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ABSTRACT 

Background: GB virus type C (GBV-C) co-infection prolongs survival among Human 

Immunodeficiency Virus (HIV) infected individuals. Chronic immune activation is associated 

with HIV-1 disease progression. 

Objective: To investigate the effect of GBV-C coinfection and herpes virus reactivation on 

AIDS development in HIV-1 seroconverters. 

Methods: A total of 272 men HIV-1 seroconverters were included for the analysis. Cox 

proportional hazards (PH) regression models were employed to evaluate the effects of GBV-C 

and herpes viruses (CMV, EBV, HHV6, HHV8) on time from HIV-1 seroconversion to AIDS 

development. In addition, Gray’s piecewise constant time-varying coefficient (PC-TVC) model 

that accounts for varying covariate effects over time was employed to estimate the effects for the 

variables that did not follow PH assumption. 

Results: In Cox PH model analysis, GBV-C coinfection delayed AIDS development statistically 

significant in HIV-1 seroconverters. The log10 GBV-C RNA increase was associated with a 15% 

decrease in AIDS development, while the high HHV8 and CMV reactivation increased AIDS 

development respectively. The effects of HHV6 and EBV on AIDS development were not 

statistically significant. Using Gray PC-TVC model, GBV-C coinfection was associated with 
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University of Pittsburgh, 2014 
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delaying AIDS development, especially starting from year 3 of HIV-1 infection, then the hazard 

ratios decreased over time until 10 years, and kept in low level after 10 years of infection. HHV8 

reactivation increased the chance of AIDS development, especially after 3 years of HIV-1 

infection. The effect of CMV reactivation was constant with a hazard ratio of 1.38. In addition, 

two variables, age and baseline CD4+ T cell counts, which were not statistically significant in 

Cox PH regression model analysis, were statistically significant in Gray PC-TVC model. Similar 

to Cox PH analysis, the effects of HHV6 and EBV were not statistically significant either on 

AIDS development. 

Conclusion: GBV-C co-infection delayed HIV-1 disease progression. HHV8 and CMV 

accelerated AIDS development. The effects of HHV6 and EBV were not statistically significant 

on AIDS development. 

Public health importance: This study has important implications for investigating viral 

coinfections on AIDS development and providing alternative ideas to delay HIV disease 

progression. 
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1.0  INTRODUCTION 

Human immunodeficiency virus (HIV) is a lentivirus and responsible for causing 

acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the 

immune system allows life-threatening opportunistic infections and cancers to thrive. The 

average survival time after infection with HIV is estimated to be 9 to 11 years. The relationship 

of HIV load and CD4+ T cell counts over the  course of untreated HIV infection is shown in 

Figure 1 (1) (See Wikipedia, HIV, http:// http://en.wikipedia.org/wiki/HIV (as of Aug. 29, 2014, 

20:50 GMT).). 

                                    

                            CD4+ T cell count (cells per µL) 

                            HIV load per ml of plasma 

 
Figure 1. Relationship of HIV Load and CD4+ T Cell Counts over the Course of HIV Infection 

 

http://en.wikipedia.org/wiki/Lentivirus
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It is estimated that over 75 million people have become infected with HIV and 36 million 

have died due to their infection. GBV-C coinfection could be beneficial for HIV-1 positive 

people (2), but the effect of dynamic changes of GBV-C RNA level on AIDS development is 

unclear. Herpes virus reactivation is associated with chronic inflammation (3). There is no report 

about herpes virus reactivation on HIV-1 disease progression in a longitudinal cohort study. In 

this study we investigated the effect of herpes virus reactivation and GBV-C co-infection on 

AIDS development in HIV seroconverters in Multicenter AIDS Cohort Study (MACS). 

1.1 GB VIRUS TYPE C 

GB virus type C (GBV-C) belongs to the Flavivirus family (4). It has a single stranded 

positive RNA genome of about 9.3 kb and contains a single open reading frame (ORF) encoding 

two structural (E1 and E2) and five non-structural (NS2, NS3, NS4, NS5A, and NS5B) proteins 

(5). It is a nonpathogenic human virus and distributed worldwide. It may establish persistent 

infection without clinical symptoms or disease in either immunocompromised or healthy 

individuals (6). GBV-C replicates in classification determinant 4 (CD4)+ T cells and in vitro 

infection of lymphocytes with GBV-C before HIV-1 infection reduces the replication of HIV-1, 

suggesting a direct inhibitory effect of GBV-C on HIV (7). A meta-analysis of studies related to 

HIV infected subjects found that the mortality ratio decreased 0.59 for those with GBV-C 

coinfection (8). Studies reported biological effects of GBV-C, which induces an HIV-inhibitory 

cytokine profile, decreases T-cell activation, blocks interleukin 2-mediated CD4+ T-cell 

proliferation, and reduces expression of the HIV entry receptors C-C chemokine receptor type 5 

(CCR5) and C-X-C chemokine receptor type 4 (CXCR4) in vitro (7, 9, 10). Some studies about 
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HIV-1 positive people found a survival benefit of co-infection with GBV-C (2, 7, 11), but not all 

of them (12, 13). The interactive effect of GBV-C on HIV-1 need to be further investigated. 

1.2 HUMAN HERPES VIRUSES 

Herpesviridae is a large family of DNA viruses. The family name is derived from the 

Greek word herpein ("to creep"), referring to the latent, recurring infections typical of this group 

of viruses. Herpesviridae cause latent or lytic infections. Herpes viruses are known for their 

ability to establish lifelong infections by immune evasion by encoding a protein mimicking 

human interleukin 10 (hIL-10), by downregulation of pro-inflammatory cytokines IFN-γ, IL-

1α, GM-CSF, IL-6 and TNF-α and the Major Histocompatibility Complex II (MHC II) in 

infected cells by detaining the newly formed MHC in the endoplasmic reticulum (ER). The 

MHC cannot reach the cell surface and therefore cannot activate the T cell response (14-16).  

        There are 8 herpes virus types that infect humans: herpes simplex viruses 1 (HSV-1), herpes 

simplex viruses 2 (HSV-2), varicella-zoster virus (VZV), human herpes virus 7 (HHV7), 

Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpes virus 6 (HHV6), and human 

herpes virus 8 (HHV8).  HSV-1，HSV-2 and VZV are neuron tropic, HHV7 is detected in 

nearly 83% of the health volunteers (17). More than 90% of adults have been infected with at 

least one of the herpes viruses, and a latent form of the virus remains in most people (18, 19). 

Immune suppression is one of the most important factors related to herpes virus reactivation, and 

subsequently symptomatic infection(3). Because of the high prevalence of herpes virus infection, 

HIV-1 infected subjects are commonly co-infected with human herpes viruses. Due to CD4+ T 

cell depletion and immune deficiency resulted from HIV-1 infection, the reactivation of herpes 

http://en.wikipedia.org/wiki/Family_(biology)
http://en.wikipedia.org/wiki/DNA_virus
http://en.wiktionary.org/wiki/latent
http://en.wikipedia.org/wiki/Infection
http://en.wikipedia.org/wiki/Virus_latency
http://en.wikipedia.org/wiki/Lytic_cycle
http://en.wikipedia.org/wiki/Interleukin_10
http://en.wikipedia.org/wiki/IFN-%CE%B3
http://en.wikipedia.org/wiki/IL-1%CE%B1
http://en.wikipedia.org/wiki/IL-1%CE%B1
http://en.wikipedia.org/wiki/GM-CSF
http://en.wikipedia.org/wiki/Interleukin_6
http://en.wikipedia.org/wiki/TNF-%CE%B1
http://en.wikipedia.org/wiki/Major_Histocompatibility_Complex
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/T_cell
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virus infections often occurs and contributes to the chronic immune activation and inflammation 

that may drive the  HIV-1 disease progression (3, 20, 21). 

In this study, GBV-C, EBV, CMV, HHV-6, and HHV-8 loads were tested longitudinally 

in plasma to study the viral coinfections on the effects of HIV-1 disease progression. 

1.3 AIDS-DEFINING CLINICAL CONDITION 

AIDS-defining clinical condition is the terminology given to a list of diseases published 

by the United States government-run Centers for Disease Control and Prevention (CDC) that are 

associated with AIDS. A patient has AIDS if he or she is infected with HIV and has one of the 

followings:  a CD4+ T-cell count below 200 cells/µL; or  a CD4+ T-cell percentage of total 

lymphocytes of less than 15%; or has one of the defining illnesses(22). 
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2.0  STUDY OBJECTIVES AND HYPOTHESES 

2.1 STUDY POPULATION AND DESIGN 

The study population was selected from the participants in MACS which is ongoing in 

Baltimore, Chicago, Pittsburgh, and Los Angeles. At six-month intervals, HIV-related clinical 

status is assessed, an interviewer administered questionnaire is completed, and blood is obtained 

for analysis, including tests for HIV-1 sero-positivity, HIV-1 RNA levels and CD4+ T-cell 

counts. In this study, the subjects were followed from April 1984 to November 2013. For GBV-

C measurement, RNA was extracted from plasma and reverse transcriptase real time polymerase 

chain reaction (RT-PCR) assay was used to quantify GBV-C RNA load in blood plasma, which 

was conducted by Dr. Yue Chen’s lab at the Department of Infectious Diseases and 

Microbiology at the University of Pittsburgh. The reactivations of HHV8, HHV-6, CMV, EBV 

were also tested in the plasma by real-time PCR, which was conducted by Dr. Charles Rinaldo’s 

lab at the Department of Infectious Diseases and Microbiology at the University of Pittsburgh. 

The study was approved by the Institutional Review Board of the University of Pittsburgh. 

Plasma samples after HIV seroconversion and all subsequent available samples were tested for 

GBV-C RNA and herpes virus DNA in order to determine the effect of dynamic changes of viral 

coinfection on HIV-1 disease progression. To be included in this study, the date of HIV 

seronegative and the first visit at which he was seropositive) had to be known within a window 
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of 1.5 year. During this time period, CD4+ T cells and HIV load become relative stable after 

acute HIV infection(23). According to our data, herpes virus activation is not consistent and it is 

hard to impute the missing values. In this study, if more than half of the visiting data were 

missing, they were excluded for analysis. GBV-C loads were imputed as last observation carried 

forward (LOCF). Herpes virus reactivation ratio was presented as the ratio of herpes virus 

positive visits to the total visits tested per subject. The outcome was time from HIV-1 

seroconversion to AIDS diagnosis or censoring because of death, highly active antiretroviral 

therapy (HAART) or end of follow up. 

A total of 484 men in MACS who had documented HIV-1 seroconversion were tested for 

viral coinfections, 152 were excluded because first visit after HIV-1 seroconversion was more 

than 1.5 years, 60 subjects were excluded because more than half of the observations with GBV-

C or Herpes virus tests are missing. Total 272 men were left for analysis (Figure 2). 
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Figure 2. Selection Process of Subjects with HIV Seroconversion for the Evaluation of GBV-C and 

Herpes Virus Status 

 

The dependent variable was the time from HIV-1 seroconversion to the diagnosis of 

AIDS or censoring. The definition of event or censoring time: 

1. Patients with AIDS, not treated with HAART or HAART treatment after AIDS 

development: Middle time between AIDS diagnosis time and last AIDS free year – 

middle time of last HIV negative and first HIV positive (total 129 patients; 889 

observations) 

2. Patients with AIDS, treated with HAART before AIDS development:  

Time of HAART treatment- middle time point of last HIV negative and first HIV positive 

(total 19 patients; 158 observations) 

 

 

152 excluded because first visit after HIV-1 

seroconversion is more than 1.5 years 

484 patients with HIV-1 seroconversion 

332 remaining 

272 remaining 
60 excluded because more than half of GBV-C or herpes 

virus tests are missing  
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3. Patients without AIDS, were not treated with HAART and died because of other reasons:  

Time of death - middle time point of last HIV negative and first HIV positive 

(total 12 patient; 82 observations) 

4. Patients without AIDS, were not treated with HAART, and still alive: 

Last alive time- middle time point of last HIV negative and first HIV positive 

(total 12 patients; 78 observations); 

5. Patients without AIDS, were treated with HAART, and still alive: 

Time of HAART treatment- middle time point of last HIV negative and first HIV positive 

(total 97 patients; 930 observations) 

6. Patients without AIDS were treated with HAART and died:  

Time of HAART treatment- middle time point of last HIV negative and first HIV positive 

(total 3 patients; 43 observations) 

2.2 PREDICTOR VARIABLES 

The main independent variables of interest are GBV-C and human herpes virus (CMV, 

EBV, HHV6, HHV8) coinfections. GBV-C level was treated as continuous and time varying 

variable, and herpes viruses were presented as the ratio of test positive visits to the total visits per 

subject. The detection limits per reaction were shown in Table 1. Age at the time of 

seroconversion, baseline CD4+ T cell counts and HIV-1 load were analyzed as continuous 

variables. Race was treated as categorical form. 
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Table 1. Upper and Lower Detection Limits in Number of Quantities Per Reaction 

 
CMV EBV HHV6 HHV8 GBV-C 

Upper 

DL/reaction 500,000 650,000 500,000 400,000 190,000,000 

Lower 

DL/reaction 1 2.5 2 1.5 1,900 
        DL, Detection Limits 

2.3 RESEARCH HYPOTHESIS 

GBV-C coinfection during HIV-1 infection reduces the risk of AIDS development. 

Herpes virus reactivation, in contrast, is associated with an increased risk of AIDS development 

among HIV-1 positive persons. High CD4+ T cell counts and low HIV-1 load at initial HIV-1 

infection delay HIV disease progression.  

2.4 THE AIMS OF THE STUDY 

To explore the impact of GBV-C co-infection and herpes virus (CMV, EBV, HHV6, HHV8) 

reactivation during HIV-1 infection on AIDS development 

• Probability of survival from HIV-1 seroconversion to AIDS development assessed by 

Kaplan-Meier estimate  

• The effects of univariate variables (GBV-C, CMV, EBV, HHV6, HHV8, age, baseline 

CD4 and HIV-1 viral load) on the duration from HIV-1 seroconversion to AIDS 

development 
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• The effects of herpes virus reactivation and dynamic changes of GBV-C load after HIV-1 

seroconversion on AIDS development adjusted for age, baseline CD4 and HIV-1 load 
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3.0  STATISTICAL METHODS 

3.1 DESCRIPTIVE STATISTICS  

The patients were categorized according to the events and censoring status. The 

frequency and proportion of each status were shown. For categorical variables, visit and race, the 

proportion of each category within each variable was assessed. For continuous variables (HHV8, 

HHV6, CMV and EBV reactivation ratio, log10GBV-C load), mean and standard deviation were 

evaluated. 

3.2 KAPLAN-MEIER SURVIVAL ESTIMATES 

The Kaplan-Meier product-limit method was used to estimate the probability of 

progression to AIDS from HIV-1 seroconversion at any follow-up time. The assumptions used in 

this analysis was patients whom were censored have the same survival prospects as those whom 

were followed. The survival probability Pt at any particular time interval [t, t+1) can be 

calculated using the formula below: 

Pt= (nt-dt)/nt=1- dt/n 

where nt is the number of patients alived at the beginning of the time interval [t, t+1) and 

therefore were at risk of progression to AIDS during this interval; dt is the number of patients 
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died in the time interval [t, t+1). Patients who have progressed to AIDS, died, dropped out, 

moved out; or lost in follow up during the interval [t, t+1) were considered being at risk (counted 

in the denominator) but being censored (not counted in the numerator) during this interval. The 

overall survival probability at time t then can be calculated using the product-limit formula 

S(t)=S(t −1)×Pt. Therefore, we have 

S(t)= Π(1- dt/nt) 

3.3 COX PROPORTIONAL HAZARDS MODEL 

The Cox proportional hazards (Cox PH) model is used to estimate the hazard ratio (HR) 

(24). According to the model with static explanatory variables X1, X2, … the hazard function at 

time t is as follows:  

h(t | X) = h0(t) exp(1X1 + 2X2 + ) 

where h0(t) is the unspecified baseline hazard function at time t and ’s are the unknown 

regression coefficients. Note that exp() is the hazard ratio when the corresponding covariate X 

increases by 1 unit. Univariable (unadjusted) and multivariable Cox PH models were used to 

determine the association between GBV-C infection and AIDS development. Hazard ratio, 95% 

confidence interval, and p value were estimated and calculated. The PH assumption was assessed 

using Gray’s test(25). 

  When the values of variables do not change over time or when variables are collected at 

only one time point, these variables are static variables. In this study, the GBV-C status was 

tested longitudinally for each patient and treated as a time-dependent covariate in fitting a Cox 

model. If a covariate is collected more than once during the study follow-up, treating it as a time-
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dependent covariate rather than the baseline static covariate in the model will result in a more 

robust estimate on covariate effect because this will utilize all information of this variable.  The 

model described below incorporates time‐dependent covariates Xα into the standard Cox PH 

model  

h(t | X) = h0(t) exp(αXα(t) + β1X1 + β2X2 + … …).  

The unknown regression parameters α and β’s are still estimated by maximizing the partial 

likelihood function and the unspecified baseline hazard function h0(t) is estimated via the 

Breslow or Efron estimates. For this study, the time-dependent covariates include GBV-C load, 

and time static variables include GBV-C load adjusting for herpes virus reactivation, baseline 

CD4+ T cell count, and baseline HIV-1 viral load. 

3.4 GRAY’S TIME-VARYING COEFFICIENTS MODEL 

When a covariate violates the PH assumption, the corresponding regression coefficient or 

the hazard ratio will change significantly over time. An alternative survival model, Gray’s 

piecewise constant time-varying coefficient (PC-TVC) model can be used to estimate time-

varying covariate effect that captures the dynamic changes of hazard ratio (24). Gray’s PC-TVC 

model(26) is more flexible in capturing the temporal dynamics of covariate effects, which allows 

for a departure from the PH assumption via introduction of time-varying regression coefficients. 

The model specifies the hazards with the following form 

h(t | X) = h0(t) exp(1(t)X1 + 2(t)X2 + ), 

where the time interval is partitioned into nonoverlapping subintervals {j: [τj−1, τj), j = 1, 2, …, 

M+1} and unknown regression coefficients (t) remain constant within each of the subinterval 
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[τj−1, τj) and will be estimated through maximizing the corresponding penalized partial 

likelihood function. 
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4.0  RESULTS 

4.1 SUMMARY STATISTICS 

According to the patient outcomes during the following up, they were categorized into six 

groups and shown in Table 2. 1) There were 129 (47.43%) patients developed AIDS without  

HAART (AIDS), the survival time is the difference of middle time between AIDS diagnosis time 

and last AIDS free year and middle time of last HIV negative and first HIV positive; 2) Nineteen 

patients developed AIDS and treated with HAART. HAART treatment was before AIDS (AIDS 

on_HAART), the survival time is the time of HAART treatment subtracting middle time point of 

last HIV negative and first HIV positive (total 19 patients; 158 observations); 3) Twelve subjects 

did not develop AIDS, were not treated with HAART, but died because of other reasons (death 

before AIDS), the survival time is last alive year subtracting middle time point of last HIV 

negative and first HIV positive (total 12 patients, 82 observations); 4) Twelve subjects who did 

not develop AIDS, were not treated with HAART and still alive (no event), the survival time is 

last alive year subtracting middle time point of last HIV negative and first HIV positive (12 

patients, 78 observations); 5) Ninety-seven subjects who did not develop AIDS, but treated with 

HAART (no_AIDS on_HAART), the survival time is the time of HAART treatment subtracting 

middle time point of last HIV negative and first HIV positive (97 patients, 930 obervations); 6）

Three subjects who did not develop AIDS, but treated with HAART and died (death 
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on_HAART). The survival time is the time of HAART treatment subtracting middle time point 

of last HIV negative and first HIV positive (3 patients; 43 observations). The patients in the first 

group (AIDS) were treated as event group and other groups were treated as censoring. The 

Kaplan-Meier plot showed the proportion of AIDS free subjects. The 50% time from HIV-1 

seroconversion to AIDS development was 8.9 years (Figure 3).  

Table 2. Categories of Events or Censoring 

                

         

All the 272 patients are included and the horizontal and vertical lines show the 50% survival time 

Figure 3. Kaplan-Meier Plot of Time from HIV-1 Seroconversion to AIDS Diagnosis 

According to the sample selection standards in method section, total 272 subjects were 

included for the analysis. The total visit distribution was shown in Table 3. There were 7 patients 
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who had only one visit and 2 patients with the maximum number of visit were 23. The median 

visit number is 6 per subject. 

Table 3. Distribution of Visit per Subject 

Visit Patients Percent(%） Cumulative (%) 

1 7 2.6 2.6 

2 13 4.8 7.4 

3 15 5.5 12.9 

4 21 7.7 20.6 

5 32 11.8 32.4 

6 21 7.7 40.1 

7 34 12.5 52.6 

8 22 8.1 60.7 

9 22 8.1 68.8 

10 17 6.3 75.0 

11 20 7.4 82.4 

12 9 3.3 85.7 

13 10 3.7 89.3 

14 9 3.3 92.7 

15 7 2.6 95.2 

16 1 0.4 95.6 

17 1 0.4 96.0 

18 2 0.7 96.7 

19 1 0.4 97.1 

20 2 0.7 97.8 

21 1 0.4 98.2 

22 3 1.1 99.3 

23 2 0.7 100.0 

Total 272 
 

100 

 

There were total five different ethnic groups, 233 (85.7%) of them were white non 

Hispanic (Table 4). So in the analysis, white non-hispanic was treated as one category and all 

other ethnic, white Hispanic, black non Hispanic, Asian or Pacific Islander and other were 

treated as another category. 
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Table 4. Distribution of Patients by Race 

Race      Patient number Percent (%) 

White-nonHispanic 233 85.7 

White-Hispanic 13 4.8 

Black-nonHispanic 24 8.8 

Asian/Pacific Islander 1 0.4 

Other 1 0.4 

Total       272 
 

The changes of log10 transformed GBV-C RNA load over time for all the patients are 

shown in Figure 4A. The mean viral load range was between 5.7 and 6.3 in the first 15 visits. 

The log10 transformed GBV-C RNA load changes for GBV-C RNA positive patients were shown 

in Figure 4B. The mean range of was between 8.2 and 9.3. The high GBV-C loads detected in 

plasma is consistent with Bhattarai’s report (27).  

 

          
 

 

 

 

 

 

 

 

 

 

 

A) Including all the patients, B) Patients who were GBV-C RNA positive. 

Figure 4. Changes of Mean Log10 GBV-C Load over Time after HIV-1 Seroconversion 
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Herpes virus reactivation was presented as the ratio of detectable viral load visits to the 

total visits per subject (Table 5). The mean reactivation ratio for EBV was 0.26, which was the 

highest among the four herpes viruses. The mean ratio for HHV8 and CMV was 0.12 and 0.16 

respectively. HHV6 had the lowest mean reactivation rate of 0.01.   

Table 5. Herpes Virus Reactivation Ratio 

Variable  N Mean SD  RP* (%) 

HHV8  272 0.12 0.2  40.4 

HHV6  272 0.01 0.1  3.3 

CMV  272 0.16 0.2  64.0 

EBV  272 0.26 0.3  75.7 

* RP, reactivation percentage 

4.2 RESULTS OF THE COX PROPORTIONAL HAZARDS MODEL 

The results of the Cox PH regression analysis were shown in Table 6. In the unadjusted 

analysis, the increase of GBV-C level was associated with a statistically significant reduction in 

AIDS development (HR = 0.83, 95% CI: .76–.90, p<0.001). HHV8 and CMV reactivation had a 

statistically significant increase in AIDS development (HR=1.18 and 1.32). The effect of HHV6 

and EBV were not statistically significant (p>0.05). Age and race were not statistically 

significant either. Baseline CD4+ T cell counts were in bounder line (p=0.05) and HIV-1 viral 

load was statistically significant (p<0.05, HR=1.65). In Cox PH regression analysis adjusting for 

baseline CD4 counts, HIV-1 load, age and race, the hazard ratio of AIDS development for GBV- 

C RNA load was 0.80 (95% CI: .0.77–.92). Similar to unadjusted analysis, HHV8 and CMV 

statistically significantly increased AIDS development and HHV6 and EBV did not statistically 

significantly increase the risk of AIDS development. In the final model, including all the 

variables which were significant in the univariable analysis and also variables age and CD4 
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counts which were presumed to be clinically important to fit the multivariable model. By 

adjusting for all other variables, GBV-C still statistically significantly delayed AIDS 

development and HHV8, CMV statistically significantly increased AIDS development (Table 6). 

Table 6. Cox PH Model Analysis to Estimate the Effect of Viral Coinfection on AIDS Development 

 
           + total nine univariate variable models 

           * total five models: GBV-C, HHV8, HHV6, CMV, EBV adjusted by age, race, baseline 

               CD4+ T cell count and baseline HIV viral load respectively 

           # one multiple variable model, adjusted by all the variables except for race 

4.3 POWER ANALYSIS 

Based on n=272, 47.47% events (developed AIDS), 80% power and type I error of 0.05, the 

detected standardized hazard ratio (value-mean/sd) is 1.32.  

4.4 DIAGNOSIS OF COX PH MODEL 

To assess the overall goodness of fit of a Cox PH regression model, the cumulative observed 

versus the cumulative expected number of events for subjects with observed (not censored) survival 

times were plotted. If the model fit is adequate, then the points should follow a 45-degree line 
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beginning at the origin (28). The cumulative hazard plot of the Cox-Snell residuals for the final Cox 

PH model was shown in Figure 5. The hazard function was reasonably straight line that has zero 

interception. It approximates the 45-degree line very closely except for very large values of time. The 

model is lack of fit especially in the later time points. The fitted final model could be used to test the 

variable effects on AIDS development but it is not appropriate to do prediction. 

 

 

Figure 5. Coxsnell Residual Plot for Overall Goodness of Fit 

4.5 GRAY’S TIME-VARYING COEFFICIENTS MODEL 

Cox PH models assume that the hazard ratio is constant over time. By definition, the Cox 

model is constrained to follow this assumption. It is important to evaluate its validity. The tests 

of PH assumption were evaluated using Gray’s test. In this situation, covariate effects are not 

constant over time, an alternative survival model that accounts for varying covariate effects 

should be used. We choose Gray’s piecewise constant time-varying coefficient (PC-TVC) model 

to reanalyze the data. In this study the effect of HHV8, CD4 count and age were not constant, 
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also we are interested in effect of GBV-C load over time. So, we employed PC-TVC to evaluate 

the spline effects of these variables together with linear effect variables, CMV, EBV, HHV6, 

HIV RNA load on AIDS development. The influences of GBV-C load was not statistically 

significant in the first 3 years after HIV infection, then the hazard ratios decreased over time till  

year 10, and kept in low level after 10 years of infection (Figure 6A). The effects of HHV8 was 

not statistically significant in the first 3 years after HIV infection, then the hazard ratio increased 

over time till  year 7, and decreased afterwards but still higher than the first 3 years of initial HIV 

infection (Figure 6B). Age increased the chance of AIDS development in the first 7 years after 

HIV seroconversion, but it decreased in the later time of HIV infection (Figure 6C). CD4+ T cell 

counts were associated with decreasing the possibility of AIDS development in the first 6 years 

after HIV seroconversion, and the effect become not distinct in later time of HIV infection 

(Figure 6D). The effects of the variables in the analysis were shown in Table 6 and Table 7. The 

effects of the four variables, GBV-C load, HHV8, age, CD4+ T cell counts on AIDS 

development which did not adhere to PH assumptions were statistically significant (Table 7). 

The effects of variables that adhered to PH were shown in Table 8. CMV reactivation ratio was 

associated with higher ratio of AIDS development (HR=1.38, p<0.01). The effect of EBV and 

HHV6 were not statistically significant. Baseline HIV-1 load was associate with increased AIDS 

development (p<0.01) 
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Log Hazard Ratio (black solid lines), 95% Confidence Intervals (shaded areas). The green line is the fitted   

line. The black dash line is a reference line.with a hazard ratio of 1. A) the effect of GBV-C level; B) the  

effect of HHV8 reactivation ratio; C) the effect of age; D) the effect of CD4+ T cell counts 

 

Figure 6. Hazard Ratio Change for Time Varying Covariate Effects from Gray PC-TVC model 
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 Table 7. Gray’s Model Analysis for None Proportional Hazard Variables 

   
                  * Significance effect on AIDS development 

                   # proportional hazard ratio test   

  

 

 
Table 8. Gray’s Model Analysis for Proportional Hazard Variables 
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5.0  DISCUSSION 

Two models, Cox PH model and Gray’s PC-TVC model were employed to fit the study 

data. Analysis using both models got the similar results, GBV-C coinfection slowed AIDS 

development while HHV8 and CMV reactivation accelerated HIV disease progression. The 

effects of EBV and HHV6 were not statistically significant. Baseline HIV-1 level was also 

associated with HIV disease progression. Baseline CD4+ T cell count and age were statistically 

significant in acceleration of AIDS development in Gray’s PC-TVC model but not significant in 

Cox PH model. Furthermore, the effects of CD4+ T cell count and age on AIDS development 

varied over time after HIV seroconversion. Cox PH model provided the average estimates of 

coefficients, so it failed to capture the changes during the observation period. The Gray’s PC-

TVC model using piecewise constant penalized splines showed more details of how those effects 

change over time. 

This study provided strong evidence that GBV-C coinfection delays AIDS development 

in HIV-infected subjects. The effects were related to the length of HIV infection. This was a 

longitudinal designed study with controlling the duration of HIV infection and testing the 

dynamic change of GBV-C level. Previous studies of the influences of GBV-C coinfection on  

HIV disease progression that did not find a survival benefit tested only samples from patients 

with high CD4+ T-cell counts (13), whereas studies that did find a survival benefit involved 

subjects with a broad range of CD4+ T-cell counts(29, 30). This longitudinal study showed that 



GBV-C level in the first three years after HIV seroconversion was not statistically significantly 

related to AIDS development, whereas after three years of HIV seroconversion, the ratio of 

AIDS development decreased, supporting that the effects of GBV-C infection were related to the 

length of HIV infection. The mechanisms that GBV-C effects on HIV disease progression are 

inhibition of HIV replication (8), inducing an HIV-inhibitory cytokine profile, decreasing T-cell 

activation, blocking CD4 T-cell proliferation, and reducing co-receptor expression (7, 9, 10). 

Infection with herpes viruses is a lifelong condition, the viruses become permanently 

latent in the host. In immunocompromised individuals, such as those with HIV-1 infection, 

impaired immunity leads to more frequent and severe symptomatic or asymptomatic herpes virus 

reactivation. Some studies have shown that the shedding of herpes viruses occurs more 

frequently among those who are also infected with HIV-1 than herpes virus infected/HIV-1 

uninfected persons (31-33). Among HIV-1-infected persons, herpes virus shedding occurs more 

frequently and higher quantity among those with lower CD4 counts (32, 34, 35). So the 

frequency of herpes virus shedding may have an effect on AIDS development. Our results 

showed that CMV and HHV8 reactivation ratios were significantly related to AIDS 

development. The higher the frequency of CMV and HHV8 reactivation, the more chance of 

AIDS developed in HIV-1 infected subjects. HHV8 infection was associated AIDS relate tumor 

Kaposi sarcoma (KS) (36, 37). CMV was a major cause of morbidity and mortality in patients 

with AIDS in the United States (38, 39). During HIV-1 infection, there was significant activation 

of CMV-specific CD8+ T cells (40). Hence, sustained antigen mediated immune activation 

occurs in HIV-1-infected patients. The chronic immune activation and inflammation  are directly 

associated with HIV-1 disease progression (3). In this study, EBV, which had the highest ratio of 

reactivation, was not associated with AIDS development. Doisne et al. reported that EBV 
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specific CD8+ T cells were activated during primary HIV infection (41), but EBV level was not 

associated with brain lymphoma. Further study showed that a new EBV viral set point was 

reached early in HIV infection, high EBV load was already a normal situation early in HIV 

infection and was not related to a decrease in immune function over time (42). This may help to 

explain the lack of predictive value of EBV load for the occurrence of AIDS-related lymphoma, 

one of the defining illnesses of AIDS diagnosis.  

This is a longitudinal study, 272 subjects were followed up, and the longest followed up 

time is 23 years. The study analyzed the dynamic effect GBV-C level and herpes virus 

reactivation status. The limitation of this investigation was that possible selection bias. 152 

patients were excluded because the first visit after HIV-1 seroconversion is more than 1.5 years 

and 60 patients were excluded because more than half of the visit data are missing in the 

subjects. Another limitation was that because of the sample numbers we did not classify the 

AIDS diagnosis. Some of them were diagnosed with AIDS because of low CD4+ T cell counts, 

or opportunistic infections, and some patients were because of tumors, such as lymphoma or KS. 

As we know lymphoma and KS are closely related to herpes virus EBV and HHV8 infection. In 

addition, in order to fully determine the effects of herpes viruses and GBV-C coinfection on 

chronic immune activation and inflammation, biomarkers of immune activation and 

inflammations should be included in the analysis. 
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6.0  CONCLUSION 

High GBV-C level was related to delay AIDS development in HIV-1 infected 

individuals. The effects became statistically distinct after 3 years of HIV-1 seroconversion and 

the HR continuous decreased until 10 years and maintained in the low level afterwards. The 

increase of CMV and HHV8 reactivation ratio was related to accelerate AIDS development, 

while the effects of HHV6 and EBV on AIDS development were not significant.  
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7.0  PUBLIC HEALTH SIGNIFICANCE 

HIV-1 is a major contributor to the global burden of disease. In 2010, HIV-1 was the 

leading cause of disability adjusted life years worldwide for people aged 30–44 years, and the 

fifth leading cause for all ages(43). HAART has transformed HIV infection from a rapid disease 

into a chronic condition. The success of HAART therapy depends on patient adherence. The side 

effects of HAART therapy have led to many people discontinuing their therapy. GBV-C viremia 

is associated with delaying AIDS development. The use of GBV-C to slow HIV disease 

progression provides us an alternative idea without the associated difficulties with patient 

compliance and the side effect profile of HAART drugs. Chronic immune activation and 

inflammation are associated with HIV disease progression. Also, herpes virus infection is related 

to HIV transmission(44). So decreasing herpes virus reactivation and effective treatment could 

not only prevent HIV transmission, but also slow AIDS development. 
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