We also opted to omit the extended initial 
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heat denature step for AmpliTaq Gold and allow the enzyme to be activated slowly throughout 

the PCR in a time released fashion.  Following amplification, PCR products are analyzed using 

gel electrophoresis as documented in Section 3.3.2.2.   

3.3.2.2 Gel Electrophoresis 

Verification of a successful PCR amplification was performed using gel electrophoresis.  If the 

PCR product was greater than 100bp, a 2% agarose gel was made by combining 5g of GenePure 

LE Agarose powder [ISC BioExpress #E-3120-500] with 250mL of 0.05X TBE Buffer (10X 

TBE concentrate [AMRESCO] diluted with distilled water) in a 500mL Pyrex bottle and 

microwaved at 50% power for 5 minutes.  If the PCR product was less than or close to 100bp, a 

3% GenePure HiRes agarose gel [ISC BioExpress #E-3115-500] was made.  The powder for this 

agarose is finer and allows clearer separation of shorter PCR products.  GelRed [Biotium 

#41003], a non-toxic stain for nucleic acids was then added to the melted agarose that was then 

allowed to cool for 5-10 minutes.  At this point, the agarose was poured onto a gel tray in a 

casting stand and combs were positioned onto the plate before it was placed in the refrigerator to 

cool. Once the gel solidified the combs are carefully removed to ensure no damage to the wells 

and the gel tray was placed in the electrophoresis tank [Enduro Gel XL Electrophoresis System] 

filled with 0.05X TBE buffer.  Each sample, prepared by taking 1uL of PCR product and adding 

it to 6X loading dye (0.06% Bromophenol Blue, 0.06% Xylene Cyanole FF, 1.5% Ficoll-400), 

was loaded to individual wells in the submerged gel plate with the first well of each row 

containing 5uL of the ΦX174 DNA ladder (12.5ng/uL NEB ΦX174-HaeIII Digest in 1X loading 

dye).  The samples were then migrated through the gel from the negative electrode to positive at 

100V (400mA) for 30 minutes.  Once the Bromophenol Blue dye has migrated near to the edge 

of the gel, it was imaged on an Alpha Innotech Red Imaging System [Protein Simple] using a 
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UV transilluminator to activate the fluorescent GelRed stained DNA allowing visualization of 

the PCR products as well as the DNA ladder.  For our singled sized PCR products only one band 

is expected and the DNA ladder is used to confirm a successful PCR by estimating product size 

in relation to the ladder.  

3.3.3   Post-PCR Clean up 

For any PCR products that are going to be further amplified, the additional primers and dNTPs 

need to be removed so that only the desired secondary reaction amplifies.  This was performed 

using our standard EXOSAP clean-up step.  The Alkaline Phosphatase (Roche rAPid Alkaline 

Phosphatase, used in place of Shrimp Alkaline Phosphatase) and Exonuclease I (NEB) 

Mastermix shown in Table 3.2 is added directly to the PCR product tubes in a volume equal to 

that of the initial PCR.  The tubes are then placed into the thermocycler where they are held at 

37°C for 1hr before a 15min heat kill at 85°C to inactivate the enzymes. 

 

Table 3.2:  EXOSAP Mastermix 

 

 

Reagent Concentration Volume 

uL per 
sample 

rAPid Alk Phos Buffer 10X 1.0 

rAPid Alk Phos Enzyme 1U/uL 1.0 

Exo I 20U/uL 0.05 

Sterile Distilled H2O  7.95 

 Total Volume 10 
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3.3.4 Sanger Sequencing 

Sanger sequencing was performed using the Applied Biosystems BigDye Terminator v3.1 Cycle 

Sequencing kit (Life Technologies, Carlsbad, CA; Cat #4337457).  Initial PCR is performed in 

the same manner as explain in the Primary Amplification methods section on page 28 while the 

technique for removing excess primers and dNTPs is found in the Post-PCR Clean up section on 

page 31.  Following clean up, 5uL aliquots of the product were transferred into two optical plates 

(ABI MicroAmp) serving as the forward and reverse sequencing plates.  Two separate 

mastermixes consisting of the 5X Sequencing Buffer, BigDye Terminator v3.1 Ready Reaction 

Mix and a 1uM dilution of primer (Initial PCR forward or reverse primer unless otherwise noted) 

were aliquotted to the wells of their corresponding plate at a volume of 5uL per well (Table 3.3).  

The plates were then sealed with silicone sealing mats and placed into a double 96-well block 

ABI GeneAmp PCR System 9700 and amplified using the preloaded BigDye program (Table 

3.4).  Following amplification, the sequencing products were Ethanol precipitated as per our 

standard protocol listed in Section 3.3.5 and taken to the Genomics and Proteomics Core 

Laboratories (GPCL) for capillary electrophoresis runs on an ABI 3730xl following resuspension 

in 10uL of formamide.  The resulting .ab1 files were then analyzed using Gene Codes 

Sequencher DNA sequencing software v5.2. Ambiguous bases were determined to be either true 

SNPs or sequencing noise.  After identification of the SNP of interest in the sequence, the height 

and area of each allele were analyzed by eye and with the PolySNP software package to compare 

to the findings in other genotyping assays. 
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Table 3.3: BigDye PCR Mastermix 

Reagent Concentration Volume per 

  Sample (uL) 

BigDye Sequencing Buffer 5X 2.0 

1:500 Primer 1uM 2.5 

BigDye Terminator 3.1 Reaction Ready Mix  0.5 

  5.0 

 

 

Table 3.4:  BigDye PCR Cycling Conditions 

 

 

 

 

 

 

 

 

3.3.5 Ethanol Precipitation 

In order to concentrate the products of the sequencing reactions, we performed ethanol 

precipitations.  This was accomplished by placing the final sequencing product (max volume of 

20uL) into a sequencing plate then adding 5uL of 250mM EDTA and 60uL of 100% ethanol.  

Step Temperature Time 
 °C Min:Sec 

1 96.0 1:00 

2 50.0 0:05 

3 60.0 4:00 

Repeat Steps 1-3 25 times 

6 4.0 hold 
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The plate was then sealed with a silicon plate mat, inverted to mix, covered in foil and allowed to 

incubate for 15min so that the EDTA could bind free dye-labeled bases that were not 

incorporated into the sequencing product.  Following incubation, the plate was cooled to 4°C 

while being spun at 2500g for 30 minutes.  The PCR product was now attached to the bottom of 

the plate, which was inverted and spun to 185g into a stack of paper towels to remove the 

supernatant.  To further clean up the PCR product, a wash with 60uL of 70% EtOH was 

performed and the plate was then again spun at 4°C but at 1650g for 15 minutes.  The plate was 

then inverted again to remove the supernatant before being lightly covered with foil and air-dried 

for 30 minutes.  Once dry, the plate was sealed with film and covered with foil.  It should be 

noted that if the product being precipitated does not contain any light sensitive components then 

the precipitation can be performed without foil. 

3.4 REAL-TIME QUANTITATIVE PCR 

3.4.1 Single Nucleotide Polymorphism Assays 

Genotyping of SNPs by real-time PCR was performed using Applied Biosystems TaqMan SNP 

Genotyping Assays (both ready-made and custom designed) in combination with Applied 

Biosystems Genotyping Mastermix.  For the custom assays, primers and minor groove binding 

probes were designed using Primer Express V3.0 in our laboratory to have greater control over 

the primer positions.  These probes were then ordered as complete assays through Life 

Technologies’ (formerly Applied Biosystems) Custom TaqMan Assay Design Tool or ordered as 

individual MGB probes that were then paired with their IDT-ordered primers.  The 40x assay 
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mixes that were prepared in the laboratory using 1X TE, where primers had a final concentration 

of 900nM and MGB probes had 200nM, were subaliquoted after preparation to reduce the 

amount of freeze thaw cycles.   

 

The pre-made assays are supplied at a concentration of 40x (also subaliquoted after first thaw) 

and both types of assays were diluted in the genotyping mastermix described in Table 3.5.  This 

mix was then aliquotted using an Eppendorf Combitip Plus in 25uL volumes to each well of a 

white well plate [GeneMate, 96 well, Low Profile, white, 0.2ml PCR Flat Top plates/T-3184-W] 

before 1uL of DNA [5ng/uL] was added by an 8-channel pipette.  The plate was sealed with 2 

mil thick optically transparent sealing film [Excel Scientific/TS-RT2-100/ThermalSealRT/Non-

Sterile], spun down at 1000rpm for 1min, and amplified using an Eppendorf Mastercycler 

realplex4 using the program listed in Table 3.6. 

 

Table 3.5:  Real-Time PCR SNP Genotyping Mastermix 

 

 

 

 

 

 

 

Reagent 20x Assay 40x Assay 

ABI Genotyping Mastermix 12.5 12.5 

Assay Mix 1.25 0.63 

Sterile Distilled H2O 11.25 11.87 

 Total Volume 25 
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Table 3.6:  PCR Cycling Conditions for TaqMan SNP Genotyping 

 

 

 

 

 

 

 

 

 

Lid temperature = 105 °C, Temperature mode = Standard, Application Type = Quantification 
 

  

While the program does not need to run for 80 cycles for all assays, we set it for more cycles 

than needed to ensure amplification is not prematurely ended before the reagents are exhausted.  

Once the assay was run for the first time, the number of cycles could be shortened based on the 

cycle where the assay plateaued.  Analysis to generate a SNP genotype depends upon the 

cleanness of the genotyping.  For each allele, the assay contains a separate probe labeled with 

either FAM or VIC fluorescent dye.  The software for the RealPlex generates baseline corrected 

data for each of these reads after it calculates optimal baseline for each individual read for each 

sample.  When the genotyping data is clean, the endpoint (last cycle of the run) for each dye will 

have clear separation of curves between samples with increased fluorescence indicating presence 

of the allele over samples that ran near to baseline that lack the allele.  By plotting the FAM by 

the VIC fluorescence, four distinct groups will cluster in the plot.  Those individuals who are 

homozygous for the SNP will only have an increase along one axis, those who are heterozygous 

will have an increase along both axes, while the samples that failed to run during the assay will 

Step Temperature Time Measuring 
 °C Min:Sec Point 
1 95.0 10:00  

2 92.0 0:15  

3 55.0 0:15  

4 60.0 1:00 yes 

Repeat Steps 2-4 80 times  

5 60.0 2:00 yes 
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cluster near the origin of the plot at 0,0.  If the genotyping data is not clean, there will be no 

distinct separation of the normalized fluorescent signal for an allele but rather a spread.  In this 

case, instead of plotting the endpoint, we opt to plot an earlier cycle where all samples had 

fluorescent signal that was increasing exponentially.   

3.4.2 TaqMan Expression Analysis 

Verification of the top differentially expressed transcripts during the transcriptome analysis was 

carried out using ABI TaqMan Gene Expression Assays on a select set of RNA.  Initial 

verification involved selecting 15 individuals with the most extreme expression levels for the 

following genes; ABCA1, CD8a, CD8b, HDC, and CPA3.  RNA consisted of the same samples 

used for the Transcriptome analysis with the exception that these samples were not treated with 

GLOBINclear.   

 

3.4.2.1 Synthesis of cDNA 

The ABI High Capacity RNA-to-cDNA kit was used to synthesize cDNA from PAXgene 

derived RNA.  Approximately 500ng of stock RNA, concentrations determined by Agilent 2100 

Bioanalyzer system, was used in the reaction listed within Table 3.7.  The mastermix containing 

only buffer and enzyme was aliquoted in an 11uL volume to each well containing 500ng of RNA 

brought up to 9uL using nuclease-free water.  Low concentration samples had less than 500ng of 

RNA that varied based on the max volume (9uL) of RNA allowed within the 20uL cDNA 

reaction.  This reaction was conducted in an ABI GeneAmp PCR System 9700 at 37°C for 1hr 
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then 95°C for 5min to heat kill the enzymes followed by a 4°C hold.  The newly generated 

cDNA was stored in -20°C to ensure stability for expression analysis. 

 

 

Table 3.7:  Mastermix for cDNA Synthesis 

 

 

 

 

 

 

 

3.4.2.2 TaqMan Gene Expression Assays 

Gene expression assays were conducted following the TaqMan Gene Expression Assay protocol 

(PN4333458N) with TaqMan Universal Mastermix II containing UNG.  A single pre-designed 

gene expression assay was ordered for each gene identified in the transcriptome along with the 

GAPDH endogenous control assay and stored at -20°C.  Assays were subaliquoted in 50uL 

volumes to reduce the amount of freeze thaw cycles as the efficiency of the assays are known to 

decrease as the number of thaws increases.  For each sample, 20uL of the mastermix Table 3.8 

containing probes for both the gene of interest and endogenous control was added to a well in an 

Eppendorf plate (twin.tec semi-skirted PCR Plate 96 – 951020346) then 1uL of cDNA was 

mixed in using an 8-channel Eppendorf pipette.  Each sample was ran in triplicate on the 

Eppendorf Realplex4 using the cycling conditions in Table 3.9. 

 Sample  

Reagent Individual 16 

 (uL) (uL) 
2X RT Buffer 10.0 160.0 

20X RT Enzyme 1.0 16.0 

RNA and Nuclease-Free H2O 9.0  

 Total Volume 20 
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Table 3.8:  Real-Time Expression Assay Mastermix 

 

 

 

 

 

 

 

 

 

 

Table 3.9:  TaqMan Expression Assay Cycling Conditions 

 

 

 

 

 

 

 

 

 

The Eppendorf RealPlex software was used to analyze the resulting data.  A sample identified as 

having the lowest expression for each of the HT-12 transcripts was selected as the reference 

Reagent Individual 8  Samples  

 Sample Triplicate 
20X Gene Expression Assay 1.0 27.0 

20X GAPDH Assay 1.0 27.0 

2X Mastermix 10.0 270 

Sterile Distilled  H2O  8.0 216 

   

Volume Aliquotted per Sample 20.0 

cDNA  1.0 

 Total Volume 21.0 

Step Temperature Time 
 °C Min:Sec 

1 50.0 2:00 

2 95.0 10:00 

3 95.0 0:15 

4 60.0 1:00 

Repeat Steps 3-4 40 times (Max of 80) 
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sample and set as the calibrator sample for relative comparison using the delta delta CT method.  

Resulting expression values were then plotted against their matching HT-12 values to observe if 

individuals had the same degree of expression levels. 

3.5 TRANSCRIPTOME ANALYSIS 

The Illumina Human HT-12 v.4 whole-genome expression array enables genome-wide 

expression analysis through probes that detect >47,000 transcripts for well-characterized genes, 

gene candidates and splice variants.  The 500 RNA samples for this assay were those derived 

from the PAXgene kit described in Section 3.1.2.2.  Once extracted, the RNA was processed at 

the University of Pittsburgh’s Genomics and Proteomics Core Laboratory where samples were 

quantified then purified with GLOBINclear before cDNA was synthesized for transcript 

expression analysis. Illumina GenomeStudio V2011.1 was subsequently used to generate raw 

transcript data from the BeadChip image files prior to exporting a report containing sample and 

control probe profiles that would be further processed within the R statistical software package.  

For statistical analysis of HT-12 data, the following Bioconductor R modules were used; 

ArrayQualityMetrics[63], lumi[64], limma, GOstats, ggplot2[58], and gplots.  Lumi was used to 

transform (log or VST) and normalize (quantile or RSN) the data set while at the same time 

enabling annotation of each sample with categorical data.  To ensure that the data being analyzed 

was of the best quality, we processed our expression dataset using ArrayQualityMetrics to 

identify outliers to the dataset.  The samples that were identified to be of poor quality (n=53) 

were marked in the dataset to be excluded from further analysis.  As an additional QC step, we 

used the ComBat module in R to correct for batch effects among the different array chips. 
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This clean expression set was then subsetted using variables within the categorical data to 

include two separate groups for comparison and followed by analysis with limma. Using the 

command lmFIT, a linear model was fitted to each gene to estimate fold change and standard 

errors.  This was followed up with the eBayes command that applies empirical Bayes smoothing 

to the standard errors.  The final result is then displayed using the command topTable to display 

the statistics for the top 10 differentially expressed genes.  If significant comparisons were 

identified based on the corrected p-value then all of the transcripts with p<0.05 were further 

analyzed.  This was accomplished by plotting heatmaps in ggplot2 in order to visualize up- and 

down-regulation of genes per sample as well as running Gene Ontology analysis within GOstats 

to identify the pathways that the differentially expressed genes fall within. 

3.6 NANOSTRING CNV ANALYSIS 

A NanoString nCounter custom CNV CodeSet was designed containing the 16 RCT genes 

analyzed in our MLPA assay along with 20 genes of interest for CNV, 4 genes with CNV, 2 

genes without CNV and another 8 genes/locations that illustrated potential CNV.  In total 351 

samples were analyzed by NanoString including 267 of the experimental samples previously 

typed by MLPA. DNA was processed and analyzed using a NanoString Technologies nCounter 

system at the University of Pittsburgh Genomics and Proteomics Core Laboratories.  The 

NanoString nSolver Analysis Software (v1.1) was used to generate normalized ratios from raw 

counts.  For CNV analysis of MLPA genes, 34 of the original MLPA samples were set as RCT 

references in nSolver.  The ratios generated in this software were exported, rearranged using 
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Excel and Filemaker Pro then analyzed within the R statistical software package.  Analysis 

within R involved plotting the ratios using ggplot2 & gridExtra along with reshape to arrange the 

data in the format necessary for the preferred plots. 
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4.0  AIM 1:  COPY NUMBER VARIATION AND RCT GENES 

Individuals infected with HIV-1 exhibit changes in serum lipid levels seen as 

hypercholesterolemia and hypertriglyceridemia[9, 19, 21, 65].  Following antiretroviral therapy, 

lipid levels remain skewed for many patients, as LDL-cholesterol (LDL-C) and triglycerides 

increase while HDL-cholesterol (HDL-C) remains lowered[9, 19, 21, 65-67].  Previous studies 

have shown that this dyslipidemic profile is associated with greater risk for cardiovascular 

disease (CVD), myocardial infarction and atherosclerosis in HIV-positive individuals[18, 19, 21, 

23, 68, 69].  

 

As some in the HIV-1 infected population have begun to reach the age where CVD risk is 

increased and the effect of HIV infection on this risk in unknown, there is a need to understand 

the mechanisms behind therapy-associated lipid dysfunction.  The prevalence of dyslipidemia is 

high, but not all-inclusive, among the HIV-positive population suggesting that genetic factors 

potentially have a role[70].  Studies have already illustrated a broad genetic impact on lipids, as 

lipid levels and CNV risk vary based on ethnic background in HIV uninfected populations[26-

28].  We have recently shown that biogeographical ancestry was significantly associated with 

lipid levels in a cohort of MSM, and that European ancestry results in a more atherogenic 

phenotype even after controlling for HIV and therapy[25].   
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Furthermore, several genome-wide association studies (GWAS) have identified polymorphisms 

associated with CVD risk[71-80], many of which are present in genes involved in cholesterol 

metabolism and transport.  One particularly relevant set of genes is that of the reverse cholesterol 

transport (RCT) pathway, which directly influences lipid levels.  Polymorphisms in genes of this 

pathway, and in those directly interacting with it, contribute to the variance of lipid levels, and 

also alter expression levels of some of the genes themselves[29, 30, 35, 36, 70, 80-83].  For 

instance, expression levels of LDLR can be modified by mutations in the proprotein-convertase 

subtilisin-kexin type 9 gene (PSCK9), ultimately resulting in altered levels of LDL-C[81, 84, 

85].  Individuals with loss of function mutations in PCSK9 show decreased amounts of LDL-C 

while those with gain of function mutations have increased amounts[34-38].   

 

In addition to posttranslational protein regulation such as that seen with PCSK9, protein levels of 

RCT gene products could also be influenced by copy number variation (CNV).  This type of 

genetic variation includes duplications, deletions, and inversions of DNA segments greater than 

50bp in size[86-89].  Previous studies on CNV in the CCL3L1 and DEFB4 genes illustrate that 

an increase in transcriptionally available copies of a gene not only results in increased expression 

levels but also increases in protein levels directly proportional to the number of copies[39-42].  

Such variation in one or a few RCT genes has the potential to alter the functionality of this lipid 

metabolism pathway dramatically, and thereby influence serum HDL and LDL levels.  Yet, 

while there have been a number of studies investigating the association of SNPs within these 

genes to lipid levels[29, 30, 34, 35, 80, 82, 83], little has been documented related to their CNV, 

apart from reports on rare structural variation in the LDLR gene associated with Familial 

Hypercholesterolemia [43-49] and the occasional reported variant in LPL, ABCA1, and LIPC[43, 
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44].  Furthermore, the Database of Genomic Variants, a compilation of structural variation in 

healthy control sample genomes, contains only rare CNV encompassing the RCT genes[50]. 

 

Here, we designed a study employing custom Multiplex Ligation-dependent Probe Amplification 

(MLPA) and NanoString probes to screen for CNV in 16 RCT associated genes (Table 4.1) in 

participants from the Multicenter AIDS Cohort Study (MACS), to identify if CNV is present, the 

degree to which it varies, and whether it has an association with the abnormal lipid metabolism 

observed in HIV-positive individuals undergoing antiretroviral therapy.  
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Table 4.1:  Reverse Cholesterol Transport (RCT) Pathway Genes Selected for Analysis 

Gene Name Symbol Chromo-
some Function Ref 

Scavenger Receptor 
Class B, Member 1 SRBI 12 Plasma membrane receptor for HDL that mediates transfer of 

cholesterol to and from HDL. 29 

Apolipoprotein C-III APOC3 11 Very low density lipoprotein that inhibits lipoprotein lipase and 
hepatic lipase delaying triglyceride-rich particle catabolism 30 

Apolipoprotein A-I APOA1 11 Major protein component of HDL and a cofactor of LCAT.  
Defects in APOA1 results in HDL deficiencies 29,30 

Apolipoprotein E APOE 19 Main apoprotein of chylomicron and essential for catabolism of 
triglyceride-rich lipoprotein constituents 29,30 

Phospholipid Transfer 
Protein PLTP 20 Lipid transfer protein that transfers phospholipids from 

triglyceride-rich lipoproteins to HDL 29 

Hepatic Lipase LIPC 15 Triglyceride hydrolase and ligand/bridging factor for receptor 
mediated lipoprotein uptake. 29,30 

Lecithin-cholesterol 
Acyltransferase LCAT 16 Extracellular cholesterol esterifying enzyme that esterifies 

cholesterol for transport. 29,30 

Apolipoprotein A-IV APOA4 11 Potent activator of lecithin-cholesterol acyltransferase 30 

Lipoprotein Lipase LPL 8 Triglyceride hydrolase and ligand/bridging factor for receptor 
mediated lipoprotein uptake. 29,30 

Endothelial Lipase LIPG 18 Regulates circulating levels of HDL and acts has phospholipase 
activity. 29 

Low Density 
Lipoprotein Receptor LDLR 19 Cell surface protein involved in receptor-mediated endocytosis 

of LDL 29,30 

Cholesteryl ester 
transfer protein CETP 16 Transfers cholesteryl esters between lipoproteins 29,30 

Apolipoprotein A-V APOA5 11 Component of high density lipoprotein 30 

Apolipoprotein B APOB 2 Main apolipoprotein of chylomicrons and low density 
lipoproteins 30 

ATP-binding cassette, 
sub-family A, member 
1 

ABCA1 9 Membrane associated protein that functions as a cholesterol 
efflux pump in the cellular lipid removal pathway 29,30 

Apolipoprotein C-II APOC2 19 Plasma lipid-binding protein that activates lipoprotein lipase 30 
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4.1 SAMPLE DEMOGRAPHICS 

Using the 2005 clinic measurements and the NCEP/ATP III report criteria[51] (HDL-C <40 

mg/dL or >60 mg/dL; LDL-C <100 mg/dL or >130 mg/dL), 366 suitable MACS participants 

were identified, of which 320 yielded sufficient DNA for MLPA analysis.  The demographic 

data for these 320 samples are summarized in Table 4-2.  We identified 23 samples with an 

atheroprotective phenotype [HDL-C >60 mg/dL and LDL-C <100 mg/dL] and 7 samples with an 

atherogenic phenotype [HDL-C <40 mg/dL and LDL-C >160 mg/dL].  Those with the 

atherogenic lipid profile had a higher mean BMI, plus higher total cholesterol and triglyceride 

levels when compared to those who had the atheroprotective phenotype.  Age among all lipid 

groups was similar, with a median age of 48 (IQR: 47-49).  BMI was higher in the uninfected 

individuals within each grouping and, with the exception of the atheroprotective group, the mean 

BMI of most groups ranged from overweight to borderline obese.  Total cholesterol levels 

increased with increasing lipid levels for both HDL-C and LDL-C groups, while Triglyceride 

levels decreased with increasing HDL-C.   
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BMI, body mass index; HDL-C, High Density Lipoprotein Cholesterol; LDL-C, Low Density Lipoprotein Cholesterol; TCHOL, Total Cholesterol; TRIG, Triglycerides; Monotherapy, single nucleoside 

reverse transcriptase inhibitor; Combination, two or more nucleoside reverse transcriptase inhibitors; Potent ART, two or more nucleoside reverse transcriptase inhibitors with a proteaseinhibitor or a 

nonnucleoside reverse transcriptase inhibitor; BGA, Biogeographical Ancestry; AEA, African/European ancestry; EA, European ancestry; AsEA, Asian European ancestry. 

 
 

 
Atheroprotective Atherogenic HDL-C LDL-C 

  

HDL >60 mg/dL & 
LDL <100 mg/dL 

HDL <40 mg/dL & 
LDL>160 mg/dL <40 mg/dL 40-60 mg/dL >60 mg/dL <100 mg/dL 100-130 mg/dL 130-160 mg/dL >160 mg/dL 

  
HIV - HIV + HIV - HIV+ HIV - HIV + HIV - HIV + HIV - HIV + HIV - HIV + HIV - HIV + HIV - HIV+ HIV - HIV + 

 n 8 15 3 4 52 91 73 43 22 38 48 76 38 44 38 24 19 14 

M
ea

n 

AGE (years) 45 42 43 46 47 49 48 48 48 47 47 47 49 50 47 48 49 49 
BMI 25.2 22.3 34.0 29.8 30.2 26.0 27.4 25.5 26.0 23.4 28.6 24.9 28.0 25.7 28.0 24.0 28.7 26.2 

HDL (mg/dL) 73.7 79.4 35.7 31.2 34.2 30.8 49.8 48.1 67.5 77.6 47.2 43.4 47.5 42.5 44.1 53.0 50.6 52.5 
LDL (mg/dL) 87.8 76.7 170.0 188.8 116.9 98.4 121.3 116.2 115.7 112.4 79.0 76.4 115.7 114.0 144.5 143.0 173.7 178.6 

TCHOL 
(mg/dL) 181.0 184.9 241.0 254.8 193.0 171.2 195.5 192.3 206.1 216.6 156.5 152.8 195.3 190.3 219.3 227.7 253.3 257.8 
TRIG 

(mg/dL) 97.9 144.9 176.0 175.5 209.5 222.2 127.2 142.3 114.5 136.4 152.4 168.7 162.8 173.3 155.4 158.5 145.3 135.8 

# 
on

 T
he

ra
py

 No Therapy - 4 - 1 - 26 - 5 - 9 - 19 - 9 - 6 - 3 
Monotherapy - 0 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 
Combination - 2 - 0 - 6 - 0 - 2 - 7 - 1 - 0 - 0 
Potent ART - 9 - 3 - 59 - 37 - 27 - 50 - 33 - 18 - 11 

Th
er

ap
y 

A
dh

er
en

ce
 

100% - 5 - 2 - 22 - 14 - 11 - 18 - 12 - 7 - 7 

95-99% - 3 - 1 - 35 - 20 - 11 - 30 - 18 - 8 - 3 

<75% - 3 - 0 - 5 - 3 - 7 - 7 - 3 - 3 - 1 

NA - 4 - 1 - 29 - 6 - 9 - 21 - 11 - 6 - 3 

B
G

A
 

AEA 1 11 
 

1 7 10 18 7 4 16 7 18 12 6 5 6 3 1 
AsEA 1 3 

  
1 3 2 1 1 4 2 5 

  
2 1 

  EA 6 1 3 3 42 77 52 35 17 17 37 52 25 38 31 17 16 12 
NA 

    
2 1 1 

  
1 2 1 1 

    
1 

Group Total   23    7   143    136    60   124    82    62    33 
 

 

Table 4.2: Demographics and Descriptive Characteristics of Study Participants 
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Of the individuals who were HIV-positive during 2005, over 70% were receiving a type of 

antiretroviral therapy (Potent ART, combination, or monotherapy defined according to the 

DHHS/Kaiser panel criteria[90]). Of those who reported therapy use, around three quarters had 

over 95% adherence.  We also compared the distribution of Biogeographical Ancestry (BGA), 

recently determined for these samples[25], for the sample subset.  The majority of samples in 

each group were those of European ancestry, followed by those of mixed African-European 

ancestry, and a few samples with Asian-European ancestry.  However in the HIV-positive groups 

with high HDL-C (>60 mg/dL) and in the atheroprotective group, samples with African-

European ancestry were in the majority.  

4.2 MULTIPLEX LIGATION DEPENDENT PROBE AMPLIFICATION 

As reference samples with known copies of the RCT genes are not available, we identified 

experimental samples whose normalized peak height for each probe was similar to the sample set 

mean height.  Using these samples as references, the coffalyser.net software calculated the probe 

ratios for each sample relative to the reference samples.  Assuming that the most frequently 

observed ratio corresponded to two copies per diploid genome, ratios above 0.7 and below 1.3 

are considered to be within the normal range of two copies[61].  Anything outside of these 

thresholds was identified as an outlier with potential CNV.   

 

Of the 16 RCT pathway associated genes screened, only three (APOA4, CETP, and ABCA1) 

showed any signs of CNV, and in each case the CNV was extremely rare.  For each of these 

genes, a few individuals showed ratios that crossed or were at the lower threshold (Figure 4.1).  
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None of the RCT genes had CNV that passed the upper ratio bound of 1.3, suggesting that no 

sample showed gains in copy number.  Table 4.3 lists normalized ratios of the three genes for 

samples with losses along with the median HDL-C and LDL-C levels for a minimum of 8 visits 

surrounding the 2005 visit. 

 

 

Copy number ratios are shown for the four individuals that had detectable CNV. Probes representing the RCT 
genes are on the left of the figure while reference probes (Ref_1 – Ref_16), ligation controls (Ref_18), and 
denaturation controls (Ref_17, Ref_19) are on the right.  The dots show the copy number ratios of each probe for 
each individual. The box plots represent the 95% confidence interval of each probe ratio derived from the entire 
sample set.  Arbitrary thresholds at 1.3 and 0.7 are represented by the dotted horizontal lines.  Points that fall 
within these thresholds are considered to have a copy number ratio of 1.0. 

 

Figure 4.1:  Copy Number Variation is Exceedingly Rare for Reverse Cholesterol Transport 

Pathway Genes. 
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Two samples (123 & 367) had a loss of APOA4 copy number (with normalized ratios of 0.56 and 

0.55, respectively) while sample 157 had a loss of CETP copy number with a ratio of 0.65.  

Sample 209 had a normalized ratio for ABCA1 that fell on the 0.7 threshold indicating a possible 

loss.  The standard deviations for each of these outlying probes were relatively small (<+0.05) 

indicating that the decrease in ratio observed was likely genuine.  When MLPA was performed 

for a second time on these 4 samples, the observations were consistent with the first run.  There 

was no association between any of these losses and lipid levels (Table 4.3), although this 

observation is not conclusive due to the small number of samples involved.   

 

Table 4.3:  Normalized Ratios of RCT Pathway CNV Probes that Showed Significant Departure from Unity. 

  Lipid Levels  Normalized Ratios 

Sample  LDL-C 
[mg/dL] 

HDL-C 
[mg/DL]  ABCA1 APOA4 CETP SRBI 

123  147 (132.25-162.25) 55 (51-68.3)  1 0.56 0.99 1.06 
157  114 (103-129) 30 (24.8-38.1)  0.75 0.98 0.65 0.98 
209  136.5 (124.25-148.5) 38 (36-40.4)  0.7 1.12 0.92 0.77 
367  69 (49-76) 39.2 (35.8-54.1)  0.95 0.55 0.93 1.0 

         
 

The first two columns list median serum HDL-C and LDL-C levels from a minimum of 8 visits for that individual.  
Within the brackets is the IQR range for those lipid levels.  Probes that crossed or were on the 0.7 ratio threshold are 
indicated with (*). 
 

The interquartile ranges (IQR) for most of the RCT gene probes were narrow (0.04-0.09), and 

similar to those of the 2-copy reference probes.  This tight clustering of ratios around the mean of 

each probe further suggests that CNV is not common in the RCT genes.  The only probes with 

wider IQRs were ABCA1 and SRBI.  While their IQRs were slightly broader than the other RCT 

probes, this spread of the ratio distribution was also seen in the properly functioning reference 

probes suggesting that this was within the normal range of our experiment (data not shown).   
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As “gold standard” referents containing known copy numbers of each RCT gene are not 

available, and the P300 reference probe set includes probes with a maximum number of 2 copies, 

we developed a quality control assay to ensure that our MLPA protocol was capable of picking 

up a range of CNV above 2 copies.  Through use of control samples with known amounts of 

CNV, the MRC-Holland P139 Defensin MLPA assay, and our P300/RCT assay extended to 

include probes for variants in the DEFB103A and CCR5 genes, we were able to verify that our 

assay can identify a range of CNV even when the sample mean is used to define a referent as 

illustrated in Figure 4.2. 

 

In this extended assay, one probe was designed to detect the DEFB103A gene, known to show 

widespread CNV in humans[52-54]. Probes were also designed to detect the wild-type and the 

Δ32 forms of the CCR5 gene[91].  By using these probes, together with reference samples who’s 

CNV for them was known, we could determine the ability of the default ratio thresholds to detect 

CNV when the number of copies in the reference sample is unknown.  We studied this in a 

subgroup of 14 individuals (11 males and 3 females; 5 references of known CNV and 9 samples 

chosen at random from the MACS study set). We set each of our 3 Coriell reference samples as 

the referent in separate analyses and used the remaining samples to validate the copy number 

groups identified.   
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Column A shows the ratios obtained from each analysis using the entire probe set while column B contains the 
subset of probes that show CNV.  Each row in the figure represents the results from each separate analysis using a 
different reference sample of known CNV and CCR5 genotype. The CCR5 genotype, DEFB103A copy number, and 
gender of the referent is shown in column C.  Arbitrary thresholds at 1.3 and 0.7 are represented by the dotted 
horizontal lines.  Points that fall inside these thresholds are considered to have the same copy number as the 
reference sample when a 2 copy reference sample is used.  Each dot represents an individual person, the hinges of 
the box and whisker plots indicate the first and third quartiles of the observed range, and each whisker extends to 
the furthest value from the median that is within 1.5 * IQR of the hinge.  
 

Figure 4.2:  Probes and Reference Samples Demonstrating a Range of CNV 

 

The referent for the analyses in the top row is a female who is homozygous for the wild-type (wt) 

allele of the CCR5 gene and has a validated DEFB103A copy number of 3. In this case, the 

presence of one single additional DEFB103A copy in a test sample is sufficient to cross the 

threshold line and be detectable as a copy number variant. In fact, the 4-copy and 5-copy samples 

appear distinct from each other. This referent has two copies of the wt allele of CCR5 and no 
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copies of the Δ32 allele: thus, with the wt allele probe the samples that are also homozygous 

wt/wt have a copy ratio of 1, the samples with the heterozygous wt/Δ32 genotype have one copy 

of the wt allele, giving a CCR5 wt probe copy ratio of 0.5, and the sample that is homozygous 

Δ32/Δ32 has no copies of the wt allele and gives a wt copy ratio of zero. The ratios obtained with 

the Δ32 probe show the errors that occur when the referent does not contain any copies of a 

probe target. In this case, the algorithm cannot discriminate between samples with one copy of 

the target present and samples with more than one copy present. All of the homozygous wt/wt 

samples here give a copy ratio of zero, as they do not contain the target for the Δ32 probe, but 

both the heterozygous wt/Δ32 and homozygous Δ32/Δ32 samples give ratios of 1. Lastly, this 

referent is female, and therefore has two copies of the X chromosome control probe, and zero 

copies of the Y chromosome control probe.  The male samples thus give a ratio of 0.5 with the X 

chromosome probe and the female samples give a ratio of 1. With the Y chromosome probe, the 

females have a probe ratio of zero and the males have a ratio of 1.  

 

The referent for the analysis in the middle row is a male, with 4 copies of DEFB103A, who is 

heterozygous wt/Δ32 at the CCR5 gene. In this case, both the 3-copy and 4-copy DEFB103A 

samples fall within the threshold lines and cannot be discriminated from each other, but the ratio 

seen with a 5-copy sample is greater than the threshold and can be identified. The referent has 

one copy each of the wt and Δ32 alleles of CCR5, thus the CCR5 genotypes of the samples can 

easily be determined: with the wt probe, wt/wt homozygotes have a ratio of 2, wt/Δ32 

heterozygotes have a ratio of 1, and the Δ32/Δ32 homozygote has a ratio of 0. The reverse 

relationship is seen with the Δ32 probe. The referent is male, and has one copy each of the X and 
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Y chromosome probe targets. Male samples have one copy of the X chromosome target whereas 

females have two, and males have one copy of the Y chromosome target and females have zero.  

 

The referent for the analysis in the bottom row is a male, with 5 copies of DEFB104A, who is 

homozygous for the wt allele of CCR5. In this case, both the 4-copy and 5-copy DEFB103A 

samples fall within the thresholds and cannot be discriminated from each other, but the 3-copy 

samples have a probe ratio below the threshold.  As this referent lacks the target for the Δ32 

probe, the same erroneous ratios are seen as in the top row for this probe, but as it has two copies 

of the wt probe the wt/wt, wt/Δ32, and Δ32/Δ32 can once again be identified. The sample is a 

male and therefore has one copy each of the X and Y control probes, allowing the sex of the 

samples to be identified as in the row above.  

 

These reference samples and probes show that our assay is highly sensitive to detecting CNV 

when the referent has one or two copies of probe target, and is still sensitive when the referent 

has three copies. Sensitivity begins to decline when the referent has more copies, but samples 

that differ from the referent by two or more copies can still be distinguished. Also, the spread of 

the ratio distributions for the DEFB103A probe with true CNV was noticeably larger than that of 

the 2-copy reference probes and our RCT probes.  The IQR did decrease as the copy number of 

the referent increased but it still remained larger than that of the 2 copy genes even when the 

largest DEFB103A copy number referent was used. These results suggest that our RCT gene 

probes have accurately detected the CNV present in our samples, but that this CNV is limited in 

scope.  
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4.3 SANGER SEQUENCING 

To determine whether the rare loss for the three RCT genes identified during MLPA reflected 

true CNV or problems with probe binding, Sanger sequencing was performed to examine the 

probe binding site for those individuals who showed losses, plus several control individuals who 

showed no changes in copy number. We determined that individuals who showed a loss in signal 

for APOA4 were heterozygous for a rare Single Nucleotide Polymorphism (SNP), rs185210669, 

located 1 base from the ligation site for that probe.  This mutant allele fails to bind the MLPA 

probe, leading to impaired ligation and decreased MLPA signal.  The other genes (ABCA1 and 

CETP) contained no SNPs within their ligation sites. 

 

4.4 CNV CONFIRMATION BY NANOSTRING  

We confirmed our findings by using a custom NanoString assay to measure CNV of the RCT 

genes for 267 of the samples analyzed by MLPA.  The CNV ratios generated mirrored those seen 

with MLPA (data not shown).  We replicated the loss in copy number of CETP in sample 157 

(copy number ratio of 0.58) but did not observe the losses for ABCA1 in sample 209 (1.06) or 

APOA4 for both samples 123 and 367 (1.10 & 1.04).  As the MLPA-derived ratio for ABCA1 in 

sample 209 fell on the threshold value of 0.7, it is likely that this sample does not in fact have a 

true loss in copies. It is also possible that MLPA probe used for ABCA1 is picking up a rare small 

CNV that is not detected by the NanoString probe, as the probes for these assays bind in different 
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regions of the gene.  The loss observed in APOA4 only by MLPA is attributed to the ligation-site 

SNP identified in the MLPA probe. 

4.5 EXPRESSION ANALYSIS 

We also determined the expression levels of the RCT genes in our study, using data extracted 

from a whole-genome transcription dataset obtained using the Illumina HT-12 platform. Gene 

expression levels on 127 samples were compared to both MLPA and NanoString CNV ratios.  

As expected, comparisons of MLPA- and NanoString-generated CNV ratios to log transformed 

mRNA expression levels yielded no significant associations as illustrated in Figure 4.3. 

 
In this section of our study, we developed a sensitive custom MLPA assay for copy number 

detection of 16 genes within the reverse cholesterol pathway.  We were able to illustrate and 

verify that CNV is exceedingly rare for RCT genes as only 1 sample, in only 1 gene (CETP), had 

verified CNV.  And as expected, there were no expression changes associated with the amount of 

RCT genes that we detected.  As this number of CNV containing samples and genes were 

extremely low in our dataset, we were able to conclude that copy number variation is not 

common in RCT genes and therefore does not play a role in the dyslipidemia associated with 

antiretroviral use in HIV-1 infected individuals. 
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Normalized copy number ratios obtained by MLPA and NanoString are plotted on the x-axis while log transformed 
mRNA expression levels are plotted on the y-axis. If expression level data were available for multiple splice variants 
of the same gene, they were each plotted against their available CNV ratios, with the different variants represented 
by “_#” following the gene name. Data are shown for the 127 individuals for whom both CNV and expression data 
were available. 

 

Figure 4.3: Expression Levels of RCT Genes are not associated with CNV Levels 
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During this analysis we were also able to use ratio thresholds, interquartile ranges and ratio 

distributions to determine gains and losses of copies.  While we were not able to demonstrate this 

using our RCT genes, use of genes with known CNV allowed us to verify our methods used to 

determine that the RCT genes are present in 2 copies within the genome.  As whole genome 

sequencing becomes more readily available and used to analyze commercially available DNA 

samples, such as those in the HapMap set, then read depth of those results will be available to 

determine exact copies within referent samples allowing more precise determination of copy 

number than use of ratio thresholds. 

 

However, we also showed that even when you expect to be able to determine discrete copy 

numbers for a probe due to use of a referent of known copies, assay variation can hinder calling.  

A novice investigator must be wary of simply multiplying by their referent then rounding to 

obtain discrete calls as assays where the raw calls do not cluster around whole integer values will 

result in improper calling. Despite this, simple plotting of the raw calls are capable of illustrating 

the true CNV pattern that can then be called using k-means clustering. 
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5.0  AIM 2:  TRANSCRIPTOME VARIATION 

In order to identify genes that are differentially expressed in individuals exhibiting the 

atheroprotective versus atherogenic phenotype, we collected blood samples from the Pittsburgh 

center of the MACS during a 1 year period stretching from August 2010 to July 2011. Initially 

all participants who came to the clinic were sampled but after 50 individuals had blood collected 

for a second time, we opted to collect from only those who had not yet provided a sample.  

Blood was collected in PAXgene tubes (PreAnalytix/Qiagen, Valencia CA) to stabilize the 

intracellular RNA of each individual before extraction.  RNA samples were taken to the 

Genomics and Proteomics Core Laboratories (GPCL) at the University of Pittsburgh for 

transcriptome analysis.  Here they were quantified and processed into cDNA for use on the 

Illumina Human HT-12 v.4 whole-genome expression array.  Because samples from participants 

who are HIV positive have excessive amounts of Beta globin mRNA, which would decrease the 

sensitivity to detect other transcripts, the GLOBINclear kit (Life Technologies, Carlsbad CA) 

was used to remove the majority of α- and β-globin transcripts from all samples prior to cDNA 

synthesis.  The resulting image files were processed using Illumina’s GenomeStudio V2011.1 

software, where bead summary data was exported without background correction due to previous 

study findings that indicated such correction was disadvantageous.  The raw data were then 

analyzed within the R statistical software and modules where it was pre-processed (transformed 
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and normalized) with the Lumi module, analyzed using the Limma module, and visualized by 

using the ggplot2 module. 

 

Of the 528 runs performed during whole transcriptome analysis, 437 represent whole blood-

derived RNA from unique individuals while the remainder were biological and technical 

replicates used to verify the proper functioning of the Illumina Human HT-12 assay. Through 

use of the R module ArrayQualityMetrics during the initial analysis of the transcriptomes, 53 of 

the 528 runs were identified to be outliers from the dataset.  These individuals were removed 

from the raw expression set, which was then transformed and normalized for a second time using 

the R module Lumi.  Correction for batch effects using the R module ComBat was performed 

next to account for any chip-to-chip variation despite the data being generated with chip sets 

ordered all at one time.  Differentially expressed transcripts were determined by using an 

empirical Bayes analysis with a linear model framework on subsets of the expression set.  These 

subsets were selected using clinical values collected during the patient’s visit that included HIV 

status, CD8 counts, viral load, low density lipoprotein cholesterol, high density lipoprotein 

cholesterol, triglycerides and total cholesterol.  For the lipoprotein clinical values, we opted to 

use the mean of 5 visits around the date of collection rather than the individual value from that 

date.  This was due to the fluctuation of lipid values for some of the participants that could add 

more noise to the analysis.  Once differential transcripts were generated with significant p-

values, they were visualized using heatmaps that group individuals with similar expression 

patterns together.  These transcripts were then analyzed for Gene Ontology to identify the 

relationships between the significant transcripts by illustrating the pathways they fall within.  

 

61 



5.1 ATHEROPROTECTIVE VS ATHEROGENIC 

The first comparison we chose to make was that of individuals identified as having the 

atherogenic versus atheroprotective phenotypes.  Those in the atheroprotective group (n=23) had 

LDL-C levels at or below 100 mg/dL and HDL-C levels at or above 60 mg/dL while those in the 

atherogenic (n=2) group had LDL-C levels at or above 160 mg/dL and HDL-C levels at or 

below 40 mg/dL.  Due to the small sample size in the atherogenic group, the p-values for the top 

differentially expressed transcripts were not significant after correction for multiple tests. 

5.2 HIV STATUS 

We next analyzed HIV status of individuals with European ancestry in the expression set 

breaking them into groups of those infected with HIV-1 (n= 100; not including known LTNPs) 

and those negative for the virus (n=165).  We ran this comparison only on the European ancestry 

as data from our lab had previously shown that lipid level variation is associated with 

biogeographical ancestry as well as with the known risk factors.  For this reason we wanted to 

ensure that we could subset by ancestry and still be able to detect significant differences in gene 

expression before running our lipid comparisons on individuals of European ancestry that would 

be more likely to have an atherogenic phenotype[25].  This was accomplished as the HIV status 

comparison yielded 433 transcripts with p-values less than 0.05, the top twenty-five of which are 

listed in Table 5.1 and illustrated in Figure 5.1.  
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Table 5.1:  Top 25 Transcripts for EA HIV Status Comparison 

 TargetID DEFINITION logFC Ave 
Expr t P.Value adj.P.Val B 

1 CD8B CD8b molecule (CD8B), transcript variant 5, 
mRNA. -0.537 7.601 -12.449 2.05E-28 9.69E-24 52.254 

2 CD8B CD8b molecule (CD8B), transcript variant 5, 
mRNA. -0.603 7.232 -12.111 2.98E-27 7.03E-23 49.744 

3 CD8A CD8a molecule (CD8A), transcript variant 2, 
mRNA. -0.734 10.954 -11.152 5.30E-24 8.35E-20 42.711 

4 CD8A CD8a molecule (CD8A), transcript variant 1, 
mRNA. -0.699 8.232 -11.035 1.30E-23 1.53E-19 41.871 

5 CD8A CD8a molecule (CD8A), transcript variant 2, 
mRNA. -0.712 10.992 -10.567 4.55E-22 4.30E-18 38.521 

6 MCOLN2 mucolipin 2 (MCOLN2), mRNA. -0.468 8.659 -9.671 3.47E-19 2.73E-15 32.270 

7 ARRDC4 arrestin domain containing 4 (ARRDC4), mRNA. -0.278 7.136 -9.444 1.79E-18 1.21E-14 30.726 

8 LAG3 lymphocyte-activation gene 3 (LAG3), mRNA. -0.563 7.955 -9.269 6.21E-18 3.67E-14 29.552 

q9 CD40LG CD40 ligand (CD40LG), mRNA. 0.314 7.431 8.634 5.26E-16 2.76E-12 25.369 

10 LOC644695 PREDICTED: hypothetical LOC644695 
(LOC644695), mRNA. -0.280 7.012 -8.358 3.42E-15 1.62E-11 23.603 

11 HS.553068 BX103476 NCI_CGAP_Lu5 cDNA clone 
IMAGp998C053946, mRNA sequence -0.266 7.175 -8.302 4.99E-15 2.14E-11 23.248 

12 CST7 cystatin F (leukocystatin) (CST7), mRNA. -0.350 10.577 -8.140 1.47E-14 5.78E-11 22.231 

13 LOC197135 PREDICTED: hypothetical LOC197135, transcript 
variant 5 (LOC197135), mRNA. -0.387 8.091 -8.098 1.94E-14 6.86E-11 21.970 

14 FLJ33590 hypothetical protein FLJ33590 (FLJ33590), mRNA. -0.262 7.205 -8.091 2.03E-14 6.86E-11 21.925 

15 PATL2 PREDICTED: misc_RNA (PATL2), miscRNA. -0.256 7.151 -7.758 1.79E-13 5.63E-10 19.878 

16 TSHZ2 teashirt zinc finger homeobox 2 (TSHZ2), mRNA. 0.312 7.310 7.569 5.98E-13 1.76E-09 18.742 

17 CACNA1I calcium channel, voltage-dependent, T type, alpha 
1I subunit (CACNA1I), transcript variant 2, mRNA. 0.327 7.607 7.558 6.39E-13 1.77E-09 18.679 

18 FBLN7 fibulin 7 (FBLN7), mRNA. 0.205 6.725 7.416 1.57E-12 4.11E-09 17.835 

19 VCAM1 vascular cell adhesion molecule 1 (VCAM1), 
transcript variant 1, mRNA. -0.144 6.013 -7.289 3.46E-12 8.59E-09 17.090 

20 PATL2 PREDICTED: misc_RNA (PATL2), miscRNA. -0.378 8.536 -7.270 3.89E-12 8.93E-09 16.979 

21 TNIP3 TNFAIP3 interacting protein 3 (TNIP3), mRNA. -0.165 6.386 -7.265 4.02E-12 8.93E-09 16.949 

22 TIGIT T cell immunoreceptor with Ig and ITIM domains 
(TIGIT), mRNA. -0.221 6.749 -7.259 4.16E-12 8.93E-09 16.916 

23 LFNG 
LFNG O-fucosylpeptide 3-beta-N-

acetylglucosaminyltransferase (LFNG), transcript 
variant 1, mRNA. 

0.168 10.795 7.144 8.46E-12 1.74E-08 16.248 

24 RCAN2 regulator of calcineurin 2 (RCAN2), mRNA. -0.213 6.216 -7.120 9.77E-12 1.92E-08 16.113 

25 AKR1C3 
aldo-keto reductase family 1, member C3 (3-alpha 

hydroxysteroid dehydrogenase, type II) (AKR1C3), 
mRNA. 

0.394 7.808 7.114 1.01E-11 1.92E-08 16.078 
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Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples are HIV positive (red) or HIV negative (blue).  In the upper 
left corner is the legend that indicates the range of the log2 transformed expression values that correspond to the 
color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains all 
433 significant differentially expressed transcripts for the HIV status comparison of individuals with European 
Ancestry.  
 

Figure 5.1: Heatmap of Top Transcripts for HIV Status Comparison 

 

Within this table, multiple transcript variants of CD8 isoforms alpha and beta (n=5) were in the 

top ten most significant transcripts, showing increased expression in HIV positive individuals 

compared with seronegatives.  Other immune associated transcripts were also identified 

including LAG3, CD40LG, VCAM1, and TIGIT.  As the discrete blocks of altered expression 

are not easily visible in this comparison, we generated additional heatmaps with decreasing 
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amounts of the most significant genes to observe distinct clustering.  The expression levels of the 

top 25 (p-value < 1.92x10-08) and top 14 transcripts (p-value < 5x10-10) are visualized in Figure 

5.2’s heatmaps. 

 

A.  Top 25 Transcripts   B.  Top 14 Transcripts 

 

Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples are HIV positive (red) or HIV negative (blue).  In the upper 
left corner is the legend that indicates the range of the log2 transformed expression values that correspond to the 
color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains 
differentially expressed transcripts for the HIV status comparison of European Ancestry.  Plot A displays the 
heatmap for the top 25 transcripts while Plot B displays the top 14 illustrating (P < 5-10) that as a larger number of 
significant genes are included the clustering pattern of differential expression becomes clearer.  
 

Figure 5.2:  Heatmap of Most Significant Transcripts for HIV Status Comparison 

 

 

The same analysis utilizing all of the ancestry groups together also contained a similar list of 

these top transcripts but in a slightly rearranged order (Figure 5.3).  As the European ancestry 

individuals represent at least 68% (AEA n=52, EA n=269, AsEA n=5, & NA n=67) if not more 

of the dataset, their transcript differences, along with actual infection associated differences, 

likely account for this observation.  This is supported in part by the top table for the African 

European ancestry samples (Table 5.3) as it is comprised of a mix of those top transcripts 
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observed in the European ancestry as well as new transcripts.  There are also clear differences 

present in the heatmaps for these other ancestry group comparisons as well.  

 

 

 

A.  All Ancestries         B.  AEA Ancestry 

       

Columns represent individual samples while rows are the differentially expressed transcripts.  The red and blue 
colored bar above the heatmap indicates which samples are HIV positive (red) or HIV negative (blue).  In the upper 
left corner is the legend that indicates the range of the log2 transformed expression values that correspond to the 
color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains 
differentially expressed transcripts for the HIV status comparison of European Ancestry.  Plot A displays the 
heatmap for the top 25 transcripts for all ancestries while Plot B displays the top 25 transcripts for the AEA 
ancestry.   All Ancestries combined:  HIV+: n=156, HIV-: n=223; AEA Ancestry:  HIV+: n=17, HIV-: n=29  Note: 
As the AEA ancestry contained only 2 transcripts with p<0.05, the top table and heatmap for it were generated 
using the top 25 transcripts to illustrate that the EA samples compare more closely to the entire data set. 
 

Figure 5.3: Top Transcript Heatmaps for HIV Status Comparison in Additional Ancestries 
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Table 5.2:  Top 25 Transcripts for All Ancestry of HIV Status Comparison 

 TargetID DEFINITION logFC Ave 
Expr t P.Value adj.P.Val B 

1 CD8B CD8b molecule (CD8B), transcript variant 5, 
mRNA. -0.50 7.63 -13.91 6.65E-36 3.14E-31 69.60 

2 CD8B CD8b molecule (CD8B), transcript variant 5, 
mRNA. -0.55 7.26 -13.77 2.52E-35 5.96E-31 68.32 

3 CD8A CD8a molecule (CD8A), transcript variant 2, 
mRNA. -0.71 10.97 -13.26 2.73E-33 4.29E-29 63.83 

4 CD8A CD8a molecule (CD8A), transcript variant 1, 
mRNA. -0.67 8.25 -12.99 3.24E-32 3.83E-28 61.45 

5 CD8A CD8a molecule (CD8A), transcript variant 2, 
mRNA. -0.70 11.02 -12.64 7.16E-31 6.76E-27 58.48 

6 MCOLN2 mucolipin 2 (MCOLN2), mRNA. -0.48 8.68 -12.17 5.03E-29 3.96E-25 54.40 

7 ARRDC4 arrestin domain containing 4 (ARRDC4), mRNA. -0.26 7.12 -10.59 3.65E-23 2.46E-19 41.44 

8 LAG3 lymphocyte-activation gene 3 (LAG3), mRNA. -0.53 7.97 -10.50 7.82E-23 4.62E-19 40.71 

9 CD40LG CD40 ligand (CD40LG), mRNA. 0.31 7.43 10.29 4.27E-22 2.24E-18 39.08 

10 LOC197135 PREDICTED: hypothetical LOC197135, transcript 
variant 5 (LOC197135), mRNA. -0.39 8.08 -10.06 2.79E-21 1.32E-17 37.27 

11 PATL2 PREDICTED: misc_RNA (PATL2), miscRNA. -0.26 7.15 -9.81 2.10E-20 9.00E-17 35.34 

12 LOC644695 PREDICTED: hypothetical LOC644695 
(LOC644695), mRNA. -0.27 7.02 -9.61 9.86E-20 3.88E-16 33.85 

13 PATL2 PREDICTED: misc_RNA (PATL2), miscRNA. -0.40 8.52 -9.46 3.17E-19 1.15E-15 32.73 

14 CST7 cystatin F (leukocystatin) (CST7), mRNA. -0.34 10.59 -9.35 7.64E-19 2.58E-15 31.89 

15 FBLN7 fibulin 7 (FBLN7), mRNA. 0.21 6.72 9.14 3.81E-18 1.20E-14 30.35 

16 HS.553068 BX103476 NCI_CGAP_Lu5 cDNA clone 
IMAGp998C053946, mRNA sequence -0.23 7.17 -9.00 1.05E-17 3.09E-14 29.38 

17 CACNA1I calcium channel, voltage-dependent, T type, alpha 
1I subunit (CACNA1I), transcript variant 2, mRNA. 0.32 7.62 8.99 1.12E-17 3.10E-14 29.31 

18 FLJ33590 hypothetical protein FLJ33590 (FLJ33590), mRNA. -0.24 7.21 -8.99 1.18E-17 3.11E-14 29.26 

19 VCAM1 vascular cell adhesion molecule 1 (VCAM1), 
transcript variant 1, mRNA. -0.15 6.02 -8.75 7.03E-17 1.75E-13 27.55 

20 CCL5 chemokine (C-C motif) ligand 5 (CCL5), mRNA. -0.35 12.30 -8.64 1.52E-16 3.59E-13 26.81 

21 TSHZ2 teashirt zinc finger homeobox 2 (TSHZ2), mRNA. 0.30 7.32 8.60 2.07E-16 4.65E-13 26.51 

22 CDCA7 cell division cycle associated 7 (CDCA7), transcript 
variant 1, mRNA. -0.24 7.39 -8.57 2.63E-16 5.65E-13 26.28 

23 COLQ 
collagen-like tail subunit (single strand of 

homotrimer) of asymmetric acetylcholinesterase 
(COLQ), transcript variant VIII, mRNA. 

0.27 7.43 8.47 5.42E-16 1.11E-12 25.59 

24 CCL5 chemokine (C-C motif) ligand 5 (CCL5), mRNA. -0.30 13.18 -8.26 2.45E-15 4.81E-12 24.15 

25 VIPR1 vasoactive intestinal peptide receptor 1 (VIPR1), 
mRNA. 0.23 8.45 8.16 4.74E-15 8.95E-12 23.51 
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Table 5.3: Top 25 Transcripts for AEA Ancestry of HIV Status Comparison 

 TargetID DEFINITION logFC Ave 
Expr t P.Value adj.P.Val B 

1 CD8A CD8a molecule (CD8A), transcript variant 1, 
mRNA. -0.82 8.29 -5.66 7.35E-07 0.023 5.13 

2 CD8B CD8b molecule (CD8B), transcript variant 5, 
mRNA. -0.56 7.69 -5.57 9.92E-07 0.023 4.88 

3 LOC727748 PREDICTED: similar to scratch homolog 1, zinc 
finger protein (Drosophila) (LOC727748), mRNA. 0.24 6.50 5.16 4.30E-06 0.068 3.68 

4 MCOLN2 mucolipin 2 (MCOLN2), mRNA. -0.57 8.66 -4.96 8.34E-06 0.079 3.14 

5 PDXK pyridoxal (pyridoxine, vitamin B6) kinase (PDXK), 
mRNA. 0.30 9.05 4.95 8.89E-06 0.079 3.08 

6 CD8A CD8a molecule (CD8A), transcript variant 2, 
mRNA. -0.74 11.01 -4.91 1.01E-05 0.079 2.98 

7 CD8A CD8a molecule (CD8A), transcript variant 2, 
mRNA. -0.74 11.08 -4.82 1.35E-05 0.088 2.74 

8 AKT1 v-akt murine thymoma viral oncogene homolog 1 
(AKT1), transcript variant 2, mRNA. 0.31 10.02 4.78 1.55E-05 0.088 2.63 

9 ARRDC4 arrestin domain containing 4 (ARRDC4), mRNA. -0.33 7.09 -4.76 1.69E-05 0.088 2.55 

10 CD8B CD8b molecule (CD8B), transcript variant 5, 
mRNA. -0.53 7.33 -4.73 1.86E-05 0.088 2.48 

11 HIST3H2A histone cluster 3, H2a (HIST3H2A), mRNA. -0.40 7.63 -4.63 2.65E-05 0.114 2.18 

12 EGLN2 egl nine homolog 2 (C. elegans) (EGLN2), 
transcript variant 3, mRNA. 0.21 11.69 4.55 3.42E-05 0.122 1.97 

13 HS.561874 cDNA clone IMAGE:4794367 0.19 6.62 4.48 4.31E-05 0.122 1.78 

14 PATL2 PREDICTED: misc_RNA (PATL2), miscRNA. -0.33 7.11 -4.48 4.38E-05 0.122 1.77 

15 PATL2 PREDICTED: misc_RNA (PATL2), miscRNA. -0.56 8.45 -4.48 4.40E-05 0.122 1.77 

16 SREBF1 sterol regulatory element binding transcription 
factor 1 (SREBF1), transcript variant 1, mRNA. 0.29 7.67 4.45 4.76E-05 0.122 1.70 

17 PPP2R5C protein phosphatase 2, regulatory subunit B', 
gamma isoform, transcript variant 4, mRNA. -0.23 8.59 -4.44 4.94E-05 0.122 1.67 

18 CD4 CD4 molecule (CD4), mRNA. 0.35 8.03 4.43 5.17E-05 0.122 1.63 

19 SLC16A5 solute carrier family 16, member 5 (monocarboxylic 
acid transporter 6) (SLC16A5), mRNA. 0.44 8.86 4.43 5.19E-05 0.122 1.63 

20 KIAA1143 KIAA1143 (KIAA1143), mRNA. 0.19 6.29 4.41 5.39E-05 0.122 1.60 

21 SH2D1A SH2 domain protein 1A, Duncan's disease 
(lymphoproliferative syndrome), mRNA. -0.54 8.78 -4.41 5.43E-05 0.122 1.59 

22 CRIP2 cysteine-rich protein 2 (CRIP2), mRNA. 0.46 7.20 4.40 5.69E-05 0.122 1.55 

23 WDR68 WD repeat domain 68 (WDR68), transcript variant 
2, mRNA. 0.22 8.48 4.32 7.28E-05 0.149 1.35 

24 RPA3 replication protein A3, 14kDa (RPA3), mRNA. -0.22 8.55 -4.31 7.63E-05 0.150 1.31 

25 LOC730994 
PREDICTED: similar to NACHT, leucine rich 
repeat and PYD (pyrin domain) containing 1, 

transcript variant 1 (LOC730994), mRNA. 
0.29 9.28 4.28 8.40E-05 0.157 1.23 
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Figure 5.4:  Expression of CD8 is Higher among HIV-positive Individuals 

 

When we plotted the CD8 counts for each individual against the expression values for each of 

the CD8 variants, the HIV-positive individuals had higher CD8 counts and expression levels 

(Figure 5.4).  There was not a clear distinct break between the HIV status groups but the majority 
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of individuals for each did cluster together.  Because CD8 was observed to be among the top 

transcripts in all sets of comparisons, it was a candidate for further investigation. 

5.3 CD8 COUNT 

As the top rated transcripts for HIV status comparisons included multiple variants of CD8, and 

we had clinical measurements of CD8 T-cell counts taken for each individual at the same visit as 

their PAXgene blood sample collection, we next performed a comparison of CD8 counts.  This 

was done by subsetting the European ancestry expression set used above into two smaller sets 

containing only those that were HIV negative and those that were HIV positive but not LTNP.  

For each subset we calculated the cutoffs for the top [HIV(Q4 = , n=39) & NEG Q4 = , n=55)] 

and bottom quartiles [HIV(Q1 = , n=39) & NEG Q1 = , n=55)] of CD8 counts and then subsetted 

those expression sets so that they contained only those extreme ends of the CD8 ranges.  As 

expected, the individuals with higher CD8 counts had higher expression of CD8 transcript 

variants independent of HIV status.  Overall, the HIV-negative individuals compared for CD8 

had 1752 significant transcripts in 89 pathways including RNA catabolism, mRNA metabolism, 

ribosome biogenesis, wound healing, and translational termination.  Conversely, the HIV 

positive individuals had 681 significant transcripts in 16 pathways including those involved in 

regulating the immune system, ribosome biogenesis, and RNA processing metabolism.  The top 

transcripts with p<0.0005 are illustrated in Figure 5.5 for HIV positive and Figure 5.6 for HIV 

negative subsets while the top ten transcripts for both groups are listed in Table 5.4.  The 

majority of top transcripts shown in these figures and table had increased expression for the top 

quartile group with distinct blocks of expression observed in the heatmaps. 
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Table 5.4:  CD8 Quartile Comparison for HIV Status Subsets 

HIV- positive Samples CD8 Quartile Comparison      

 Transcript DEFINITION logFC AveExpr t P.Value adj.P.Val B 

1 CD8B CD8b molecule (CD8B), transcript variant 
5, mRNA. 0.70 7.58 9.20 9.70E-13 4.58E-08 17.88 

2 CD8A CD8a molecule (CD8A), transcript variant 
2, mRNA. 0.87 11.44 8.57 9.78E-12 2.31E-07 15.83 

3 CD8A CD8a molecule (CD8A), transcript variant 
2, mRNA. 0.83 11.39 8.21 3.75E-11 5.91E-07 14.63 

4 CD2 CD2 molecule (CD2), mRNA. 0.48 11.05 7.55 4.62E-10 5.45E-06 12.38 

5 FLJ14213 protor-2 (FLJ14213), mRNA. 0.56 8.08 7.17 1.91E-09 1.81E-05 11.10 

6 PPP2R2B protein phosphatase 2 (formerly 2A), 
regulatory subunit B, beta isoform 

     

0.65 8.27 7.03 3.33E-09 2.35E-05 10.60 

7 MIAT myocardial infarction associated transcript 
(non-protein coding) (MIAT), non-coding 

 

0.62 8.89 7.00 3.72E-09 2.35E-05 10.50 

8 CD8B CD8b molecule (CD8B), transcript variant 
5, mRNA. 0.57 7.90 6.98 3.98E-09 2.35E-05 10.44 

9 MCOLN2 mucolipin 2 (MCOLN2), mRNA. 0.65 8.95 6.87 5.96E-09 3.13E-05 10.07 

10 S1PR5 sphingosine-1-phosphate receptor 5 
(S1PR5), mRNA. 0.63 8.88 6.78 8.41E-09 3.97E-05 9.76 

         

HIV-negative Samples CD8 Quartile Comparison     

 Transcript DEFINITION logFC AveExpr t P.Value adj.P.Val B 

1 CD8A CD8a molecule (CD8A), transcript variant 
2, mRNA. 1.04 10.69 12.11 1.74E-20 8.23E-16 34.28 

2 CD8A CD8a molecule (CD8A), transcript variant 
2, mRNA. 1.00 10.66 11.39 4.98E-19 1.18E-14 31.29 

3 CD8A CD8a molecule (CD8A), transcript variant 
1, mRNA. 0.85 7.95 9.90 5.54E-16 8.72E-12 24.96 

4 CD8B CD8b molecule (CD8B), transcript variant 
5, mRNA. 0.59 7.00 9.07 2.80E-14 3.31E-10 21.39 

5 CD8B CD8b molecule (CD8B), transcript variant 
5, mRNA. 0.48 7.38 8.37 7.83E-13 7.39E-09 18.34 

6 ZNF683 zinc finger protein 683 (ZNF683), transcript 
variant 2, mRNA. 1.11 8.44 7.46 5.70E-11 4.49E-07 14.40 

7 GALNT1
1 

UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-

  
   

0.33 8.49 7.05 3.80E-10 2.56E-06 12.65 

8 CD3D CD3d molecule, delta (CD3-TCR complex) 
(CD3D), transcript variant 2, mRNA. 0.55 10.69 6.83 1.03E-09 5.95E-06 11.73 

9 CDC25B 
cell division cycle 25 homolog B (S. 

pombe) (CDC25B), transcript variant 2, 
mRNA. 

0.36 10.37 6.81 1.13E-09 5.95E-06 11.64 

10 MIAT myocardial infarction associated transcript 
(non-protein coding) (MIAT), non-coding 

 

0.58 8.75 6.75 1.48E-09 6.99E-06 11.40 
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Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the bottom (red) or top (blue) quartiles.  In the upper 
left corner is the legend that indicates the range of the log2 transformed expression values that correspond to the 
color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains only 
the top transcripts (P < 0.0005) out of a total of 681 significant differentially expressed transcripts for CD8 
comparison in HIV-positive samples 
 

Figure 5.5:  CD8 Quartile Comparison for HIV-positive Samples 
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Columns represent individual samples while rows are the differentially expressed transcripts.  The red and blue 
colored bar above the heatmap indicates which samples fall in the bottom (red) or top (blue) quartiles.  In the upper 
left corner is the legend that indicates the range of the log2 transformed expression values that correspond to the 
color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains only 
the top transcripts (P < 0.0005) out of a total of 1752 significant differentially expressed transcripts for the CD8 
comparison in HIV-negative samples. 
 

Figure 5.6:  CD8 Quartile Comparison for HIV-negative Samples 

 

5.4 VIRAL LOAD 

The MACS currently calculates viral load utilizing a Roche kit with an ultra-sensitive method 

which is molecular-based therefore providing fast and accurate results.  The lower limit of 

detection for this method is 50 copies/mL so participants with values below this level were 
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considered to have undetectable levels of the viral RNA.  The groups used in this comparison 

were generated from HIV positive individuals who were considered to have undetectable viral 

load levels (40 copies/mL or below) and those who had high viral load levels (200 copies/mL or 

above).  This comparison yielded 421 significant transcripts in 107 pathways that primarily 

involved immune response, viral control and cell cycle regulation.  The heatmap for this 

comparison is shown in Figure 5.7. 

 

 

Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the low (red) or high (blue) viral load group.  In the 
upper left corner is the legend that indicates the range of the log2 transformed expression values that correspond to 
the color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains all 
421 significant transcripts (P < 0.05) differentially expressed transcripts for viral load comparison in HIV-positive 
samples. 
 

Figure 5.7:  Viral Load Comparison 
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Because the number of individuals with low viral loads greatly outnumbered those with high 

levels, we wanted to determine if more similar sample sizes could lead to a tighter visual 

representation of the differential expression.  To do this, we took the individuals with high viral 

load from the first comparison along with the first 15 samples with undetectable virus.  This 

comparison resulted 10 significant transcripts (Table 5.5) in 49 pathways (Figure 5.8) including 

many of those observed in the first comparison as well as pathways associated with negative 

regulation of gene expression.  It was also observed that the heatmap (Figure 5.9) groupings 

resulted in the viral load groups clustering together more efficiently.   

 

Table 5.5:  Viral Comparison with Smaller Group Size 

 Transcript DEFINITION logFC AveExpr t P.Value adj.P.Val B 

1 LOC7288
35 

PREDICTED: similar to cytokine, 
transcript variant 3 (LOC728835), 

 

-0.78 8.62 -5.96 9.97E-07 0.04445 5.08 

2 AGPAT9 1-acylglycerol-3-phosphate O-
acyltransferase 9 (AGPAT9), mRNA. 0.72 8.90 5.46 4.41E-06 0.04445 3.85 

3 PDPK1 3-phosphoinositide dependent protein 
kinase-1 (PDPK1), transcript variant 1, 

 

0.45 7.66 5.43 4.87E-06 0.04445 3.76 

4 POP4 processing of precursor 4, ribonuclease 
P/MRP subunit (S. cerevisiae) (POP4), 

 

-0.30 7.52 -5.34 6.30E-06 0.04445 3.55 

5 IL6R interleukin 6 receptor (IL6R), transcript 
variant 1, mRNA. 0.62 7.82 5.33 6.58E-06 0.04445 3.51 

6 RXRA retinoid X receptor, alpha (RXRA), 
mRNA. 0.44 10.82 5.32 6.76E-06 0.04445 3.49 

7 EIF5A eukaryotic translation initiation factor 5A 
(EIF5A), mRNA. -0.51 9.82 -5.29 7.38E-06 0.04445 3.41 

8 PADI4 peptidyl arginine deiminase, type IV 
(PADI4), mRNA. 0.80 11.10 5.25 8.36E-06 0.04445 3.31 

9 SPATS2L spermatogenesis associated, serine-rich 
2-like (SPATS2L), transcript variant 2, 

 

-0.66 7.28 -5.22 9.04E-06 0.04445 3.24 

10 RBPJ recombination signal binding protein for 
immunoglobulin kappa J region (RBPJ), 

    

0.47 8.26 5.21 9.41E-06 0.04445 3.21 
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Individual Pathways are depicted by the boxes while the broad groups of related pathways are circled. 
 

Figure 5.8: Pathway Analysis for Viral Load Comparison 
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Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the low (red) or high (blue) viral load group.  In the 
upper left corner is the legend that indicates the range of the log2 transformed expression values that correspond to 
the color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains all 
10 significant transcripts (P < 0.05) differentially expressed transcripts for the smaller group size viral load 
comparison in HIV-positive samples. 
 

Figure 5.9:  Viral Load Comparison with Smaller Group Size 

 

5.5 EXTENDED LIPID COMPARISONS 

As our studies of HIV-related phenotypes showed that microarray analysis of PAXgene-derived 

whole blood RNA could indeed detect transcriptome-level differences, we began to compare a 
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broader range of lipid levels beyond the extreme atherogenic and atheroprotective phenotypes.  

Our initial comparisons were to contrast the clinically relevant extremes for HDL-C and LDL-C 

while comparing the top and bottom quartiles for triglycerides and total cholesterol.  Out of 

these, only HDL-C and triglycerides had differentially expressed transcripts that were 

significant. 

 

5.5.1 High Density Lipoprotein 

For the HDL comparison we used all of the samples available regardless of geographical 

ancestry and selected individuals with HDL-C levels that were considered high [>60mg/mL 

(n=26)] or low [<40mg/mL (n=39)] based on the NCEP Adult Treatment Panel III.  This yielded 

5 significant transcripts that are listed in Table 5.6 and shown in the heatmap in Figure 5.10.  

Increased expression was generally seen for individuals with higher HDL levels, although these 

transcripts do not appear to be directly related to cholesterol metabolism.  When this dataset was 

further divided into groups based on HIV status, the comparisons in the HIV-positive individuals 

yielded no significant transcripts while the HIV negative had one transcript (HDC) with a p-

value of 0.0058.  Ancestry groups were not compared for HDL as the sample sizes became too 

small for comparison after subgrouping by Lipid levels and HIV status. 
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Table 5.6:  Low vs High HDL-C Top Differentially Expressed Transcripts 

 

 Transcript DEFINITION logFC AveExpr t P.Value adj.P.Val B 

1 HDC histidine decarboxylase (HDC), mRNA. -1.48 7.44 -11.69 6.53E-10 3.08E-05 7.85 

2 GATA2 GATA binding protein 2 (GATA2), 
mRNA. -0.75 6.47 -9.53 1.65E-08 0.0004 6.34 

3 SLC45A3 solute carrier family 45, member 3 
(SLC45A3), mRNA. -0.76 6.88 -8.46 9.94E-08 0.0016 5.38 

4 CPA3 carboxypeptidase A3 (mast cell) (CPA3), 
mRNA. -0.81 7.07 -8.25 1.43E-07 0.0017 5.17 

5 KLF2 Kruppel-like factor 2 (lung) (KLF2), 
mRNA. -0.51 12.78 -6.18 7.41E-06 0.0700 2.71 

 

 

Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the low (red) or high (blue) HDL group.  In the 
upper left corner is the legend that indicates the range of the log2 transformed expression values that correspond to 
the color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains all 
5 significant transcripts (P < 0.05) out of 27 total differentially expressed transcripts for the HDL-C comparison in 
all samples 
 

Figure 5.10:  High vs Low HDL-C Comparison 

79 



Based on the initial findings for our HDL-C comparison, we decided to use more stringent 

criteria for HDL-C levels, using a lower cutoff of <30mg/mL and an upper cutoff of >70mg/mL 

in order to identify those transcripts with the greatest association with HDL-C levels.  As 

expected, we observed 4 transcripts that were also present in the top ten transcripts from the first 

HDL-C comparison but this time the differences were more significant.  This can be seen in 

Table 5.7 and is clearly depicted in the heatmap in Figure 5.11.  Gene Ontology pathway 

analysis was then performed on these 4 transcripts to reveal 56 pathways.  These pathways can 

be broken down into smaller groupings of metabolic processes, protein dimerization, protein 

targeting to the ER, mRNA catabolism, ATP synthesis, and Control of Viral Replication.  The 

relationship between these transcripts and the HDL-C phenotype is not immediately clear.  

 

 

Table 5.7:  Stringent Low vs High HDL-C Top Differentially Expressed Transcripts 

 Transcript DEFINITION logFC AveExpr t P.Value adj.P.Val B 

1 HDC histidine decarboxylase (HDC), mRNA. -1.48 7.44 -11.69 6.53E-10 3.08E-05 7.85 

2 GATA2 GATA binding protein 2 (GATA2), 
mRNA. -0.75 6.47 -9.53 1.65E-08 0.00039 6.34 

3 SLC45A3 solute carrier family 45, member 3 
(SLC45A3), mRNA. -0.76 6.88 -8.46 9.94E-08 0.00157 5.38 

4 CPA3 carboxypeptidase A3 (mast cell) (CPA3), 
mRNA. -0.81 7.07 -8.25 1.43E-07 0.00169 5.17 

 

 

80 



 

Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the very low (red) or very high (blue) HDL group.  In 
the upper left corner is the legend that indicates the range of the log2 transformed expression values that correspond 
to the color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains 
all 4 significant transcripts (P < 0.05) differentially expressed transcripts for the HDL-C comparison in all samples. 
 

Figure 5.11:  Heatmap for Stringent Low vs High HDL-C comparison (All Serogroups) 

 

The stringent HDL-C dataset was then subdivided by HIV status.  Comparisons resulted in HIV-

positive samples having no significant transcripts while the HIV-negative samples differed by 

105 transcripts between their two HDL groups.  The top 25 genes from the HIV-negative 

comparison are shown in Table 5.8 while the heatmap in Figure 5.12 illustrates distinct 

differences for the extreme HDL-C groups of this comparison.  Once again, the top transcripts 

observed contained histidine decarboxylase but lacked all of the previous transcripts (GATA2, 

SLC45A3, & CPA3) identified in the comparison containing all samples.   
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Table 5.8: Stringent Low vs High HDL-C Top Differentially Expressed Transcripts for HIV-negative 

Samples 

 Transcript DEFINITION logFC Ave 
Expr t P.Value adj. 

P.Val B 

1 TREM1 triggering receptor expressed on myeloid cells 1 (TREM1), 
mRNA. -1.32 8.79 -9.93 1.98E-07 0.0068 6.71 

2 CHURC1 churchill domain containing 1 (CHURC1), mRNA. 1.50 8.55 9.61 2.86E-07 0.0068 6.43 

3 LOC4405
75 

PREDICTED: hypothetical LOC440575 (LOC440575), 
mRNA. 1.20 12.5

3 9.12 5.19E-07 0.0071 5.98 

4 CCDC72 coiled-coil domain containing 72 (CCDC72), mRNA. 1.20 9.24 8.89 6.99E-07 0.0071 5.75 

5 LOC7286
93 PREDICTED: misc_RNA (LOC728693), miscRNA. 1.16 12.1

9 8.56 1.06E-06 0.0071 5.42 

6 RPL31 ribosomal protein L31 (RPL31), transcript variant 1, mRNA. 1.60 10.9
1 8.50 1.15E-06 0.0071 5.36 

7 LOC6451
74 PREDICTED: misc_RNA (LOC645174), miscRNA. 0.98 12.7

9 8.49 1.17E-06 0.0071 5.34 

8 LOC7287
82 

PREDICTED: similar to ribosomal protein L21 
(LOC728782), mRNA. 1.04 12.0

8 8.43 1.27E-06 0.0071 5.28 

9 ATP5E 
ATP synthase, H+ transporting, mitochondrial F1 complex, 

epsilon subunit (ATP5E), nuclear gene encoding 
mitochondrial protein, mRNA. 

1.21 9.89 8.34 1.42E-06 0.0071 5.19 

10 LOC1001
32742 

PREDICTED: hypothetical protein LOC100132742, transcript 
variant 2 (LOC100132742), mRNA. 1.43 10.4

2 8.23 1.64E-06 0.0071 5.08 

11 RSL24D1 ribosomal L24 domain containing 1 (RSL24D1), mRNA. 1.35 8.70 8.17 1.79E-06 0.0071 5.00 

12 MYOM2 myomesin (M-protein) 2, 165kDa (MYOM2), mRNA. -1.59 8.53 -8.09 1.98E-06 0.0071 4.92 

13 COMMD
6 

COMM domain containing 6 (COMMD6), transcript variant 
1, mRNA. 1.51 8.91 8.05 2.11E-06 0.0071 4.87 

14 LOC2842
30 PREDICTED: similar to mCG7611 (LOC284230), mRNA. 1.42 10.8

5 7.93 2.46E-06 0.0071 4.75 

15 HDC histidine decarboxylase (HDC), mRNA. -1.38 7.95 -7.93 2.48E-06 0.0071 4.74 

16 RPS27L ribosomal protein S27-like (RPS27L), mRNA. 0.98 8.20 7.91 2.53E-06 0.0071 4.72 

17 NDUFB3 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 
12kDa (NDUFB3), mRNA. 1.09 8.93 7.91 2.54E-06 0.0071 4.72 

18 PCDHB1
9P 

protocadherin beta 19 pseudogene (PCDHB19P), non-coding 
RNA. -1.02 8.01 -7.87 2.70E-06 0.0071 4.67 

19 COX6C cytochrome c oxidase subunit VIc (COX6C), mRNA. 1.23 9.30 7.78 3.04E-06 0.0076 4.57 

20 RPL26 ribosomal protein L26 (RPL26), mRNA. 1.63 9.51 7.62 3.80E-06 0.0086 4.39 

21 NRGN neurogranin (protein kinase C substrate, RC3) (NRGN), 
mRNA. -0.92 10.8

0 -7.62 3.82E-06 0.0086 4.39 

22 NELL2 NEL-like 2 (chicken) (NELL2), mRNA. 1.06 8.58 7.57 4.12E-06 0.0086 4.32 

23 SNRPG small nuclear ribonucleoprotein polypeptide G (SNRPG), 
mRNA. 0.99 9.20 7.56 4.17E-06 0.0086 4.31 

24 LOC6537
37 

PREDICTED: hypothetical LOC653737 (LOC653737), 
mRNA. 1.01 11.6

5 7.45 4.83E-06 0.0088 4.19 

25 LOC3911
26 PREDICTED: misc_RNA (LOC391126), miscRNA. 1.27 8.79 7.45 4.85E-06 0.0088 4.19 
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Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the very low (red) or very high (blue) HDL group.  In 
the upper left corner is the legend that indicates the range of the log2 transformed expression values that correspond 
to the color bar.  Green indicates higher expression while red indicates lower.  This graphical comparison contains 
all 4 significant transcripts (P < 0.05) differentially expressed transcripts for the HDL-C comparison in HIV-
negative samples. 
 

Figure 5.12:  Heatmap for Stringent Low vs High HDL-C comparison (HIV-negative) 

 

5.5.2 Triglycerides 

Triglyceride measurements obtained on the same visit day as the collection of the PAXgene 

blood sample were used for our next set of comparisons. Groups were defined on the basis of the 

top and bottom quartile triglyceride values collected.  Unlike the HDL comparison, we were able 
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to get significant differentially expressed transcripts for both the complete set of HIV-positive 

samples and its subset of individuals with European ancestry.  The comparisons for both yielded 

exactly the same top 3 differentially expressed transcripts (Table 5.9) and yielded a cleaner 

cluster pattern for the European subset (Figure 5.13).  In total, 5 transcripts in 49 pathways were 

observed to be differentially expressed for the triglyceride groups derived from all the HIV-

positive samples while 4 transcripts in 34 pathways were observed for those of European 

Ancestry.  Both comparisons included pathways that involved protein degradation, protein 

transport/targeting to the ER, gene expression/translation, RNA metabolism/biosynthesis and 

viral genome expression.  The African European Ancestry subset was too small to yield any 

significant transcripts.   

 

   A.  All HIV+ Samples   B. EA HIV+ Samples 

 

Columns represent individual samples while rows are the differentially expressed transcript.  The red and blue 
colored bar above the heatmap indicates which samples fall in the bottom quartile (red) or top quartile (blue) for 
triglyceride levels.  In the upper left corner is the legend that indicates the range of the log2 transformed expression 
values that correspond to the color bar.  Green indicates higher expression while red indicates lower.  This 
graphical comparison contains all the top significant transcripts differentially expressed transcripts for the 
triglyceride comparison in all HIV-positive samples (Plot A) and the European subset of HIV-positive samples (Plot 
B) 
 

Figure 5.13:  Triglyceride Comparison Heatmaps 
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Table 5.9:  Triglyceride Comparison Top Transcripts for HIV-positive Samples 

All HIV-positive Samples       

 Transcript DEFINITION logFC AveEx
pr t P.Value adj.P.V

al B 

1 CPA3 carboxypeptidase A3 (mast cell) (CPA3), 
mRNA. -57.30 173.09 -7.20 5.09E-10 2.40E-

05 9.13 

2 HDC histidine decarboxylase (HDC), mRNA. -102.84 194.65 -6.54 7.97E-09 0.00019 7.25 

3 SLC45A3 solute carrier family 45, member 3 (SLC45A3), 
mRNA. -38.68 147.08 -6.34 1.85E-08 0.00029 6.66 

4 GATA2 GATA binding protein 2 (GATA2), mRNA. -20.42 118.49 -6.08 5.44E-08 0.00064 5.91 

5 RPL41 ribosomal protein L41 (RPL41), transcript 
variant 2, mRNA. 4185.24 14336.

94 4.95 4.85E-06 0.04579 2.73 

         

European Ancestry HIV-positive Samples       

 Transcript DEFINITION logFC AveEx
pr t P.Value adj.P.V

al B 

1 CPA3 carboxypeptidase A3 (mast cell) (CPA3), 
mRNA. -0.62 7.13 -6.77 1.89E-08 0.00089 6.62 

2 HDC histidine decarboxylase (HDC), mRNA. -0.83 7.22 -6.10 1.94E-07 0.00457 5.04 

3 SLC45A3 solute carrier family 45, member 3 (SLC45A3), 
mRNA. -0.51 6.86 -5.47 1.72E-06 0.02420 3.52 

4 HS.24277
4 

cs14c01.y1 Human Retinal pigment 
epithelium/choroid cDNA 0.23 6.43 5.42 2.05E-06 0.02420 3.40 

 
 
A All Ancestry    B European Ancestry 

 

Columns represent individual samples while rows are the differentially expressed transcripts.  The red and blue 
colored bar above the heatmap indicates which samples fall in the bottom quartile (red) or top quartile (blue) for 
triglyceride levels.  In the upper left corner is the legend that indicates the range of the log2 transformed expression 
values that correspond to the color bar.  Green indicates higher expression while red indicates lower.  This 
graphical comparison contains all the top significant transcripts differentially expressed transcripts for the 
triglyceride comparison in all HIV-negative samples (Plot A) and the European subset of HIV-negative samples 
(Plot B) 
 

Figure 5.14:  Heatmap of Top Transcripts for Triglyceride Comparisons in HIV-negative Samples 
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Table 5.10:  Triglyceride Comparison Top Transcripts for HIV-negative Samples 

All HIV-negative Samples       

 Transcript DEFINITION logFC Ave 
Expr t P.Value adj.P.Val B 

1 HDC Homo sapiens histidine decarboxylase 
(HDC), mRNA. 

-1.16 7.55 -10.42 1.95E-17 9.20E-13 25.66 

2 CPA3 Homo sapiens carboxypeptidase A3 (mast 
cell) (CPA3), mRNA. 

-0.75 7.32 -10.27 3.97E-17 9.38E-13 25.08 

3 GATA2 Homo sapiens GATA binding protein 2 
(GATA2), mRNA. 

-0.62 6.54 -8.92 3.23E-14 4.21E-10 19.59 

4 SLC45A3 Homo sapiens solute carrier family 45, 
member 3 (SLC45A3), mRNA. 

-0.73 7.05 -8.90 3.57E-14 4.21E-10 19.51 

5 MS4A2 Homo sapiens membrane-spanning 4-
domains, subfamily A, member 2. 

-0.36 6.84 -7.34 7.02E-11 6.26E-07 13.17 

         

European Ancestry HIV-negative Samples       

 Transcript DEFINITION logFC Ave 
Expr t P.Value adj.P.Val B 

1 HDC Homo sapiens histidine decarboxylase 
(HDC), mRNA. 

-1.42 7.40 -9.86 1.87E-12 8.84E-08 16.87 

2 CPA3 Homo sapiens carboxypeptidase A3 (mast 
cell) (CPA3), mRNA. 

-0.96 7.26 -9.37 8.09E-12 1.91E-07 15.64 

3 SLC45A3 Homo sapiens solute carrier family 45, 
member 3 (SLC45A3), mRNA. 

-0.97 6.97 -9.19 1.42E-11 2.24E-07 15.16 

4 GATA2 Homo sapiens GATA binding protein 2 
(GATA2), mRNA. 

-0.80 6.52 -8.73 5.80E-11 6.85E-07 13.97 

5 MS4A2 Homo sapiens membrane-spanning 4-
domains, subfamily A, member 2. 

-0.50 6.80 -7.47 3.28E-09 3.10E-05 10.47 

 

In order to identify if the Triglyceride-associated expression differences observed for the HIV-

positive samples reflected any interactions with the virus, comparisons were also performed for 

the HIV-negative individuals.  Analysis of HIV-negative individuals, and the subset of those 

with European ancestry, yielded 15 and 263 differentially expressed transcripts (Figure 5.14), 

respectively (once again, the sample size of the African Ancestry group was not large enough to 

yield any significant results.).  The top 5 transcripts listed in Table 5.10, identical for both 

ancestry groupings, also include 4 transcripts observed for the HIV-positive comparison (Figure 

5.14).  This would suggest that these 4 genes (HDC, CPA3, GATA2 & SLC45A3) have an 

association with Triglyceride levels independent of HIV status.  
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5.5.3 Differential Expression Verification 

To verify that the genes identified as top transcripts during these comparisons were indeed 

differentially expressed, we performed TaqMan Real-Time expression assays for the following 

transcripts; CD8A, CD8B, ABCA1, HDC and CPA3.  In order to conserve RNA, we selected 16 

individuals that fell in the highest or lowest expression bracket for each transcript and performed 

reverse transcription to generate cDNA.  Our initial run verified expression differences for most 

of the transcripts differentially expressed for the HT-12.  This was not a completely linear 

relationship but those samples that had higher expression for the HT-12 remained high while 

those that were low remained low (Figure 5.15).  Transcripts that did not perfectly match for 

verification were those for CD8.  As there are multiple variants of CD8A and CD8B within the 

HT-12, the two probes we ordered for TaqMan expression analysis are not likely to pick up each 

variant equally and therefore will not have a direct linear relationship.  This could be overcome 

by ordering multiple TaqMan probes for each but as the sequence of those probes are not 

available, we are not at liberty to run multiple CD8 transcripts.  This however did not completely 

impede our ability to identify that the majority of samples within each assay had similar patterns 

of up and down regulation of expression. 
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Figure 5.15: Expression Confirmation Analysis of Differentially Expressed Genes 
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Our initial transcriptome analysis illustrates that we are able to identify significant differentially 

expressed genes in RNA extracted from whole blood collected into PAXgene tubes.  The number 

of transcripts varied according to the criteria used for sample selection: a large number of 

significantly differentially expressed transcripts were detected when HIV status was used as our 

outcome variable, but much smaller numbers, and in some cases no significantly differentially 

expressed transcripts, were detected when lipid-related phenotypes were used in our 

comparisons.  The reason for this is not yet known but might be associated with data used to 

subgroup individuals.  Despite the small number of transcripts, once pathway analysis was 

performed, all of the transcripts identified fell into pathways relevant to the comparison being 

performed.  For instance, viral load comparisons yielded numerous pathways associated to 

regulation of viral replication, response to interferon signaling and defense response to viruses 

while HDL-C and triglyceride comparisons led to pathways involving protein degradation and 

gene expression and translation.  We were also able to observe general trends among groups 

when the p-values were adjusted for the heatmaps such that they displayed the most significant 

transcripts. For instance, when the criteria used to group samples in the HDL-C comparison was 

adjusted to select only individuals with the most extreme HDL-C levels, the top genes identified 

were all observed to decrease in expression for the low HDL-C group compared to those with 

high levels.  We have also been able to identify genes that warrant further investigation for 

associations to HDL-C and triglyceride levels, as transcripts for HDC, CPA3 and GATA2 were 

all observed in the top significant transcripts for both. 
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6.0  AIM 3: IMPACT OF CNV ON SNP GENOTYPING 

A single nucleotide polymorphism (SNP) is a mutation at a single base location in the genomic 

sequence. If the SNP is located within the coding region of a gene, it can have many effects, such 

as the substitution of one amino acid for another or the introduction of a premature stop codon. A 

SNP located in the regulatory regions of a gene, such as the promoter, enhancer, or intron/exon 

splice sites, can potentially influence the level of that gene’s expression. Alternatively, many 

SNPs have no effect on gene expression; although some may be valuable measure of disease risk 

though linkage disequilibrium with other, functional SNP. Once a SNP is identified, genotyping 

it within a population involves calling the allele located in each chromosome copy by assays that 

are designed to pick up each base.  As most genes are present twice in the human genome (once 

on each parental chromosome) the resulting data represents one of three possible genotypes: two 

copies of one allele (homozygosity); one copy of each allele (heterozygosity), or two copies of 

the second allele (homozygosity again).  Because of this, SNP genotyping assays in the past were 

chosen based on the conditions and designs that gave the clearest 3 genotypes.  If 3 distinct 

groups failed to be produced, additional assays such as Sanger sequencing were performed to 

clearly identify the genotypes.  Any deviation from the normal expectation of the genotyping or 

sequencing assays was deemed to be noise from assay artifacts rather than a potential genetic 

variation.  However now that more information is present regarding copy number variation and 

the existence of pseudogenes, this “noise” has the potential to be much more.  In a recent study 
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from our lab, several SNPs were observed to have unusual clustering patterns during analysis 

with a custom designed Illumina GoldenGate assay on 1,945 MACS samples.  Closer inspection 

of their genotype distributions, for example those shown in Figure 6.2, revealed the presence of 

more than the 3 distinct genotype groups expected.  These clustering patterns suggest the 

possibility of CNV interfering with SNP genotyping as concluded by the clustering patterns.  For 

the SNPs examined by GoldenGate, 3 genotype clusters were expected based on the number of 

possible combinations of alleles from each single copy of the gene on each of the two 

chromosomes, When multiple copies of a gene are present on each of the two chromosomes, 

there can still be 3 possible genotypes (provided that a third allele doesn’t appear as a new point 

mutation in a copy) but the alleles present for the individuals in the heterozygous group are no 

longer at a 1:1 ratio.  Depending on the sensitivity of the assay, the amount of each allele present 

in the sample would pull that individual’s data point away from the heterozygous group and 

towards the homozygous group for its dominant allele (the allele in highest frequency among 

copies).  In assays that are extremely sensitive and accurate, individuals with the same ratio of 

alleles will group with each other resulting in the formation of multiple subgroups between the 

homozygotes and heterozygotes.  This is what appears to be present for the GoldenGate SNPs 

with unusual clustering.  
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6.1 AIM 3 METHODS 

 

For genotyping our SNPs of interest, we employed three commonly used methods for analyzing 

SNPs individually; Fluorescence Polarization, Sanger Sequencing, and Life Technologies 

TaqMan SNP Genotyping Assays. 

6.1.1 Sample Selection  

Samples for this section of our study are described in detail within Section 3.1.1.1.  There was a 

total of 2104 DNA samples available for analysis, including those from the 2005 cross-sectional 

study of genetic impacts on HAART-associated dyslipidemia described in Chapter 4 and 

Matthew Nicholaou’s 2012 manuscript[25], as well as DNA samples from some individuals only 

present in the transcriptome study described in Chapter 5.  These were available as both genomic 

and whole-genome amplified DNA (whole-genome amplification was performed in our 

laboratory by Dr. Matt Nicholaou, using the Illustra GenomiPhi V2 DNA Amplification kit [GE 

Healthcare Biosciences]). As whole-genome amplification is a commonly used technique to 

increase the amount of DNA available for low yield samples, and allow low concentration 

samples to be brought up to a usable concentration, it was important for us to determine how this 

amplification may affect the quantities of alleles present for genotyping.  We used GenomiPhi 

DNA for all of the samples used in the Illumina GoldenGate SNP assay, as those samples were 
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specifically used for this.  From the available genomic DNA samples, we took a subset of 373 

samples for copy number analysis using NanoString technologies (described in Section 3.6).  Of 

these, 192 were analyzed using all 3 assays for various SNPs of interest.  In addition to these 

samples, representative 96-well plates from the entire 2005 cross-sectional set were selected for 

each SNP to be analyzed for all of the assays. 

 

6.1.2 SNP Selection 

SNPs for analysis were selected using several criteria.  First, we aimed to find common SNPs, 

defined as those with Minor Allele Frequency (MAF) greater than 0.05, in regions of CNV by 

using the Database of Genomic Variants browser to scan each chromosome for high frequency 

SNPs within areas of structural variation encompassing genes with a potential lipid metabolism.  

This yielded a few genes of interest but due to its time-consuming nature we adopted other 

approaches to identify SNPs that were more likely to have CNV interference based on previous 

study findings.  This involved SNPs from our Illumina GoldenGate assay that formed multiple 

groups within the heterozygous individuals as well as SNPs in genes and regions that were well 

documented in the literature as having CNV (Table 6.1).   
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Table 6.1:  SNPs Selected for Analysis 

SNP Gene MAF 

 

Chromosome CNV Selection 
  (HapMap-CEU)   Basis 
rs2271072 FABP3 0.42 1 None DGV Scan 
rs7037117 Near TLR4 0.208 9 Potential GoldenGate 
rs4352264 Near EFEMP1 0.487 2 Potential GoldenGate 
rs1828283 CCL3L1 N/A 17 Documented Literature 
rs2220067 Near MRGPRX1 

 

 

0.518 11 Documented Literature 

 
rs917015 CCL16 

 

0.216 17 None DGV 
rs3789864 DEFB103A N/A 8 Documented Literature 
rs2477240 DEFA1B N/A X Documented Literature 
rs2373961 Near NOS3 0.372 7 Potential GoldenGate 
rs6703462 Factor 5 0.042 1 Potential GoldenGate 
 
The SNPs are listed by their Reference SNP ID, also known as an rs number.  If the SNP falls in or near a gene, it is 
listed in the gene column.  When available, the minor allele frequency (MAF) is given for the CEU HapMap sample 
set.  The CNV column lists if that SNP falls in a region of documented CNV from the literature, potential CNV 
identified in our GoldenGate assay or no CNV initially selected by a scan of the Database of Genomic Variants.  
 

Table 6.2:  Initial PCR Reaction Conditions for each SNP 

SNP Annealing  

 

MgCl2 

 

Alleles 
 Temp Concentration  
rs2271072 60 0.6 uL of 25mM C/G (rev) 
rs7037117 60 0.6 uL of 25mM A/G (fwd) 
rs4352264 60 0.6 uL of 25mM C/T (fwd) 
rs1828283 60 0.6 uL of 25mM C/G (fwd) 
rs2220067 58 0.6 uL of 25mM C/T (fwd) 
rs917015 60 0.6 uL of 25mM A/G (fwd) 
rs3789864 60 0.6 uL of 25mM A/G (fwd) 
rs2477240 60 0.8 uL of 25mM A/G (fwd) 

 

6.1.3 Fluorescence Polarization 

Genotyping using this method involves first amplifying a region of 300-500bp surrounding the 

SNP by standard PCR, as per Section 3.3.2, in a total volume of 10uL. The light-sensitive nature 

of this approach requires the use of black PCR plates, such as the Eppendorf Twin-Tec 96 black 

well plate.  A list of optimal initial PCR conditions for each SNP can be found in Table 6.2. 
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Following successful PCR, excess primers and dNTPs are removed using our standard PCR 

clean up protocol described in Section 3.3.3.   Once a clean product is generated, the single base 

extension PCR step is performed utilizing: an internal primer that binds directly next to the SNP; 

GE Thermo Sequenase Polymerase (Affymetrix 78500 1KT /GE E79000Y); and 2 different 

fluorescent labeled chain-terminating dideoxynucleotides (ddNTPs) specific to each of the alleles 

of the SNP.  The mastermix for FP is shown in Table 6.3 while the cycling conditions are shown 

in Table 6.4. 

Table 6.3 : FP Reaction Mixture 

Reagent Concentration Volume per 
Sample (uL) 

Buffer 10X 1.0 
Internal Primer 10 uM 1.0 
Dye Mix Table 6.6 0.05 
Thermo Sequenase  4U/uL 0.05 
Sterile Distilled Water 7.90 

10 

Table 6.4:  FP PCR Cycling Conditions 

Step Temperature Time 

°C Min:Sec 
1 94.0 1:00 

2 94.0 0:10 

3 52.0 0:30 

Repeat Steps 2-3 40 times 

5 72.0 0:10 

6 10.0 hold 
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When both the forward and reverse internal primers are being tested at one time, the initial PCR 

and clean-up steps use double the volume, which is then split between two black well plates for 

the FP PCR step.  Depending on the genotype at the location of the SNP, one or both of the chain 

terminating bases will be incorporated for an individual by the Thermo Sequenase enzyme. FP 

discriminates the presence of an allele based on the incorporation of the its specific dye labeled 

ddNTP onto the internal primer, which allows the fluorophore to emit polarized light following 

excitation with polarized light.  When the fluorophore is attached to a larger mass, the primer in 

this case, it rotates slower than its relatively free spinning counterpart attached to only the 

ddNTP.  By exciting the PCR product with plane-polarized, the slower moving dye attached to 

the extension product will remain stationary enough to emit more polarized light than the faster 

rotating single bases that emits mostly depolarized light.  We used the LJL Analyst HT to excite 

and detect emissions for PerkinElmer ddNTPs attached to the fluorophores R110 and TAMRA 

(Table 6.5).   

 

Table 6.5:  FP Dideoxynucleotide-5'-Triphosphate Catalog Numbers 

  Catalog Number 
ddNTP R110 TAMRA  Unlabeled 
ddATP NEL494001EA NEL474001EA  77110 
ddCTP NEL493001EA NEL473001EA  77112 
ddGTP NEL495001EA NEL475001EA  77114 
ddTTP Use ddUTP  77116 
ddUTP NEL492001EA NEL472001EA  Use ddTTP 
 PerkinElmer  Affymetrix 
    (77126) 
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Table 6.6:  FP Dye Mixes for Single Base Extension 

Standard Dye Mix Chart  Recipe for 1:16 Dye Mix 
   G/T Example 

SNP Dye Combination  ddNTP Amount (uL) 
G/T R110 U/TAMRA G 

 

 0.1 mM ddCTP 16 
A/C R110 C/TAMRA A 

 

 0.1 mM ddATP 16 
A/G R110 A/TAMRA G 

 

 0.1 mM ddGTP 15 
C/T R110 U/TAMRA C 

 

 0.1 mM ddTTP 15 
G/C R110 C/TAMRA G 

 

 R110 ddUTP 1 
A/T R110 U/TAMRA A 

 

 Tamra ddGTP 1 
    64 

 

Emissions are detected in the parallel and perpendicular fields, which the Analyst HT uses to 

generate a ratio of these values that is then used to create a measure of polarization, expressed as 

an mP value.  When the different dyes for each allele are read, two different mP values are 

generated that are plotted against each other in a scatterplot with one dye along the x-axis and the 

other along the y-axis.  Individuals with a homozygous genotype will have a much larger mP 

value for one dye alone while those that are heterozygous will have large values for both dyes.  

When multiple samples are genotyped, the three possible genotypes will cluster together into 

groups on the scatterplot of mP values.   

6.1.4 Quantitative Analysis of Sanger Sequencing Genotypes 

Quantification of allele amounts for each SNP in this section (Aim3) of the study was performed 

by calculating the area of each allele at the position of the SNP using the perl script, polySNP.  

Two reference sequences were generated in a FASTA file containing each base of the SNP of 

interest centrally located in a 1kb span.  If other SNPs were present in the GenBank reference of 

this sequence, they were not represented, as we were only interested in gathering the area for the 
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SNPs analyzed in this Aim.  The standard script, as found on 

http://www.nybg.org/files/scientists/dlittle/polySNP.html, was used with the reference_file 

representing our FASTA reference sequence, the trace_file being an individual .ab1 sequencing 

file and the –p 0 option was selected to use PHRED for base calling and trimming the sequence 

along with determining the peak area measurement.  As have not calculated a standard curve for 

our sequences, we left that option out.  Because we were running multiple sequence files for 

analysis, we generated an additional script containing multiple polySNP usage scripts with one 

set up for each individual sequence run. 

 

 polySNP -r reference_file -t trace_file [-s standard_curve_file] [-l] [-a] [-p 0|1|2|3] [-c 0.XX]  

 

6.1.5 CNV Analysis  

We quantified CNV using NanoString Technologies as described in the main methods section on 

page 41).  As reference samples with known copies were only available for our DEFB103 probe, 

we generated only relative amounts of CNV to the sample used as a reference rather than 

absolute for all the other probes. 
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6.2 AIM 3 RESULTS 

The initial method for SNP selection involved screening the first version of the Database of 

Genomic Variants (DGV) for genes possibly associated to lipid metabolism, located in regions of 

CNV and containing a high frequency SNP (Minor Allele Frequency >0.05).  However, the early 

version of the DGV often lacked complete records for each CNV, missing key data such as 

frequency and sample size.  Because of this, our initial method for identifying SNPs to analyze 

the effect of CNV on their genotyping was not as successful as anticipated.  One such example 

was rs2221072 located in the FABP3 gene.  Within the DGV this gene fell in a block of complex 

variation (Figure 6.1) but lacked adequate frequency data. 

 

 

Figure 6.1:  Copy Number Variation illustrated on Database of Genomic Variants 

 

Upon testing the FP primer set for this SNP, we failed to see any interference impacting the 

ability to genotype and instead observed one of the better group separation patterns.  This clean 

genotyping was further confirmed by sequencing and TaqMan SNP genotyping assays, while 

TaqMan CNV assays and NanoString confirmed lack of CNV, allowing us to use this SNP as 
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negative control for CNV (Figure 6.3).  Because this screening method of identifying SNPs was 

dependent on the completeness of the data in the DGV, we focused more on SNPs that formed 

more than 3 distinct groups on our custom Illumina GoldenGate assay, together with genes and 

regions containing CNV documented in the literature (Table 6.1).  

6.2.1 GoldenGate SNPs 

We began by investigating a small number of SNPs (rs7037117, rs4352264, rs2373961, 

rs6703462) from the GoldenGate assay.  These particular SNPs proved difficult to call due to 

formation of multiple subgroups during genotype calling.  Upon analysis with FP, we observed a 

small amount of noise between genotype groups for the majority of SNPs but not the extent seen 

for the GoldenGate.  As we used the same whole-genome amplified samples as those analyzed 

with the Illumina assay, DNA variation should not play a role in the difference seen for any of 

these SNPs analyzed.  

 

Because we were concerned with identifying SNPs that could demonstrate how CNV affects 

SNP genotyping, we further investigated the two GoldenGate SNPs (rs4352264 & rs7037117) 

that had the most promising FP results.  We also compared two assays for rs2373961 as its Real-

Time PCR SNP genotyping assay was available from ABI.  Of the SNPs analyzed, rs7037117 

was observed to have multiple subgroupings in FP analysis (Figure 6.3).  It also had reduced 

separation for the “A” allele where individuals who were homozygous had more signal for the 

“G” allele than what was expected as background noise alone.  This is readily seen in plots from 

individual plates but is obscured when combining the separate reads from multiple plates into 

one plot.  This increase of “G” allele signal was also observed in the TaqMan SNP genotyping 
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assay for rs7037117. The other SNP, rs4352264, while not having the extent of variation similar 

to that of rs7037117, had a wider spread around each of its genotype groups as well as some 

scatter along the G allele axis (Figure 6.2).   

 

When these two SNPs were analyzed using sequencing, the apparent noise from both FP and the 

GoldenGate was not visible (data not shown).  Each of the alleles had clean peaks of equal size 

suggesting equal amounts of each allele.  When the regions around these SNPs were analyzed for 

CNV using a TaqMan CNV assay as well as NanoString technologies, a range of copies was not 

observed, but rather the vast majority of samples contained only 2 copies.  The SNP rs2373961 

also failed to replicate the noise observed during the GoldenGate assay as the plots for both FP 

and TaqMan SNP assays had clear separation between the genotype groups.  Therefore the issues 

with the genotyping assays for these SNPs are likely to be within the assays themselves.  This 

could be due to other SNPs located within the primer and probe binding sites, the GC content of 

the binding sites, specificity of the primers and probes as well as their ability to not form 

hairpins.  And in the case of a multiplex assay such as the GoldenGate, there is also the 

possibility of probe to probe interaction that could reduce the quantity of probe available for 

binding the genomic sequence.  
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The left column of plots were generated during analysis of the GoldenGate SNPs by the Illumina BeadStudio 
software.  Each plot is a different SNP with the clusters representing genotype groups.  Samples that were 
homozygous for either the wildtype or mutant alleles are shown in the red and blue sections while the heterozygous 
samples are observed in the purple.  These four SNPs were selected because they contained multiple subgroups 
within the heterozygous genotype.  The column of plots on the right are those same SNPs from the left but genotyped 
using Fluorescence Polarization.  Some of the SNPs still have unusual genotyping patterns but not to the extent of 
that seen in the GoldenGate assay.  
 

Figure 6.2:  GoldenGate SNPs Analyzed by Fluorescence Polarization 

 

102 



 

 

Plots for FP and SNP TaqMan are representative plates containing 96 samples.  The NanoString CNV plot contains 
384 samples.  When sequencing data was available, the plots were color-coded based on the genotype obtained 
during sequencing.  In some cases the alleles plotted for the FP or TaqMan will be the compliment to that of the 
sequencing results depending on if all the assays were typed on the forward or compliment strand of DNA. 
 

Figure 6.3:  SNP Genotype Analysis of GoldenGate SNPs 
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6.2.2 SNPs in Regions of Known CNV 

While some of the GoldenGate SNPs had unusual genotyping patterns, these patterns do not in 

fact represent CNV interference on SNP genotyping.  For this reason, we examined SNPs within 

genes and regions of known CNV.  These included SNPs within CCL3L1, DEFB103AB, and 

DEFA1, as well as a SNP known to fall in an area of CNV (rs2220067 located near MRGPRX1).  

We also added another CNV negative gene, CCL16, for comparison in addition to FABP3.  Use 

of these SNPs gave us an accurate view of the impact that a range of copies could have on SNP 

genotyping by FP.  Rather than having discrete clustering groups, SNPs within regions of CNV 

had a continuous spread of genotype calls from one group to the other.  This pattern was 

observed in the TaqMan SNP genotyping assays with individual samples locating to similar 

positions as seen for FP.  Figure 6.4 shows the range of genotypes present for the SNPs 

containing CNV while also illustrating the clear clustering for those without CNV.  

 

For some SNPs, such as rs3789864 and rs2477240, the continuous range of genotyping was less 

pronounced for one allele due to lower frequencies of the minor allele.  In the case of rs3789864, 

which was able to be designed for FP, sequencing and CNV through NanoString, production of a 

custom TaqMan Assay failed several times, potentially due to the lack of homozygous mutant 

individuals.  Because rs2477240 also had a MAF so low that the homozygous mutant allele 

group was missing as well, we opted to exclude this SNP from further study, as it was likely to 

generate similar problems with TaqMan.  Regardless of the frequency of the alleles, the  
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Plots for FP and SNP TaqMan are representative plates containing 96 samples.  The NanoString CNV plot contains 
384 samples.  When sequencing data was available, the plots were color-coded based on the genotype obtained 
during sequencing.  In some cases the alleles plotted for the FP or TaqMan will be the compliment to that of the 
sequencing results depending on if all the assays were typed on the forward or compliment strand of DNA.  The 
columns contain the assays while the rows show data for a single SNP. 
 

Figure 6.4:  SNP Genotyping Comparison by Assay and CNV Amount 
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continuous spread of alleles observed for SNPs in regions of CNV makes it impossible to 

determine a cutoff between groupings.  And if a cutoff were determined, giving a discrete label 

to this continuous occurrence of alleles would improperly call the actual genotype and any risk 

associated with it.  

 

Further confirmation that the heterozygous individuals identified outside of the discrete genotype 

cluster regions were indeed representative of a range of allele ratios resulting from CNV, rather 

than assay artifacts, was provided by Sanger sequencing.  SNPs present within regions of CNV 

were observed to have varying heights/areas of each allele at the SNP location relative to the 

amounts expected based on location in the genotyping plots.  An example of this is shown in 

Figure 6.5 for rs1828283 where select individuals along the continuous spread of alleles have 

their corresponding sequencing trace for that allele shown.  As points move from a homozygous 

genotype group to the heterozygous group, they are observed to gain more of their secondary 

allele as its peak at the location of the SNP increases in size.  Further illustration of this is shown 

in Figure 6.4 where the individuals are color-coded based on ratios of their sequenced genotypes 

as determined by polySNP.  To simplify the genotypes of those in CNV regions, the range 

between alleles was broken into subgroups for coding. 

106 



 

The FP data is plotted in the large section of the figure with representative sequencing trace files shown around the 
outer border.  As the location of a heterozygous sample shifts closer to the homozygous cluster, the ratio of alleles 
for that individual shift as well such that the peak for the allele seen in the homozygous cluster now becomes larger 
in size.  
 

Figure 6.5:  Direct Comparison of Sequencing Data to FP Scatterplot 

 

6.2.3 Other Assay Factors that can Influence SNP Genotyping 

While the results above illustrate an association between the noise observed while SNP 

genotyping in presence of CNV, we identified that some variation between runs of the same 

samples could occur due to altering aspects of the assays.  To determine if varying any of these 

parameters (DNA type, internal primer, dye mix, and type of polymerase) could lead to 

widespread genotyping problems, we tested the most easily altered aspects of our genotyping 
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assays focusing primarily on FP as it is the most easily altered assay.  First, reproducibility of the 

FP assay was tested by running two of the SNPs (rs1828283 & rs2220067) in triplicate.  The 

scatterplots for each of the runs as shown in Figure 6.6 were very similar with individuals 

remaining in nearly the same locations between runs.  Samples that did move stayed within the 

same genotype groupings and never jumped from one extreme to another.  Obviously it is not 

expected that each run would be an exact duplicate of others as this three step assay has room for 

slight variation between runs due to occurrences of evaporation, pipetting variation, differences 

between thermocyclers, and adjustments of the LJL Analyst parameters without our knowledge.  

Even so, FP performed consistently between runs.  During this analysis, we also tested two 

separate types of DNA for rs2220067 as we not only use genomic DNA samples in our lab but 

also DNA that is whole-genome amplified.  While it would be ideal to use genomic DNA for all 

assays, some of the samples available to us are limited due to the individual leaving the study 

either by choice or progression of illness.  Because the reduced availability of some samples, as 

well as low DNA concentrations, could have hindered our ability to run all the necessary assays, 

we performed whole genome amplification on those samples, as well as all of those in the cross 

section for continuity.  The comparison of DNA type for rs2220067 illustrated that genomic 

amplification slightly subdues the range seen for genomic DNA.  It does not alter the overall 

distribution but rather softens it causing groups to be more compact.   
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Columns represent each SNP/DNA used for the replicate runs while rows represent each of the triplicate runs for 
those SNPs.  Each point is an individual sample out of the 96 samples per run. 

 
Figure 6.6:  Replicate Runs of Individual SNP Assays 
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Along the rows of this plot are the SNPs while the columns represent DNA type.  Genomiphi samples are 
represented by the titles with “_Gphi” while genomic are represent by “_Genomic” 
 

Figure 6.7:  Impact of DNA Type on FP Genotyping Assay 

 

Because of this observation, we decided to test other SNPs and assays for DNA variation.  

Independent of assay type, the GenomiPhi DNA clustered tighter and had reduced amount of 

noise between clusters (Figure 6.6 & Figure 6.7). With this finding, it is key to use genomic 
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DNA, when available, for assays within regions of CNV as genomic amplification can 

marginally reduce the natural range of variation present. 

 

The next combination of assay conditions we wanted to compare was that of the FP internal 

primers and dye combinations.  Although only one primer is used in the single base extension 

assay, both the forward and reverse internal primers are generally manufactured, to identify the 

primer that provides the best separation for genotyping groups.  Because these primers anneal 

directly next to the SNP of interest on the DNA sequence, their design is limited to the ~50bp 

region around it.  If other SNPs are located within an internal primer sequence or the GC content 

is not ideal, these primers cannot be interchanged with ones that bind another location as their 3’ 

end needs to bind directly next to the SNP.  It is these inherent variations surrounding the SNP 

that often times lead to one of the internal primers failing to bind properly resulting in poor 

genotyping patterns.  When comparing different primer combinations, we observed mixed 

results.  Often, one primer would generate clearer results than the other, but this varied 

depending on the SNP.  For instance, in Figure 6.8, the separation for rs1828283 is relatively 

similar for the different primers but the spread of heterozygous individuals for the internal 

forward primer is tighter than that of the reverse.  In other cases, separation may be greatly 

reduced as in the case of rs7037117 where separation of genotype groups went from bad to 

undesirable when using different internal primers.  This is observed in the heterozygous group in 

the reverse primer assay where the homozygous individuals merge with the heterozygous making 

it impossible to call either of the individuals in those groups accurately. 
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Similarly, the different dye labeled dideoxynucleotide (ddNTP) combinations can yield varying 

results for genotyping plots.  That is why the standard ddNTP mixes (Table 6.6) used for FP 

consist of just one set of dye labeled bases for each type of SNP present.  These combinations 

were selected as they have consistently yielded the cleanest separation of genotype groups over 

many years of use.  While that kind of separation is key for a SNP containing equal amounts of 

alleles for their heterozygotes, it is not optimal for heterozygotes with a range of allele ratios.  

This was observed with the different dye mixes used for rs3789864 where the Normal dye-

labeled ddNTP mix merged all of the heterozygous individuals together despite a range of allele 

ratios (Figure 6.8).  When the reverse dye mix (alleles attached to R110 and TAMRA are 

opposite to those attached in the standard) is used, the degree of separation observed by 

sequencing is also seen in the FP.  We observed during this set of altered assay conditions that 

general methods for selecting clean genotyping results for normal SNPs are not suitable for 

selecting conditions for SNPs in regions of CNV.  While this presents the possibility of improper 

SNP genotyping, it can be countered by sequencing the samples with the same primers for the FP 

prior to selection of assay conditions.  This is because sequences of the FP regions when using 

the same amplicon PCR primers as those used in FP generates a consistent representation of the 

variation of alleles present. 
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In this plot, the different dye and primer runs are represented in the columns for each of the SNP runs represented 
in the rows.  Each point in the plots is color-coded based on its sequencing call.  Heterozygotes with uneven ratios 
are grouped into smaller subsets to better illustrate their ratio amount vs plot location.  When a reverse primer is 
used the complementing dye mix is also used.  This is why in some plots one group of homozygous individuals swaps 
places with another. 
 

Figure 6.8:  Ability of Altering Dye and Internal Primers to Hinder Ability to Genotype 
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Within this section of our study, we were able to show that when CNV is present it has a distinct 

impact on the ability to call a SNP properly, using the standard assumption that only 3 genotypes 

will be present.  While methods for SNP detection are still dependent on prior knowledge of the 

genome, use of any genotyping methods with probes based on reference genome sequences need 

to be scrutinized during initial design.  Performing multiple validations of the accuracy of the 

genotype calls is necessary as well as a method such as Sanger sequencing to validate the assay 

further.  While the presence of CNV will generally create more noise and less separation 

between the groups being genotyped, there is a chance that unknown limitations of the assay, 

such as variation due to use of different dye mixes, can negate the appearance of any noise, 

which in turn would result in failure to observe the true ratio of alleles present.  However, as 

whole genome sequencing technology is becoming more readily available, both SNP genotyping 

and CNV calls will be achieved in one assay as read depth of the sequencing would allow 

determination of CNV and also give amounts of each allele present for proper SNP genotyping. 
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7.0  DISCUSSION  

7.1 RCT GENE COPY NUMBER VARIATION 

 

The contribution of host genetic variation to the development of the CVD-associated side effects 

seen in response to antiretroviral therapy is still not fully understood. We have previously studied 

the roles of Biogeographical Ancestry[25], and of individual SNPs on this, but no studies have 

been done to date on the impact of quantitative genetic variation such as CNV on this process. 

To address this, we developed an MLPA assay, and used it to measure CNV in genes within the 

reverse cholesterol transport (RCT) pathway[29, 30]. As extreme HDL and LDL abnormalities 

are observed in only a subset of HIV-positive patients receiving anti-retroviral therapy and 

experiencing dyslipidemia[70], the susceptibility to these severe lipoprotein changes is likely to 

have a genetic component.  

 

While previous studies have already found an association between sequence variation in genes 

within, and influencing, the RCT pathway and lipoprotein levels, we theorized that CNV in the 

RCT pathway could play a role in these extreme lipoprotein phenotypes.  A region of duplication 

encompassing an entire gene and its regulatory regions has the capability to alter expression and 

protein levels in a manner directly proportional to the amount of copies present.  Such a 
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relationship is observed for the CCL3L1 and DEFB4 genes, where increases in gene products 

correspond to copies present for each gene up to a plateau point[39, 42].  Even though this type 

of variation has the potential to influence lipid metabolism, the available information on whole 

gene CNV in the genes of the RCT pathway is limited to a few select genes (LDLR, LPL, 

ABCA1, and LIPC) [43, 44].   

 

Data currently available within the Database of Genomic Variants[92] show a limited amount of 

rare CNV present for the RCT genes.  The documented CNV that is there consists primarily of 

insertions and deletions within the genes, rather than whole gene variation.  Thus, it is unlikely 

that CNV for these genes is common in the general population, but our strategy here was to 

combine a population-based screen with a focused investigation of individuals with extreme lipid 

phenotypes (strongly atheroprotective vs. strongly atherogenic). Our hypothesis was that CNV 

encompassing the full length of a RCT gene would result in an increased or decreased amount of 

transcribed protein product directly proportional to the amount of copies present, thus impacting 

serum cholesterol levels.  Further, we wished to investigate whether individuals with CNV in the 

central range would have normal lipid levels while those whose CNV was in the outermost edges 

of the range would have a dysregulated lipid metabolism leading to the extreme lipid profiles. 

 

Our results in this study identified apparent rare loss variants in 3 of the RCT genes.  Out of 267 

individuals and 16 genes studied with two different CNV assay procedures, CETP showed a loss 

in a single individual, and two genes (ABCA1 and APOA4) showed apparent copy number losses 

with MLPA. The loss of copy number seen for APOA4 was determined to be due to a SNP in the 

ligation site of its MLPA probe while the loss seen for ABCA1 is suspected to be not genuine as 
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its loss fell upon the threshold.  The small standard deviation seen, along with the reproducibility 

of the significant loss of signal during additional MLPA runs, indicates that the loss for the 

CETP probe was valid.  Coupled with the tight clustering around the normalized ratio of 1.0 for 

the non-outlying points of all of the RCT probes, these results strongly suggest that whole gene 

CNV is not present in the RCT genes at anything above very low levels, and is therefore not 

likely to be a major influence on lipid levels in either the normal population or those infected 

with HIV and receiving antiretroviral therapy. 

 

These findings are consistent with previous reports of limited structural variation in the RCT 

genes, as presented in the Database of Genomic Variants[50, 92].  Within this database, deletions 

that included whole genes were observed for CETP.  The ABCA1 gene was observed to have a 

wide variety of insertions and deletions within its bounds, including 5 losses in the region of our 

MLPA probe, although none of them encompass the entire gene.  All of these reported variants 

were extremely rare, with only a few individuals having the variant in studies containing several 

thousand participants.  For those with higher frequencies, the study sizes were too small to 

conclude that a common variant was observed.   

 

We also compared the ratios obtained with both CNV assays to gene expression data available 

for a subset of our samples.  None of the genes for which we had available CNV data showed 

variation in expression level. This further suggests that it is unlikely that significant CNV is 

present in these genes that might affect expression.  
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In this section of our study we were able to develop a sensitive MLPA assay that can accurately 

detect CNV when it is present.  Using this assay we have illustrated that whole gene CNV is 

present only at very low levels in the RCT genes, and is not a major factor in the development of 

HAART-associated dyslipidemia.  Thus, other host genetic influences exist and need to be 

identified before we are able to understand fully the ways in which host, viral, and therapeutic 

environmental factors interact to determine the outcome of antiretroviral therapy in HIV-positive 

individuals.  

7.2 TRANSCRIPTOME ASSOCIATED WITH LIPID LEVELS 

With the rapid advances made in whole genome sequencing platforms and the increased 

accessibility to whole exome sequencing among the scientific community, there is an increased 

interest to simultaneously examine expression profiles along with sequence variation.  As whole-

transcriptome assays simultaneously analyze expression levels of all transcripts in the human 

genome within a single experiment, they are prime candidates to be used in conjunction with 

exome sequencing.  While in theory this is practical, the execution of such a study can be 

problematic due to the starting material needed for transcriptome analysis.  As gene expression 

varies in a tissue-specific manner, studies, such as ours, examining lipid levels would require 

liver samples for expression analysis.  Unfortunately, such tissue samples are not readily 

available from the study population for various reasons; safety of the participants, desire not to 

donate, or unavailability due to deceased status.  For this reason, a surrogate source of RNA is 

needed.  As blood collection from study participants is easily obtained, lacks major risks and is 

not as impacted by donation denial, PBMCs within the serum are a suitable candidate for tissue 
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surrogates.  Studies have already illustrated that whole blood can serve as a suitable source for 

expression analysis in a variety of settings including investigating expression changes in 

cardiovascular disease.  Such investigations have resulted in identification of novel biomarkers 

and predictors of disease outcome.  Furthermore, expression analysis in leukocytes has identified 

differentially expressed genes involved in lipid metabolism and inflammatory response when 

investigating lipid levels. 

 

We aimed to determine if RNA derived from whole blood collected in a PAXgene tube would 

enable differential expression analysis among study participants with atherogenic and normal 

lipid profiles to be performed, to expand the existing expression analysis results present for 

cardiovascular disease in the MACS.   

 

Indeed, we were able to identify differentially expressed transcripts within whole blood for each 

of our comparisons prior to correction for multiple tests.  Once the p-values were adjusted, the 

significance of those transcripts dropped profoundly.  Despite this, we were still able to identify 

significant transcripts for comparisons involving infection status, CD8 counts, viral load, HDL-C 

and triglycerides.   

 

The resulting transcripts for comparisons among infection status generated numerous transcripts 

associated with immune response, which is as expected.  The most significantly associated 

transcripts were those of the CD8 isoforms.  As HIV-1 infection results in chronic immune 

activation and exhaustion of CD8 T-cells, an increase in CD8 expression in those infected with 

HIV when compared to uninfected controls is logical.  This increased expression is likely a 
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product of higher CD8 counts among the HIV infected as we were able to show that individuals 

with increased CD8 counts also were observed to have increases in the same CD8 isoforms 

differentially expressed in the HIV status comparison. Yet, it is still unclear what is behind the 

increased absolute counts of CD8 cells.  Increases of CD8 T-cells have been observed during the 

natural course of infection[93].  Additionally CD8 T-cells are also observed to have increased 

turnover, activation and proliferation[94, 95].  This could explain the increased expression 

observed.  However, therapy has been shown to reduce proliferation and result in the increase of 

CD4 T-cell counts for some[96].  But as the majority of our HIV-infected individuals had higher 

CD8 counts than the negatives, we have failed to confirm previous findings.  This could be due 

to use of absolute counts of CD8 T-cells rather than percentages or the CD4/CD8 ratio.  Because 

cellular composition of the serum is altered during infection, we may be observing higher CD8 

counts as a result of this.  Furthermore, as the CD4/CD8 ratio has been illustrated to be a 

predictor of higher morbidity and mortality[96], further analysis of our CD8 expression data in 

context of the CD4/CD8 ratios will determine if our increased CD8 expression is a marker for 

low CD4/CD8 ratio levels or merely representative of the amount of CD8 T-cells in the serum.  

 

When contrasting individuals with viral load and lack thereof, various transcripts related to 

immune response and regulation of viral replication within the host were observed.  Within the 

transcripts involved in immune response were various ones involved in the Type I interferon 

response.  Considering Type I interferons are antiviral immune modulating cytokines, the 

expression differences observed are feasible for follow up.  
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On the other hand, differentially expressed transcripts identified to be associated with lipid levels 

initially did not seem to have a direct connection to cardiovascular disease or the comparisons at 

hand.  Within the comparisons that gave us significant transcripts (HDL-C and Triglycerides), 

the top transcripts identified across all comparisons contain HDC, GATA2, SLC45A3 and 

CPA3.  HDC, the gene for histidine decarboxylase, was observed at the top transcript for HDL-C 

comparisons.  Initially, the catalytic enzyme of histamine synthesis does not appear to be 

associated with lipid metabolism or CVD risk but closer scrutiny of the literature reveals the role 

of histamine in atherosclerosis.   

 

Levels of HDC have been shown to increase in the aorta during atherosclerosis progression.[97]  

Also, histamine has been shown to be produced by HDC expressing cells that can be found in 

atherosclerotic lesions including mast cells, foam cells, monocytes/macrophages and T-cells [98-

100].  Histamine levels have also been observed to be increased in individuals with stable 

coronary artery disease and acute coronary syndrome[101].  Additionally, increased incidence of 

atherosclerosis among those likely to have elevated levels of histamine (sufferers of common 

allergies and asthma) has been observed in epidemiological studies[102-104].  These previous 

findings illustrate a strong association between histamine and atherosclerosis. 

 

There are 4 membrane receptors for histamine of which the H1 (HH1R) and H2 (HH2R) are 

expressed on aortic vessels[105].  HH1R has also been observed to be expressed on vascular 

endothelial cells, foam cells and smooth muscle cells in atherosclerotic lesions[106].  And 

signaling through this receptor has been shown to cause smooth muscle proliferation as well as 
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increased vascular permeability[105, 107]. These two actions are key factors in progression of 

atherosclerosis and indicate the extent to which histamine can influence that progression. 

 

However, various studies involving mouse models have illustrated that the impact of HDC and 

histamine on atherosclerotic lesions can be altered.  Knockout out studies involving two different 

methods of inducing atherosclerosis (physically induced vascular injuries or hyperlipidemia-

induced) found that knocking out HDC resulted in a reduction of atherosclerotic lesions.  For the 

physically induced atherosclerosis, mice with carotid ligations were observed to have increased 

HDC expression in those arteries in comparison to non-ligated arteries[105].  They also were 

observed to have thicker intimas with markers for smooth muscle cells and macrophages as well 

as increased levels of histamine indicating active plaque formation.  The HDC knockout mice on 

the other hand were observed to have decreased intima thickness in comparison to wildtype.  

This phenomenon could be reversed when HDC knockout mice received wild type bone marrow 

transplants.  During the hyperlipidemia-induced atherosclerosis, double knockout mice were 

used (APOE-/- and HDC-/-) [100].  Within the APOE knockout mice, serum histamine levels 

were increased as well as expression of HDC and the histamine H1 and H2 receptors at the site 

of the atherosclerotic lesions.  Double knockout mice had no such increases and also were 

observed to have smaller lesion areas despite having high serum cholesterol levels.  They also 

were observed to have high HDL levels in comparison to controls.  These two studies together 

illustrate that HDC and histamine together are associated with atherosclerotic lesions. 

 

Yet another study illustrated that the histamine H1 receptor promotes atherosclerotic lesion 

formation.  This study utilized the APOE knockout mice and treated them with HH1R or HH2R 

122 



antagonists while feeding a high cholesterol diet to observe that inhibiting the H1 receptor 

resulted in fewer atherosclerotic lesions.  This inhibition went from 40% to 60% when they 

created a double knockout (APOE-/- and HH1R-/-).  And when the double knockout received a 

bone marrow transplantation from an APOE knockout mouse, the amount of lesions remained 

reduced indicating that the H1 receptor present on the vascular cells is needed to promote 

atherosclerosis.  They also found that the H1 receptor was associated with increased aortic 

inflammation and permeability[108].  From these combined mouse models and human studies 

findings, evidence suggests that HDC, histamine and the H1 receptor are equally important in the 

etiology of atherosclerotic lesions. 

 

In addition to all of the literature on histamine, the 2010 Dietary, Lifestyle, and Genetic 

determinants of Obesity and Metabolic syndrome (DILGOM) study by the Wellcome Trust 

identified the same transcripts (HDC, CPA3, GATA2, and SLC45A3) as some of their top 

associations with Triglycerides, HDL-C and APOB.  To account for differences in expression 

due to variable amounts of cell types in the whole blood, they added already identified cell 

specific covariates into their model and the transcripts remained equally as significant[109].  As 

these findings were present in a population not infected with HIV-1, this would suggest that our 

top differentially expressed transcripts are relevant to the larger population of individuals with 

cardiovascular disease.  It also serves to validate our findings for further follow up studies on 

these transcripts within the HIV-1 infected population currently receiving therapy. 

 

Based on the data in the literature, our identification of HDC as a top differentially expressed 

transcript associated with lipid levels further substantiates the potential role of histamine in 
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atherosclerosis.  As we compared only lipid values, this will need to be followed up by 

identifying if these transcripts are still significant among individuals with evidence of arterial 

thickening and advanced atherosclerosis.  

 

Within this section of the study as a whole, we have shown that whole blood is a valid surrogate 

for transcriptome analysis, as we identified numerous genes differentially expressed that were 

associated with HIV- infection and lipid levels.  While some of these initially did not have a 

direct link to the comparisons at hand, further investigation has led to connections that were 

previously unimaginable.  Follow up studies on the top transcripts may prove to find additional 

methods resulting in metabolic alterations that were not anticipated before this study. 

7.3 SNP GENOTYPING INTERFERENCE BY CNV 

As the general public becomes more aware and interested in the impact of genetics on disease 

risk, testing platforms will crossover from the scientific to the commercial market.  This means 

that individuals with very little scientific background will view reports indicating risk associated 

with their genetic makeup.  As laypersons to such scientific reports, there is the likelihood that 

the results will often be over interpreted as not a possible risk but as a definite conclusion that the 

disease outcome will occur. 

 

Such scenarios have already begun to play out involving the 23andme genetic testing service that 

not only provided ancestry reports but also health reports indicating if the individual tested had 

mutations (SNPs in this case) associated with certain disease outcomes.  Due to the apparent 
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medical nature of these reports, the FDA mandated the cessation of generation of the reports.  

But, this brings up a valid concern regarding the use of single nucleotide polymorphisms as risk 

factors for clinical outcomes.   

 

The use of SNPs for clinical measures requires that detection of the variation is an accurate 

rendering of the actual variation present.  While this is feasible, there is the definite possibility 

that SNPs associated with risk fall within regions that are difficult to genotype (Alu repeats, high 

GC, regions of CNV).  If proper design measures are not taken when initially designing an assay, 

the results derived during SNP genotyping may not truly represent the inherent risk associated 

with a specific genotype of that SNP.  For instance, if a SNP falls within a region of copy 

number variation, the standard model of 3 equal genotypes expected for a SNP will no longer 

hold true.  Based on the number of copies present containing each allele, the genotypes will now 

include a range of subgroups for the heterozygous individuals based on proportion of each allele.  

Now an individual typed as a heterozygote based on the presence of both alleles will be 

inaccurately genotyped unless they have equal proportions of each allele.  Despite this, little is 

available in the literature involving the interaction of CNV with SNP genotyping, most likely 

because assays that fail to give clear results are often not developed despite high minor allele 

frequencies.  Such is the case for TaqMan assays for all of the SNPs in regions of CNV that we 

investigated.  While CNV assays were readily available, the SNPs of interest within those CNV 

assays were not.  Additionally, while designing the custom SNP genotyping assays through their 

service, some of those continued to fail their design procedures most likely due to the assay’s 

resulting data not meeting a minimum genotyping pattern.  For this reason, we intended to 

investigate if common single SNP genotyping assays would be able to identify the range of 
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variation expected in the presence of CNV or if such assays would mask the true variation 

present.   

 

In this section of our study, we illustrated that SNPs located within regions of CNV were likely 

to have genotyping patterns that made SNP genotypes difficult if not impossible to call.  This 

was apparent across two of the three genotyping platforms we used.  Sequencing alone continued 

to give clear genotyping calls because this method intrinsically involves evaluating each allele as 

opposed to genotyping patterns.  

 

We also observed that genotype patterns vary based on alteration of assay conditions when the 

genotyping method is FP.  In most cases the variations were minor, such as that seen with use of 

different types of DNA, but in other cases where internal primers or dye mixes were altered the 

consequences could completely change the conclusion.  For instance, in the case of rs3789864 

the original dye mix yielded two clean groups despite the SNP’s location within DEFB103 (a 

gene with well documented CNV).  When the reverse combination of dyes, where the base 

attached to R110 in the original mix is now swapped for the base attached to TAMRA originally 

and vice versa, the genotyping plot clearly shows the influence of CNV on the spread of 

genotypes.  Sequencing verified that the range of genotypes was authentic and that the dye mix 

was likely to blame.  As the standard dye mixes used for FP are combinations that were chosen 

because they yielded clean separation of groups when 3 genotypes were all that was expected, it 

is likely that other standard dye mixes could miss CNV interference as well. 
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From our observations, we recommend that when designing a single SNP genotyping assay, it is 

necessary to evaluate the region for CNV through websites such as the Database of Genomic 

Variants first.  Design should also encompass running the genotyping assay in conjunction with 

other SNP genotyping assays, preferably sequencing of the region, to verify that calls are 

properly determined.  And no longer should sequencing chromatographs that look noisy at the 

site of the SNP be ignored or disregarded as they may represent the actual genotype.  That being 

said, the trend for genome analysis is moving towards whole genome sequencing as it becomes 

more readily available to the scientific community.  This type of sequencing will negate having 

to run separate assays for CNV and SNP genotyping as the read depth of the sequence can be 

used to determine copy number and the sequence itself will indicate the SNPs present.  However 

what we found will still be valid, as these assays will allow investigators to identify SNPs of 

interest that will likely be followed up in a larger sample size using single SNP detection 

methods.  While these findings do not apply to SNPs within the RCT genes we studied, as those 

genes did not have CNV, they will still apply to other SNPs outside our area of focus. 
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7.4 SUMMATION 

Within this study we investigated the relationship between copy number variation (CNV) and 

dyslipidemia associated with antiretroviral therapy use among individuals infected with HIV-1.  

We began by designing a custom multiplex ligation dependent probe amplification assay for 16 

genes found within the reverse cholesterol transport pathway.  Our accurate assay identified an 

extremely rare deletion within the CETP gene for one person.  As none of the other genes varied 

from two copies, copy number variation of the reverse cholesterol transport pathway genes is not 

a factor in the lipid dysfunction observed during HAART therapy.  It is Instead those genetic 

variations already identified in genes of and influencing this pathway as well as variants yet to be 

identified outside of it that influence the functioning of cholesterol metabolism and serum lipid 

levels.   

 

To identify other possible factors that could play a role in lipid dysfunction, we analyzed the 

whole transcriptomes of individuals with lipid levels that fell within the extreme ends of the 

range.  In doing so, we identified 4 top transcripts (HDC, CPA3, GATA2, & SLC45A3) that 

were differentially expressed for both HDL-C and triglyceride comparisons.  The top transcript 

HDC, histadine decarboxylase, initially did not seem to be associated with lipid levels but further 

investigation of the literature led to the discovery that this gene and the product of its catalytic 

activity histamine have been extensively linked to atherosclerosis.  As HDC levels have been 

associated with progression of atherosclerosis in the general population, it is likely that a similar 
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association will be identified in those infected with HIV-1.  More research will have to be 

conducted on this gene in the MACS to determine if we identified a marker for increased risk of 

atherosclerosis in the HIV-infected population on therapy.  At the very least, we have found 

possible markers for serum HDL and triglyceride variation as changes in both were associated 

with expression differences in HDC and the other genes identified.  Additionally, this evidence 

indicates that the use of whole blood as a tissue surrogate is capable of identifying relevant genes 

for the analysis of lipid level variation.  This was further confirmed by the results from viral load 

comparisons yielding differentially expressed genes involved in viral life cycle control and 

immune response against HIV-1. 

 

We further examined the role of copy number variation within lipid metabolism by investigating 

how CNV can hinder the ability to genotype a single nucleotide polymorphism.  As over 50% of 

the genetic variation for altered HDL-C and LDL-C levels are associated with SNP haplotypes 

within the reverse cholesterol transport pathway, it stands to reason that at some point genetic 

testing to type these variants will be involved in therapy[30].  Had CNV been present within 

these genes, it had the possibility to alter the effectiveness of risk assessment using these 

haplotypes based on our study’s findings.   

 

We observed that when a gene falls within a region of CNV, SNP genotyping requires a different 

approach to accurately quantify the amount of each allele present.  When SNPs with no CNV 

were analyzed, three possible genotypes were present and clearly observed by plotting the data.  

The distinct groups of genotypes were lost when analyzing SNPs in the presence of CNV.  

Instead, we observed a spread of values for each allele of the SNP and were unable to identify 
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the edges of genotype groupings in the plotted data.  This was observed for all SNP genotyping 

assays excluding sequencing.  We also identified that within FP, altering assay conditions could 

result in loss of the ability to observe the range for each allele present in the CNV background.  

This would result in inaccurate genotyping for that individual and improper risk assessment.   

 

7.5 PUBLIC HEALTH SIGNIFICANCE 

Currently, the World Health Organization indicated that in 2013 approximately 35 million 

individuals across the globe were living with HIV-1.  As the incidence of new infections remain 

higher than the number of those dying of dying of AIDS, this number will continue to grow.  

And, with antiretroviral therapy becoming more available to regions of the world that originally 

had little access to therapy, the incidence of therapy related dyslipidemia will increase.  

Therefore it is important to identify genetic factors that make some individuals more likely to 

experience adverse lipid altering effects of antiviral therapy.   

In this study we identified that copy number variation of reverse cholesterol transport pathway 

genes does not play a role in the dyslipidemia associated with antiretroviral therapy.  In doing so, 

focus is redirected towards the already identified variants within and influencing the RCT 

pathway along with other unknown variants yet to be identified. 

 

During our transcriptome analysis, we identified a few genes whose expression levels could 

serve as potential markers for HDL and Triglyceride levels.  In particular, HDC shows the most 

promise due to its extensive role in atherosclerosis in the general population.  If further 
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investigation indicates an association between HDC gene expression and progression of 

atherosclerosis in the HIV-infected population then monitoring levels of this gene will allow 

physicians to alter treatment plans to reduce plaque buildup before it results in clinical 

manifestations.  Depending on the future identification of how these genes play a role in lipid 

metabolism, it is possible that we have identified future targets of therapy for HIV-1 infected 

individuals with dyslipidemia. 

 

In addition to typing the amount of CNV among the reverse cholesterol transport pathway genes, 

we also illustrated that copy number variation can inhibit the ability to properly genotype a 

single nucleotide polymorphism.  With the growing interest of genetics among the general 

population and the increased use of polymorphisms for commercially available genetic testing 

products such as 23 and me, it is paramount that SNP testing is accurate.  When a researcher or 

clinician (In the next 10yrs we will see genotyping in the medical sector.) is unaware that the 

SNP(s) they are typing falls within a block of CNV, they are likely to genotype the individuals 

tested into three distinct genotype groups rather the range of genotypes are present.  In doing so, 

overestimations will cause undue anxiety for some patients while underestimations will give the 

false sense of security to those that need to pay closer attention to their condition.  Basically, if 

the SNP genotyping being performed for risk assessment is not accurate then the test in general 

is irrelevant for the patient.  However with more accurate SNP genotyping in place, physicians 

and patients may be able to identify risk factors early enough to alter the patient’s lifestyle and 

treatment plan to prevent the unwanted outcome. 
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APPENDIX: PRIMERS AND PROBES 

A.1 MLPA PROBE OLIGOS 

Oligo 
Size 
(nt) 

Sequence Name Sequence1 % 
GC 

Tm °C 
[50mM 
NaCl] 

5' 
Phosphoryl

-ation 
46 SRBI_LPO GGG TTC CCT AAG GGT TGG AAG TGG 

CCG TCT TGG GCT GGG CGT GTC T 
63 74 N/A 

50 SRBI_RPO TCC TGC CTT CAC ACC ACT CGG CCC 
CAA TCT AGA TTG GAT CTT GCT GGC AC 

56 72 In lab 

48 APOC3_LPO GGG TTC CCT AAG GGT TGG AGA AGC 
ACG CCA CCA AGA CCG CCA AGG ATG 

60 73 N/A 

52 APOC3_RPO CAC TGA GCA GCG TGC AGG AGT CCC 
AGG TGT CTA GAT TGG ATC TTG CTG 
GCA C 

58 72 In lab 

50 APOA1_LPO GGG TTC CCT AAG GGT TGG AGG CGG 
GGC AGG GGT GTT GGT TGA GAG TGT 
AC 

62 73 N/A 

54 APOA1_RPO /5Phos/TGG AAA TGC TAG GCC ACT GCA 
CCT CCG CGG ATC TAG ATT GGA TCT 
TGC TGG CAC 

56 72 IDT 

54 APOE_LPO GGG TTC CCT AAG GGT TGG ACA GGA 
AGA TGA AGG TTC TGT GGG CTG CGT 
TGC TGG 

57 72 N/A 

1 Contains oligo sequence only without the universal primer sequences that would be located at the 5’ end of the LPO and 
3’ end of the RPO. 
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58 APOE_RPO TCA CAT TCC TGG CAG GTA TGG GGG 
CGG GGC TTG CTT CTA GAT TGG ATC 
TTG CTG GCA C 

57 73 In lab 

56 PLTP_LPO GGG TTC CCT AAG GGT TGG AGA GTA 
GGA ATG CAG AGG GCG GAA GGG AGG 
GCA TCA GT 

59 73 N/A 

60 PLTP_RPO AAG CCG ATG GAT GTG GGG ATG CTC 
AGA GTG GGT TTG ATC TAG ATT GGA 
TCT TGC TGG CAC 

52 71 In lab 

58 LIPC_LPO GGG TTC CCT AAG GGT TGG ATC GGA 
GGC AGG TCC AGA GAC TTC GGT TCC 
TGG TGA TTT A 

55 72 N/A 

62 LIPC_RPO AAC AGC CCC TAG TCA AGA GCA TGG 
CAC ACA ACA GAT GTT TCT AGA TTG 
GAT CTT GCT GGC AC 

48 71 In lab 

60 LCAT_LPO GGG TTC CCT AAG GGT TGG AGA TGT 
GGT GAA CTG GAT GTG CTA CCG CAA 
GAC AGA GGA CTT 

53 72 N/A 

64 LCAT_RPO CTT CAC CAT CTG GCT GGA TCT CAA 
CAT GTT CCT ACC CCT TGT CTA GAT 
TGG ATC TTG CTG GCA C 

50 70 In lab 

64 APOA4_LPO GGG TTC CCT AAG GGT TGG AGG CGA 
GTG GTA TAC AAG CAG ACA AAG TCT 
TGC CGT GTA AAT GCC A 

52 72 N/A 

68 APOA4_RPO AAT GTA ACG TGG CCT CCT TGT GCC 
CTT CCC CAC AGT GCC CTC TTC TCT 
AGA TTG GAT CTT GCT GGC AC 

54 73 In lab 

66 LPL_LPO GGG TTC CCT AAG GGT TGG ACA AAA 
TAG CAG ATG TCA CTG AAG GAG AGC 
TCA GCG AGG GAG TGA TTG 

52 71 N/A 

70 LPL_RPO /5Phos/ATT AAT AGC TGT ATT GAA AGG 
TGG GAG TCA GGT ACG GGG GAA GAG 
CGT CTA GAT TGG ATC TTG CTG GCA C 

49 71 IDT 

68 LIPG_LPO GGG TTC CCT AAG GGT TGG AGA AAT 
GCC CAT GTA TGT GGA GCT AAG TGA 
GAC AGA GGG GTT GTC ATG CT 

51 72 N/A 
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72 LIPG_RPO TCA CTA TCC CCT TGT CCC ATG CTG 
CAA TCC GTT ATT TCA GAC GTG AGG 
ATC TAG ATT GGA TCT TGC TGG CAC 

49 71 In lab 

70 LDLR_LPO GGG TTC CCT AAG GGT TGG AGG CTT 
ACG TAC GAG ATG CAA GCA CTT AGG 
TGG CGG ATA GAC ACA GAC TAT A 

51 71 N/A 

74 LDLR_RPO GAT CAC TCA AGC CAA GAT GAA CGC 
AGA AAA CTG GTT GTG ACT AGG AGG 
AGG TCT AGA TTG GAT CTT GCT GGC AC 

49 71 In lab 

74 CETP_LPO GGG TTC CCT AAG GGT TGG ATC TCA 
CCA CCT CTG CTG GCA CTG GTT GTC 
TCT TGC ACA TGG CTC CTT ACA ATC AA 

53 73 N/A 

78 CETP_RPO AAT CAC ATC ATG CAA GTA ACG AGG 
GGG TAC ACA CGT GGT TTC CAC AGC 
TTA GGT ATC TAG ATT GGA TCT TGC 
TGG CAC 

47 71 In lab 

76 APOA5_LPO GGG TTC CCT AAG GGT TGG AGA GGA 
CGC CCG CTG CAG TCC CCA GAA TCA 
AAG GAT GAT GTG GCG CAT CTA TGT 
TTC T 

55 74 N/A 

80 APOA5_RPO /5Phos/TTG GAG AGT GTT GTA GGT CTG 
GAT TTG TAT GGG CAA TGT GTT TGT 
GCT TCG TGC GTG TCT AGA TTG GAT 
CTT GCT GGC AC 

48 72 IDT 

78 APOB_LPO GGG TTC CCT AAG GGT TGG AGA GCA 
AGG GTT CAC TGT TCC TGA AAT CAA 
GAC CAT CCT TGG GAC CAT GCC TGC 
CTT TGA 

53 73  

82 APOB_RPO /5Phos/AGT CAG TCT TCA GGC TCT TCA 
GAA AGC TAC CTT CCA GAC ACC TGA 
TTT TAT AGT CCC CCT CTA GAT TGG 
ATC TTG CTG GCA C 

48 71 IDT 

80 ABCA1_LPO GGG TTC CCT AAG GGT TGG ATT TCC 
AGA ACT TGG CTC CAG TCT GGT TGC 
TCG CCA TGA AGC ACT TAC AGA TAA 
ACC TCA TC 

50 72 N/A 

84 ABCA1_RPO TTG GGC CAG TGC TTC CAT TTA CTG 
TCT CCT TTT GGC TTG CTT ATC CTT CCT 
TCT GCC TTC TTC TAG ATT GGA TCT 
TGC TGG CAC 

48 72 In lab 

82 APOC2_LPO GGG TTC CCT AAG GGT TGG ACT GCC 
GTA CTT CCT CAT CTC CTA CGT GTG 
GAT GAT GAT ATT GTG CCC TGT GCA 
TGT TCT TCG T 

51 72 N/A 
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86 APOC2_RPO CAC CAA AAG TGC CTC TCT CAT AGA 
GCA GGT GAG AAC TCA GTG AGG AGA 
TGC AGG GAC ATG AGG TCT AGA TTG 
GAT CTT GCT GGC AC 

51 72 In lab 

57 DEFB103_RPO 
(MRC) 

/5Phos/CAG ATC GGC AAG TGC TCG ACG 
CGT GGC CGA AAA TTC TAG ATT GGA 
TCT TGC TGG CAC 

54 72 IDT 

43 DEFB103_LPO 
(MRC) 

GGG TTC CCT AAG GGT TGG ACT CAG 
CTG CCT TCC AAA GGA GGA A 

56 70 N/A 

50 CCR5_LPO GGG TTC CCT AAG GGT TGG ACA TTA 
CAC CTG CAG CTC TCA TTT TCC ATA CA 

48 69 N/A 

54 CCR5_RPO /5Phos/GTC AGT ATC AAT TCT GGA AGA 
ATT TCC AGA CTC TAG ATT GGA TCT 
TGC TGG CAC 

43 66 IDT 

62 CCR5_d32_RPO /5Phos/TTA AAG ATA GTC ATC TTG GGG 
CTG GTC CTG CCG CTG CTT TCT AGA 
TTG GAT CTT GCT GGC AC 

50 71 IDT 

 

135 



A.2 TAQMAN EXPRESSION AND SNP ASSAYS 

ABI Catalog # Gene/SNP Assay Type Custom 
Design Primers 

Hs00157914_m1 HDC Expression No N/A 

Hs00157019_m1 CPA3 Expression No N/A 

Hs00233520_m1 CD8A Expression No N/A 

Hs00174762_m1 CD8B Expression No N/A 

Hs01059118_m1 ABCA1 Expression No N/A 

4326317E GAPDH Expression No N/A 

C___3219470_10 rs2373961 SNP Genotyping No N/A 

C___29961120_10 rs7037117 SNP Genotyping No N/A 

N/A rs1828283 SNP Genotyping Yes See A.3 

N/A rs2220067 SNP Genotyping Yes See A.3 

C____1496696_1_ rs2221072 SNP Genotyping No N/A 

C___3275769_10 rs917015 SNP Genotyping No N/A 

C___3201533_10 rs4352264 SNP Genotyping No N/A 

Custom probe assays designed and made in our lab were mixed at a final concentration of 900nM primers and 
200nM probes 
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A.3 PCR PRIMERS 

SNP/Gene PCR  
Type 

Primer 
Type Primer Name Primer Sequence 

rs2220067 FP PCR F rs2220067_PF_new CAC CCA ATA CAG GAG CAC AC 

rs2220067 FP Internal 
R rs2220067 FP_R TGG TCA ATT TTA GAA GAA GTG CTA C 

rs2220067 FP Internal 
F rs2220067 FP_F GAG AAT ACA CAT TCT TCT CAG TGC C 

rs2220067 FP PCR R rs2220067 P_R TTG AAT GCA CTG TGG TCA GA 

rs2472240 FP PCR R rs2472240_PR_2 CCA ATC TGA CCT CTG ACT GTG GG 

rs2472240 FP PCR F rs2472240_PF_2 CAG CAA AGG AAA CAA TCA ACC G 

rs2472240 FP Internal 
F rs2472240_F_IF CAA AAA TCA AAC AAC CTG ATT GAA A 

rs2472240 FP Internal 
R rs2472240_F_IR AAA CCT ATT TAG GTC CTT GGT CTG T 

rs3789864 FP PCR F rs3789864_P_F_DEFB103 CAA TTC TCT GCC TCA GCC TC 

rs3789864 FP PCR R rs3789864_P_R_DEFB103 GGA CCA AGC AGG TTT GTT GT 

rs3789864 FP Internal 
F rs3789864_F_IF_DEFB103 TAC AGG TGC CCG CCA CTG TGC CCA G 

rs3789864 FP Internal 
R rs3789864_F_IR_DEFB103 CAT CTC TAC TAA AAA TAC AAA AAT T 

rs2373961 FP Internal 
F rs2373961 FP IF CTT TAC GGC AGG CTC AGC AGA AAA C 

rs2373961 FP Internal 
R rs2373961 FP IR TCT TGT CAC CTG GGC TGC CCT CCC T  

rs2373961 FP PCR F rs2373961 PCR F TAC TCA ATG CCT CCA GCC AGG TTG 

rs2373961 FP PCR R rs2373961 PCR R CAG AAA CTC CCA AAG GAA ATC CC 

rs4352264 FP Internal 
F FP_F_rs4352264 ACC GCT TGA AGT CAT GGA AAC AAG A 

rs4352264 FP Internal 
R FP_R_rs4352264 TTC ACA AAT AAA AGT TTA TTG TTGA 

137 



rs4352264 FP PCR F P_F_rs4352264 GCA ACC GCT TGA AGT CAT GG 

rs4352264 FP PCR R P_R_rs4352264 TGG GGC TTT AGG TTC TTG CAC 

rs7037117 FP Internal 
F FP_F_rs7037117 TCG GTT CCT TGA TCT TGT GTC TCC A 

rs7037117 FP Internal 
R FP_R_rs7037117 AGA TGT AAG AGA GAG AGC AAG TGA T 

rs7037117 FP PCR F P_F_rs7037117 TGG TTT AGT CTG GGC TGT TAG CG 

rs7037117 FP PCR R P_R_rs7037117 AAA AGT GAG AGT TTG GGA CCT GC 

rs2221072 FP PCR F FABP3 PCRF GGC TTG GCT GAA AGA GCA GTA GTA AT 

rs2221072 FP PCR R FABP3 PCRR TTC CCC AGA AAG GCA GTA GTG G-3' 

rs2221072 FP Internal 
R FABP3 FP IR TAG TTT GGG TCA AAG GCT GTG T 

rs2221072 FP Internal 
F FABP3 FP IF GTC TGG ACA CTG GGC CAC AGA G 

rs917015 FP PCR F CCL16_2_PCRf TGT TTT TAC CCC CAT AGA GCC C 

rs917015 FP PCR R CCL16_2_PCRr CCC ACC ATT TGT GTT TCA CTC C 

rs917015 FP Internal 
F CCL16_2_I_f CGG TTC CTT GGC AAG TGT GAA TAA C 

rs917015 FP Internal 
R CCL16_2_I_r GCT GAG TGT CAA CTA CAA ATG ACT T  

rs1828283 FP Internal 
F rs1828283 FP IF GAC CTA GGG TGA GCT GGA GAG TGA A 

rs1828283 FP Internal 
R rs1828283 FP IR TGC TTA CTT CCC AGT GGG GTC TGT T 

rs1828283 FP PCR R rs1828283 PCR R CCC GAA GAG AAA AGA AGG AAG TTC 

rs1828283 FP PCR F rs1828283 PCR F AGA GAA TAA GCC CGA GTC ACA GC 

rs6703462 FP PCR F P_F_rs6703462 AAG AAC ATA GGC TCT GGC ACC TC 

rs6703462 FP PCR R P_R_rs6703462 AAA AAA TCT CCC CTT GAC CCT G 

rs6703462 FP Internal 
F FP_IF_rs6703462 AGC AGA TTA GGG AAG GAA TAT AGG C 

rs6703462 FP Internal 
R FP_IR_rs6703462 CTC TGT ATC ATT CTC TAC ATT TCT T 
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APOA4 SEQ Reverse APOA4_R_SEQ CCT TCC CAA TCT CCT CCT TC 

APOA4 SEQ Forward APOA4_F_SEQ ACC TCA AAG TCC CAC CCT CT 

CETP SEQ Reverse CETP_R_SEQ TGG TGG TGT TTG TCT GTG GT 

CETP SEQ Forward CETP_F_SEQ CCC TGT CTT CCA CAG GTT GT 

SRBI SEQ Reverse SRBI_R_SEQ AGG GCC AAC TGT AGG GAC TT 

SRBI SEQ Forward SRBI_F_SEQ AGT GTG GGG ACT TAT GCC AG 

ABCA1 SEQ Reverse ABCA1_R_SEQ TCG AGG AAC TTT CAA GGC TG 

ABCA1 SEQ Forward ABCA1_F_SEQ CCA GCA ACA TAG GGG AGA AG 

rs1828283 TaqMan_ 
SNP Forward rs1828283_F_TM TAA GAC ATC CAA GGG ACA GG 

rs1828283 TaqMan_ 
SNP Reverse rs1828283_R_TM AGC CCC GAA GAG AAA AGA A 

rs1828283 TaqMan_ 
SNP Probe 1 rs1828283_ 1 probe 6FAMTGGAGAGTGAAGAACAGMGBNFQ 

rs1828283 TaqMan_ 
SNP Probe 2 rs 1828283 _2probe VICTGGAGAGTGAACAACAGMGBNFQ 

rs2220067 TaqMan_ 
SNP Forward rs2220067_F_TM TCC ACT CCA AAT TAG AGA ATA CAC ATT 

C 

rs2220067 TaqMan_ 
SNP Reverse rs2220067_R_TM TTG CAT TTG CTG AGA AGT GTT TTA C 

rs2220067 TaqMan_ 
SNP Probe 1 rs2220067 1 probe 6FAMTCTCAGTGCCATGT AGMGBNFQ 

rs2220067 TaqMan_ 
SNP Probe 2 rs2220067 2probe VICTCTCAGTGCCACGTAGMGBNFQ 
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