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Abstract

Background: TREM2 is a transmembrane receptor that is predominantly expressed by microglia in the central
nervous system. Rare variants in the TREM2 gene increase the risk for late-onset Alzheimer’s disease (AD). Soluble
TREM2 (sTREM2) resulting from shedding of the TREM2 ectodomain can be detected in the cerebrospinal fluid (CSF)
and is a surrogate measure of TREM2-mediated microglia function. CSF sTREM2 has been previously reported to
increase at different clinical stages of AD, however, alterations in relation to Amyloid β-peptide (Aβ) deposition or
additional pathological processes in the amyloid cascade (such as tau pathology or neurodegeneration) remain
unclear. In the current cross-sectional study, we employed the biomarker-based classification framework recently
proposed by the NIA-AA consensus guidelines, in combination with clinical staging, in order to examine the CSF
sTREM2 alterations at early asymptomatic and symptomatic stages of AD.

Methods: A cross-sectional study of 1027 participants of the Alzheimer’s Disease Imaging Initiative (ADNI) cohort,
including 43 subjects carrying TREM2 rare genetic variants, was conducted to measure CSF sTREM2 using a
previously validated enzyme-linked immunosorbent assay (ELISA). ADNI participants were classified following
the A/T/N framework, which we implemented based on the CSF levels of Aβ1-42 (A), phosphorylated tau (T)
and total tau as a marker of neurodegeneration (N), at different clinical stages defined by the clinical
dementia rating (CDR) score.

Results: CSF sTREM2 differed between TREM2 variants, whereas the p.R47H variant had higher CSF sTREM2,
p.L211P had lower CSF sTREM2 than non-carriers. We found that CSF sTREM2 increased in early symptomatic
stages of late-onset AD but, unexpectedly, we observed decreased CSF sTREM2 levels at the earliest asymptomatic
phase when only abnormal Aβ pathology (A+) but no tau pathology or neurodegeneration (TN-), is present.
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Conclusions: Aβ pathology (A) and tau pathology/neurodegeneration (TN) have differing associations with CSF
sTREM2. While tau-related neurodegeneration is associated with an increase in CSF sTREM2, Aβ pathology in
the absence of downstream tau-related neurodegeneration is associated with a decrease in CSF sTREM2.
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Background
The triggering receptor expressed on myeloid cells 2
(TREM2) is an innate immune receptor that is expressed
on the plasma membrane of microglia in the central ner-
vous system (CNS) [1]. TREM2 is involved in key func-
tions of microglia including phagocytosis, cytokine release,
lipid sensing and microglia proliferation and migration [2–
6]. TREM2 mutations strongly increase the risk of devel-
oping Alzheimer’s disease (AD) [7, 8] and other neurode-
generative diseases including frontotemporal dementia
(FTD), Parkinson’s disease and amyotrophic lateral scler-
osis [9–12]. Furthermore, homozygous loss-of-function
mutations in TREM2 are sufficient to cause Nasu-Hakola
disease (NHD) and FTD-like syndrome [13, 14]. Together,
this suggests that abnormal TREM2 function plays an es-
sential role across different neurodegenerative diseases.
TREM2 is a type-1 transmembrane protein that ma-

tures within the secretory pathway and its ectodomain is
shed at the plasma membrane [2, 15]. Soluble TREM2
(sTREM2) accumulates in conditioned media of cultured
cells and in biological fluids such as plasma and cerebro-
spinal fluid (CSF) [2, 16]. Shedding is mediated by
ADAM10 and 17 C-terminal to histidine 157 [2, 15, 17–
19]. Homozygous mutations causing NHD or FTD-like
syndrome (such as p.T66M) retain misfolded TREM2 in
the endoplasmic reticulum, preventing its maturation
and its cleavage on the plasma membrane. Patients bear-
ing these mutations have undetectable levels of sTREM2
in CSF and blood [2, 20, 21].
The fact that TREM2 is selectively expressed in micro-

glia in the CNS and is associated with AD and neurode-
generation, let us hypothesize that sTREM2 in CSF may
be a marker for microglia function and its response to
Aβ and tau pathology and neurodegeneration. Specific-
ally, sTREM2 may reflect the amount of signaling com-
petent TREM2 on the surface of activated microglia.
This idea is supported by the fact that the levels of
sTrem2 in the brain of an Aβ mouse model correlate
with TSPO small animal positron emission tomography
(μPET) signal [22], a marker of microglial activation, and
the fact that a knock-in mouse model bearing the Trem2
p.T66M mutation has decreased microglial activity [20].
We and others have previously reported changes in

the levels of CSF sTREM2 in AD compared to controls
[2, 21, 23–26]. Specifically, we found a disease-stage
dependent increase in CSF sTREM2 peaking within the
early symptomatic stages of late-onset AD [25]. In auto-
somal dominant AD (ADAD) assessed within the Dom-
inantly Inherited Alzheimer Network (DIAN) project
[26], we demonstrated that CSF sTREM2 was increased
in mutation carriers compared to non-carriers five years
before the estimated years from symptom onset (EYO),
but with a considerable delay after the development of
Aβ pathology, which emerged about 10-15 years earlier.
Together, these studies suggest a complex association of
CSF sTREM2 as a function of disease evolution, in
which CSF sTREM2 dynamically changes as disease pro-
gresses and reaches its highest levels between the later
asymptomatic and earlier symptomatic stages, when
neurodegeneration has already started.
An important unanswered question in this regard con-

cerns the association between CSF sTREM2 and primary
pathologies including Aβ and tau deposition, as well as
neurodegeneration during the course of AD. Therefore,
we used herein the biomarker-based A/T/N classifica-
tion system [27], which is the foundation of the recently
proposed 2018 NIA-AA research Framework [28]. This
classification system consists of three biomarker dimen-
sions including the assessment of Aβ pathology (A), tau
pathology (T), and neurodegeneration (N). In the
present study, we investigated CSF sTREM2 levels at dif-
ferent AD biomarker-defined groups following the A/T/
N classification and the clinical stage (as defined by the
clinical dementia rating score, CDR) in participants of
the well-characterized ADNI study. This approach
allowed us to test the two main aims of this study. First,
to assess the association of CSF sTREM2 with Aβ path-
ology and its downstream pathological processes (i.e. tau
pathology and neurodegeneration). Second, to assess the
changes on CSF sTREM2 that occur in the Alzheimer’s
continuum and hence replicate ours and others findings
in the ADNI cohort [23–26, 29].

Methods
ADNI Participants and study design
This is a cross-sectional study in which CSF sTREM2 was
measured in 1031 participants of the ADNI project.
Among them, 4 individuals did not have the AD core bio-
markers measurements and were further excluded from
the analysis, rendering a study sample of 1027 subjects.
The CSF sTREM2 measurements were uploaded to the
ADNI database (http://adni.loni.usc.edu) on 16/03/2018

http://adni.loni.usc.edu


Suárez-Calvet et al. Molecular Neurodegeneration            (2019) 14:1 Page 3 of 14
and the data used in this study was downloaded on 21/03/
2018. The ADNI project (http://www.loni.usc.edu/) is a
multicenter longitudinal study led by Principal Investiga-
tor Michael W Weiner with the main goal to develop and
validate biomarkers for subject selection and as surrogate
outcome measures in late-onset AD [30]. The institutional
review boards (IRB) of all participating centers approved
the procedures of the study and all participants or surro-
gates provided informed consent. Our local IRB (LMU)
also approved the study.
Clinical classification
In line with the recently published 2018 NIA-AA “re-
search framework” for the diagnosis of Alzheimer’s dis-
ease [28], we assigned each ADNI participant in a
group defined by its biomarker profile, as described by
the A/T/N scheme [27], coupled with its cognitive sta-
tus, as defined by the CDR score [31]. The A/T/N
scheme comprises 3 biomarker groups: “A” refers to ag-
gregated Aβ, “T” aggregated tau and “N” to neurode-
generation. Each biomarker group is binarizied in
negative (-) or positive (+) based on whether their bio-
markers are normal or abnormal. In the present study,
we assigned “A+” to those individuals that had a CSF
Aβ1-42 < 976.6 pg/ml, “T+” to those individuals with
P-tau181P > 21.8 pg/ml and “N+” to those individuals
with T-tau > 245 pg/ml. We merged the aggregated tau
(T) and neurodegeneration (N) groups in order to de-
crease the number of groups to be compared. TN nega-
tive (TN-) was defined as having both the aggregated
Table 1 Classification of ADNI participants based on the A/T/N fram

The ADNI participants were classified based on their clinical stage, as defined by th
framework. The A/T/N framework comprises 3 biomarker groups: A Aβ pathology b
biomarker status. Each of the biomarkers group have binarized into positive/abnorm
been merged to simplify the classification and TN- indicates that both T and N are
The numbers shown here are excluding the TREM2 mutation carriers and CSF sTREM
the mean).
The colour indicates the different groups used for comparisons in the main text. Healt
red and the suspected non-Alzheimer’s pathology (SNAP) group (n = 173) in green.
Bold text depicts the groups analysed when modelling the course of AD, namely 'h
and 'AD CDR = 1'
tau (T) and neurodegeneration (N) biomarkers in the
normal range (T- and N-, that is P-tau181P ≤ 21.8 pg/ml
and T-tau ≤ 245 pg/ml). Participants were classified as
TN positive (TN+) if either aggregated tau (T) or neu-
rodegeneration (N) were abnormal (T+ or N+, that is
P-tau181P > 21.8 pg/ml or T-tau > 245 pg/ml). Only
5.4% of the individuals of the total differed between the
T and N biomarkers groups.
The combination of the biomarker profile (A/T/N

scheme) and the clinical status (CDR) rendered 12
different groups that are displayed in Table 1. We
studied CSF sTREM2 in ADNI following two ap-
proaches. In a first one, we compared CSF sTREM2
between the different A/T/N categories within each
clinical stage. In a second one, we attempted to
model the course of AD with biomarker and
clinical-based groups, similar to what was proposed
by the 2011 NIA-AA criteria [32–34]. Thus, in this
second approach, we compared the ‘CDR = 0 A-/
TN-’ group (which corresponds to healthy controls)
with those biomarker-based groups that fall into the
Alzheimer’s continuum category, that is: ‘Preclinical
AD A+/TN-’, ‘Preclinical AD A+/TN+’, ‘AD CDR = 0.5’
and ‘AD CDR = 1’. Since our aim was to study the
Alzheimer's continuum, we excluded from this ana-
lysis those individuals that fall in the category of sus-
pected non-Alzheimer’s pathology (SNAP) [35–38]
and those symptomatic individuals (CDR > 0) that do
not have positive biomarkers for both Aβ deposition
(CSF Aβ1-42) and neurodegeneration/tau pathology
(T-tau or P-tau181P).
ework and clinical stage

e clinical dementia rating (CDR) score, and the biomarker-based A/T/N
iomarker status, T tau pathology biomarker status, and N neurodegeneration
al (+) or negative/normal according the biomarkers cutoffs. T and N have

normal and TN+ indicates that T and/or N are abnormal.
2 outliers (as defined as values 3 standard deviations above or below

hy controls (n = 122) are depicted in blue, the Alzheimer’s continuum (n = 459) in

ealthy controls', 'Preclinical AD A+/TN -', 'Preclinical AD A+/TN+', 'AD CDR = 0.5'

http://www.loni.usc.edu
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Alzheimer’s disease CSF core biomarkers and CSF sTREM2
measurements
In the present study, we used the AD CSF core bio-
markers measurements performed with the Elecsys®
total-tau CSF, the Elecsys® phosphotau(181P) CSF and
the Elecsys® β-amyloid(1–42) CSF immunoassays on a
cobas e 601 instrument [39, 40]. The data is available in
the ‘UPENNBIOMK9.csv’ file in the ADNI database.
These immunoassays are for investigational use only.
They are currently under development by Roche Diag-
nostics and not commercially available yet. The analyte
measuring ranges (lower technical limit to upper tech-
nical limit) of these assays are the following: 80 to 1300
pg/ml for total-Tau CSF, 8 to 120 pg/ml for
phosphor-Tau(181P) CSF, and 200 to 1700 pg/ml for
Elecsys® β-Amyloid(1-42) CSF immunoassays. The meas-
uring range of the Elecsys® β-Amyloid(1-42) CSF im-
munoassay beyond the upper technical limit has not
been formally established. Therefore use of values above
the upper technical limit, which are provided based on
an extrapolation of the calibration curve, is restricted to
exploratory research purposes and is excluded for clin-
ical decision making or for the derivation of medical de-
cision points.
CSF sTREM2 measurements were done with a MSD

platform-based assay, previously reported and validated
[2, 25, 26]. A comprehensive description of the assay is
shown in Supplementary methods (see Additional file 1:
Supplementary methods). The CSF sTREM2 measure-
ments are publicly available in the ADNI database.

Cell culture and transient transfection of HEK293T cells
HEK293T cells were cultured in DMEM with Glutamax
I supplemented with 10 % (v/v) fetal calf serum (FCS)
and 1 % penicillin/streptomycin. 24 hours after seeding,
cells were transiently transfected with equal amounts of
DNA coding for the different TREM2 variants using Li-
pofectamine 2000 as the transfection reagent. TREM2
variant constructs were generated by site-directed muta-
genesis (Stratagene) of a TREM2 wt construct bearing
N- and C-terminal HA and FLAG tags, respectively, as
previously described [2]. All constructs were verified by
DNA sequencing (GATC Biotech). We collected the
conditioned media 48 hours after transfection. Cellular
debris was removed by centrifugation at 4°C (13300
rpm, 20 min). Supernatants were subsequently frozen at
-20°C until analyses were performed. Cell culture re-
agents were purchased from Thermo Fisher Scientific
unless otherwise noted.
We measured the concentrations of HA-labeled TREM2

protein in the HEK293T conditioned media by two differ-
ent ELISAs. First, sTREM2 concentrations were deter-
mined by the same ELISA used to measured sTREM2 in
the human CSF samples, which includes a detection
antibody against sTREM2 (see Additional file 1: Supple-
mentary methods). Second, it was measured by a MSD
platform-based including an antibody against the HA-tag.
This second assay follows the same protocol as the first
one but with the following modifications. The detection
antibody is a monoclonal rat IgG anti-HA peptide se-
quence (YPYDVPDYA), clone 3F10 (Roche, Cat. No. 11
867 423 001; 100 ng/mL, 50 μL/well); the secondary anti-
body is a SULFO-TAG-labeled goat polyclonal anti-rat
IgG antibody (MSD, Cat. no. R32AH-1; 0.5 μg/mL, 25 μL/
well). The samples were diluted 1:50 and 1:100 in assay
buffer [0.25% BSA and 0.05% Tween 20 in PBS (pH =
7.4)], supplemented with protease inhibitors (Sigma; Cat.
no. P8340) and measured in duplicates for each dilution.
We acquired the electrochemiluminescence response
values using the MESO QuickPlex SQ 120. We compared
the signal of the sTREM2 ELISA with that of the HA-tag
assay for each of the TREM2 rare variants. The percentage
between these two assays renders a relative affinity of the
sTREM2 ELISA to each of the TREM2 rare variants in re-
lation to its respective HA-tag control.
Statistical analysis
CSF sTREM2 did not follow a normal distribution (Kol-
mogorov-Smirnov test: P < 0.0001) and were hence log10-
transformed. After transformation, CSF sTREM2 followed
a normal distribution as assessed by Kolmogorov-Smirnov
test (P = 0.200) and visual inspection of the histogram. All
the statistical analysis described in this study are per-
formed with the log10-transformed values.
A one-way analysis of covariance (ANCOVA) was con-

ducted to determine statistically significant differences
on CSF sTREM2 between TREM2 rare variants carriers
and the non-carriers’ individuals adjusting for the effect
of age, followed by a Bonferroni corrected post hoc pair-
wise comparison. Only those groups of TREM2 rare var-
iants carriers that comprise more than 1 subject were
included in the analysis.
The following analyses were conducted excluding out-

liers’ values of CSF sTREM2, defined as values differing
3 standard deviations from the mean. There were 5 out-
liers: 2 subjects classified as ‘Preclinical AD A+TN-’ (1 a
TREM2 rare variant carrier and 1 a non-carrier), 1 clas-
sified as ‘CDR = 0.5 A+TN-’ (TREM2 rare variant car-
rier), 1 classified as ‘AD CDR = 0.5’ (TREM2 rare variant
carrier), 1 classified as ‘AD CDR = 1’ (non-carrier). In-
cluding or excluding these outliers do not change the
findings of this study.
To study the association of CSF sTREM2 with demo-

graphic and genetic data, we computed a linear regres-
sion model with CSF sTREM2 as an outcome variable
and age, gender and APOE ε4 status as fixed effects.
Since only age showed to be a significant predictor of



Suárez-Calvet et al. Molecular Neurodegeneration            (2019) 14:1 Page 5 of 14
CSF sTREM2, the following analyses were conducted in-
cluding only age as a covariate.
To test the differences in CSF sTREM2 across bio-

marker profiles in the A/T/N framework, we applied a
one-way ANCOVA including age as covariate, followed
by Bonferroni corrected post hoc pairwise comparisons.
A similar approach was used to test whether CSF
sTREM2 changes across the Alzheimer’s continuum.
These analyses were performed including or excluding
individuals carrying a TREM2 rare variant and yielded
similar results.
Finally, we studied the association between CSF

sTREM2 and each of the CSF core biomarkers for AD
(T-tau, P-tau181P, Aβ1-42) with a multiple linear regres-
sion adjusted for age. The analysis was conducted separ-
ately in the healthy controls, Alzheimer’s continuum and
SNAP groups. We performed the analysis both including
or excluding outliers (defined as AD CSF core bio-
markers 3 standard deviations below or above the group
mean) in order to exclude that the associations were
driven by extreme values. The analysis with and without
outliers rendered similar results. For CSF Aβ1-42, the
analyses were performed using both the truncated values
at the upper technical limit and the exploratory mea-
surements available based on the extrapolation of the
calibration curve. In the main text, we report the results
using the extrapolated measurements, but using the
truncated ones yielded similar results.
Statistical analysis was performed in SPSS IBM, ver-

sion 20.0, and the free statistical software R (http://
www.r-project.org/). Figures were built using GraphPad
Prism or free statistical software R. All tests were
2-tailed, with a significance level of α = 0.05.
Table 2 Demographic and clinical characteristics of the individuals c

Non-carriers
(n = 984)

p.R62H
(n = 20)

p.R47H
(n = 7)

Age, y 73.1 (7.35) 74.7 (6.47) 73.5 (11.3)

Female, n (%) 430 (43.7) 11 (55.0) 3 (42.9)

APOE ε4 carriers,
n (%)

467 (47.5) 8 (40.0) 5 (71.4)

Education, y 16.0 (2.78) 15.7 (2.39) 15.6 (2.07)

CSF biomarkers (pg/ml)

T-tau 289 (136) 322 (140) 353 (125)

P-tau181P 27.9 (14.9) 30.9 (15.6) 36.4 (15.8)

Aβ1-42 982 (457) 1073 (437) 874 (454)

sTREM2 4136 (2171) 3418 (1786) 8790 (6136)

Associated diseases na AD AD, FTD, PD

References na [44, 45] [7–12]

Data are expressed as mean and standard deviation (SD) or number (n) and percen
Abbreviations: Aβ1-42 amyloid-β 42, AD Alzheimer’s disease, ALS amyotrophic lateral
dementia, na non-applicable, PD Parkinson’s disease, P-tau181P tau phosphorylated a
Results
Association of CSF sTREM2 with genetic and
demographical data
We studied a total of 1027 participants of the ADNI
study. The demographical and clinical characteristics of
the whole study population are described in Table S1
(see Additional file 1). Among the participants studied,
43 (4.2 %) had a known TREM2 rare variant (see refer-
ence [41] for a comprehensive review of the pathogen-
icity of each variant). The overall mean levels of CSF
sTREM2 of these individuals (M = 3913 pg/ml, SD =
3548, n = 43) were significantly lower than the rest of
ADNI participants without a TREM2 rare variant (M =
4136 pg/ml, SD = 2171, n = 984; F1,1024 = 6.77, P =
0.009, ηp

2 = 0.007; Table 2, Fig. 1) in a one-way
ANCOVA adjusted for age. However, CSF sTREM2 var-
ied considerably between TREM2 variants (F4,1019 =
8.79, P < 0.0001, ηp

2 = 0.033) and Bonferroni’s post hoc
comparisons test indicated that the p.R47H variant [7–
12] had significantly higher CSF sTREM2 (P = 0.003)
and the p.L211P variant [42, 43] significantly lower CSF
sTREM2 (P = 0.002) than non-carriers. No differences in
CSF sTREM2 were found between individuals with a
p.R62H [44, 45] and the p.D87N [7] variants and the
non-carriers. There was a single subject carrying both a
p.D87N and p.R62H variants, and another single subject
carrying a p.H157Y variant, which were not included in
the statistical analysis. However, it is worth noting that
the subject carrying a p.H157Y TREM2 rare variant had
relatively high CSF sTREM2 (Table 2, Fig. 1), an obser-
vation that agrees with our previous findings that the
p.H157Y variant, which is located exactly at the cleavage
site, increases shedding of TREM2 [17]. Given that
arrying a TREM2 rare variant

p.L211P
(n = 11)

p.D87N
(n = 3)

p.R62H/D87N
(n = 1)

p.H157Y
(n =1)

72.8 (4.36) 72.7 (6.17) 66.4 73.1

6 (54.5) 0 0 1

2 (18.2) 2 (66.7) 0 0

14.6 (2.54) 17.0 (2.65) 15.0 18.0

231 (119) 299 (100) 116 214

22.2 (12.7) 27.9 (11.5) 9.92 18.1

1246 (515) 944 (670) 925 1700

2386 (1390) 1981 (244) 518 5642

, ALS AD, FTD AD AD AD

[42, 43] [7] [7, 44, 45] [56]

tage (%), as appropriate.
sclerosis, APOE apolipoprotein E, CSF cerebrospinal fluid, FTD frontotemporal
t threonine 181, T-tau total tau, y years.

http://www.r-project.org
http://www.r-project.org
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Fig. 1 CSF sTREM2 in ADNI participants carrying a TREM2 rare variant. Scatter plot representing the levels of CSF sTREM2 in carriers of a TREM2
rare variant, compared to the non-carriers ADNI participants. Solid bars represent the mean and the standard deviation (SD). P-values were
assessed by a one-way ANCOVA adjusted for age, followed by Bonferroni corrected post hoc pairwise comparisons between the TREM2 variants
carriers’ groups and the non-carriers. We did not include in the comparison those rare variants with only one subject (p.R62H/p.D87N
and p.H157Y).
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TREM2 rare variants may influence CSF sTREM2 (as
described here and in [24]), all the following analyses are
excluding participants carrying these rare variants.
Nevertheless, including the TREM2 rare variants carriers
did not change the results. In order to test whether the
differences in CSF sTREM2 among TREM2 rare variants
are influenced by differences in the antibody affinity to
the mutant sTREM2, we transfected HEK293T cells with
an epitope tagged wild type (wt) and mutated TREM2
and measured sTREM2 released in the media with the
same ELISA used for the quantification of CSF sTREM2
and with an ELISA using an antibody against the epitope
tag (Additional file 1: Figure S1). This revealed that the
p.R47H, p.R62H and p.H157Y TREM2 rare variants
were detected with a slightly reduced efficiency in our
ELISA; therefore, the increased levels of CSF sTREM2
found in subjects bearing the p.R47H rare variants are
even slightly underestimated. On the other hand, the
p.L211P TREM2 rare variants were detected efficiently,
independently of their individual amino acid exchanges.
However, the p.D87N TREM2 rare variant was detected
with significant less affinity in our ELISA than using the
antibody against the epitope tag. Thus, the decreased
CSF sTREM2 found in the p.D87N rare variant should
be interpreted with caution.
In the sample excluding the TREM2 rare variants car-

riers and TREM2 outliers’ values (n = 982, see methods
section), we first assessed which demographic and gen-
etic variables are associated with CSF sTREM2 (de-
scriptives summarized in Table 3). Consistent with
previous results [21, 23–26], CSF sTREM2 levels were
associated with age (β = +0.275, P < 0.0001, ηp

2 =
0.073), but not with gender (F1,978 = 0.029, P = 0.866,
ηp

2 = 0.00003) or APOE ε4 status (F1,978 = 0.099, P =
0.753, ηp

2 = 0.0001). Consequently, all further analysis
included age as a covariate, but not gender or APOE ε4
status.

Differences of CSF sTREM2 within the A/T/N classification
of AD
In order to assess the impact of Aβ deposition or the
downstream processes of the amyloid cascade (i.e. tau
pathology and neurodegeneration), we applied the re-
cently proposed A/T/N classification framework of AD,
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which proposes 3 binary biomarker groups [27]: (1) ag-
gregated Aβ (A+/A-), (2) aggregated tau (T+/T-) and (3)
neurodegeneration (N+/N-). Given that CSF T-tau and
CSF P-tau181P were highly correlated, we merged the tau
(T) and neurodegeneration (N) groups. ‘TN-’ profile was
defined as both CSF P-tau181P and T-tau within the nor-
mal range, whereas ‘TN+’ was defined as abnormal
levels of CSF P-tau181P or T-tau. Thus, we compared 4
different biomarker profiles within each clinical stage,
namely: (1) A-/TN-, (2) A+/TN-, (3) A+/TN+ and (4)
A-/TN+.
Within the CDR = 0 group (i.e. cognitively normal in-

dividuals), a one-way ANCOVA showed a significant
difference between the four biomarker profiles after
adjusting for the effect of age (F3,286 = 21.3, P < 0.0001,
ηp

2 = 0.183). A Bonferroni post hoc test revealed that
the A+/TN- profile had significant lower CSF sTREM2
compared to either other biomarker profile (Fig. 2).
Only the A-/TN+ profile had significant higher CSF
sTREM2 compared to the normal biomarkers profile
(i.e. A-/TN-).
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Fig. 2 CSF sTREM2 in the A/T/N framework. Scatter plot depicting the leve
the A/T/N framework, coupled with clinical staging, as defined by CDR. The
were merged in order to reduce the number of groups to compare. The C
subjects, which precludes performing statistical analysis. They are still show
represented in a different colour: healthy controls are depicted in blue, Alz
purple depicts biomarker profiles not assigned in a specific category in the
excluding the TREM2 rare variants carriers, the P-values are reported in bold
these carriers (depicted in yellow) rendered similar results (P-values reporte
deviation (SD). P-values were assessed by a one-way ANCOVA adjusted for
Abbreviations: A: Aβ pathology biomarker status; AD: Alzheimer’s disease; CDR
biomarker status; SNAP: suspected non-Alzheimer’s pathology; T: tau patholog
Within the CDR = 0.5 group (i.e. very mild dementia),
there was also a significant difference between the four
biomarker profiles (F3,582 = 40.7, P < 0.0001, ηp

2 =
0.173) and the A+/TN- profile had also the significantly
lowest CSF sTREM2 compared to either other bio-
marker profile (Fig 2). Both the A+/TN+ and the A-/TN
+ biomarker profiles had significant higher CSF sTREM2
compared to the A-/TN- profile (Fig. 2). The CDR = 1
group did not yield a sufficient number of subjects per
A/T/N profile to allow for a group comparison.
We repeated the former analysis also including the

individuals with TREM2 rare variants (n = 43; demo-
graphics in Table S1, see Additional file 1) and this
did not change our conclusions derived from the
main analysis (Fig. 2).
We also repeated the same analysis classifying the par-

ticipants based only on their Aβ pathology (A; CSF
Aβ1-42) and tau pathology status (T; CSF P-tau181P), that
is A/T classification, or based only on their Aβ pathology
(A; CSF Aβ1-42) and neurodegeneration status (N; CSF
T-tau), that is A/N classification. The results are shown
N- A+TN+ A-TN+

R = 0.5
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ls of CSF sTREM2 for each of the four biomarker profiles, as defined by
biomarkers groups T (tau pathology) and N (neurodegeneration)

DR = 1 stage includes some biomarker profiles will low number of
n in the figure for sake of completeness. Each biomarker category is
heimer’s continuum category in red, SNAP category in green, and
present study. The analysis reported in the main text was conducted
, and the number of individuals (n) per group indicated. Including
d between brackets). Solid bars represent the mean and the standard
age, followed by Bonferroni corrected post hoc pairwise comparisons.
: clinical dementia rating; CSF: cerebrospinal fluid; N: neurodegeneration
y biomarker status.
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in Figure S2 (see Additional file 1) and they are similar
to those shown with the A/TN classification of the main
text. Thus, we conclude that the pathological processes
that are downstream of Aβ pathology, both tau path-
ology and neurodegeneration, are associated with in-
creased CSF sTREM2.

CSF sTREM2 changes across the Alzheimer’s continuum
Next we asked if CSF sTREM2 changes during the
course of the disease as previously described in our
study on late onset-AD [25]. We modeled the evolution
of AD comparing the biomarker-defined groups (Table
1) that reflect the temporary course of late-onset AD,
similar to what was proposed by the previous 2011
NIA-AA diagnostic criteria [32–34]. Thus, we com-
pared the ‘healthy controls’ group (highlighted in blue
in Table 1 and corresponding to the the ‘CDR = 0 A-/
TN-’ group), with those belonging to the Alzheimer’s
continuum (highlighted in red in Table 1), which in-
cluded: ‘Preclinical AD A+/TN-’, ‘Preclinical AD A+/TN
+’, ‘AD CDR = 0.5’ and ‘AD CDR = 1’. A one-way
ANCOVA revealed that CSF sTREM2 was significantly
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Fig. 3 CSF sTREM2 across the Alzheimer’s continuum. Scatter plot showing
the different stages of the Alzheimer’s continuum (depicted in red). The ma
the P-values are reported in bold, and the number of individuals (n) per gr
similar results (P-values reported between brackets) P-values were assessed
corrected post hoc pairwise comparisons. Abbreviations: A: Aβ pathology b
CSF: cerebrospinal fluid; N: neurodegeneration biomarker status; SNAP: suspec
different between groups after adjusting for the effect
of age (F4,575 = 11.5, P < 0.0001, ηp

2 = 0.074). A post
hoc analysis using the Bonferroni criterion for signifi-
cance indicated that the average CSF sTREM2 was sig-
nificantly higher in the ‘AD CDR = 0.5’ group than in
the ‘healthy controls’ and ‘Preclinical AD A+TN-’
groups (P = 0.034 and P < 0.0001, respectively; Fig. 3).
Similar results were obtained when the individuals car-
rying a TREM2 rare variant were included (Fig. 3).
Thus, these results replicate our and other groups pre-
vious findings of increased CSF sTREM2 in early symp-
tomatic stages of late-onset AD in an independent
sample [23–25, 29].

CSF sTREM2 is associated with T-tau and P-tau but not
Aβ1-42
Finally, we studied the associations of CSF sTREM2
with each of the CSF core biomarkers of AD, that is
T-tau, P-tau181P and Aβ1-42, in linear regression
models adjusted for age. The associations were tested
separately in three groups based on their biomarker
profile (see Table 1): (1) healthy controls, (2)
 < 0.0001
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P = 0.001
(P = 0.001)
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the levels of CSF sTREM2 in healthy controls (depicted in blue) and
in analysis was conducted excluding the TREM2 rare variants carriers,
oup indicated. Including these carriers (depicted in yellow) rendered
by a one-way ANCOVA adjusted for age, followed by Bonferroni
iomarker status; AD: Alzheimer’s disease; CDR: clinical dementia rating;
ted non-Alzheimer’s pathophysiology; T: tau pathology biomarker status.
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individuals of the Alzheimer’s continuum and (3) in
the SNAP groups. Consistent with previous findings,
CSF sTREM2 is associated with T-tau and P-tau181P
in the three groups studied (Fig. 4). In contrast, no
significant associations were found between CSF
sTREM2 and Aβ1-42 (Fig. 4). Including the CSF bio-
markers outliers (see Additional file 1: Table S2), or
including the individuals carrying a TREM2 rare vari-
ants (see Additional file 1: Table S3), did not change
our findings.
Discussion
In the present study, we assessed the microglial-activity
marker CSF sTREM2 within the early phases of AD. To
this end, we applied the biomarker-based A/T/N classifi-
cation in combination with clinical staging [27]. The use
of this classification system enabled us to unravel the ef-
fect of Aβ pathology and its downstream processes (i.e.
tau pathology and neurodegeneration) on the levels of
CSF sTREM2. Interestingly, they are differentially associ-
ated with CSF sTREM2. While pure Aβ deposition (as
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defined here as low CSF Aβ1-42) is associated with de-
creased CSF sTREM2, tau pathology or neurodegenera-
tion (as defined here as increased CSF P-tau181P or CSF
T-tau, respectively) are associated with an increase in
CSF sTREM2. The higher CSF sTREM2 in the SNAP
groups confirm that CSF sTREM2 rises with neurode-
generation without Aβ pathology.
Moreover, we show that the levels of CSF sTREM2 dif-

fer between TREM2 variants and they are increased in
the p.R47H TREM2 variant compared to non-carriers,
but decreased in the p.L211P variant and remained un-
changed in the p.R62H variant, which is consistent with
previous reports [24]. Increased levels of sTREM2 in the
p.R47H variant were somewhat surprising; however, very
little is known if that variant affects proteolytic process-
ing of TREM2. In contrast, the increased levels of the
p.H157Y variant is in line with our previous findings in
cultured cells demonstrating that this variant increased
shedding of TREM2 and therefore decreased TREM2
dependent phagocytosis [17]. A word of caution should
be noted with the p.D87N variant, because the lower
levels could be due, at least partially, to the lesser affinity
of the antibody to this variant.
Among the strengths of this study are the large and

well-characterized sample size and the use of a reliable
assay to measure sTREM2. Yet, this study has some lim-
itations. First, this is a cross-sectional study and the re-
sults need to be confirmed in a longitudinal setting.
Second, we used the CSF biomarkers to classify the ADNI
participants in the A/T/N classification. Although the role
of CSF biomarkers in AD is well-established and a
complete A/T/N characterization is possible only with
CSF biomarkers, CSF T-tau may not necessarily reflect
neurodegeneration but could result from physiological
production of tau [46]. Here, we found CSF P-tau181P and
CSF T-tau to be highly correlated (only 5.4% of all the
ADNI participants had a discrepant T and N biomarker
group), and consequently we merged the “T” (tau path-
ology) and “N” (neurodegeneration) groups. Importantly,
the TN- group had normal levels of both T-tau and
P-tau181P, which reasonably ensure that other comorbidi-
ties that may cause neural injury (and hence microglial ac-
tivation) are excluded. A plethora of other biofluid and
neuroimaging markers (i.e. Aβ and tau PET, blood and
CSF neurofilament light protein, anatomic MRI and
FDG-PET) are in principle applicable for the implementa-
tion of the A/T/N classification, and future studies using
these biomarkers are needed to confirm our results.
The A/T/N classification used herein is a descriptive

biomarker-based classification that does not assume any
temporal sequence of events in AD and is independent
of the clinical stage of the disease. By applying this clas-
sification framework, we found an unexpected observa-
tion, namely a decrease of CSF sTREM2 in individuals
with evidence of Aβ pathology but without signs of tau
pathology or neurodegeneration. We did not observe
this finding in previous studies, probably due to the low
number of participants in the preclinical stage of
late-onset AD and because we did not apply the A/T/N
classification [25]. Noteworthy, we previously observed
in ADAD that CSF sTREM2 was lower in ADAD muta-
tion carriers than in non-carriers at very early stages
(EYO < -15; CSF T-tau becomes significantly increased
in mutation carriers at EYO = -15), yet statistically
non-significant [26]. In contrast, we show here that CSF
sTREM2 increases as soon there are signs of we show
here that CSF sTREM2 increases, both in the context of
AD (that is with co-occurrence of Aβ pathology) or in
the SNAP patients (where there is no Aβ underlying
pathology). Consistent with these findings, CSF sTREM2
is distinctly associated with CSF T-tau and CSF
P-tau181P, but not with CSF Aβ1-42. A word of caution is
needed in the SNAP category, given that this is an
heterogenous group that most likely exhibits a non-AD
related neurodegeneration. Well-powered future studies
should address how CSF sTREM2 changes in neurode-
generative diseases different from AD.
The flexibility of this new classification framework also

enabled us to model the natural history of AD and con-
firm in the ADNI study our previous findings in partici-
pants of several European memory clinics [25] who were
classified using the 2011 NIA-AA criteria [32–34, 36].
Herein, we demonstrate that, after the initial decrease of
CSF sTREM2 in the ‘Preclinical AD A+/TN-’ group, CSF
sTREM2 rise is the ‘Preclinical AD A+/TN+’group and
in the early symptomatic stage (CDR = 0.5) of AD, albeit
only statistically significant in the latter group. These
findings therefore replicate our [25, 26] and other groups
[23, 24, 29] previous findings in which an increase in
CSF sTREM2 in early symptomatic AD was observed.
The mechanism underlying the dynamic changes of

CSF sTREM2 throughout the course of the disease still
need to be investigated. Several studies have consistently
demonstrated that microglia upregulate TREM2 expres-
sion in AD mouse models and in human AD brains [3,
47, 48]. Moreover, detailed transcriptomics studies that
investigated microglia in mouse models of AD and neu-
rodegeneration showed that TREM2 is upregulated in
the disease-associated microglia (DAM) [1, 49–53]. This
is consistent with the finding of increased CSF sTREM2
in stages downstream of Aβ accumulation, that is when
tau pathology and/or neurodegeneration occur and micro-
glia may adopt their disease associated molecular signa-
ture. We were surprised, however, by the observation of
an initial CSF sTREM2 decrease in the only Aβ-pathology
stage, which corresponds to the earliest stage of the dis-
ease. The possible mechanisms behind this observation
are still elusive. However, it has been described that
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microglia are activated in two steps with an initial
TREM2-independent process followed by a
TREM2-dependent process [49]. The CSF sTREM2 in-
crease observed following the initially low levels may re-
flect the second step of activation. An alternative
explanation would be that microglia initially forms a bar-
rier around plaques [54, 55] and the sTREM2 released by
microglia is retained within the plaque, until the barrier
fails, and subsequent neural injury starts. Finally, it could
also be argued that subjects with low TREM2-function
(and hence lower CSF sTREM2 levels) are more
prone to experience an accelerated early amyloidogen-
esis (Parhizkar et al. Nat. Neursci in press) and are
therefore overrepresented in the Preclinical AD A
+TN- group. Nevertheless, we are cognizant of the
fact that this is an observational study and the find-
ings reported herein do not elucidate precise mecha-
nisms. Further work with longitudinal data is needed
to address whether the stage-dependent changes in
CSF sTREM2 predict a better or worse clinical
outcome.
In conclusion, the present study represents the first

attempt to study CSF sTREM2 based on the A/T/N
classification framework. We demonstrate in the
ADNI cohort that the increase in CSF sTREM2 which
occurs in early stages parallels the increase in bio-
markers of tau pathology and neurodegeneration. In
contrast, Aβ deposition in the absence of tau depos-
ition and neurodegeneration is associated with lower
CSF sTREM2.
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Additional file 1: CSF sTREM2 measurement. Figure S1. Effects of rare
TREM2 variants on antibody affinities. Figure S2. CSF sTREM2 in the A/T
and in the A/N classifications. Table S1. Demographic and clinical
characteristics of the entire sample. Table S2. Associations of CSF
sTREM2 with AD CSF core biomarkers including the biomarkers
outliers. Table S3. Associations of CSF sTREM2 with AD CSF core
biomarkers including subjects carrying a TREM2 rare variant. (DOCX
1992 kb)
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