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Background
Fixed point theory is an important tool to investigate the convergence of sequences 
to limits and unique limits in metric spaces and normed spaces. See, for instance, Pap 
et  al. (1996), Sehgal and Bharucha-Reid (1972), Schweizer and Sklar (1960), Eldred 
and Veeramani (2006), De la Sen (2010a, b), Choudhury et al. (2011, 2012), De la Sen 
and Karapinar (2014, 2015a, b), Beg et al. (2001), Roldan et al. (2014), Jleli et al. (2014), 
Roldán-Lopez-de-Hierro et  al. (2015), Khan et  al. (1984), Choudhury and Das (2008), 
Gopal et al. (2014), Takahashi (1970), Shimizu and Takahashi (1996), Kaewcharoen and 
Panyanak (2008), Karpagam and Agrawal (2009), Suzuki (2006), Di Bari et  al. (2008), 
Rezapour et al. (2011), Derafshpour et al. (2010), Al-Thagafi and Shahzad (2009), Karpa-
gam and Agrawal (2009), Dutta et al. (2009), Chang et al. (2001), Chen et al. (2012), Chen 
(2012), Berinde (2007), De la Sen et  al. (2015) and the wide list of references cited in 
those papers. In particular, fixed point theory is also a relevant tool to investigate itera-
tive schemes and stability theory of continuous-time and discrete-time dynamic systems, 
boundedness of the trajectory solutions, stability of equilibrium points, convergence 
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to stable equilibrium points and the existence oscillatory solution trajectories. See, for 
instance, De la Sen (1999, 2010), Berinde (2007), De la Sen and Karapinar (2014), De la 
Sen et al. (2010, 2015), Marchenko (2014, 2015), Delasen (1983), Istratescu (1981) and 
references therein. The solution of some interesting stability and solution approxima-
tion problems in some integral and physical problems have been recently investigated in 
Eshkuvatov et al. (2015), Abdulla et al. (2015), Matinfar et al. (2015).

On the other hand, fixed point theory is, in particular, receiving important research 
attention in the framework of probabilistic metric spaces. See, for instance, Schweizer 
and Sklar (1960, 1983), Pap et al. (1996), Sehgal and Bharucha-Reid (1972), Choudhury 
et  al. (2011, 2012), De la Sen and Karapinar (2015a), Beg et  al. (2001) and references 
therein. Also, Menger probabilistic metric spaces are a special class of the wide class of 
probabilistic metric spaces which are endowed with a triangular norm, (Pap et al. 1996; 
Sehgal and Bharucha-Reid 1972; Choudhury et al. 2011; De la Sen and Karapinar 2015a, 
b; Choudhury and Das 2008; Gopal et al. 2014) and which are very useful in the context 
of fixed point theory since the triangular norm plays a close role to that of the norm 
in normed spaces. In probabilistic metric spaces, the deterministic notion of distance is 
considered to be probabilistic in the sense that, given any two points x and y of a metric 
space, a measure of the distance between them is a probabilistic metric Fx,y(t), rather 
than the deterministic distance d(x, y), which is interpreted as the probability of the dis-
tance between x and y being less than t (t > 0), (Sehgal and Bharucha-Reid 1972).

Fixed point theorems in complete Menger spaces for probabilistic concepts of B and 
C-contractions can be found in Pap et al. (1996) together with a new notion of contrac-
tion, referred to as (Ψ, C)-contraction. Such a contraction was proved to be useful for 
multivalued mappings while it generalizes the previous concept of C-contraction. On the 
other hand, cyclic contractions on subsets of complete Menger spaces were discussed in 
Choudhury et  al. (2011, 2012), De la Sen and Karapinar (2015a). Also, some types of 
contractions in complete probabilistic Menger spaces have been studied through the use 
of the so-called altering distances. See, for instance, Khan et al. (1984), De la Sen (2010) 
and references therein and more recent results in Mishra et  al. (2015). Some general 
fixed point theorems have been very recently obtained in Gopal et al. (2014) for α − ψ 
contractive mappings in Menger probabilistic metric spaces. Also, a parallel background 
literature, related to results on best proximity points and fixed points in cyclic mappings 
in metric and Banach spaces as well as topics related to common fixed points, is exhaus-
tive. See, for instance, Eldred and Veeramani (2006), De la Sen (2010), Takahashi (1970), 
Shimizu and Takahashi (1996), Kaewcharoen and Panyanak (2008), Karpagam and 
Agrawal (2009), Suzuki (2006), Di Bari et al. (2008), Rezapour et al. (2011), Derafshpour 
et al. (2010), Al-Thagafi and Shahzad (2009) and (Chen et al. 2012), Chen 2012) as well as 
references therein. On the other hand, fuzzy metric spaces have been investigated more 
recently and some ad -hoc versions of fixed point theorems have been obtained in that 
framework. See, for instance, Roldan et al. (2014), Jleli et al. (2014), Roldán-Lopez-de-
Hierro et al. (2015) and some references therein. Recent research has been also focused 
on some basic convergence properties of the iterates in iterative schemes. For instance, 
a new averaged algorithm for finding a common fixed point of a countably infinite fam-
ily of generalized k-strictly pseudocontractive multi-valued mappings is studied in 
Chidume and Opkala (2015) and the computational errors of iterated schemes in the 
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set-valued case are investigated in Reich and Zaslavski (2015) and in Dinevari and Frigon 
(2015), in this last case under the support of graph theory. On the other hand, some 
variants of homopotopy methods together with Picard and Picard–Padé iterative meth-
ods to solve Michaelis–Menten equation have been investigated in Vazquez-Leal et al. 
(2015) while an iterative scheme being strongly convergent to a common fixed point of a 
countable family of strictly pseudo-contractive mappings has been focused on in Cham-
narnpan et  al. (2013). Such a fixed point is proved to be also a solution of variational 
inequality problem related to quadratic minimization problems. See also Chidume et al. 
(2015).

This paper investigates some properties of convergence of sequences being built 
through sequences of operators which are either uniformly convergent to a strict k-con-
tractive operator, for some real constant k ∈ (0, 1), or which are strictly k-contractive and 
point-wisely convergent to a limit operator. The obtained properties are reformulated 
later on for the case when either the sequence of operators or its limit operator are strict 
ϕ-contractions. The appropriate definitions of strict (k and ϕ) contractions are given ad-
hoc in the context of probabilistic metric spaces, namely, for the considered probability 
density function.

Denote R+ = {z ∈ R : z > 0}, R0+ = R+ ∪ {0}, Z+ = {z ∈ Z : z > 0}, Z0+ = Z+ ∪ {0} , 
n̄ = {1, 2, . . . , n}, and denote also by L, the set of distance distribution functions 
H : R → [0, 1], (Schweizer and Sklar 1983), which are non-decreasing and left continu-
ous such that H(0) = 0 and supt∈RH(t) = 1. Let X be a nonempty set and let the proba-
bilistic metric (or distance) F : X × X → L a symmetric mapping from X × X, where X is 
an abstract set, to the set of distance distribution functions L of the form H : R → [0, 1] 
which are functions of elements Fx,y for every (x, y) ∈ X × X. Then, the ordered pair 
(X , F) is a probabilistic metric space (PM) (Pap et  al. 1996; Sehgal and Bharucha-Reid 
1972; Chang et al. 2001) if

A particular distance distribution function Fx,y ∈  L is a probabilistic metric (or dis-
tance) which takes values Fx,y(t) identified with a probability distance density function 
H : R → [0, 1] in the set of all the distance distribution functions L.

A Menger PM-space is a triplet (X , F ,∆), where (X , F) is a PM-space which satisfies:

under ∆ : [0, 1] × [0, 1] → [0, 1] is a t-norm (or triangular norm) belonging to the set T 
of t-norms which satisfy the properties:

1. Δ(a, 1) = a
2. Δ(a, b) = Δ(b, a)
3. Δ(c, d) ≥ Δ(a, b) if c ≥ a, d ≥ b
4. 

(1)

1. ∀x, y ∈ X
((

Fx,y(t) = 1; ∀t ∈ R+

)

⇔
(

x = y
))

2. Fx,y(t) = Fy,x(t); ∀x, y ∈ X , ∀t ∈ R

3. ∀x, y, z ∈ X; ∀t1, t2 ∈ R+

(

(Fx,y(t1) = Fy,z(t2) = 1) ⇒
(

Fx,z(t1 + t2) = 1
))

(2)Fx,y(t1 + t2) ≥ ∆
(

Fx,z(t1), Fz,y(t2)
)

; ∀x, y, z ∈ X , ∀t1, t2 ∈ R0+

(3)∆(∆(a, b), c) = ∆(a,∆(b, c))
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A property which follows from the above ones is Δ(a, 0) = 0 for a ∈ [0, 1]. Typical con-
tinuous t-norms are the minimum t-norm defined by ΔM(a, b) = min  (a, b), the product 
t-norm defined by ΔP(a,  b) =  a.b and the Lukasiewicz (or nilpotent-minimum) t-norm 
defined by ΔL(a, b) = max (a + b − 1, 0) which are related by the inequalities ΔL ≤ ΔP ≤ ΔM.

The (probabilistic) diameter of a subset A of X is a function from R0+ to [0, 1] 
defined by DA(z) = supt<zinfx,y∈AFx,y(t) and A is probabilistically bounded if 
D
p
A = supz∈R+DA(z) = 1 [Dp

A can be defined equivalently as limz→∞ DA(z)], probabilisti-
cally semibounded if 0 < Dp

A < 1 and probabilistically unbounded if Dp
A = 0, (Schweizer 

and Sklar 1983; Pap et al. 1996). The diameter of a subset A ⊂ X in the PM-space (X, F), 
induced by a metric space (X, d), refers to maximum real interval measure, where the 
argument of the probabilistic metric is unity.

Notation and some basic definitions

  • Z, Z+, R and R+ are the sets of integers, positive integers, real and positive real num-
bers, and Z0+ = Z+\{0} and R0+ = R+\{0}, respectively.

  • m̄ = {1, 2, . . . ,m} for any given m ∈ Z+.
  • {Tn} → T  denotes point-wise convergence of the sequence of operators {Tn} to the 

operator T, where 

  • {Tn} ⇒ T  denotes uniform convergence of the sequence of operators {Tn} to the 
operator T.

  • The symbol “¬” denotes logic negation.
  • A probabilistic distance is a mapping F : X × X → ∆F, where X is a nonempty 

abstract set represented by Fx,y for each (x, y) ∈ X × X and ∆F is a set of distribution 
functions such that F ∈ ∆F is a mapping F : R → R0+ which is non-decreasing and 
left-continuous with inft∈RF(t) = 0 and supt∈RF(t) = 1.

  • The ordered pair (X ,F ) is a probabilistic metric (PM) space if for any x, y, z ∈ X and 
all t, s ∈ R+ the following conditions hold, (Schweizer and Sklar 1983):

  • The triplet (X ,F ,∆) is a Menger space, where (X ,F ) is a PM-space and 
∆ : [0, 1] × [0, 1] → [0, 1] is a triangular norm, which satisfies the inequality 
Fx,z(t + s) ≥ ∆

(

Fx,y(t), Fy,z(s)
)

; ∀x, y, z ∈ X; ∀t, s ∈ R+.
  • ∆M : [0, 1] × [0, 1] → [0, 1] is the minimum triangular norm defined by 
∆M(a, b) = min(a, b).

  • A sequence {xn} ⊆ X in a probabilistic space (X ,F ) is said to be:

1.  almost surely (a.s.) convergent to a point x ∈ X, denoted by {xn} → x (a.s.), if for 
every ε ∈ R+ and � ∈ (0, 1), there exists some N = N (ε, �) ∈ Z0+ such that: 

Tn,T : X → X; ∀n ∈ Z+.

(4)

1. Fx,y(t) = H(t) ⇔ x = y

where H ∈ ∆F is defined by H(t) =

{

0 if t ≤ 0
1 if t > 0

;

2. Fx,y(t) = Fy,x(t);

3. if Fx, y(t) = 1 and Fy, z(s) = 1 then Fx, z(t + s) = 1.

Fxn,x(ε) > 1− �; ∀n(∈ Z0+) ≥ N ,
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2.  Probabilistically convergent (or, equivalently, it converges in probability) to 
a point x ∈ X, denoted by {xn} → x, if the probabilistic (X ,F ) is induced by a 
metric space (X,  d) and for every ε ∈ R+ and � ∈ (0, 1) there exists some 
N = N (ε, �) ∈ Z0+ such that:

3.  Cauchy if for every ε ∈ R+ and � ∈ (0, 1), there exists some N = N (ε, �) ∈ Z0+ 
such that

A good treaty on almost sure convergence and martingale approaches has been given 
in Stout (1974). Note that a PM-space (X ,F ) is complete if every Cauchy sequence is 
almost surely convergent.

Lemma 1 Consider a PM-space (X ,F ) and a sequence {xn} ⊂ X. Then, the following 
properties hold:

(i) {xn} → x a.s. if and only if limn→∞Fxn+ℓ,x(ε) = limn,m→∞Fxn+m,x(ε) = 1; ∀ℓ ∈ Z0+,

∀ε ∈ R+.

(ii) {xn} →  x if and only if limn→∞Fxn,x(d(xn, x)− ε) = 0; ∀ε ∈ R+, where (X ,F ) is 
induced by a metric space (X, d).

(iii) If {xn} → x a.s. and, furthermore, the PM space (X ,F ) is induced by a metric space 
(X, d) then {xn} → x.

(iv) If {xn} → x a.s. then {xn} is Cauchy. The converse is true if (X ,F ) is complete.
(v) Assume that the PM space (X ,F ) is induced by a metric space (X, d) and that the 

distribution function is Fx,y(t) = H(t − d(x, y)); ∀x, y ∈ X . Then, almost sure con-
vergence and convergence in probability are equivalent for any sequence {xn} ⊂ X.

Proof Since {xn}  →  x (a.s.), then, for every given ε ∈ R+ and � ∈ (0, 1), there 
exists some N = N (ε, �) ∈ Z0+ such that Fxn,x(ε) > 1− �; ∀n(∈ Z0+) ≥ N . Then, 
lim inf n→∞

(

lim inf
ε→0+Fxn,x(ε)

)

> 1− � for any given � ∈ (0, 1) since Fxn,x(ε) 
is left-continuous and non-decreasing. This leads to the existence of the limit 
limn→∞Fxn+j ,x(ε) = limn→∞Fxn ,x

(

0+
)

= 1, ∀ε ∈ R+, ∀j ∈ Z0+. Conversely, since limn→∞ 
Fxn,x(ε) = 1, there is a ball BN (x, ε, �) in the PM space (X ,F ) which contains xn for all 
n(∈ Z0+) ≥ N  and some N = N(ɛ, λ) so that Fxn,x(ε) > 1− �; ∀n ≥ N . Property (i) has 
been proved.

On the other hand if {xn} →  x, if for every given ε ∈ R+ and � ∈ (0, 1) there exists 
some N = N (ε, �) ∈ Z0+ such that Fxn,x(d(xn, x)− ε) ≤ 1− �; ∀n(∈ Z0+) ≥ N  . 
The condition for d(xn,  x)  ≤  ɛ holds trivially since Fxn,x(0) = 0, ∀n ∈ Z0+ so that 
we discuss the case d(xn, x) > ɛ. By taking λ = 1 – δ and arbitrary δ ∈  (0, 1), one gets 
lim supn→∞Fxn,x(d(xn, x)− ε) ≤ δ so that the limit limn→∞Fxn,x(d(xn, x)− ε) = 0 exists 
for any ε ∈ R+ if {xn} → x. The converse is proved closely to the proof of its counterpart 
in Proposition (i) by defining a ball BN (x, d(xn, x)− ε, �) in the PM space (X ,F ) which 
contains xn for all n(∈ Z0+) ≥ N . Property (ii) has been proved.

Fxn,x(d(xn, x)− ε) ≤ 1− �; ∀n(∈ Z0+) ≥ N ,

Fxn,xm(ε) > 1− �; ∀n,m(∈ Z0+) ≥ N .
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To prove Property (iii), note from Property (i) that {xn}  →  x a.s. if and only if 
limn→∞Fxn,x

(

0+
)

= 1 and the sequence in the metric space (X, d) satisfies d(xn, x) → 0 
as n → ∞. Assume that {xn} →  x fails, so that lim inf n→∞Fxn,x(d(xn, x)− ε) > 0 for 
some ε ∈ R+, and proceed by contradiction by assuming that there exists some ε ∈ R+ 
such that lim inf n→∞(d(xn, x)− ε) > limn→∞d(xn, x) = 0. But this leads to the contra-
diction lim inf n→∞Fxn,x(−t) > 0 for some t ∈ R+.

The proof of Property (iv) is given as follows. Now, if {xn} → x a.s. then for any given 
ε ∈ R+ and � ∈ (0, 1):

Then, by the third property of (5), one gets limn→∞Fxn+ℓ,xn(ε) = 1; ∀ℓ ∈ Z0+. Assume 
that {xn} is not Cauchy. Thus, for some given ε ∈ R+ and � ∈ (0, 1), and any N ∈ Z0+, 
there is a subsequence {nk} ⊆ Z0+ with mk > nk ≥ N such that 1− � ≥ limk→∞Fxnk ,xmk

(ε) 
and then lim supk→∞Fxnk ,xmk

(ε) < 1 but implies that limn→∞Fxn+ℓ,xn(ε) < 1, a contra-
diction. Then, if limn→∞Fxn+ℓ,xn(ε) = 1, and by Property (i), if {xn} → x a.s., then {xn} is 
Cauchy. The converse is true if the metric space is complete from the definition of com-
pleteness. Property (iv) has been proved.

To prove Property (v), note that Fxn,x(ε) = H(ε − d(xn, x)). If {xn}  →  x then 
limn→∞Fxn,x(d(xn, x)− ε) = 0, and then limn→∞Fxn,x(ε − d(xn, x)) = 1 for any ε ∈ R+ 
so that from Property (i), {xn} → x a.s.. The converse, that is,{xn} → x (a.s.) ⇒ {xn} → x 
if (X ,F ) is induced by (X, d) is Property (iii), already proved. Thus, if (X ,F ) is induced by 
(X , d) then {xn} → x a.s. ⇔ {xn} → x.�

Example 1 Consider the probabilistic metric (Z+,F ) space with probability density 
function

Then, the sequence of probability densities 
{

Fij(t)
}

= {F11(t), F21(t), F22(t), F31(t), F32(t),

F33(t), . . .} defined for all i, j(≤ i) ∈ Z+ and t  ∈  (0,  1) does not con-
verge to one as i,  j  →  ∞, so that it does not converge almost surely since 
lim  n→∞F(n−1)/n,1(1)  =  1, since the argument t  =  t(n) satisfies, t ∈

(

n−1
n , 1

]

, and 
limn→∞Fj/n,(n−1)/n(t) = limj(≤n−1),n→∞Fj/n,(n−1)/n(t) = 0; ∀j(≤ n− 1) ∈ Z+, t ∈ [0, 1) .

However, 
{

Fn,n+1(t)
}

 converges in probability as n → ∞; ∀t ∈ R+ since

lim
n→∞

Fxn+ℓ,x(ε/2) = lim
n→∞

Fxn,x(ε/2) = 1; ∀ℓ ∈ Z+.

Fij(t) =

{

1 if (j − 1)/i < t ≤ j/i
0 otherwise

; ∀i, j ∈ Z+.

lim
n→∞

∣

∣1− Fn,n+1(t)
∣

∣ =

{

0 if
[(

1 < t ≤ 1+ lim
n→∞

1/n
)

∨ (t = 0)
]

1 if t ∈ (0, 1]

=

{

0 if t = 0
1 if t ∈ (0, 1]
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Main results concerning the uniform convergence of operators
The concept of (probabilistic) k-contraction follows:

Definition 1 Let (X ,F ) be a PM-space. Then, T : X → X is k-contractive (or a k-con-
traction) if FTx,Ty(kt) ≥ Fx,y(t); ∀x, y ∈ X , ∀t ∈ R+ for some real constant k ∈ (0, 1).

A wider class of contractive (in a weaker sense) operators T : X → X is that which sat-
isfies FTx,Ty(t) > Fx,y(t), ∀x, y(≠x) ∈ X, ∀t ∈ R+.

Proposition 1 Let (X ,F ) be a PM-space. If T : X → X is a -contraction then it is also a 
weak contraction. The converse is not true.k

Proof Note that if T : X → X is a k-contraction then

since F : R → R0+ which is non-decreasing and left-continuous. Furthermore, if x �= y 
and Fx,y(t1) < 1 for some t1 ∈ R+ then the last above inequality has to be strict for all 
t ∈ R+, i.e. FTx,Ty(t) > Fx,y(t); ∀t ∈ R+. Otherwise, we would have the following contra-
diction for t = t1:

Since Fx,y(t1) > Fx,y(t1) is impossible. On the other hand, it always exist such a t1 ∈ R+ 
such that Fx,y(t1) < 1; ∀x, y(�= x) ∈ X. Otherwise, x = y from the first condition of (4).

As a result, if T : X → X is a k-contraction and x �= y then 
FTx,Ty(t) > Fx,y(t); ∀x, y(�= x) ∈ X. Thus, if T : X → X is a k-contraction then it is also 
contractive and we have specifically proved that for any real constant k ∈ (0, 1) and any 
x, y(�= x) ∈ X:

To prove that the inverse is not true, it suffices to prove that for some k ∈ (0, 1) and 
any x, y(�= x) ∈ X, the logic implication below fails:

If the above implication were true then the contradiction 1 > 1 would follow from:

 

FTx,Ty(t) ≥ Fx,y

(

k−1t
)

≥ Fx,y(t)

1 = lim
n→∞

FTnx,Tny(t) ≥ Fx,y
(

k−nt
)

= Fx,y
(

+∞−
)

= Fx,y(t) > Fx,y(t1); ∀t ∈ R+

FTx,Ty(t) ≥ Fx,y

(

k−1t
)

⇒ FTx,Ty(t) > Fx,y(t)

FTx,Ty(t) > Fx,y(t) ⇒ FTx,Ty(t) ≥ Fx,y

(

k−1t
)

1 ≥ lim
n→∞

FTn+1x,Tn+1y(t) > lim
n→∞

FTnx,Tny(t) ≥ lim
n→∞

Fx,y
(

k−nt
)

= Fx,y
(

+∞−
)

= 1.

�
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The result below refers to the case of uniform convergence of the sequence {Tn} on 
X to a strict k-contractive operator on X in the framework of a complete Menger space 
(X ,F ,∆) :

Theorem 1 Let (X ,F ,∆M) be a complete Menger space and let {Tn} be a sequence of 
operators Tn : X → X, such that FTn =

{

x∗n
}

, ∀n ∈ Z+, {Tn}
→
→ {T } a.s. and T : X → X is 

a (strict) -contraction with kFT = {x*}. Then, the following properties hold:

(i) limn→∞Fx∗n,x∗(t) = limn→∞Fx∗n,x∗
(

0+
)

= 1; ∀t ∈ R+,
{

x∗n
}

→ x∗ a.s. and Tmx∗n → x∗ a.s. as n,m → ∞,

(ii)  limm,n→∞FTmx∗n ,x
∗ (t) = limn→∞FT ℓx∗n ,x

∗ (t) = limm,n→∞FTmx∗n ,x
∗

(

0
+
)

= 1; ∀ℓ ∈ Z0+, ∀t ∈ R+,

limn→∞Fx∗n ,x
∗ (t) = limn→∞Fx∗n ,x

∗

(

0
+
)

= 1; ∀t ∈ R+,
{

T
m
x
∗
n

}

→ x
∗
, ∀m ∈ Z0+.

Proof Fix any t ∈ R+, γ ∈ (0, 1) and choose a natural number N = N (γ , t) such that 
n ≥ N implies

∀m ∈ Z+, since {Tn}
→
→ {T } a.s., ∀x ∈ X and, in particular, the above inequality holds for 

the fixed point x*of T : X → X, where k ∈ (0, 1) is the contraction coefficient. Also, since 
{xn

*}, {Txn
*} ⊂ X, x* = Tx* ∈ X, xn

* = Tnxn
* ∈ X, T : X → X is a k-contraction and F ∈ ∆F is 

non-decreasing and left-continuous everywhere in its definition domain, one has for all 
n ≥ N and all t ∈ R+ that:

for any given real constant η ∈ (0, 1) since FTx∗n,Tnx∗n(t) ≥ 1− γ > 1− �; ∀x ∈ X, ∀t ∈ R+, 
and any real constants λ ∈  (γ,  1), and γ ∈ (0, 1), ∀n(∈ Z0+) ≥ N  since {Tn}

→
→ {T } a.s.. 

The following cases can occur in (5):

(a) Fx∗n,x∗
(

k−1
ηt
)

≥ Fx∗n,x∗(t) > 1− �; ∀n(∈ Z0+) ≥ N ; ∀t ∈ R+

 Then, {xn
*} → x* a.s. and η ∈ [k , 1) since F ∈ ∆F is non-decreasing and left-continu-

ous.
(b) Fx∗nj ,x∗

(

k−1
ηt
)

≤ min
(

Fx∗nj ,x
∗(t), 1− �

)

; ∀j ∈ Z0+

 for a given η ∈ (0, k], some t ∈ R+ and some subsequence 
{

x∗nj

}

⊆
{

x∗n
}

 of fixed points 

of 
{

Tnj

}

⊆ {Tn}. If Fx∗nj ,x∗(t) > 1− �, one also finds that 
{

x∗nj

}

→ x∗ a.s. with η ∈ (0, k]. 

The convergence of the subsequence ensures that {xn
*} → x*a.s. If Fx∗nj ,x∗(t) ≤ 1− � and 

then Fx∗nj ,x∗
(

k−1t1
)

≤ 1− � with t1 = k−1t and we deduce from (5) under the same 
reasoning with the replacement t →  t1 that either Fx∗nj ,x∗

(

k−1t1
)

> 1− �; ∀t1 ∈ R+ 

FTx,Tnx(t) ≥ 1− γ ; ∀x ∈ X , ∀m ∈ Z0+

(5)

Fx∗n,x∗(t) = FTnx∗n,Tx
∗(t)

≥ ∆M

(

FTx∗,Tx∗n(ηt), FTx∗n,Tnx∗n((1− η)t)
)

≥ ∆M

(

Fx∗n,x∗
(

k−1
ηt
)

, 1− �

)

> min
(

Fx∗n,x∗
(

k−1
ηt
)

, 1− �

)
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and {xn
*}  →  x*a.s. or Fx∗nj ,x

∗

(

k−1
ηt1

)

= Fx∗nj ,x
∗

(

k−2
ηt
)

≤ 1− � for some 

subsequence 
{

x∗nj

}

⊆
{

x∗n
}

 of fixed points of 
{

Tnj

}

⊆ {Tn}. But, since 

1 = limj→∞limi→∞Fx∗nj ,x
∗

(

k−i
ηt
)

= limj→∞limti→∞Fx∗nj ,x
∗(ηti) ≤ 1− � would be  

a contradiction, some finite tl  =  k−ℓt exists such that Fx∗nj ,x
∗(tℓ) =

Fx∗nj ,x
∗

(

k−(ℓ+1)t
)

> 1− �; ∀n(∈ Z0+) ≥ Nℓ, ∀t ∈ R+ and some Nℓ = Nℓ(�, t) for any 

subsequence 
{

x∗nj

}

⊆
{

x∗n
}

 implying that limn→∞Fx∗n,x∗(t) = limn→∞Fx∗n,x∗
(

0+
)

= 1 

so that {xn
*} →  x*a.s. On the other hand, for any given real constant γ ∈ (0, 1) and 

t ∈ R+ and some N = N(λ, t), one gets, since 
{

x∗n
}

→ x∗, a.s. that 

and

so that, furthermore, 
{

Tmx∗n
}

→ x∗ a.s.; ∀m ∈ Z0+ and Tmxn
* → x* a.s. as n,m → ∞. 

Property (i) has been proved. On the other hand, note that

and

since it has been already proved that 
{

x∗n
}

→ x∗ a.s., where F(+∞−) denotes the left-
limit of F(t) as t → +∞. On the other hand, for any finite m ∈ Z+, one has from (6) that 
FTmx∗n,x

∗(t) ≥ Fx∗n,x∗
(

k−mt/2
)

= Fx∗n,x∗(t1) for t1 = t1(t,m) = k−mt/2. Since t ∈ R+ , 
there exists N1 = N1(γ ,m, t) ≥ N  such that FTmx∗n,x

∗(t) > 1− γ ; ∀n(∈ Z0+) ≥ N1 , 
where N = N (γ , t) = min

(

z ∈ Z0+ : Fx∗n,x∗(t) > 1− γ
)

 for any given t ∈ R+ and 
γ ∈ (0, 1). Then,

Property (i) includes the convergence results {xn
*}  →  x*a.s. and Tmxn

*  →  x*a.s. as 
n, m → ∞. It is now proved that Tmxn

* → x* a.s. as n → ∞, ∀m ∈ Z0+. Proceed by con-
tradiction by assuming that 

{

Tmx∗n
}

¬ → x∗ a.s. for some m ∈ Z+ then there exists some 
real constant γ1 ∈  (0,  1)and some subsequence 

{

x∗nj

}

⊆
{

x∗n
}

 such that the following 
contradiction follows to 

{

x∗n
}

→ x∗ a.s.

FTmx∗n,x
∗(t) = FTmx∗n,T

mx∗(t) ≥ Fx∗n,x
∗

(

k
−m

t
)

≥ Fx∗n,x
∗(t) > 1− �;

∀n(∈ Z0+) ≥ N ; ∀m ∈ Z0+

lim
t→0+

lim
n→∞

lim
m→∞

FTmx∗n,x
∗(t) = lim

t→0+
lim
n→∞

FT ℓx∗n,x
∗(t) = 1; ∀ℓ ∈ Z0+

(6)

FTmx∗n,x
∗(t) ≥ ∆M

(

FTmx∗n,T
mx∗(t/2), FTmx∗,x∗(t/2)

)

≥ ∆M

(

FTmx∗n,T
mx∗(t/2), Fx∗,x∗(t/2)

)

≥ ∆M

(

FTmx∗n,T
mx∗(t/2), 1

)

≥ Fx∗n,x∗
(

k−mt/2
)

; ∀t ∈ R+; ∀m, n ∈ Z+

lim
m→∞

lim
n→∞

FTmx∗n,x
∗(t) ≥ lim

m→∞
lim
n→∞

Fx∗n,x
∗(t)

= lim
n→∞

Fx∗n,x
∗

(

0
+
)

= F
(

+∞−
)

= 1; ∀t ∈ R+

FTmx∗n,x
∗(t) ≥ Fx∗n,x∗(t) ≥ Fx∗n,x∗(t1) > 1− γ for t ≥ 2kmt1

1− γ1 ≥ lim sup
j→∞

lim
t→0+

Fx∗nj ,x∗
(t) ≥ lim

j→∞
lim
t→0+

Fx∗nj ,x
∗

(

k−mt/2
)

= 1
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Then, 

 ∀m ∈ Z0+. Property (ii) has been proved. �

The following auxiliary result is then used:

Lemma 2 The following properties hold:

(i)  If Tn : X → X , ∀n ∈ Z+ are all continuous and 
{

T
j
n

}

→
→

{

Tj
}

 a.s., ∀j ∈ m̄ for some 
given m ∈ Z+, where T : X → X, then 

{

Tm+1
n

}

→
→

{

Tm+1
}

 a.s.
(ii)  If the self-maps Tn : X → X , ∀n ∈ Z+ are continuous and {Tn}

→
→ {T } a.s. then 

{

Tm
n

}

→
→ {Tm} a.s., ∀m ∈ Z+.

(iii) If the self-maps Tn : X → X , ∀n ∈ Z+ are strictly contractive and {Tn}
→
→ {T } a.s. 

then 
{

Tm
n

}

→
→ {Tm} a.s., ∀m ∈ Z+.

(iv) If {Tn}
→
→ {T } a.s. and Tn commutes with T in X, ∀n ∈ Z0+ then 

{

Tm
n

}

→
→ {Tm} a.s., 

∀m ∈ Z+.

Proof Note that Tj+1
n x = Tn

(

T
j
nx
)

, ∀n ∈ Z+ and, since 
{

T
j
n

}

→
→

{

Tj
}

 a.s., ∀j ∈ m̄, then 

Tn
j(Tℓx) → Tj(Tℓx) as n → ∞; ∀j ∈ m̄, ∀ℓ ∈ n̄, ∀x ∈ X and Tj(Tnx) → Tj(Tx) = Tj+1x as 

n → ∞ a.s., ∀j ∈ m̄, ∀x ∈ X since Tn : X → X is continuous for any n ∈ Z+, that is,

for any given t ∈ R+, γ ∈ (0, 1) and � ∈ (γ , 1),∀j ∈ m− 1 ∪ {0} and all n(∈ Z0+) ≥ N1 and 
some N1(∈ Z0+) = N1(γ , t) such that max0≤j≤mFTj

n(Tnx),Tj(Tnx)
(t/2) ≥ 1− γ > 1− � 

since 
{

T
j
n

}

→
→

{

Tj
}

 a.s., ∀j ∈ m− 1 ∪ {0}. Since Tn : X → X is continuous 

∀n ∈ Z0+ there is N2(∈ Z0+) = N2(�, t) such that FTj(Tnx),Tj(Tx)(t/2) > 1− � for all 
n(∈ Z0+) ≥ N1 , ∀j ∈ Z0+, ∀t ∈ R+ and any given real constant � ∈ (γ , 1). Then, from (7),

Then,

and min0≤j≤m+1limn→∞limt→0+FTj
nx,Tjx

(t) = 1. Thus, Tn
j(Tnx) → Tj+1x a.s. as n → ∞, 

∀j ∈ m̄. Then, 
{

Tm+1
n

}

→
→

{

Tm+1
}

. Property (i) has been proved. Also, if Tn : X → X, 
∀n ∈ Z+ are all continuous and {Tn}

→
→ {T } a.s., assumed it also holds that 

{

Tm
n

}

→
→ {Tm} 

a.s. for some m ∈ Z+ then 
{

Tm+1
n

}

→
→

{

Tm+1
}

 a.s. via complete induction from Property 
(i) and Property (ii) follows as well. Property (iii) follows from Property (ii) since if the 
self-maps Tn : X → X, ∀n ∈ Z+ are continuous since they are strictly contractive.

lim
n→∞

FTmx∗n,x
∗(t) = lim

n→∞
FT ℓx∗n,x

∗

(

0
+
)

= lim
n,m→∞

FTmx∗n,x
∗

(

0
+
)

= 1;

∀ℓ ∈ Z0+and
{

T
m
x
∗
n

}

→ x
∗
a.s.;

(7)
F
T
j
n(Tnx),Tj(Tx)

(t) ≥ ∆M

(

F
T
j
n(Tnx),Tj(Tnx)

(t/2), FTj(Tnx),Tj(Tx)(t/2)
)

≥ min
(

1− γ , FTj(Tnx),Tj(Tx)(t/2)
)

(8)

min
0≤j≤m

F
T
j+1
n x,Tj+1x

(t)

> min(1− �, 1− �) = 1− �; ∀j ∈ m− 1, ∀t ∈ R+, ∀n(∈ Z0+) ≥ max(N1,N2)

(9)min
0≤j≤m+1

F
T
j
nx,Tjx

(t) > 1− �; ∀t ∈ R+,∀n(∈ Z0+) ≥ max(N1,N2)
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On the other hand, if Tn commutes with T in X for all n ∈ Z0+ then 
Tj−iTnTix = TnTjx = TjTnx; ∀i

(

≤ j
)

, j ∈ Z0+, ∀n ∈ Z0+, ∀x ∈ X which used in (7) yields 
by using {Tn}

→
→ {T } a.s., ∀n ∈ Z0+ and TnTx = TTnx:

and any given m ∈ Z0+. Then, {Tn}
→
→ {T } a.s. and Property (iv) is proved. �

The subsequent result is concerned with the probabilistic convergence properties of 
the sequences {xn} ⊂ X generated by the iterated scheme xn+1 = Tnxn; ∀n ∈ Z+ for any 
given x1 ∈ X:

Theorem  2 Let (X ,F ,∆M) be a complete Menger space and let {Tn} be a sequence of 
operators Tn : X → X, such that FTn =

{

x∗n
}

, ∀n ∈ Z+, {Tn}
→
→ {T } a.s. and T : X → X is 

a (strict) k-contraction with FT = {x*}. Consider the sequence {xn} ⊂ X generated by the iter-
ated scheme xn+1 = Tnxn; ∀n ∈ Z+ for any given x1 ∈ X. Then, the following properties hold:

(i)     Tmxn → x∗ a.s. as m → ∞; ∀n ∈ Z0+ and Tmxn → x∗ a.s. as n,m → ∞,
(ii) 

where x0
n+1 = Txn, for some N1(∈ Z0+) = N1(γ , t,m),

(iii)   Assume that some of the conditions below holds:

1. 
{

Tm
n

}

→
→ Tm a.s.; ∀m ∈ Z+

2. {Tn}
→
→ T  a.s. and either Tn : X → X is continuous for all n ∈ Z0+ or Tn 

commutes with T for all n ∈ Z0+.
 Then, {xn} → x∗ a.s.

(iv) If (X ,F ,∆M) is a (non-necessarily complete) Menger space, each elements 
of the sequence {Tn} of operators Tn : X → X has a unique fixed points 
FTn =

{

x∗n
}

, ∀n ∈ Z+, and commute everywhere in X with a (strict) k-contraction 
T : X → X of unique fixed point FT = {x*}, then: 

Proof For any given γ ∈ (0, 1) and t ∈ R+, there exists N1(∈ Z0+) = N1(γ , t) such that 
FTnxn,Txn(t) > 1− γ since {Tn}

→
→ {T } a.s.. On the other hand, since T : X → X be a 

(strict) k-contraction with a unique fixed point x* ∈ X, one gets for any given any given 
γ ∈ (0, 1) and some N1(∈ Z0+) = N

(

γ , k−mt
)

 that:

(10)

min
0≤j≤m

F
T
j+1
n x,Tj+1x

(t)

≥ min
(

1− γ , FTn(Tjx),T(Tjx)(t/2)
)

= 1− �;

∀j ∈ m− 1, ∀t ∈ R+, ∀n(∈ Z0+) ≥ max(N1,N2)

F
Tmxn+1,T

mx
0
n+1

(t) ≥ FTnxn ,Txn

(

k
−m

t
)

; ∀n ∈ Z0+, ∀t ∈ R+, ∀m ∈ Z0+

F
Tmxn+1,T

mx
0
n+1

(t) ≥ FTnxn ,Txn

(

k
−m

t
)

> 1− γ ; ∀n(∈ Z0+) ≥ N1, ∀t ∈ R+, ∀m ∈ Z0+

lim
m→∞

F
Tmxn+1,T

mx
0
n+1

(t) = 1; ∀n(∈ Z0+) ≥ N1, ∀t ∈ R+

lim
m,n→∞

F
Tmxn+1,T

mx
0
n+1

(t) = 1; ∀t ∈ R+,

lim inf
n→∞

Fxn,x∗(t) ≥ lim sup
j,(n−j)→∞

Fxn,(Tn.....Tn−j+1.Tn−j)x∗
(

t−
)

; ∀t ∈ R+

FTmxn,x∗(t) = FTmxn,Tmx∗(t) ≥ Fxn,x∗
(

k−mt
)
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and then Tmxn → x∗ a.s. as m → ∞; ∀n ∈ Z0+ and Tmxn → x∗ a.s. as n, m → ∞. On the 
other hand, if xn+1 = Tnxn; ∀n ∈ Z0+ for any x1 ∈ X, since {Tn}

→
→ {T } a.s. and T : X → X 

is k-contractive, then

Properties (i) and (ii) have been proved.
To prove Property (iii), proceed by contradiction by assuming that {xn}¬ → x∗ a.s.. 

Then, there exists some real constant γ0 ∈ (0, 1) such that the following contradiction 
holds for some subsequence 

{

Tm
n

}

 of {Tn} which generates the sequence xnj+1 = Tnjxnj 
for some given x1 ∈ X, ∀j ∈ Z0+:

from Lemma 2, since either 
{

Tm
nj

}

→
→ Tm a.s., ∀m ∈ Z+, or {Tn}

→
→ T  a.s. with Tn : X → X 

being either everywhere continuous or it commutes with T : X → X, ∀n ∈ Z0+. Note 
that (7) yields the contradiction γ0 ≤ 0. Thus, {xn}¬ → x∗ a.s. is false and 

{

xnj

}

→ x∗ a.s. 
and then {xn} → x∗ a.s. Property (iii) has been proved.

To prove Property (iv), note that for any real constant σ ∈ (0, 1):

∀j ∈ Z0+, ∀t ∈ R+, since the elements of {Tn} commute with T, Fxn+m,x
∗ 

(

k−m
σ(1− σ)

)

≥ Fxn+m,x
∗(t), ∀n,m ∈ Z+ and limm→∞F

T̄ (n,n+m)x∗ ,xn+m

(

k−m
σ(1− σ)

)

= 1,  
∀t ∈ R+,where T̄ (n, n+m) = Tn+m−1 · · · · · Tn is a composite operator with m con-
secutive members of the sequence {Tn}. Thus, for any given t ∈ R+ and � ∈ (0, 1),  

FTmxn+1,T
m(Txn)(t) = FTmTnxn,T

m+1xn
(t) ≥ FTnxn,Txn

(

k
−m

t
)

> 1− γ ;

∀n(∈ Z0+) ≥ N1, ; ∀t ∈ R+, ∀m ∈ Z0+

lim
m→∞

FTmxn+1,T
m+1xn

(t) = lim
m→∞

FTmTnxn,T
m+1xn

(t) = 1; ∀n(∈ Z0+) ≥ N1,

∀t ∈ R+

lim
m,n→∞

FTmTnxn,T
m+1xn

(t) = 1; ∀t ∈ R+

(11)

1− γ0 ≥ lim sup
j→∞

(

lim sup
m→∞

Fxnj+m,x∗(t)

)

= lim sup
j→∞

(

lim sup
m→∞

FTm
nj
xnj ,x

∗(t)

)

≥ lim sup
j→∞

(

lim sup
m→∞

∆M

(

FTm
nj
xnj ,T

mxnj
(t/2), FTmxnj ,T

mx∗(t/2)
)

)

≥ ∆M

(

lim inf
j→∞

(

lim sup
m→∞

FTm
nj
xnj ,T

mxnj
(t/2)

)

, lim
m→∞

Fxnj ,x
∗

(

k−mt/2
)

)

= min(1, 1) = 1

(12)

Fxn+m ,x
∗(t) = F

T̄ (n,n+m)xn ,x
∗(t)

≥ ∆M

(

F
T̄ (n,n+m)xn ,T

mxn+m
(σ t), FTmxn+m ,T

mx∗((1− σ)t)

)

≥ ∆M

(

F
T̄ (n,n+m)xn ,T̄ (n,n+m)Tmxn

(σ t), Fxn+m ,x
∗

(

k
−m

(1− σ)t
)

)

≥ F
T̄ (n,n+m)xn ,T̄ (n,n+m)Tmxn

(σ t)

≥ ∆M

(

F
T̄ (n,n+m)xn ,T̄ (n,n+m)Tmx∗

(

σ
2
t

)

, F
T̄ (n,n+m)Tmx∗ ,T̄ (n,n+m)Tmxn

(σ (1− σ)t)

)

= ∆M

(

F
T̄ (n,n+m)xn ,T̄ (n,n+m)Tmx∗

(

σ
2
t

)

, F
TmT̄ (n,n+m)x∗ ,TmT̄ (n,n+m)xn

(σ (1− σ)t)

)

≥ ∆M

(

F
xn+m ,T̄ (n,n+m)Tmx∗

(

σ
2
t

)

, F
T̄ (n,n+m)x∗ ,xn+m

(

k
−m

σ(1− σ)t
)

)

;
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there exist m0, n0 ∈ Z0+ such that for any n(∈ Z0+) ≥ n0 and m(∈ Z0+) ≥ m0, 
FT̄ (n,n+m)x∗,xn+m

(

k−mt/4
)

> 1− � . Then, one gets from (12), since x* = Tmx* that

for any σ ∈ (0, 1) and renaming subscripts, the above inequality becomes identical to:

and Property (iv) is proved. �

Main results concerning the point‑wise convergence of operators
The first result of this section is the following one:

Theorem 3 Let (X ,F ,∆M) be a complete Menger space and let {Tn} be a sequence of 
operators such that:

1. The operators Tn : X → X; ∀n ∈ Z0+ of the sequence {Tn} are all strict k-contractions 
for some real constant k ∈ (0, 1),

2. {Tn} → T  for some T : X → X.

Then, T : X → X is a strict k-contraction and 
{

x∗n
}

→ x∗ a.s., where FTn =
{

x∗n
}

; 
∀n ∈ Z+, and FT =  {x*}. Furthermore, {xn} → x∗ a.s., where xn+1 = Tnxn; ∀n ∈ Z0+ for 
any given x0 ∈ X.

Proof We have that FTnx,Tny(t) ≥ Fx,y
(

k−1t
)

; ∀n ∈ Z0+, ∀t ∈ R+ for any x, y ∈ X, and

Thus, since {Tn} → T , Tn : X → X are strict k-contractions, then everywhere continu-
ous, and ∆M : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm,

Fxn+m,x∗(t) ≥ Fxn+m,T̄ (n,n+m)x∗

(

σ
2t
)

; ∀n ≥ n0, ∀m ≥ m0, ∀t ∈ R+

lim inf
n→∞

Fxn,x∗(t) ≥ lim sup
n→∞

Fxn,T̄ (n−m,n)x∗

(

σ
2t
)

; ∀m ≥ m0, ∀t ∈ R+

(13)Fxn,x∗(t) ≥ Fxn,T̄(j,n)x∗

(

σ
2t
)

; ∀j(∈ Z0+) ≥ n0,m(∈ Z0+) ≥ m0, ∀t ∈ R+

(14)

lim inf
n→∞

Fxn,x∗(t) ≥ lim
σ→1−

(

lim sup
n→∞

Fxn,T̄ (n−m,n)x∗

(

σ
2t
)

)

= lim sup
n→∞

Fxn,T̄ (n−m,n)x∗
(

t−
)

; m(∈ Z0+) ≥ m0, ∀t ∈ R+

(15)

FTx,Ty(t) ≥ ∆M

(

FTx,Tnx(t/2), FTnx,Ty(t/2)
)

≥ ∆M

(

FTx,Tnx(t/2),∆M

(

FTnx,Tny(t/4), FTny,Ty(t/4)
))

≥ ∆M

(

FTx,Tnx(t/2),∆M

(

Fx,y

(

k−1t/4
)

, FTny,Ty(t/4)
))

; ∀n ∈ Z0+, ∀t ∈ R+
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so that

Eq. (17), leading to (18), establishes that T : X → X is a strict k-contraction. It has to 
be proved that it has a unique fixed point x*. Assume on the contrary that there are two 
x∗, x̄∗(�= x∗) ∈ F(T ) so that

and then x̄∗ = x∗ by the property 1 of (1) of the PM space (X ,F ).On the other hand, one 
gets by taking y = y(x) = Tx and zn = zn(x) = Tnx for any given x ∈ X that

and, for any given � ∈ (0, 1) and t ∈ R+, there is N0 = N0(ε, �) ∈ Z0+ such that 
Fzn+1,zn(t) > 1− �; ∀n(∈ Z0+) ≥ N0, ∀t ∈ R+ so that {zn} is a Cauchy sequence which 
converges to some limit point z* = z*(x) ∈ X since (X ,F ,∆M) is complete. Since the fixed 
point x*of T : X → X is unique, any limit point z* = z*(x) ∈ X of any sequence {Tnx} for 
any arbitrary initial point x ∈ X is the fixed point x* of T : X → X. It remains to prove 
that {xn} → x∗ a.s., where xn+1 = Tnxn;∀n ∈ Z0+, for any given initial point x0 ∈ X. Note 
that

(16)

FTx,Ty(t) ≥ ∆M

(

lim inf
n→∞

FTx,Tnx(t/2),∆M

(

Fx,y

(

k−1t/4
)

, lim inf
n→∞

FTny,Ty(t/4)

))

≥ ∆M

(

lim inf
n→∞

FTx,Tnx(t/2),∆M

(

Fx,y

(

k−1t/4
)

, lim inf
n→∞

FTny,Ty(t/4)

))

= ∆M

(

1,∆M

(

Fx,y

(

k−1t/4
)

, 1
))

= ∆M

(

Fx,y

(

k−1t/4
)

, 1
)

= Fx,y

(

k−1t/4
)

; ∀n ∈ Z0+, ∀t ∈ R+, ∀x, y ∈ X

(17)FTnx,Tny(t) ≥ Fx,y
(

k−nt/4
)

; ∀n ∈ Z0+, ∀t ∈ R+, ∀x, y ∈ X

(18)lim
n→∞

FTnx,Tny(t) = 1; ∀t ∈ R+, ∀x, y ∈ X

Fx̄∗,x∗(t) = FTnx̄∗,Tnx∗(t) ≥ Fx̄∗,x∗
(

k−nt
)

; ∀n ∈ Z0+, ∀t ∈ R+

Fx̄∗,x∗(t) = lim
n→∞

FTnx̄∗,Tnx∗(t) ≥ lim
n→∞

Fx̄∗,x∗
(

k−nt
)

= 1; ∀t ∈ R+

lim
n→∞

FTn+1x,Tnx(t) = lim
n→∞

FTzn,zn(t) = 1; ∀t ∈ R+, ∀x ∈ X

(19)

Fxn+1,x
∗ (t)

≥ ∆M

(

Fxn+1,T
m
n+1

xn+1
(t/2),∆M

(

FTm
n+1

xn+1,T
mx

∗
n+1

(t/4), FTmx
∗
n+1

,Tmx∗ (t/4)

))

≥ ∆M

(

Fxn+1,T
m
n+1

xn+1
(t/2),∆M

(

∆M

(

FTm
n+1

xn+1,T
m
n+1

x
∗
n+1

(t/8), FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/8)

)

, FTmx
∗
n+1

,Tmx∗ (t/4)

))

≥ ∆M

(

Fxn+1,T
m
n+1

xn+1
(t/2),∆M

(

∆M

(

Fxn+1,x
∗
n+1

(

k
−m

t/8
)

, FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/8)

)

, Fx∗
n+1

,x∗

(

k
−m

t/4
)

))

;

∀n ∈ Z0+ , ∀m ∈ Z+ , ∀t ∈ R+
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Note also that

for any p, n, (m ≥ p) ∈ Z0+, ∀t ∈ R+ and, since Tn : X → X; ∀n ∈ Z0+ and 
T : X → X are all strict k-contractions, they are also continuous so that if {Tn} → T  , 
then {Tnx} → Tx a.s. and limn→∞FTnx,Tx(t) = 1; ∀t ∈ R+ as n  →  ∞ for any given 
x  ∈  X. Then, 

{

T
p
n

(

T
m−p
n+1 x∗n+1

)}

→ Tp
(

Tm−px∗n+1

)

 a.s. as m  →  ∞, ∀n ∈ Z0+ since 
Tn : X → X; ∀n ∈ Z0+ and T : X → X are strict k-contractions. This implies from (20) 
that

On the other hand,

since {Tn} is a sequence of strict k-contractive operators with FTn =
{

x∗n
}

; ∀n ∈ Z0+. 
Furthermore, one has:

In a similar way to (19), we get:

and taking limits as m  →  ∞, one gets that limn→∞FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/2) =

limn→∞Fx∗
n+1

,x∗(t) = 1; ∀t ∈ R+ so that 
{

x∗n
}

→ x∗ a.s.. On the other hand, the use of 
(21)–(23) in (19) as well as limn→∞Fx∗n+1,x

∗(t) = 1; ∀t ∈ R+ got from (24) yields for all 
t ∈ R+, since ∆M : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm,

so that ∃limn→∞Fxn,x∗(t) = 1; ∀t ∈ R+ and {xn} → x∗ a.s.. �

(20)

FTmx∗n+1,T
m
n+1x

∗
n+1

(t) = F
Tp

(

Tm−px∗n+1

)

,T
p
n

(

T
m−p
n+1 x∗n+1

)

(t)

= F
T
(

Tm−1x∗n+1

)

,Tn

(

Tm−1
n+1 x∗n+1

)

(t)

(21)lim
m→∞

FTmx∗n+1,T
m
n+1x

∗
n+1

(t) = 1; ∀t ∈ R+, ∀n ∈ Z0+

(22)
{

Tm
n xn

}

→ x∗n a.s. as m → ∞; ∀n ∈ Z0+

(23)lim
m→∞

Fxn+1,x
∗
n+1

(

k−mt
)

= lim
m→∞

Fx∗n+1,x
∗

(

k−mt/4
)

= 1; ∀t ∈ R+

(24)

Fx∗n+1,x
∗(t) = FTm

n+1x
∗
n+1,T

mx∗(t)

≥ ∆M

(

FTmx∗n+1,x
∗(t/2), FTmx∗n+1,T

m
n+1x

∗
n+1

(t/2)
)

≥ ∆M

(

Fx∗n+1,x
∗

(

k−mt/2
)

, FTmx∗n+1,T
m
n+1x

∗
n+1

(t/2)
)

; ∀m ∈ Z0+, ∀t ∈ R+

(25)

lim inf
n→∞

Fxn+1,x
∗(t)

≥ lim inf
n,m→∞

∆M

(

Fxn+1,T
m
n+1

xn+1
(t/2),∆M

(

∆M

(

Fxn+1,x
∗
n+1

(

k
−m

t/8
)

,

FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/8)

)

, Fx∗
n+1

,x∗

(

k
−m

t/4
)

))

≥ ∆M

(

lim
n,m→∞

Fxn+1,T
m
n+1

xn+1
(t/2),∆M

(

∆M

(

lim
m→∞

Fxn+1,x
∗
n+1

(

k
−m

t/8
)

,

lim
m→∞

FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/8)

)

, lim
m→∞

Fx∗
n+1

,x∗

(

k
−m

t/4
)

))

≥ ∆M(1,∆M(∆M(1, 1), 1)) = 1
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As it occurs in the deterministic counterpart, (Berinde 2007), the uniform conver-
gence of a sequence of operators {Tn} can be weakened if such operators possess certain 
additional contractive properties. See also Istratescu (1981). In this case, it is possible to 
get some close properties to those proved in “Main results concerning the uniform con-
vergence of operators” section for the case of uniform convergence. Firstly, two defini-
tions which are then used follow below:

Definition 2 (Berinde 2007) A non-decreasing function ϕ : R0+ → R0+ (i.e. ϕ(t1) ≤ ϕ
(t2) if t1 ≤ t2) is said to be a comparison function if {ϕn

(t)} → 0, ∀t ∈ R+. If, furthermore, 
(t − ϕ(t)) → +∞ as t → + ∞ then it is said to be a strict comparison function.

Example 2 Note that ϕ(t) = �(t)t
1+�(t)t for t ∈ R0+ with � : R0+ → R0+ being such that 

�(t)t is non-decreasing is a strict comparison function since it is non-decreasing and 
ϕ
n
(t) = ϕ

(

ϕ
n−1

(t)
)

= �(t)t
1+n�(t)t for all n ∈ Z+ implying that {ϕn

(t)} → 0; ∀t ∈ R0+ as 
n → ∞.

Example 3 Let (X ,F ) be a PM-space, let T : X → X be a mapping on X and let 

ϕ : X × X × R0+ → R0+ be defined as ϕx,y(t) =
�(t)

(

F−1
x,y (t)−1

)

1+�(t)
(

F−1
x,y (t)−1

) ; ∀x, y ∈ X , ∀t ∈ R0+ 

leading to the n-the composite function with itself resulting to be 

ϕ
n
x,y(t) =

�(t)
(

F−1
x,y (t)−1

)

1+n�(t)
(

F−1
x,y (t)−1

) ; ∀t ∈ R0+, ∀n ∈ Z which satisfies {ϕn
(t)} → 0; ∀t ∈ R0+ as 

n → ∞. Then, ϕ : X × X × R0+ → R0+ is a strict comparison function for any x, y ∈ X 

provided that λ(0) = 0 and �(t)
(

F−1
x,y (t)− 1

)

 is non-decreasing for all t ∈ R0+ for each 
pair 

(

x, y
)

∈ X × X. Note, in particular, that ϕx,x(t) = 0; ∀t ∈ R0+; ∀x ∈ X so that the null-
function ϕ is both non-increasing and non-decreasing.

Definition 3 Let (X ,F ) be a PM-space. Then, G : X → X is said to be a strict ϕ-con-
traction if G−1

Tx,Ty(t) ≤ 1+ ϕ

(

G−1
x,y (t)− 1

)

, ∀x, y ∈ X,∀t ∈ R+ for some strict comparison 
function ϕ : R0+ → R0+.

The next result follows:

Theorem 4 Let (X ,F ,∆M) be a complete Menger space and let {Tn} be a sequence of 
operators such that:

1. The operators Tn : X → X of the sequence {Tn} are all strict ϕ-contractions,
2. {Tn} → T  for some T : X → X.

Then, T : X → X is a strict ϕ-contraction and 
{

x∗n
}

→ x∗ a.s., where 
FTn =

{

x∗n
}

; ∀n ∈ Z+ and FT =  {x*}. Furthermore {xn} → x∗ a.s., where xn+1 =  Tnxn; 
∀n ∈ Z0+ for any given x0 ∈ X.
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Proof We have F−1
Tnx,Tny

(t)− 1 ≤ ϕ

(

F−1
x,y (t)− 1

)

; ∀x, y ∈ X,∀t ∈ R+, ∀n ∈ Z0+ for some 
strict comparison function ϕ : R0+ → R0+, since all the operators of the sequence {T} 
are strict nϕ-contractions, what is equivalent to

and then

Thus, since {Tn} → T , Tn : X → X all strict ϕ-contractions, then everywhere continu-
ous, and ∆M : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm, one gets:

so that

since limn→∞ϕ
n
(

F−1
x,y

(

t/2n+1
)

− 1
)

= 0 since {ϕn
(t)} → 0; ∀t ∈ R+. Then, 

limn→∞F−1
x,y

(

t/2n+1
)

= 1, ∀t ∈ R+, ∀x, y ∈ X. Thus, one also has that:

Eq. (28), leading to (29), establishes that T : X → X is a strict ϕ-contraction. It has to 
be proved that it has a unique fixed pointx*. Assume on the contrary that there are two 
points x∗, x̄∗(�= x∗) ∈ F(T ) so that

FTnx,Tny(t) ≥
1

1+ ϕ

(

F−1
x,y (t)− 1

) ; ∀x, y ∈ X , ∀t ∈ R+, ∀n ∈ Z0+

(26)

FTx,Ty(t) ≥ ∆M

�

FTx,Tnx(t/2), FTnx,Ty(t/2)
�

≥ ∆M

�

FTx,Tnx(t/2),∆M

�

FTnx,Tny(t/4), FTny,Ty(t/4)
��

≥ ∆M



FTx,Tnx(t/2),∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , FTny,Ty(t/4)







;

∀n ∈ Z0+, ∀t ∈ R+

(27)

FTx,Ty(t) ≥ lim inf
n→∞

∆M



FTx,Tnx(t/2),∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , FTny,Ty(t/4)









≥ ∆M



lim inf
n→∞

FTx,Tnx(t/2),∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , lim inf
n→∞

FTny,Ty(t/4)









= ∆M



1,∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , 1









= ∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , 1





=
1

1+ ϕ

�

F−1
x,y (t/4)− 1

� ; ∀t ∈ R+, ∀x, y ∈ X

(28)

F−1
Tx,Ty(t) ≤ 1+ ϕ

(

F−1
x,y (t/4)− 1

)

F−1
Tnx,Tny(t) ≤ 1+ ϕ

(

F−1
Tn−1x,Tn−1y

(t/4)− 1
)

≤ · · · ≤ 1+ ϕ
n
(

F−1
x,y

(

t/2n+1
)

− 1
)

;

∀n ∈ Z0+, ∀t ∈ R+, ∀x, y ∈ X

(29)lim
n→∞

FTnx,Tny(t) = 1; ∀t ∈ R+, ∀x, y ∈ X
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and then x̄∗ = x∗ by the property 1 of (1) of the PM space (X ,F ). On the other hand, one 
gets from (29) by taking y = y(x) = Tx and zn = zn(x) = Tn x for any given x ∈ X that

and, for any given � ∈ (0, 1) and t ∈ R+, there is N0 = N0(ε, �) ∈ Z0+ such that 
Fzn+1,zn(t) > 1− �; ∀n(∈ Z0+) ≥ N0, ∀t ∈ R+ so that {zn} is a Cauchy sequence which 
converges to some limit point z* = z*(x) ∈ X since (X ,F ,∆M) is complete. Since the fixed 
point x*of T : X → X is unique, any limit point z* = z*(x) ∈ X of any sequence {Tnx} for 
any arbitrary initial point x ∈ X is the fixed point x* of T : X → X. It remains to prove 
that {xn} → x∗ a.s., where xn+1 = Tnxn; ∀n ∈ Z0+, for any given initial point x0 ∈ X. Note 
that, since Tn is a strict ϕ-contraction with FTn =

{

x∗n
}

; ∀n ∈ Z0+, we can perform the 
two next replacements to a close set of inequalities to those got in (19) and (24) within 
the proof of Theorem 1

for all t ∈ R+ and m ∈ Z0+. Thus, one gets instead of (24),

Since 
{

Tm
n

}

→ Tm then limn→∞FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/2) = 1; ∀t ∈ R+; ∀m ∈ Z0+, ∀t ∈ R+ 
and the above constraint implies that

Equivalently, lim supn→∞

(

F−1
x∗n+1,x

∗(t)− 1− ϕ

(

F−1
x∗n+1,x

∗(t/2)− 1
))

≤ 0; ∀t ∈ R+. Since, 
furthermore, F−1(t) is non-increasing and ϕ(t) is non-decreasing, one has:

(30)

Fx̄∗,x∗(t) = FTnx̄∗,Tnx∗(t) = lim
n→∞

FTnx̄∗,Tnx∗(t) ≤ 1+ lim
n→∞

ϕ
n
(

F−1
x,y

(

t/2n+1
)

− 1

)

= 1; ∀t ∈ R+

lim
n→∞

FTn+1x,Tnx(t) = lim
n→∞

FTzn,zn(t) = 1; ∀t ∈ R+, ∀x ∈ X

FTm
n+1xn+1,T

m
n+1x

∗
n+1

(t) →
1

1+ ϕm
(

F−1
xn+1,x

∗
n+1

(t)− 1
)

Fx∗n+1,x
∗

(

k−mt
)

→
1

1+ ϕm
(

F−1
x∗n+1,x

∗(t)− 1
)

(31)

Fx∗
n+1

,x∗ (t) = FTm
n+1

x
∗
n+1

,Tmx∗ (t) ≥ ∆M

�

FTmx
∗
n+1

,x∗ (t/2), FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/2)

�

≥ ∆M





1

1+ ϕm

�

F
−1

x
∗
n+1

,x∗
(t/2)− 1

� , FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/2)



; ∀n,m ∈ Z0+, ∀t ∈ R+

lim inf
n→∞





1

F−1
x∗n+1,x

∗(t)
−

1

1+ ϕm
�

F−1
x∗n+1,x

∗(t/2)− 1
�



 ≥ 0; ∀m ∈ Z0+, ∀t ∈ R+

lim sup
n→∞

(

F−1
x∗n+1,x

∗(t)− 1− ϕ

(

F−1
x∗n+1,x

∗(t)− 1
))

≤ lim sup
n→∞

(

F−1
x∗n+1,x

∗(t)− 1− ϕ

(

F−1
x∗n+1,x

∗(t/2)− 1
))

≤ 0; ∀t ∈ R+;
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Define ση = sup{σ ∈ R0+ : σ − ϕ(σ) ≤ η} which is defined for any given η ∈ R̄0+  
(the extended nonnegative real semi-line) from the prop-
erty of strict ϕ-contractions, since ϕ is a strict comparison function, 
lim supt→+∞(t − ϕ

m
(t)) ≤ limt→+∞(t − ϕ(t)) = +∞;∀n ∈ Z0+ as t → + ∞. It turns 

out that limη→0ση = 0. Now, define σn = F−1
x∗n,x

∗(t)− 1; ∀n ∈ Z0+, ∀t ∈ R+. Taking into 
account that

One concludes that limη→0ση = limη→0

(

F−1
x∗n,x

∗(t)− 1
)

= 0; ∀t ∈ R+ so that {xn
*} → x* 

a.s..
Also, one can get, instead of (19) in the proof of Theorem 1, that

and then limn→∞ϕ
n
(

F−1
x,y

(

t/2n+1
)

− 1
)

= 0 since {ϕn
(t)} → 0; ∀t ∈ R+. Take limits in 

the above expression by using the continuity of the minimum triangular norm and the 
fact that ϕ is a strict ϕ-comparison function by using close arguments to those used to 
get (32). We then conclude in a similar way the validity of (21) to (25) by replacing the 
conditions of k-contractions by conditions of strict ϕ-contractions so that there exist the 
limits limn→∞Fx∗n,x∗(t)= limn→∞Fxn,x∗(t) = 1; ∀t ∈ R+ and {xn} → x∗ a.s.. �

 A close result to Theorem 4 is now got in the case when {Tn}
→
→ T , with Tn : X → X , 

so that T : X → X is a strict ϕ-contraction without requesting that all the elements of 
the sequence {Tn} be strict ϕ-contraction.

Theorem 5 Let (X ,F ,∆M) be a complete Menger space and let {Tn} be a sequence of 
operators such that:

1. {Tn}
→
→ T  such that Tn : X → X; ∀n ∈ Z0+ for some T : X → X which is a strict ϕ

-contraction,
2. x∗n ∈ FTn �= ∅; ∀n ∈ Z0+

Then, {Tn} has a subsequence of strict ϕ-contractions and 
{

x∗n
}

→ x∗ a.s., where 
FTn =

{

x∗n
}

; ∀n ∈ Z+ and FT =  {x*}. Furthermore {xn} → x∗ a.s., where xn+1 =  Tnxn; 
∀n ∈ Z0+ for any given x0 ∈ X.

(32)lim sup
n→∞

(

F−1
x∗n,x

∗(t)− 1− ϕ

(

F−1
x∗n,x

∗(t)− 1
))

≤ 0; ∀t ∈ R+

Fxn+1,x
∗(t) ≥ ∆M

�

Fxn+1,T
m
n+1

xn+1
(t/2),∆M

�

FTm
n+1

xn+1,T
mx

∗
n+1

(t/4), FTmx
∗
n+1

,Tmx∗(t/4)

��

≥ ∆M

�

Fxn+1,T
m
n+1

xn+1
(t/2),

∆M



∆M



FTmx
∗
n+1

,Tm
n+1

x
∗
n+1

(t/8),
1

1+ ϕm

�

F
−1

xn+1,x
∗
n+1

(t/8)− 1

�



,

1

1+ ϕm

�

F
−1

x
∗
n+1

,x∗
(t/4)− 1

�







; ∀n ∈ Z0+, ∀m ∈ Z+, ∀t ∈ R+
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Proof We have F−1
Tx,Ty(t)− 1 ≤ ϕ

(

F−1
x,y (t)− 1

)

; ∀x, y ∈ X,∀t ∈ R+, ∀n ∈ Z0+ for some 
strict comparison function ϕ : R0+ → R0+, since T : X → X is a strict ϕ-contraction, 
equivalently, FTx,Ty(t) ≥ 1

1+ϕ

(

F−1
x,y (t)−1

); ∀x, y ∈ X,∀t ∈ R+, ∀n ∈ Z0+, and then

Thus, since {Tn}
→
→ T  and T : X → X is a strict ϕ-contraction, then everywhere continu-

ous, and ∆M : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm, one gets:

so that one gets the following recursion:

since limm→∞ϕ
m
(

F−1
x,y

(

t/2n+1
)

− 1
)

= 0 since {ϕm
(t)} → 0; ∀t ∈ R+. Then, 

limm→∞F−1
x,y

(

t/2m+1
)

= 1, ∀t ∈ R+, ∀x,  y  ∈  X, and limn→∞FTnx,Tny(t) = 1; ∀t ∈ R+, 
∀x, y ∈ X. So, there is a subsequence 

{

Tnn

}

 of {Tn} whose elements are strict ϕ-contrac-
tions and the elements of such a subsequence have unique fixed points 

{

x∗nk

}

. Eq. (32) 
can also be got under the conditions of this theorem so that one concludes that {xn

*} → x* 
a.s.. The remaining of the proof is close to its counterpart in Theorem 4. �

We now reformulate close results to the above ones associated with strict ϕ-contrac-
tions via a dual class of contractions referred to as dual strict ϕ-contractions which oper-
ate directly on contractive conditions on the probability density function instead on its 
inverse. For that purpose, we first introduce the concept of dual strict comparison func-
tion as follows:

FTnx,Tny(t) ≥ ∆M

�

FTnx,Tx(t/2), FTx,Tny(t/2)
�

≥ ∆M

�

FTx,Tnx(t/2),∆M

�

FTx,Ty(t/4), FTny,Ty(t/4)
��

≥ ∆M



FTx,Tnx(t/2),∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , FTny,Ty(t/4)







;

∀n ∈ Z0+, ∀t ∈ R+.

lim inf
n→∞

FTnx,Tny(t) ≥ lim inf
n→∞

∆M



FTx,Tnx(t/2),∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , FTny,Ty(t/4)









≥ ∆M



lim inf
n→∞

FTx,Tnx(t/2),∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , lim inf
n→∞

FTny,Ty(t/4)









= ∆M



1,∆M





1

1+ ϕ

�

F−1
x,y (t/4)− 1

� , 1







 =
1

1+ ϕ

�

F−1
x,y (t/4)− 1

� ;

∀t ∈ R+, ∀x, y ∈ X

lim sup
m→∞

(

lim sup
n→∞

F−1
Tm
n x,Tm

n y(t)

)

≤ 1+ lim sup
m→∞

(

lim sup
n→∞

ϕ

(

F−1

Tn
m−1x,Tm−1

n y
(t/4)− 1

)

)

≤ · · · ≤ 1+ lim sup
m→∞

(

lim sup
n→∞

ϕ
m
(

F−1
x,y

(

t/2m+1
)

− 1
)

)

= 1
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Definition 4 A non-increasing function ϕ : R0+ → R0+ (i.e. ϕ(t1) ≥ ϕ(t2) if t1 ≤  t2) 
is said to be a dual comparison function if {ϕn

(t)} → 1, ∀t ∈ R+. If, furthermore, 
(t − ϕ(t)) → +∞ as t → + ∞ then it is said to be a dual strict comparison function.

Definition 5 Let (X, F) be a PM-space. Then, G : X → X is said to be a dual strict ϕ
-contraction if GTx,Ty(t) ≥ ϕ

(

Gx,y(t)
)

, ∀x, y ∈ X,∀t ∈ R+ for some dual strict comparison 
function ϕ : R0+ → R0+.

Note that if T is any strict k-contraction for any given k ∈ (0, 1) then

if ϕ  ≡  1 which is a dual strict comparison function since F is non-decreasing and 
left-continuous.

If {ϕn
(t)} → 1, although ϕ : R0+ → R0+ be non-necessarily unity but a dual strict 

comparison function, then

Since {ϕn
(t)} → 1, ∀t ∈ R+ because it is a dual strict comparison function, all the lim-

its of the above chain equalize unity. So, if T : X → X is any strict k-contraction then it 
is also a dual strict ϕ-contraction. The converse is not true in general. Assume now that 
T : X → X is a dual strict ϕ-contraction for some dual strict comparison function ϕ so 
that FTx,Ty(t) ≥ ϕ

(

Fx,y(t)
)

; ∀x, y ∈ X , ∀t ∈ R+. Since F is non-decreasing and ϕ is non-
increasing, we have for k ∈ (0, 1):

so that FTx,Ty(t) ≥ ϕ
(

Fx,y(t)
)

≥ ϕ
(

Fx,y
(

k−1t
))

; ∀x, y ∈ X , ∀t ∈ R+ and any given 
k ∈  (0,  1). One then gets that FTnx,Tny(t) ≥ ϕ

n
(

Fx,y
(

k−nt
))

 so that FTnx,Tny(t) → 1 as 
n → ∞; ∀x, y ∈ X, ∀t ∈ R+. Then, if T : X → X is a ϕ-contraction, it is not a strict k-con-
traction, in general.

The next result follows:

Theorem 6 Let (X ,F ,∆M) be a complete Menger space and let {Tn} be a sequence of 
operators such that:

1. The operators Tn : X → X; ∀n ∈ Z0+ of the sequence {Tn} are all dual strict ϕ-con-
tractions,

2. {Tn} → T  for some T : X → X.

Then, T : X → X is a dual strict ϕ-contraction and 
{

x∗n
}

→ x∗ a.s., where FTn =
{

x∗n
}

; 
∀n ∈ Z+ and FT = {x*}. Furthermore {xn} → x∗ a.s., where xn+1 = Tnxn; ∀n ∈ Z0+ for any 
given x0 ∈ X.

FTx,Ty(t) ≥ Fx,y

(

k−1t
)

≥ Fx,y(t) = ϕ
(

Fx,y(t)
)

; ∀x, y ∈ X; ∀t ∈ R+

FTn+1x,Tn+1y(t) ≥ FTx,Ty
(

k−nt
)

≥ ϕ
(

Fx,y
(

k−nt
))

= ϕ
n
(

Fx,y(t)
)

; ∀x, y ∈ X , ∀t ∈ R+.

Fx,y

(

k−1t
)

≥ Fx,y(t);ϕ
(

Fx,y

(

k−1t
))

≤ ϕ
(

Fx,y(t)
)

; ∀x, y ∈ X , ∀t ∈ R+
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Proof We have FTnx,Tny(t) ≥ ϕ
(

Fx,y(t)
)

; ∀x,  y ∈  X,∀t ∈ R+, ∀n ∈ Z0+ for some strict 
comparison function ϕ : R0+ → R0+, since all the operators of the sequence {Tn} are 
dual strict ϕ-contractions; ∀x,  y ∈  X,∀t ∈ R+. Under close steps to those used in the 
proof of Theorem 4, we get instead of (28):

and limn→∞ϕ
n
(

Fx,y
(

t/2n+1
))

= 1, since {ϕn
(t)} → 1; ∀t ∈ R+. Then limn→∞

FTnx,Tny(t) = 1; ∀t ∈ R+, ∀x, y ∈ X and one can conclude in a similar way to Theorem 4 
that T, which is the point-wise limit of the sequence {Tn} of dual strict ϕ-contractions, is 
also a dual strict ϕ-contraction. We also can prove the remaining properties of the state-
ment in a close way to the proof of Theorem 4. �

It turns out that a similar result to Theorem  6, under the guidelines of Theorem  5, 
can be directly formulated for the case when {Tn}

→
→ T  with Tn : X → X where the limit 

operator T : X → X is a dual strict ϕ-contraction.

Numerical example
This section contains some numerical examples illustrating the theoretical results previ-
ously established, in particular Theorems 1, 3 and 6 from “Main results concerning the 
uniform convergence of operators” and “Main results concerning the point-wise con-
vergence of operators” sections, respectively. For this purpose, we extend the example 
proposed in de la Sen and Ibeas (2015):

Example 4 Consider the space X = R0+ = [0,+∞) with the probabilistic met-
ric given by Fx,y(t) = t

t+d(x,y) where d(x,  y) is a deterministic metric, selected in 
this example as d(x, y) = ‖x − y‖ where ‖  · ‖ stands for the Euclidean norm. Clearly, 
(

[0,+∞), Fx,y(t),∆M

)

 is a Menger PM-space. Moreover, consider now the iterative 
scheme given by xn+1 = Tnxn; n ∈ Z0+ with the family of nonlinear operators Tn (n ≥ 0) 
being defined by Tnxn = xn

f (n)(1+xn)
 on [0, + ∞) and f (n) = 2n+3

n+1 . This family of non-
linear operators is simultaneously a strict k and dual strict ϕ-contraction (according to 
Definitions 1 and 4, respectively) so that conditions from Theorems 1, 3 and 6 hold and 
they can be applied simultaneously. A numerical simulation of the iterative scheme is 
performed in this section to show these theoretical results. Initially, we must ensure that 
they are strict k and dual strict ϕ-contractions. Thus, according to Definition 1 each Tn 
has to satisfy FTnx,Tny(kt) ≥ Fx,y(t), ∀x, y ∈ [0, + ∞) and ∀t ≥ 0 for some real constant 
0 < k < 1. Therefore,

(33)
FTnx,Tny(t) ≥ ϕ

(

FTn−1x,Tn−1y(t/4)
)

≥ · · · ≥ ϕ
n
(

Fx,y

(

t/2n+1
))

; ∀n ∈ Z0+, ∀t ∈ R+,∀x, y ∈ X

Tnx − Tny =
x

f (n)(1+ x)
−

y

f (n)(1+ y)
=

x − y

f (n)(1+ x)(1+ y)



Page 23 of 27De la Sen et al. SpringerPlus  (2016) 5:557 

so that

where Mn = f(n)(1 + x)(1 + y). On the other hand:

so that the condition FTnx,Tny(kt) ≥ Fx,y(t) becomes:

If we denote now q = kMn and consider the function g(q) = qt

qt+�x−y�
 we have:

Therefore, g(q) is a non-decreasing function and if q ≥  1 we have g(q) ≥ g(1). Thus, 
Eq. (34) holds provided that q = kMn ≥ 1, condition that can be achieved if:

Moreover, inf Mn = inf(f(n)(1 + x)(1 + y)) = inf f(n) = 2 since X = [0, +∞) and Eq. (34) 
holds if k ≥ 1

2. Therefore, we can choose 12 ≤ k < 1 and Tn is a strict k-contraction for 
every non-negative n. Furthermore, if we select now the dual strict comparison function 
ϕ(t) = 1, Tn is also a strict dual ϕ-contraction since FTnx,Tny(kt) ≥ Fx,y(t) still holds when 
k =  1 (Definition 4). Therefore, Theorems 1, 3 and 6 hold and the nonlinear iterative 
scheme:

converges to the unique fixed point of T = limn→∞Tn = limn→∞
x

f (n)(1+x)
= x

2(1+x) 
which is x* = 0. Figure 1 shows the evolution of the iterative scheme (35) for different 
initial conditions. It can be seen in Fig. 1 that the sequence of iterates converges to zero 
as predicted by Theorem 2(iii), Theorems 3 and Theorem 6. Moreover, the sequence of 
probability functions Fxn,x∗(t) = Fxn,0(t) converges to unity as Figs. 2, 3 and 4 show.

Conclusions
This paper has investigated some relevant properties of convergence of sequences built 
through sequences of operators which are either uniformly convergent to either a strict 
k-contractive operator, for some given real constant k ∈ (0, 1), or which are strictly 
k-contractive and point-wisely convergent to some limit operator. Those convergence 

FTnx,Tny(kt) =
kt

kt +
�x−y�
Mn

=
ktMn

ktMn +
∥

∥x − y
∥

∥

; ∀t ∈ R+, ∀n ∈ Z0+

Fx,y(t) =
t

t +
∥

∥x − y
∥

∥

; ∀t ∈ R+

(34)
ktMn

ktMn +
∥

∥x − y
∥

∥

≥
t

t +
∥

∥x − y
∥

∥

; ∀t ∈ R+.

dg(q)

dq
=

d

dq

(

qt

qt +
∥

∥x − y
∥

∥

)

=

∥

∥x − y
∥

∥t
(

qt +
∥

∥x − y
∥

∥

)2
≥ 0; ∀t ∈ R+

k ≥
1

inf Mn
≥

1

Mn

(35)xn+1 =
xn

f (n)(1+ xn)
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properties are also reformulated for the case when either the sequence of operators or its 
limit are strict ϕ-contractions. The limits of the built convergent sequences are either the 
limits of the sequence of fixed points of the corresponding sequences of operators or the 
fixed points of the limit operator of the sequence of operators. The definitions of strict 
k-contractions and ϕ-contractions are given in the context of probabilistic metric spaces 
for the given probability density function. A numerical illustrative example is proposed 
and discussed in detail.

1 2 3 4 5 6 7 8
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8

15

n

x n

Fig. 1 Evolution of the sequence of iterates for different initial conditions
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Fig. 2 Convergence of the sequence of probability functions Fxn ,x∗ (t) to unity. Display of Fx1,0(t)
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