
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2020

Editing-enabled signatures: A new tool for editing authenticated Editing-enabled signatures: A new tool for editing authenticated

data data

Binanda SENGUPTA
Singapore Management University, binandas@smu.edu.sg

Yangguang TIAN
University of Oregon

Yangguang TIAN
Singapore Management University, ygtian@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
SENGUPTA, Binanda; TIAN, Yangguang; TIAN, Yangguang; and DENG, Robert H.. Editing-enabled
signatures: A new tool for editing authenticated data. (2020). IEEE Internet of Things. 7, (6), 4997-5007.
Research Collection School Of Computing and Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5300

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Editing-Enabled Signatures: A New Tool for
Editing Authenticated Data

Binanda Sengupta, Yingjiu Li, Member, IEEE, Yangguang Tian, and Robert H. Deng, Fellow, IEEE

Abstract—Data authentication primarily serves as a tool to
achieve data integrity and source authentication. However, tradi-
tional data authentication does not fit well where an intermediate
entity (editor) is required to modify the authenticated data pro-
vided by the source/data owner before sending the data to other
recipients. To ask the data owner for authenticating each modified
data can lead to higher communication overhead. In this work, we
introduce the notion of editing-enabled signatures where the data
owner can choose any set of modification operations applicable
on the data and still can restrict any possibly untrusted editor to
authenticate the data modified using an operation from this set
only. Moreover, the editor does not need to interact with the data
owner in order to authenticate the data every time it is modified.
We construct an editing-enabled signature scheme that derives
its efficiency from mostly lightweight cryptographic primitives.
We formalize the security model for editing-enabled signatures
and analyze the security of our editing-enabled signature scheme.
Editing-enabled signatures can find numerous applications that
involve generic editing tasks and privacy-preserving operations.
We demonstrate how our editing-enabled signature scheme can
be applied in two privacy-preserving applications.

Index Terms—Editing-enabled signatures, editing-functions,
hash-chains, privacy-preserving applications.

I. INTRODUCTION

UBIQUITOUS computing [1] and the Internet of Things
(IoT) [2] enable embedded devices to perform certain

computations and to communicate the data produced by these
computations to back-end services hosted by remote clouds.
For example, wearable fitness trackers (or patient monitoring
devices) collect data from the persons wearing them and send
the data to a cloud server that provides utility services. For
IoT applications, resource constraints and lack of security in
these devices are two major concerns [3], [4]. These low-power
devices are often wireless and restricted to be connected only
with a nearby smartphone that in turn communicates with
the cloud server via the Internet. This is a typical example
of the eMbedded-Gateway-Cloud (MGC) model where the
smartphone acts as a field gateway connecting the embedded
devices to the cloud sever [5], [6]. In addition, the smartphone
can perform certain computations on the collected data before
sending the modified data to the cloud server. However, a
smartphone is prone to attacks due to malwares that can
corrupt the computations and provide erroneous data to the
server. It is thus imperative to detect if the smartphone has
correctly performed the computations on the original data.

B. Sengupta, Y. Tian and R. H. Deng are with the School of Information
Systems, Singapore Management University, Singapore. Y. Li is with the
Computer and Information Science Department, University of Oregon, USA.
Corresponding author: Binanda Sengupta.

E-mail: {binandas,ygtian,robertdeng}@smu.edu.sg, yingjiul@uoregon.edu.

A similar situation arises when a surveillance camera (e.g.,
an IoT camera in a car/aerial drone, or a CCTV camera)
captures an image/video, and a publisher (e.g., a media house)
publishes the image/video file as an evidence for an incident
(e.g., a traffic accident/criminal activity). Such a file often
contains sensitive parts (e.g., human faces) that need to be
protected due to privacy concerns. This requires the publisher
to modify the file in order to hide these parts (e.g., by blurring
them) before publishing it [7], [8]. However, an untrusted
publisher can modify the file maliciously for various reasons.
Thus, a receiver of the modified file should be able to check
if the publisher has modified the original file correctly.

For many IoT applications, the traffic is unidirectional in
that resource-constrained end-devices can only send data to
gateways to modify the data. So, it is not possible to send
the modified data back to the end-devices and ask them
to authenticate the data for every modification. Even for
applications that involve enough resources it is inefficient,
due to communication overhead, to request the data owner
for authentication on each modified data.
Problem statement. We generalize the aforementioned sce-
narios to the following problem: a data owner delegates her
data to any intermediate entity so that this entity can perform
certain modification operations on the data and provide the
modified data to a third-party receiver. We call this intermedi-
ate entity an editor, who can edit the data, and a modification
operation applicable on the data an editing-function. The data
owner specifies a set of editing-functions, and the editor
is allowed to apply an editing-function from that set only.
However, in case the editor is untrusted, she can choose an
illegitimate editing-function, or incorrect data, or both. Thus,
the receiver should be able to verify the authenticity of the
modified data (i.e., if it has been derived by applying a
legitimate editing-function on the original data provided by
the data owner). Moreover, the data owner should be able to
select any editor after she authenticates the data. It is also
desired that the editor does not need to ask the data owner to
authenticate the derived data for every modification.
Why are existing techniques not suitable? Traditional
digital signatures generated by the data owner on the orig-
inal data do not meet the authenticity requirements stated
above, because a possible modification in the underlying data
invalidates the data owner’s signatures on the original data.
One possible way is that the editor asks the data owner for
a signature on the derived data after every modification she
performs on the data. However, this solution requires one
round of communication between the data owner and the
editor for each such modification — which makes the solution

Published in IEEE Internet of Things, 2020 June, 7 (6), 4997-5007
https://doi.org/10.1109/10.1109/JIOT.2020.2972741

2

inefficient. Moreover, as we have mentioned above, many IoT
applications do not support such interactions.

There exist other specialized signatures such as sanitizable
signatures [9], [10] and redactable signatures [11], [12] that
enable an intermediate entity to modify the data given by its
owner. Sanitizable signatures permit an entity (sanitizer) to
arbitrarily modify the owner’s data where, to the best of our
knowledge, the data owner cannot restrict the set of allowed
editing-functions. Moreover, the signing algorithm takes the
public key of the sanitizer as input, so that only the sanitizer
having the secret key can modify the data. However, in our
problem statement, the data owner has the flexibility to choose
any editor even after she authenticates the data. On the other
hand, redactable signatures handle deletion operations only —
this makes the set of allowed editing-functions too limited.
Notion of editing-enabled signatures. In this work, we
introduce editing-enabled signatures which serve as a solution
to the problem mentioned above. A data owner in an editing-
enabled signature (EES) scheme generates a signature on
the data in such a way that any editor can later modify
the data based on a set of permissible editing-functions in
an authenticated fashion. Editing-enabled signatures are very
flexible and very restrictive at the same time: the data owner
can specify any set of editing-functions of her choice and she
can still restrict the editor to modify the data using editing-
functions from that set only. In addition, the editor does not
need to interact with the data owner to authenticate the edited
data — which meets the IoT requirements mentioned above.
Our construction: Techniques and merits. Following the
notion of editing-enabled signatures, we construct an EES
scheme using the following techniques.
• An important building block of our EES scheme is the

way we represent the set of editing-functions applicable
on the data. As an editing-function can be complex in
nature, we consider an editing-function as a sequence of
basic functions (or simply, functions) (see Section II-A).
The data owner authenticates the output of such a se-
quence of functions using traditional signatures.

• Representing an editing-function as a sequence of func-
tions is helpful when every subsequence of the sequence
is an editing-function (see Section IV-A). However, au-
thenticating the output of such a sequence does not guar-
antee the authenticity of the outputs of all subsequences.
Signing each of these outputs demands many public-key
operations to be performed by the (possibly resource-
constrained) data owner. Instead, in our construction, we
use a collision-resistant hash-chain to bind the outputs
in an authenticated way. The data owner signs the hash
corresponding to the output of the sequence — which en-
sures the authenticity of the outputs of all subsequences.

• In our construction, the representation of editing-
functions is realized using a function tree, where each
edge represents a function and each path starting from the
root-node and ending at some node of the tree represents
an editing-function. The function tree is made public so
that a receiver knows the exact set of editing-functions.
Given the modified data and the corresponding editing-
function, the receiver computes the final hash value of the

respective hash-chain and verifies it using the signature
generated by the data owner and provided by the editor.
In case the function tree has two or more leaf-nodes,
the data owner needs to authenticate the output of each
sequence using a hash-chain and a signature. We reduce
the number of signatures required by building a Merkle
hash tree [13] over the final hash values of all hash-chains
and signing its root-digest only.

Our EES construction provides the data owner with the
flexibility to specify the set of editing-functions of her choice.
The editor, on the other hand, is restricted to edit the data by
applying editing-functions from that set only. Our construction
involves mostly lightweight cryptographic hash functions —
which makes it suitable for resource-constrained IoT devices.
Significance of our contribution. Editing-enabled signa-
tures can find many applications where a data owner allows
an editor to modify the data before publishing the data to an
intended receiver and the receiver can verify if the possibly
untrusted editor has modified the data as specified by the data
owner. For example, the data owner might want the editor
to perform certain generic editing tasks on a data file (e.g.,
to embed copyright-related information in an image) before
uploading the modified file to some storage server. Editing-
enabled signatures can also be used in privacy-preserving
applications where the data owner does not want to disclose
certain sensitive parts of the data. The receiver, without an
access to these sensitive parts, can still check if the editor has
edited the original data correctly. Among numerous potential
applications, we consider privacy-preserving image/video pub-
lishing and privacy-preserving data publishing in this paper.
Organization of the paper. The rest of the paper is orga-
nized as follows. Section II introduces the notion and security
model of editing-enabled signatures. In Section III, we con-
struct an editing-enabled signature (EES) scheme and analyze
its security. In Section IV, we discuss the efficiency and an
extension of our EES scheme. Section V describes applications
of editing-enabled signatures. We summarize the related work
in Section VI and conclude the paper in Section VII.
Notation used in the paper. For two integers a and b (where
a ≤ b), the set {a, a + 1, . . . , b} is denoted by [a, b] as well.
λ is the security parameter. An algorithm A(1λ) taking λ as
input is called a probabilistic polynomial-time (PPT) algorithm
if: 1) its running time is polynomial in λ, and 2) its output is
a random variable that depends on the internal coin tosses of
A. We use AO to denote that A is allowed to query an oracle
O. A function f : N→ R is negligible in λ if, for all positive
integers c and for all sufficiently large λ, we have f(λ) < 1

λc .

II. OVERVIEW OF EDITING-ENABLED SIGNATURES

In this section, we introduce the notion of editing-enabled
signatures for a data block. Editing-enabled signatures allow a
data owner to split her data file into multiple data blocks and
specify (possibly) different operations for different blocks. An
editing-enabled signature (EES) scheme involves three entities:
a data owner D, an editor E and a receiver R. D signs a data
block for a set of editing-functions and delegates the task of
editing to E . Later, E derives a data block by applying an

3

editing-function on the data block. Given a derived data block
and the signature, R can verify if E has correctly edited the
data block provided by D.

A. Editing-Functions

The data owner chooses a set of editing-functions permissi-
ble for a data block. Each editing-function can be a composi-
tion of multiple basic functions. In order to distinguish them,
we denote the set of basic functions (or simply, functions) by
F and the set of editing-functions by F. We assume that each
function is deterministic and unary, and it can be computed
in polynomial time. Based on the hardness of inverting the
outputs, a function in F can be classified as one-way (hard to
invert) or two-way (easy to invert). One-way functions can be
useful for privacy-preserving applications.

An editing-function can be composed of one or more
(polynomially many) functions. Thus, an editing-function is
also deterministic, unary and computable in polynomial time.
We further assume that |F| is polynomial and thus the output
of F, when applied on a data block, can also be computed
in polynomial time. We say that an editing-function (or
equivalently, a sequence of functions) is applied on a data
block in order to indicate the following: the first function of
the sequence is applied on the data block to get an intermediate
output which is provided as input to the second function of
the sequence, and so on. The output of the last function of
the sequence is the (final) output — we call this output the
derived data block corresponding to the editing-function. As
the editor may also provide the original (i.e., unedited) data
block to the receiver, we assume that F includes the identity
function (say, fI), and F includes the sequence {fI}.

B. Editing-Enabled Signatures

As we have mentioned earlier, we consider editing-enabled
signatures for a data block. A data block is identified by a
unique block-identifier id. We use the term “data block m” to
denote a data block where a message m is stored in the block.
For example, we can consider a relational database table to be
a data block identified by a unique table-identifier (that serves
as a block-identifier) and the content of the table to be the
message. However, the message present in a data block can
vary (e.g., when the table is updated). So, the block-identifier
alone does not suffice to uniquely identify a data block m.
We use a message-identifier mid which, along with the block-
identifier, uniquely identifies the message stored in that block.
For example, given a table identified by id, a timestamp (or
a counter denoting the number of updates) can serve as mid,
such that the content of the table at time mid (or after mid
number of updates) is fixed. Throughout the rest of the paper,
we mention a data block m to be identified by (id, mid)
in order to denote that the message m, corresponding to a
message-identifier mid, is stored in the data block identified
by id. We define an EES scheme as follows. The workflow
of an EES scheme is shown in Figure 1.

Definition 1 (Editing-Enabled Signatures): An EES scheme
consists of the following algorithms.

Fig. 1: Workflow of an EES scheme.

• Setup(1λ,id,F): The algorithm generates a secret key-
public key pair (sk, pk). Given a data block identified by
id and a set of functions F, it decides a set of permissible
editing-functions F and specifies the set F by a parameter
spec. Finally, the algorithm outputs sk and a public
parameter pp that includes pk, id, spec.

• InitSign(m,pp): Given a data block identified by id and
a message m, the algorithm selects a message-identifier
mid such that the data block m is uniquely identified by
the pair (id,mid). The algorithm outputs mid.

• EESign(m,mid, sk,pp): Given a data block m identi-
fied by (id,mid), a secret key sk and a set of editing-
functions specified by spec, the algorithm produces an
editing-enabled signature σ. The algorithm outputs σ.

• Process(m,mid, σ,pp): Given a data block m identi-
fied by (id,mid), a signature σ and a public parameter
pp, the algorithm processes the data block m based on
spec. The algorithm outputs ⊥ or a helper metadata
help that later helps to edit the data block according to
an editing-function.

• Edit(m,mid, σ,help,func,pp): Given an editing-
function specified by a metadata func and a helper
metadata help, the algorithm generates a derived data
block m. It outputs the derived data block m and a
verification metadata Π.

• EEVerify(m,mid, σ,Π,func,pp): The algorithm veri-
fies if the editing-function specified by func belongs
to F (specified by spec) and if σ is a valid signature
corresponding to the derived data block m. The algorithm
outputs 0 if any of the verification fails; the algorithm
outputs 1, otherwise.

C. Security Model

The editor E in an EES scheme may be untrusted in that:
given a set of editing-functions specified by spec and a data
block m provided by D, E may attempt to authenticate (on
behalf of D) the output of an illegitimate editing-function (that
is not specified in spec), or a message m′ not provided by D,
or both. In EES, the (possibly untrusted) editor is E modeled
as the probabilistic polynomial-time (PPT) adversary A.

We say that two editing-functions (or two sequences of
functions) are equivalent with respect to a data block m, if the

4

sequence of outputs for one of them (including the interme-
diate and final outputs) is exactly same as that for another. In
the following security model, we exclude equivalent functions
for a given data block since they produce the same editing
results. We describe the security game between a challenger
C and the adversary A as follows.

• Setup phase. C generates a secret key-public key pair
(sk, pk). Given a data block, C selects a unique identifier
id and a set of deterministic functions F. C runs Setup
with these inputs to generate a secret key-public key pair
(sk, pk) and public parameter pp. C sends pp to A.

• Query phase. C responds to the signing queries made
by A as follows. A adaptively chooses a sequence of
pairs Q = {(midj ,mj)}1≤j≤q1 for the data block mj

identified by the pair (id,midj) and sends Q to C, where
q1 is a polynomial in the security parameter λ. For each
j, C runs EESign to generate a signature σj on the data
block mj for spec and gives σj to A.

• Challenge phase. A attempts to generate a valid sig-
nature for a message that is the output of an editing-
function, not necessarily from spec, when applied on
the data block for a message-identifier which is not used
in the query phase. A may also aim to generate a valid
signature for a message that is not the output of an
editing-function from spec when applied on the data
block for a message-identifier used in the query phase.
In particular, A may take any of the following actions in
order to win the security game.

– A selects a data block m identified by the pair
(id,mid) such that mid 6= midj for any 1 ≤ j ≤
q1. A also selects an editing-function specified by the
metadata func which may not be present in spec
designated by C. A sends func, mid, a derived data
block m, a verification metadata Π and a signature
σ to C. C runs EEVerify on these inputs. A wins the
security game if EEVerify outputs 1.

– A selects a data block mj identified by the pair
(id,midj) for some 1 ≤ j ≤ q1. A also selects two
editing-functions specified by the metadata func
and func′, respectively, such that the first one is
specified in spec, the second one is not specified in
spec and they are not equivalent. A sends func,
midj , the derived data block m′ (corresponding to
func′), a verification metadata Π and a signature σ
to C. C runs EEVerify on these inputs. A wins the
security game if EEVerify outputs 1.

Definition 2 (Security of an EES Scheme): An EES scheme
is secure if, for any PPT adversary A, the adversary A wins
the security game described above only with a probability
negligible in the security parameter λ.

III. AN EDITING-ENABLED SIGNATURE SCHEME

Our editing-enabled signature (EES) scheme consists of
the following algorithms. For the ease of presentation, we
include the respective entity, that executes an algorithm, in
the description of that algorithm.

Fig. 2: An example of a function tree Tid,f with n = 8 leaf-
nodes {t1, t2, . . . , t8} and L = 4 levels {0, 1, 2, 3}.

• Setup(1λ,id,F): The data owner D decides an EUF-
CMA (existentially unforgeable under adaptive chosen-
message attacks [14]) digital signature scheme Σ =
(KeyGen,Sign,Verify) and a collision-resistant hash
function H . D runs Σ.KeyGen(1λ) to generate a secret
key-public key pair (sk, pk). Let IB and IM be the space
of block-identifiers and the space of message-identifiers,
respectively.
Given a set of functions F and a data block identified by
a unique identifier id ∈ IB , D decides the set of editing-
functions F for the data block and generates a function
tree Tid,f . We note that Tid,f specifies the editing-
functions the editor E can apply on the data block, and
each editing-function is a sequence of functions chosen
from F. Tid,f consists of a root-node and n leaf-nodes
(n ≥ 1). All other nodes present in Tid,f are called inter-
mediate nodes. The path pathi from the root-node to the
i-th leaf-node ti is denoted by a sequence of functions
seqi, where each function in seqi denotes an edge in
Tid,f and is chosen from F. For simplicity, we assume
that Tid,f consists of L levels, where the root-node is at
level l = 0, all leaf-nodes are at level l = L − 1 and
an intermediate node resides at a level l ∈ [1, L− 2]. In
other words, |seq1| = |seq2| = · · · = |seqn| = L− 1.
Figure 2 shows a function tree for n = 8, L = 4 and
F = {⊕,⊗,�, fI}, where fI is the identity function and
⊕,⊗,� are some functions applicable on the data block.
For each leaf-node ti (1 ≤ i ≤ n) of Tid,f ,
we denote the functions in the sequence seqi (from
the root-node to ti) by fi,1, fi,2, . . . , fi,L−1 each of
which is chosen from F (e.g., f4,1 = ⊕, f4,2 =
⊗, f4,3 = � for seq4). Each subsequence (starting
from the root-node) of seqi = {fi,1, fi,2, . . . , fi,L−1}
represents an editing-function, i.e., each of the se-
quences {fi,1}, {fi,1, fi,2}, . . . , {fi,1, fi,2, . . . , fi,L−1} is
an editing-function. Each editing-function can be speci-
fied by at least one pair (i, l) for some i ∈ [1, n] and a
unique level l of Tid,f (e.g., {�,⊕} can be specified by
(6, 2) or (7, 2) or (8, 2)). A function may occur multiple
times in seqi (e.g., f2,2 = f2,3 = � for seq2), and a
function in seqi may be equal to a function in seqj for
i 6= j (e.g., f1,1 = f5,2 = f7,3 = ⊕). Moreover, pathi
and pathj (i 6= j) may share a sub-path starting from

5

(a) (b)

Fig. 3: (a) An editing tree Tid,mid,e corresponding to Tid,f shown in Figure 2. (b) A Merkle hash tree Tid,mid,h built over the
hash values stored at the leaf-nodes of Tid,mid,e. The Merkle proof for a leaf-node v of Tid,mid,h comprises the contents of
the siblings of the nodes present on the path from v to the root-node (e.g., the Merkle proof for h7,3 consists of (h8,3, v3, v5)).

the root-node and ending at a level l ≤ L − 2, which
implies that fi,1 = fj,1, fi,2 = fj,2, . . . , fi,l = fj,l (e.g.,
f6,1 = f8,1 = �, f6,2 = f8,2 = ⊕ for seq6 and seq8).
D includes the identity function fi,0 = fI for all i ∈ [1, n]
— which denotes that the derived block is the original
data block itself.
The data owner D labels the edges of Tid,f by the
corresponding functions and includes the labeled function
tree Tid,f in spec. Then, D includes pk,id,spec, the
description of H and Σ in the public parameter pp.

• InitSign(m,pp): Given a data block identified by id
and a message m, the data owner D selects a message-
identifier mid ∈ IM such that the data block m is
uniquely identified by the pair (id,mid).

• EESign(m,mid, sk,pp): Given a data block m, a
message-identifier mid, the secret key sk and the param-
eter spec included in pp, the data owner D generates
an editing tree Tid,mid,e corresponding to the function
tree Tid,f included in spec as follows. Let mi,l (for
1 ≤ i ≤ n and 0 ≤ l ≤ L − 1) denote the data
block derived from the original data block m by applying
the sequence of functions {fi,0, fi,1, fi,2, . . . , fi,l}. That
is, mi,l = fi,l(· · · (fi,1(fi,0(m))) · · ·). We note that
mi,0 = m for all i ∈ [1, n]. The structure of Tid,mid,e is
similar to that of Tid,f ; the nodes in Tid,mid,e contain the
corresponding derived data blocks and their hash values
(see Figure 3(a)). The root-node of Tid,mid,e contains
the pair (m,H(m||id||mid)), where H is the collision-
resistant hash function described in spec. For each
1 ≤ i ≤ n, the node at level l corresponding to seqi
contains the pair (mi,l, hi,l), where

hi,l =

H(m||id||mid), if l = 0

H(hi,l−1||mi,l||id||mid), if 1 ≤ l ≤ L− 2

H(i||hi,l−1||mi,l||id||mid), if l = L− 1.

We denote the path from the root-node to the i-th leaf-
node of Tid,mid,e by epathi which corresponds to
pathi of Tid,f . For pathi and pathj (i 6= j) sharing a
sub-path in Tid,f (starting from the root-node and ending

at level l ≤ L− 2), the nodes on the corresponding sub-
path shared by epathi and epathj contain same hash
values (e.g., h6,0 = h7,0, h6,1 = h7,1, h6,2 = h7,2).
If Tid,mid,e has n > 1 leaf-nodes, D constructs a Merkle
hash tree [13] over the hash values stored in the leaf-
nodes of Tid,mid,e. Figure 3(b) shows a Merkle hash tree
Tid,mid,h corresponding to Tid,mid,e shown in Figure 3(a).
Let h be the root-digest of Tid,mid,h. If Tid,mid,e contains
only n = 1 leaf-node, then h = h1,L−1. Finally, D
generates a signature σ = Σ.Sign(sk, h) on h.

• Process(m,mid, σ,pp): Given the function tree Tid,f
and the data block m identified by (id,mid), E con-
structs Tid,mid,e and Tid,mid,h following the same way as
described above. Finally, E verifies σ by checking if

Σ.Verify(pk, h, σ)
?
= 1. (1)

If the equality holds, E stores the signature σ sent by
the data owner D and the helper metadata help =
(Tid,mid,e, Tid,mid,h) that later helps her edit the data
block according to an editing-function present in Tid,f .
E outputs ⊥ in case the equality does not hold.

• Edit(m,mid, σ,help,func,pp): Given the metadata
help and an editing-function specified by func =
(i, l), E retrieves the derived data block m = mi,l =
fi,l(· · · (fi,1(fi,0(m))) · · ·) and the Merkle proof (only
for n > 1) for hi,L−1, by looking up Tid,mid,e and
Tid,mid,h. Then, E includes hi,l−1 (or hi,l for l = 0)
and the Merkle proof in the verification metadata Π.

• EEVerify(m,mid, σ,Π,func,pp): Given the public
parameter pp and a metadata func = (i, l), the
receiver R checks if the editing-function corresponding
to func is present in spec; R outputs 0, otherwise.
Given a derived data block m, a verification metadata
Π, func and pp, R gets the value hi,l from Π (for
l = 0) or computes hi,l = H(hi,l−1||m||id||mid)
for l > 0. For l = 0, R outputs 0 if
hi,l 6= H(m||id||mid). Otherwise, R computes
the sequence {(mi,l+1, hi,l+1), (mi,l+2, hi,l+2), . . . ,
(mi,L−1, hi,L−1)}, using mi,l+1 = fi,l+1(m), hi,l+1 =
H(hi,l||mi,l+1||id||mid), mi,l+2 = fi,l+2(mi,l+1),

6

hi,l+2 = H(hi,l+1||mi,l+2||id||mid) and so on. For
n > 1, the receiver R computes h (the root-digest of the
Merkle hash tree) from the hash value hi,L−1 and the
Merkle proof for hi,L−1. For n = 1, R sets h = h1,L−1.
R verifies the signature σ by checking whether

Σ.Verify(pk, h, σ)
?
= 1. (2)

R outputs 1 if the equality holds; R outputs 0, otherwise.

Security of our EES scheme. We state and prove Theorem 1
to analyze the security of our EES scheme.

Theorem 1: Given that the hash function H is collision-
resistant and the underlying digital signature scheme Σ is
secure (EUF-CMA), the EES scheme described above is
secure according to Definition 2 stated in Section II-C.
Proof. During the query phase of the security game, for each
1 ≤ j ≤ q1, the challenger C generates a signature σj for
the data block mj identified by (id,midj) and the set of
editing-functions specified by spec, and then gives it to the
PPT adversary A. Let hj be the root-digest of the Merkle hash
tree computed on the data block mj corresponding to spec.
We can say that σj = Σ.Sign(sk, hj) is the signature on
(mj ,id,midj ,spec). We consider the following two cases.
Case I. During the challenge phase, suppose A selects a data
block m identified by (id,mid) such that mid 6= midj for
all 1 ≤ j ≤ q1, and an editing-function func that may not
be specified in spec. Suppose A produces a derived data
block m, a verification metadata Π and a signature σ such
that EEVerify outputs 1 for (m,mid, σ,Π,func,pp). Let h
be the root-digest of the Merkle tree corresponding to (m,Π).

We note that EEVerify outputs 1 only if the equality given
in Eqn. 2 holds (i.e., Σ.Verify(pk, h, σ) = 1). As EEVerify
outputs 1 for (m,Π, σ), it follows that Σ.Verify(pk, h, σ) = 1.
Then, one of the following two cases arises:
• Case I-a: h 6= hj for all 1 ≤ j ≤ q1,
• Case I-b: h = hj for some 1 ≤ j ≤ q1.

Case I-a. We show that, if A can find a tuple (m,Π, σ) such
that h 6= hj for all 1 ≤ j ≤ q1, then A can be used to break
the security of the EUF-CMA signature scheme Σ. In that
case, we can construct another PPT algorithm BOsk(·) that,
given the public key pk and an access to the signing oracle
Osk(·) corresponding to Σ, executes A as a subroutine to forge
a signature. B simulates the challenger C with the following
exception: B does not know the secret key sk, but it can query
Osk(·) to get signatures on messages of its choice. Finally, B
produces a valid forgery to Σ with the help of A.
• Initially, B is given the public key. B decides an identifier
id and specifies a set of editing-functions by spec. B
includes pk, id, spec and the descriptions of H and Σ
in a public parameter pp. Finally, B sends pp to A.

• During the j-th signing query (on the data block mj

identified by (id,midj)) made by A for 1 ≤ j ≤ q1, B
computes hj . B queries the signing oracle Osk(·) for a
signature σj on hj and responds to A’s query with σj .

• Let us assume that A finds, with probability εA, a
tuple (m,Π, σ) for an editing-function metadata func
in the challenge phase, such that h 6∈ {hj}1≤j≤q1 and

Σ.Verify(pk, h, σ) = 1. A reports (m,Π, σ) to B as a
forgery to the EES scheme.

• B uses the pair (h, σ) as a forgery to Σ.

We note that h is not equal to any signing query hj made
by B to the signing oracle Osk(·). Thus, the pair (h, σ) is a
valid forgery to the underlying EUF-CMA signature scheme
Σ. The success probability of B is given by εB = εA. Given
that each hj (and also h) can be computed in polynomial (in
λ) time, the running time of B is also polynomial in λ (since
q1, q2 are polynomials in λ and A is a PPT adversary).
Case I-b. During the challenge phase, A produces the pair
(m,Π) corresponding to mid. Let h be the hash value (com-
puted from (m,Π)) that corresponds to the level l = L − 1.
That is, the root-digest h of the Merkle hash tree is computed
from h and its Merkle proof present in Π. Given that h = hj
(for some 1 ≤ j ≤ q1) and mid 6∈ {midj}1≤j≤q1 , there exists
an index j′ such that h = hj′ and mid 6= midj′ . Then, A must
have found a collision in one of the following ways:

• a collision in epathk (for some k ∈ [1, n]) of Tid,midj′ ,e

for the data block mj′ (identified by (id,midj′)), such
that hk,L−1 for Tid,midj′ ,e is equal to h,

• a collision in the Merkle proof for hk,L−1 (for some k ∈
[1, n]) corresponding to the Merkle hash tree Tid,midj′ ,h

for the data block mj′ (in that case, hk,L−1 for Tid,midj′ ,e

is not equal to h, but their Merkle proofs produce the
same root-digest hj′ = h).

Either of these collisions contradicts our assumption that H is
collision-resistant.
Case II. During the challenge phase of the security game,
suppose A selects a data block mj identified by (id,midj)
for some 1 ≤ j ≤ q1. Suppose A finds two editing-functions
(specified by the metadata func = (i, l) and func′, respec-
tively) such that the first one is specified in spec, the second
one is not specified in spec and they are not equivalent. A
produces a derived data block m′ (corresponding to func′),
a verification metadata Π and a signature σ such that the
algorithm EEVerify outputs 1 for (m′,midj , σ,Π,func,pp).

We note that EEVerify takes the value (i, l) from func and
applies the sequence of functions {fi,l+1, fi,l+2, . . . , fi,L−1}
(that are available from the function tree Tid,f included in
the public parameter pp) on m′ to obtain the subsequent
outputs, if any, on epathi of Tid,midj ,e (and the final hash
value corresponding to the level l = L− 1). We now consider
the case where the final output m′ for func′ is same as the
final output m of func = (i, l), and the subsequent outputs
lie on epathi. As the editing-functions are not equivalent,
there exists at least one intermediate output for func′ that is
different from the corresponding intermediate output for func
— which makes their corresponding hash values different as
well. As EEVerify outputs 1 for (m′,midj , σ,Π,func,pp),
A must have found a collision in epathi to reach the same
hash value hi,L−1 (that embeds i), or it must have found a
collision in the Merkle hash tree for a different h′i,L−1 such
that the root-digest hj remains the same, or it must have
produced a signature σ 6= σj on a newly computed root-digest
h′j — which contradicts either of our assumptions that H is
collision-resistant and Σ is EUF-CMA.

7

For all other cases (i.e., when m′ lies on epathi but it is not
equal to m, or m′ lies on epathk for some k 6= i (1 ≤ k ≤
n), or m′ lies on a new path not specified by the challenger
C), if EEVerify outputs 1 for (m′,midj , σ,Π,func,pp), then
also A must have found a collision in epathi (to get the
same hash value hi,L−1) or in the Merkle hash tree for a
different h′i,L−1 (to get the same root-digest hj), or it must
have produced a signature σ 6= σj on a newly computed root-
digest h′j — which contradicts either of our assumptions: H is
collision-resistant, and the signature scheme Σ is EUF-CMA.

This completes the proof of Theorem 1. �

IV. DISCUSSION

A. Efficiency of Our EES Scheme

The number of levels and the number of leaf-nodes in
the function tree Tid,f for a data block m are L and n,
respectively. Let N be the number of editing-functions (i.e.,
the number of nodes in Tid,f) specified by the data owner
D. Thus, N is O(n · L). Another way of constructing Tid,f
is to represent each editing-function by a single edge from
the root-node — which requires two levels in Tid,f . However,
the way we have constructed Tid,f does not require repet-
itive computations of same functions for a sub-path shared
by different editing-functions (e.g., as shown in Figure 3,
f1,1 = f2,1 = f3,1 = f4,1 is computed only once). If N � n,
this saves significant amount of computation for the data owner
D (during EESign) and the editor E (during Process).

Given the security parameter λ, the hash values present in
the editing tree and the Merkle hash tree, and the signature
σ, are of size O(λ) each. Let sm be the size of the data
block m. For simplicity in the asymptotic analysis, we assume
that each derived block is also of the same size. Let block-
identifiers (elements of IB) and message-identifiers (elements
of IM) be represented using O(λ) bits. Let th, ts and tv be the
time required for computing a hash value (using H), signing
a message and verifying a signature (using Σ), respectively.
Computational complexity. During EESign, D constructs
the editing tree Tid,mid,e and the Merkle hash tree Tid,mid,h.
Apart from computations required to obtain the derived blocks,
the construction has two major computational costs: 1) com-
putations required to obtain the hash values in Tid,mid,e and
Tid,mid,h, and 2) signing the root-digest h to get the signature
σ. Thus, the computational overhead for D is O(N · th + n ·
th + ts). Similarly, the computational overhead for the editor
E during Process is O(N · th + n · th + tv). We note that
Edit does not incur any computational overhead for E . On
the other hand, the computational overhead for the receiver R
during EEVerify is O(L ·th+log n ·th+tv) — which includes
computing a sequence of hashes and verifying a signature.
Storage complexity. During Process, the editor E con-
structs Tid,mid,e and Tid,mid,h, and she stores them in order
to later retrieve the derived blocks and their corresponding
verification metadata. Each node of Tid,mid,e contains a data
block and a hash value — which requires O(sm +λ) storage.
On the other hand, each node of Tid,mid,h contains a hash
value — which requires O(λ) storage. Therefore, the total
storage overhead for E is O(N ·sm+N ·λ+n·λ). We note that,

in our EES scheme, there is no permanent storage overhead
for D and R (D needs only temporary storage to construct
Tid,mid,e and Tid,mid,h during EESign, but this storage is not
required once D generates σ).
Communication complexity. After signing a data block
m, the data owner D sends the tuple (m,mid, σ) to the
editor E — which requires O(sm + λ) bandwidth between
D and E . After editing the data block, E sends a tuple
(mid,func,m,Π, σ) to the receiver R — which amounts
to O(sm + log n · λ) bandwidth required between E and R.
Trade-off between computational complexity and storage
complexity. One possible way to reduce the storage over-
head for E is as follows. After computing Tid,mid,e and
Tid,mid,h, E deletes Tid,mid,e and stores only Tid,mid,h. How-
ever, in that case, E may have to compute some derived blocks
(that were earlier published to a receiver) multiple times from
the original data block m if E later wishes to publish the same
derived blocks to other receivers or even to the same receiver.
On the other hand, by storing Tid,mid,e, E only needs to look
up Tid,mid,e for the derived block and its corresponding hash.
Trade-off between computational complexity and com-
munication complexity. During Process, E constructs
Tid,mid,e and Tid,mid,h in the same way as done by D during
EESign. Thus, the computational overhead for E decreases
significantly if D sends these trees to E , but this increases the
communication bandwidth required between D and E .

B. Generalization for Multiple Data Blocks

In many applications, a data file F is split into multiple data
blocks and different sets of editing operations are applicable
on them. Our EES scheme described in Section III can be
extended for multiple data blocks as follows.

Given a data file F split into k data blocks identified by
block-identifiers id1,id2, . . . ,idk and the corresponding k
sets of editing-functions F1,F2, . . . ,Fk, D processes each data
block and the corresponding set of editing-functions separately
as before and computes the root-digests h1, h2, . . . , hk of the
corresponding Merkle hash trees. D constructs another Merkle
hash tree T over h1, h2, . . . , hk. Let h be the root-digest of
T . D signs h to obtain the editing-enabled signature for the
data file — which requires only one signing operation for
the data file F . For a data block in this extended editing-
enabled signature scheme, the size of the verification metadata
Π is O(log nmax · λ + log k · λ) and the verification time is
O(Lmax · th + log nmax · th + log k · th + ts), where Lmax is
the number of levels present in the function tree having the
maximum number of levels, nmax is the number of leaf-nodes
present in the function tree having the maximum number of
leaf-nodes and k is the number of blocks F is split into.

V. APPLICATIONS OF EDITING-ENABLED SIGNATURES

The applications of an EES scheme range from delegation
of generic editing tasks to protecting privacy of sensitive data.
For example, the owner D of an image can allow the editor
E to put a logo in a particular location of the image (e.g.,
at the top left corner), or D can allow E to embed copyright
information (e.g., a digital watermark) in the image before

8

Fig. 4: An example shows how our EES scheme works for the
data blocks of an image (image source: Wikimedia Commons).

publishing the image. For privacy-preserving applications, it is
required that a receiver R, given a derived data block, cannot
trace back to certain data blocks which are not accessible to
R otherwise. It is assumed that E and R do not collude with
each other; otherwise, R can always obtain the original data
from E . We describe how to employ our EES scheme in the
following privacy-preserving applications.

Privacy-preserving image/video publishing. In image pro-
cessing, it is often required that sensitive parts of an im-
age/video file must be protected from the receivers [7], [8].
For example, a surveillance camera (e.g., an IoT camera found
in a car or an aerial drone) captures an image of an accident,
and the owner of the camera allows a publisher (e.g., a media
house) to publish the image after blurring sensitive parts of
the file (e.g., human faces or number plates of cars).

Figure 4 shows how our EES scheme can be applied
for privacy-preserving publication of an image. We use the
extended EES scheme described in Section IV-B where the
image has a grid-like structure split into nine data blocks.
Figure 4(a) shows that the data owner D can specify different
function trees for different blocks of the image. Depending on
the intensity of blurring required, each block can be blurred
by using the editing-function {f1} or {f1, f2}, where f1 and
f2 are two one-way blurring functions. In addition, D specifies
the editing-function {f3} for the (1, 1)-th and (1, 3)-th blocks
at the top left/right corners, where f3 puts a logo in a block.
D specifies the function tree T1 for the (1, 1)-th and (1, 3)-
th blocks and the function tree T2 for the rest of the blocks.
Figure 4(b) shows the outlines of the editing trees and Merkle

hash trees.D signs the final hash value h to produce a signature
σ. Figure 4(c) shows a modified image that E provides to
the receiver R, where E puts a logo in the (1, 1)-th block,
applies {f1} on the (2, 3)-th block and applies {f1, f2} on
the (3, 2)-th block (the rest of the blocks are unmodified).
R checks the authenticity of these blocks using σ and the
verification metadata. However, R cannot obtain any sensitive
parts, including the number plate present in the (3, 2)-th block,
of the original image.

For the aforementioned example, we estimate the time
required by each entity for cryptographic operations as fol-
lows. We use eBASH, a benchmarking project for hash func-
tions [15], and eBATS, a benchmarking project for asymmetric
systems [16], to estimate the time required for operations
related to different hash functions and signature schemes. We
use SHA-224, RSA-2048 and ECDSA over the standard NIST
P-224 elliptic curve (for λ = 112) and SHA-256, RSA-3072
and ECDSA over the standard NIST P-256 elliptic curve (for
λ = 128). The evaluation is done on a 4 × 3000MHz Intel
Xeon E3-1220 processor. For different sizes of a data block,
the computational overhead for the data owner D (to sign the
image using EESign), the editor E (to process the image using
Process) and the receiver R (to validate the modified image
using EEVerify) are shown in Figure 5(a–c). For example, if
H and Σ are realized as SHA-256 and RSA-3072 and the size
of each block of the image is taken to be 256 KB, then the
computational overhead due to cryptographic operations for D,
E and R are 22.09, 19.27 and 16.61 milliseconds, respectively.

Recently, Yu et al. [7] have addressed a similar problem
where the owner of a video applies a blurring function f on
each block of a video-frame and derives hash values computed
over the blurred blocks. The owner then signs all hash values
for different frames to get the final signature on the video.
This scheme can be realized using our extended EES scheme,
where the function tree for a block consists of a root-node
and a leaf-node (n = 1, L = 2) with the edge between them
representing f . We note that our EES scheme is more powerful
as D can combine different blurring functions to get different
levels of blurring. Moreover, privacy-preserving operations can
be coupled with generic editing tasks — that enables D to
choose a wide range of editing-functions for her data.

Privacy-preserving data publishing. In recent years,
privacy-preserving data publishing (PPDP [17], [18]) has
earned substantial attention from the research community.
PPDP allows data to be published in a way that sensitive
information of an individual record owner is still protected.
k-anonymity [19] is a popular PPDP technique used to
anonymize a table T , such that each group of records sharing
a common value for a set of attributes has cardinality (at least)
k. That is, each record is indistinguishable from at least k− 1
other records sharing a common value for a set of attributes. It
helps in protecting privacy even when certain public (external)
information on the record owners is available. We illustrate the
idea using Table I. Suppose a hospital wants a research center
to publish (apparently anonymous) patient-records shown in
Table I(a). We assume that: Table I(b) is an external table that a
receiver of the published records has access to, and it is known

9

Fig. 5: Time required for performing cryptographic operations by D (during EESign), E (during Process) and R (during
EEVerify) in the examples: (a–c) privacy-preserving image/video publishing, (d–f) privacy-preserving data publishing.
A: SHA-224 + RSA-2048; B: SHA-224 + ECDSA over NIST P-224 elliptic curve; C: SHA-256 + RSA-3072; D: SHA-256
+ ECDSA over NIST P-256 elliptic curve.

TABLE I: An example of privacy-preserving data publishing

(a) Patient table

Job Sex Age Disease
Engineer Male 42 Hepatitis
Engineer Male 41 Hepatitis
Lawyer Male 44 HIV
Writer Female 36 Flu
Writer Female 38 HIV
Dancer Female 30 HIV
Dancer Female 33 Hepatitis

(b) External table

Name Job Sex Age
Alice Writer Female 36
Bob Engineer Male 41

Cathy Writer Female 38
Doug Lawyer Male 44
Emily Dancer Female 30
Fred Engineer Male 42

Gladys Dancer Female 33
Henry Lawyer Male 39
Irene Dancer Female 32

(c) 2-anonymous patient table

Job Sex Age Disease
Professional Male [40− 45) Hepatitis
Professional Male [40− 45) Hepatitis
Professional Male [40− 45) HIV

Artist Female [35− 40) Flu
Artist Female [35− 40) HIV
Artist Female [30− 35) HIV
Artist Female [30− 35) Hepatitis

that a person, having a record in Table I(a), has a record in
Table I(b). Based on {Job, Sex, Age}, the receiver can identify,
with certainty, some patients suffering from specific diseases.

Figure 6 shows an example of how our extended EES
scheme allows the hospital to sign Table I(a) in such a way that
the research center can later perform different anonymization
operations on the data. The hospital specifies three (many-to-
one) generalization functions f1, f2 and f3 for data blocks
(i.e., columns of the table). The function f1 applicable on the
first block classifies each record r in the block as follows: En-
gineer/Lawyer is classified as Professional, and Writer/Dancer
is classified as Artist. The functions f2 and f3 applicable
on the third block classify each record r in the block using[
b r5c · 5, b

r
5c · 5 + 5

)
and

[
b r10c · 10, b r10c · 10 + 10

)
, respec-

tively. Figure 6(a) shows the function trees for different blocks

Fig. 6: An example shows how our EES scheme works for
different data blocks of Table I(a).

of the table (T1 for the first block, T2 for the second and
fourth blocks, and T3 for the third block). Figure 6(b) shows
the outlines of the editing trees and Merkle hash trees. The
hospital signs the final hash value h to get σ. The research
center later applies f1 on the first block and f3 on the third

10

block to get the 3-anonymous table shown in Figure 6(c). If the
research center applies f2 on the third block and f1 on the first
block, the modified table is 2-anonymous. Thus, given different
generalization functions, the research center can use any of
them to achieve the desired level of anonymity. The receiver
cannot obtain certain sensitive information about individual
patients that she could have obtained from Table I(a).

For the example given in Figure 6, we estimate the time
required by D, E and R using the same cryptographic prim-
itives and benchmarks as used in the previous example. Let
us assume that the size of each column (that is considered to
be a data block) of Table I(a) is same. For different sizes of a
data block, the computational overhead for D (to sign the table
using EESign), E (to process the table using Process) and R
(to validate the modified table using EEVerify) are shown in
Figure 5(d–f). For example, if H and Σ are realized as SHA-
256 and RSA-3072 and the size of each column of the table
is taken to be 3 MB, then the computational overhead due to
cryptographic operations for D, E and R are 58.57, 55.74 and
31.86 milliseconds, respectively.

VI. RELATED WORK

In this section, we discuss some other kinds of signature
schemes that allow one to modify signed messages in certain
ways, and we highlight how they are different from our
editing-enabled signatures.

A similar line of research includes sanitizable signatures [9],
[10], [20], [21], [22], [23]. The notion of sanitizable signatures
was introduced by Ateniese et al. [9], where the signer of
a message authorizes a set of designated parties, named
sanitizers, to modify respective parts of the signed message
without changing the original signature. The sanitizers must
be fixed and known to the signer since their public keys are
used in the signing process. The underlying idea is as follows.
The signer applies a chameleon hash function [24], which is a
trapdoor hash function, on a message and signs the output hash
using a digital signature scheme. The hash function uses the
public key of a sanitizer such that the sanitizer can later modify
arbitrarily the corresponding part of the message specified by
the data owner without changing the hash value, thus keeping
the signature still valid. In order to find a collision to the hash
function corresponding to the modified message, the sanitizer
uses her secret key. Finally, the recipient can validate the
signature on the modified message since it produces the same
hash value as the original message. In comparison, the data
owner in an EES scheme uses only her signing key to sign
the data based on the set of editing-functions, and the data
owner can thus choose any editor after she signs the data.
This is more practical since in many applications where the
data is produced and signed, it is impossible for data owners
to know who the editors will be. Moreover, editing-enabled
signatures provide more control over the data to the data
owner in that the data owner solely decides the set of editing-
functions applicable for the data and the editor cannot generate
a valid signature for arbitrarily modified data.

A redactable signature is a type of homomorphic signa-
tures [11], [25]. Redactable signatures [11], [12], [26] consider

only deletions in different locations of a data file. The signer
signs the data file such that each location can be later replaced
by a special symbol in order to denote a deletion. The signature
on the redacted data file can be obtained from the original
signature. Content-extraction signatures [27] are redactable
signatures where the redaction operation aims to remove
XML nodes. Unlike these signatures, the range of operations
applicable in an EES scheme is vast rather than being limited
to deleting (or removing) some parts of the data.

We only mention some other homomorphic signatures that
include transitive signatures [28], [29] and homomorphic
signatures for network coding [30]. However, unlike EES
schemes, these homomorphic signature schemes are designed
for specific modification operations only (e.g., in a transitive
signature scheme, given the signatures for two edges (vi, vj)
and (vj , vk) of a graph, one can produce a signature on the
edge (vi, vk)).

VII. CONCLUSION

In this work, we have introduced the notion of editing-
enabled signatures that provide flexibility to a data owner,
while specifying a set of modification operations for the data,
and restrict an arbitrary editor to modify the data with a speci-
fied operation and authenticate the modified data to a receiver.
The editor does not need to interact with the data owner for
such modifications. As the signing algorithm does not require
the credentials of an editor, the data owner can later send the
authenticated data to any editor of her choice. We note that
the existing signature schemes aiming to achieve similar goals
either serve for a limited number of modification operations or
cannot refrain the editor from modifying the data arbitrarily.
Following the notion of editing-enabled signatures, we have
constructed an editing-enabled signature (EES) scheme based
on mostly lightweight cryptographic primitives (viz., collision-
resistant hash-chains) — which makes it suitable for many
applications involving resource-constrained data owners. We
have formally defined the security of editing-enabled signa-
tures and provided the security analysis of our EES scheme.
We have also analyzed the efficiency of our EES scheme
based on different complexity parameters. Finally, we have
demonstrated how our EES scheme can be efficiently used
for authentication in two applications – privacy-preserving im-
age/video publishing and privacy-preserving data publishing.

REFERENCES

[1] M. Weiser, “Ubiquitous computing,” Computer, vol. 26, no. 10, pp. 71–
72, 1993.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] A. Shamir, “Financial cryptography: Past, present, and future (anniver-
sary keynote),” February 2016, International Conference on Financial
Cryptography and Data Security.

[4] M. Kuzin, Y. Shmelev, and V. Kuskov, “New trends in the world of
IoT threats,” September 2018, https://securelist.com/new-trends-in-the-
world-of-iot-threats/87991/.

[5] W. McGrath, M. Etemadi, S. Roy, and B. Hartmann, “fabryq: Using
phones as gateways to prototype internet of things applications using
web scripting,” in ACM Symposium on Engineering Interactive Com-
puting Systems, 2015, pp. 164–173.

[6] Microsoft, “Microsoft Azure IoT reference architecture (version
2.1),” September 2018, https://docs.microsoft.com/en-us/azure/iot-
fundamentals/iot-introduction.

11

[7] H. Yu, J. Lim, K. Kim, and S. Lee, “Pinto: Enabling video privacy
for commodity IoT cameras,” in ACM Conference on Computer and
Communications Security, 2018, pp. 1089–1101.

[8] J. Obermaier and M. Hutle, “Analyzing the security and privacy of cloud-
based video surveillance systems,” in ACM International Workshop on
IoT Privacy, Trust, and Security, 2016, pp. 22–28.

[9] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik, “Sanitizable
signatures,” in European Symposium on Research in Computer Security,
2005, pp. 159–177.

[10] K. Miyazaki, G. Hanaoka, and H. Imai, “Digitally signed document
sanitizing scheme based on bilinear maps,” in ACM Symposium on
Information, Computer and Communications Security, 2006, pp. 343–
354.

[11] R. Johnson, D. Molnar, D. X. Song, and D. A. Wagner, “Homomorphic
signature schemes,” in The Cryptographer’s Track at the RSA Confer-
ence, 2002, pp. 244–262.

[12] E. Chang, C. L. Lim, and J. Xu, “Short redactable signatures using
random trees,” in The Cryptographer’s Track at the RSA Conference,
2009, pp. 133–147.

[13] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology - CRYPTO, 1987, pp. 369–378.

[14] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
Computing, vol. 17, no. 2, pp. 281–308, April 1988.

[15] D. J. Bernstein and T. Lange, “eBASH: ECRYPT benchmarking of all
submitted hashes,” July, 2016, http://bench.cr.yp.to/ebash.html.

[16] ——, “eBATS: ECRYPT benchmarking of asymmetric systems,” Au-
gust, 2018, https://bench.cr.yp.to/ebats.html.

[17] J. Wang and W. Lin, “Privacy preserving anonymity for periodical SRS
data publishing,” in IEEE International Conference on Data Engineer-
ing, 2017, pp. 1344–1355.

[18] J. Qian, F. Han, J. Hou, C. Zhang, Y. Wang, and X. Li, “Towards privacy-
preserving speech data publishing,” in IEEE Conference on Computer
Communications, 2018, pp. 1079–1087.

[19] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity
when disclosing information (abstract),” in ACM Symposium on Princi-
ples of Database Systems, 1998, p. 188.

[20] R. W. F. Lai, T. Zhang, S. S. M. Chow, and D. Schröder, “Efficient
sanitizable signatures without random oracles,” in European Symposium
on Research in Computer Security, 2016, pp. 363–380.

[21] C. Brzuska, H. C. Pöhls, and K. Samelin, “Efficient and perfectly
unlinkable sanitizable signatures without group signatures,” in European
Workshop on Public Key Infrastructures, Services and Applications,
2013, pp. 12–30.

[22] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and
D. Slamanig, “Chameleon-hashes with ephemeral trapdoors - and appli-
cations to invisible sanitizable signatures,” in International Conference
on Practice and Theory in Public-Key Cryptography, 2017, pp. 152–182.

[23] M. Fischlin and P. Harasser, “Invisible sanitizable signatures and public-
key encryption are equivalent,” in International Conference on Applied
Cryptography and Network Security, 2018, pp. 202–220.

[24] H. Krawczyk and T. Rabin, “Chameleon signatures,” in Network and
Distributed System Security Symposium, 2000.

[25] D. Catalano, D. Fiore, and L. Nizzardo, “On the security notions
for homomorphic signatures,” in International Conference on Applied
Cryptography and Network Security, 2018, pp. 183–201.

[26] C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzen-
beisser, M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder,
“Redactable signatures for tree-structured data: Definitions and con-
structions,” in International Conference on Applied Cryptography and
Network Security, 2010, pp. 87–104.

[27] R. Steinfeld, L. Bull, and Y. Zheng, “Content extraction signatures,” in
International Conference on Information Security and Cryptology, 2001,
pp. 285–304.

[28] S. Micali and R. L. Rivest, “Transitive signature schemes,” in The
Cryptographer’s Track at the RSA Conference, 2002, pp. 236–243.

[29] M. Bellare and G. Neven, “Transitive signatures based on factoring and
RSA,” in ASIACRYPT, 2002, pp. 397–414.

[30] D. Catalano, D. Fiore, and B. Warinschi, “Efficient network coding
signatures in the standard model,” in International Conference on
Practice and Theory in Public-Key Cryptography, 2012, pp. 680–696.

BINANDA SENGUPTA received his PhD degree in
Computer Science from Indian Statistical Institute,
India. His broad research area includes applied cryp-
tography, cloud computing, security and privacy. He
is currently a postdoctoral research fellow affiliated
with the School of Information Systems, Singapore
Management University.

YINGJIU LI is currently a Ripple Professor in the
Computer and Information Science Department at
the University of Oregon. His research interests in-
clude IoT Security and Privacy, Mobile and System
Security, Applied Cryptography and Cloud Security,
and Data Application Security and Privacy. He has
published over 140 technical papers in international
conferences and journals, and served in the program
committees for over 80 international conferences and
workshops, including top-tier cybersecurity confer-
ences and journals.

YANGGUANG TIAN received his Ph.D degree
in Applied Cryptography from University of Wol-
longong, Australia. He is a research fellow at the
School of Information Systems, Singapore Manage-
ment University. His research interests include user
authentication, privacy protection, applied cryptog-
raphy and network security.

ROBERT H. DENG is AXA Chair Professor of
Cybersecurity and Director of the Secure Mobile
Centre, School of Information Systems, Singapore
Management University. His research interests are
in the areas of data security and privacy, cloud
security and Internet of Things security. He is an
IEEE Fellow.

	Editing-enabled signatures: A new tool for editing authenticated data
	Citation

	tmp.1602134757.pdf.wo4iF

