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 Cognitive control, the ability to guide goal-directed behavior, is comprised of a variety of 

cognitive components functioning in a dynamic balance. Control adjustments are commonly cast 

as temporally local adaptations reflecting recently encountered task conflict; however, global 

control processes representing broad task expectancies are relatively unexplored. In an 

electroencephalographic (EEG) study of a prepotent response inhibition task, we tested whether 

the congruency effect, where performance tends to be worse for trials involving controlled 

processes, would be impacted by the overall task context as defined by trial-type proportions. As 

the proportion of high-control trials increased, we observed that accuracy improved in a more 

demanding, high-control condition while worsening in the less demanding, low-control 

condition. More interestingly, this tradeoff resulted in a reversed congruency effect in accuracy 

for task contexts dominated by high control trials. Furthermore, delay period EEG spectral power 

in the alpha-frequency band (i.e., 9-13 Hz)—a putative inhibitory mechanism (Klimesch, 

2012)—was found to modulate with the task. A significant trial condition by task context 

interaction revealed a positive monotonic association between accuracy and induced alpha 

synchrony in low control task contexts with a negative monotonic association in the high control 

context. Our behavioral results are consistent with cognitive control adjustments occurring 

through an ‘adaptation-by-binding’ which posits that the continuous arousal resulting from a 

high conflict context strengthens active task and sensory representations even if disadvantageous 

to automatic processes (Verguts & Notebaert, 2009). Further, ongoing synchronous cortical 
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alpha-band oscillations could serve as a potential neural mechanism by which this binding effect 

is achieved. 
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1.0  INTRODUCTION 

Recruitment of cognitive control capacities depends on context to inform the allocation of 

attentional resources on a moment-by-moment basis. Historically, most studies scrutinized the 

intricacies of temporally local, trial carryover effects. Post-error slowing (Laming, 1968; Rabbitt, 

1966), conflict carryover effects (Gratton, Coles, & Donchin, 1992), and task-switch cost (Li, 

Wang, Zhao, & Fogelson, 2012; Van Loy, Liefooghe, & Vandierendonck, 2010) all suggests that 

our control of attention is largely guided and constrained by the most recent trial history. 

However, we know that control behaviors also reflect long-term history of trial expectancies, and 

transient adjustments of control operate in the context of sustained goal-maintenance (Braver, 

Reynolds, & Donaldson, 2003). Less well understood is how longer time course shifts in 

behavior, oftentimes thought to reflect practice (Jonides, 2004), can reflect a learned 

optimization of cognitive resources (Verguts & Notebaert, 2009). 

1.1 CONTEXT PROCESSING 

Context processing, a specialized mechanism of cognitive control, is the ability to develop an 

internal representation of task rules and structure in the absence of explicit instruction (see 

Henderson et al., 2012 for a review). Experimentally, context is determined by the relative 

proportions of various trial types within a specific task or environment. As a participant learns 
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the statistics of his or her environment, he or she may develop expectancies that serve as 

temporary heuristics to bias responding toward the most likely event. Two dimensions of context 

representation have yet to be explored. First, if context-related biasing serves to minimize mental 

effort, similar behavioral biases should be observable in context neutral (i.e., unpredictable) 

scenarios where a tonic, but elevated control state may be more advantageous. Second, as 

forming a context representation involves implicit learning, the associated neural mechanisms or 

signals should be represented in tonic baseline functioning dissociable from phasic, event related 

activity. This investigation seeks to address these two points.  

 

1.1.1 Behavioral evidence  

Perhaps the most commonly employed measure of context processing, the AX variant of the 

continuous performance test (AX-CPT) has most thoroughly characterized context processing in 

cognitive and clinical domains (Bickel, Dias, Epstein, & Javitt, 2012; Braver, Cohen, & Barch, 

2002; Henderson et al., 2012; Thoma, Zoppelt, Wiebel, & Daum, 2007). In this task, participants 

are instructed to respond to specific target pairs of letters presented in a continuous fashion. In a 

healthy individual, the prevalence of a particular cue-target pairing affects the anticipatory 

processing of upcoming stimulus. Individuals with greater context processing make more errors 

and demonstrate increased reaction times for target violations of an expected cue-target pairing 

compared to when the target appears under a non-response cue.  The dissociable shifts in 

behavior observed in tasks like the AX-CPT highlight the brain’s ability to learn and adapt to 

environmental probabilities. Moreover, behavioral optimization does not occur globally, but 

rather serves to minimize effort where it is most advantageous to do so. 
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Similar performance patterns indexing shifts in cognitive control have been observed in 

the absence of context learning. When implicitly primed with goal reinforcing cues emphasizing 

speed, inhibition of Stroop interference effects improved with no impact on facilitation effects 

(Parris, Bate, Brown, & Hodgson, 2012). Interestingly, not only did performance improve for 

incongruent trials, but performance declined for congruent and neutral trials. When primed for 

speed, advance activation of inhibitory mechanisms may improve or optimize performance of the 

more difficult trial type. However, those same mechanisms interfered with simpler automatic 

processes resulting in slower responding for congruent trials. This particular pattern argues for a 

domain general influence of cognitive control where unnecessary application of controlled 

processing equalizes attentional allocation and stimulus evaluation leading to a decreased 

reliance on automatic processes. 

 

1.1.2 Current theory 

Within-session, block effects are oftentimes viewed as practice related improvements, 

improvements in neural efficiency, or the summed effect of local adjustments over time (Jonides, 

2004). An example of the latter stance can be found in the conflict monitoring hypothesis which 

posits that long term adjustments can be explained by temporally local fine-tuning of top-down 

signal biasing geared toward minimizing conflict (Botvinick, Braver, Barch, Carter, & Cohen, 

2001; Miller & Cohen, 2001). Control is augmented upon encountering situations of prepotent 

response inhibition, error commission, and underdetermined responses where the optimal task 

response is not appropriately activated. In these cases current trial behavior can be predicted by 

an appropriate weighting of the conflict in preceding trials, suggesting conflict-induced cognitive 
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control should reach a steady-state relatively quickly assuming a consistent degree of conflict 

(Cho et al., 2002; Jones, Cho, Nystrom, Cohen, & Braver, 2002). However, the conflict 

monitoring hypothesis does not per se argue for the discussed behavioral impairments in 

automatic processing; rather, adaptation-by-binding—an extension of the conflict monitoring 

account which argues conflict adjustments are achieved by strengthening all active task 

representations—argues that experimental contexts eliciting higher arousal result in behavioral 

biasing by overlearning a particular task operation (Verguts & Notebaert, 2009).  

1.2 CORTICAL OSCILLATIONS 

While the mechanisms underlying these behavioral patterns are unclear, cognitive neuroscience 

methods have provided a means for elucidating them. Electro- and magnetoencephalographic 

(EEG and MEG, respectively) recordings and spectral analytic approaches provide a useful 

summary measure of cortical neural computation by quantifying the rhythmic fluctuations of 

electro-magnetic fields generated by the coordinated activity of pyramidal neurons. While not as 

ideal for spatial localization as other approaches (e.g. fMRI), EEG and MEG offer a chance to 

index the temporal characteristics of neural activity in a non-invasive manner. In particular, 

spectral analyses have allowed researchers to characterize the ongoing rhythmic fluctuation of 

these fields by their component frequencies in order to build upon more traditional event related 

potential analyses (Tallon-Baudry & Bertrand, 1999).  

Cortical oscillatory activity appears to be organized into specific frequency bands, 

namely, theta (4-8 Hz), alpha (9-13 Hz), beta (14-29 Hz), and gamma (30-80 Hz), which also 

maps to differentially to different cognitive functions. For example, oscillations in the alpha 
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frequency band are purported to relate to ongoing inhibitory processing (Klimesch, Sauseng, & 

Hanslmayr, 2007). Event related synchronization (ERS) in the alpha band are considered to 

reflect active inhibition of task-irrelevant regions while event related desynchronization (ERD) is 

hypothesized to reflect a release of inhibition on task-relevant regions. Thus, increases and 

decreases in alpha power are thought to indirectly and inversely reflect cognitive load, especially 

in cases where focused attention and active inhibition of distracting information are required. In 

contrast, beta band oscillations are considered to be a default feature of the motor cortex and 

ERDs are observed during anticipatory motor planning and control (Engel & Fries, 2010; Siegel, 

Donner, & Engel, 2012). By contrast, gamma band oscillations have been implicated as an 

important network mechanisms indexing local cortical processing and ERSs has been observed 

in studies of visual feature binding (Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998), 

working memory maintenance (Howard et al., 2003),  and cognitive control (Cho, Konecky, & 

Carter, 2006; Kieffaber & Cho, 2010; Minzenberg et al., 2010).  

1.3 HYPOTHESES 

Given that cortical synchrony can be sensitive to phasic control demands, it is feasible that 

ongoing rhythms, often subsumed into some measure of a baseline, will index a more continuous 

cognitive state reflecting the predictability of the task environment. To investigate this question, 

we examined the extent to which trial proportions, and by extension the predictability of a given 

trial type, biases behavioral performance of a proactive control task. As an ancillary research 

question, we sought to determine observed differences could be attributed to the prevalence of 

high control events or to the predictability of a given trial type. Further, we asked whether 
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ongoing EEG synchrony differences could explain such biasing. We hypothesized two 

possibilities. First, according to the conflict monitoring framework (Botvinick et al., 2001), with 

increasing ongoing control demands, the congruency effect observed in a cognitive control task 

would reduce (i.e., behavioral measures converge) as continuous conflict signals would reinforce 

controlled action. Second, if cognitive control is instantiated according to the adaptation-by-

binding hypothesis (Verguts & Notebaert, 2009), the increased continuous demand would result 

in impaired performance of more automatic behaviors. 
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2.0  METHODS 

2.1 PARTICIPANTS 

Sixty undergraduate students at the University of Pittsburgh enrolled an introductory psychology 

course were recruited for this study. Informed consent was obtained in accordance with the 

University of Pittsburgh Institutional Review Board. Participants received course credit for their 

participation. Three participants were removed from the final analyses—two for being behavioral 

outliers (Cook’s D > .05), and one for poor EEG data quality. As such, the final sample consisted 

of 57 participants of predominantly young adults males (M = 19.5 years, s = 2.5; 20 F/37 M) 

(See Table 1 for group demographic breakdown). 

 

Table 1: Group demographic information. 

  Context (Proportion Incongruent) 
Demographics  30% 50% 70% 

Count (N = 57)  20 18 19 
Age (years; M (s))  19.5 (2.0) 19.1 (1.3) 19.9 (3.7) 
Female  6 6 8 
Left Handed  1 1 1 
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2.2 TASK PARADIGM 

Participants completed variants of a proactive control task known as the preparing to overcome 

prepotency task (POP; Cho et al., 2006; Minzenberg et al., 2010; Snitz et al., 2005). The task 

taps into prepotent response inhibition capabilities by capitalizing on the Simon compatibility 

effect for lateralized response mappings (Simon, 1969). In the cued, preparatory phase, the 

participant is presented with a green or red square for 500 ms indicating the response mapping 

for the current trial. A 750 ms delay follows during which participants view a central fixation 

cross. Finally in the stimulus-response phase, a right or left pointing arrow appears for 500 ms to 

which the participant is instructed to provide a speeded response with a button press of either 

index finger. The color to instruction mapping was counterbalanced across participants. In the 

low control mapping (i.e., Congruent), an ipsilateral button press was required; in the high 

control mapping (i.e., Incongruent), a contralateral button press was required.  

To address the core prediction of this study, control context was manipulated by adjusting 

the relative trial-type proportions. Participants either completed a version with 30% incongruent 

trials (i.e., 30% context), 70% incongruent trials (i.e., 70% context), or a 50% split of low and 

high control trials (i.e., 50% context). Regardless of trial-type proportion, participants completed 

six task blocks of 88 total trials. Within each block, trial order was pseudo-randomized and 

uniformly distributed with the relative proportionality being the only restraint. Trial-type 

proportions and color-instruction mappings were assigned to participants in a between-subjects 

fashion using a Latin-square assignment to conditions.  
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2.3 EEG RECORDING AND PREPROCESSING 

High-density electroencephalography data were collected with 129-channel Geodesic Sensor Net 

(GSN-200; EGI, Inc., Eugene, OR). Impedances were kept under 60 kΩ. Data were digitized at 

500 Hz with an elliptical passband of 0.01 to 100 Hz. Preprocessing and analyses were 

conducted in Matlab (MathWorks, Inc., Natick, MA). Continuous EEG data were filtered offline 

with an ideal 60 Hz-notch filter prior to a 0.2 to 100 Hz bandpass. Data were segmented into 

2600 ms epochs beginning 700 ms prior to cue onset then entered a preprocessing pipeline in 

order to confine analyze to artifact free EEG. Briefly, each segment distribution and spectral 

properties were assessed. Values were z-score transformed in reference to ideal EEG 

distributions and accordingly labelled as poor quality segments if exceeding 3 standard 

deviations. A principal components analysis based approach was also run in order to capture 

temporal and spatial deviations in the correlation structure of the data. This dual approach aimed 

to remove local, non-stereotypical artifacts while retaining clean EEG together with artifacts that 

could better be modeled and removed through independent components analysis (ICA).  

            Viable segments were then submitted to a two stage ICA for artifact removal. First, a 

FastICA decomposition generated an initial component weight matrix for use with an extended 

Infomax ICA algorithm. This two stage approach was found to yield faster and more stable 

decompositions of EEG data. Furthermore, surrogate electrooculogram (EOG) channels were 

pre-computed and included in the training data to facilitate identification of ocular artifacts 

(Hassler, Trujillo, & Gruber, 2011; Keren, Yuval-Greenberg, & Deouell, 2010). Finally, the 

resulting unmixing matrix was applied to all data (including marked ‘poor’ data), and 

components capturing blink, electrocardiographic (ECG), saccade, and muscle artifacts were 

removed if matching the spectral properties of such artifacts. Reconstructed data were 
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reevaluated for poor quality segments which were removed and data was interpolated. In cases of 

removed segments mapping to adjacent channels interpolation would provide a poor estimate for 

missing data; accordingly in such cases, data were removed from averaging and further analyses. 

Data were then re-referenced to the global average and entered time-frequency analysis.  

2.4 DATA ANALYSES 

2.4.1 Spectral analyses 

Spectral amplitude estimates were derived using complex Morlet transformations. To assess the 

frequency content of the data, wavelet transformations of whole epochs were computed over the 

range of 4 to 50 Hz in 1 Hz linear steps with c = 5. As per Tallon-Baudry and Bertrand (1999), 

cue-locked (i.e., evoked) frequency activity was derived by computing wavelet transforms of the 

averaged event related potentials (ERPs) for each condition. Non-cue-locked (i.e., induced) 

activity was assessed by computing wavelet transformations on individual epochs prior to 

condition averaging. Since this approach includes both phase- and non-phase locked components 

of the underlying signal, evoked activity was subtracted from the mean of the transformed time 

series. However, observation revealed the difference in segment counts contributing to the ERPs 

resulted in noisier time series averages for conditions with fewer trials which in turn increased 

estimates of evoked amplitudes. Consequently, induced averages were computed by subtracting 

evoked averages generated from trial-matched ERPs. Induced means were then summarized in 

time, frequency, and scalp location to reduce the impact of multiple statistical tests on type 1 

error. Thus, data were averaged according to five frequency bands (i.e., theta, 4-8 Hz; alpha, 9-
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13 Hz; low beta, 14-18 Hz; high beta, 19-30 Hz; and gamma, 31-49 Hz), four time bins aligned 

with trial phases (i.e., baseline: -500-0; cue: 0-500; delay: 500-1250; and probe: 1250-1750) and 

fifteen scalp regions (left, midline, and right clusters of electrodes corresponding to approximate 

10-20 designations of frontopolar, frontal, central, parietal, and occipital electrodes; see Figure 

1). Finally, spectral amplitudes were natural log transformed to normalize distributions.  

 

 

Figure 1: Scalp region used for EEG analyses. Electrodes were divided into left, right, and midline sets of 
electrodes approximating frontopolar (top), frontal, central/temporal, parietal, and occipital (bottom) activities. 
Numbers correspond to electrode locations and number designations on a 129 channel Geodesic Sensor Net (GSN-
200; EGI, Inc., Eugene, OR). Note, electrode 6 contributed to both frontal and central midline region means. 

2.4.2 Statistical Analyses 

To assess behavioral differences across contexts, 3 x 2 repeated measures analyses of covariance 

(RM-ANCOVA) of reaction times (RT) and accuracy (ACC) were conducted in SPSS (IBM, 

inc., Armonk, NY) with context (30%, 50% and 70% incongruent trials) and condition (high- 

and low-control) as factors. To control for individual and group differences in trial-to-trial 

conflict adjustment, summary Gratton measures (i.e., cI-iI+iC-cC) were included as covariates. 
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Analyses of EEG spectral amplitudes were analogous to behavioral measures with the caveats 

that tests were conducted in Matlab to iterate across the set of regions, frequency bands, and time 

bins. Since RTs, ACCs, and EEG spectra were non-normally distributed, ANCOVA results were 

computed using log (RT and EEG) and arcsine (ACC) transformed values. For behavioral 

measures, an α = .05 was used to determine statistical significance; however, a false discovery 

rate (FDR) corrected α = .0051was used to address the type 1 error inflation from iterating tests 

across frequency bands, time bins, and scalp regions. Only correct trials contributed to RT and 

EEG spectral amplitude means. Corresponding figures show raw data and variances. 

 For both behavioral and EEG analyses, post-hoc paired t-tests were conducted to confirm 

the strength and direction of within group condition differences. Post-hoc t-tests were Bonferroni 

corrected for nine condition comparisons (i.e., three contexts by three representative regions; α = 

.0055). To assess a potential functional relationship between EEG and behavioral measures, 

Spearman correlation coefficients were calculated between RT and ACC measures and 

time/frequency bins identified as having a significant Context x Condition interaction. Separate 

correlations were calculated for each group and condition (i.e., 30% context, incongruent EEG X 

30% context, incongruent ACC) As the Spearman rank correlation is a nonparametric test, raw 

data were used for these tests. For correlations, FDR and Bonferroni corrections were determined 

to be too conservative as the sample size for each group is relatively low for robust correlation 

analyses. Thus, correlation results were interpreted with critical α = .05, and an informal 

approach outlined below was used to identify reliable estimates. Finally, Spearman coefficients 

were Fisher transformed and compared across groups with Welch-Satterthwaite t-tests to 

determine significant difference in coefficient estimates between contexts (Fieller, Hartley, & 

Pearson, 1957).  
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3.0  RESULTS 

3.1 BEHAVIORAL MEASURES 

Two-way ANCOVA of ACC measures revealed a strongly significant Context x Condition 

interaction, F(2, 53) = 11.78, p < .001, ηp
2 = 0.31, (Figure 2A). Post hoc analyses revealed that 

the interaction reflected an inverse relationship between condition ACC and proportion within 

each context (see Table 2 for means and standard deviations). As expected and consistent with 

previous studies, in the 30% context, ACC for incongruent trials (M = 95.25, s = 3.51) was worse 

than for congruent trials (M = 96.65, s = 2.36), t(19) = -2.50, p = .022, 95% CI [-0.13 -0.01] 

(Note: Confidence intervals represent transformed data, not raw values). By contrast, this pattern 

was completely reversed in the 70% context where incongruent trial ACC (M = 96.70, s = 2.45) 

was better than congruent trial ACC (M = 94.21, s = 4.07), t(18) = 4.09, p = .001, 95% CI [0.06 

0.17]. When trial-type proportions were equal, ACC was near identical between conditions (MInc 

= 95.58, sInc = 3.64; MCon = 95.57, sCon = 3.12), t(17) = -0.40, p = .692, 95% CI [-0.03 0.04]. 

Since the relationship between context and condition was inverse and symmetrical, neither the 

context, F(2, 53) = .04, p = .963 ηp
2 = 0.00, nor the condition, F(1, 53) = 0.02, p = .895, ηp

2 = 

0.00, main effects reached significance. 

Reaction times revealed a different pattern (Figure 2B; Table 2). While the 50% context 

appeared to have overall slower RTs (MInc = 447, sInc = 180; MCon = 426, sCon = 185) than both 
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the 30% context (MInc = 414, sInc = 105; MCon = 385, sCon = 90) and the 70% context (MInc = 404, 

sInc = 90; MCon = 361, sCon = 76), this effect was not found to be significant, F(2, 53) = 0.48, p = 

.623, ηp
2 = 0.02, likely due to the comparatively higher variability in the 50% context group. Nor 

was the Context x Condition interaction significant, F(2, 53) = 1.81, p = .173, ηp
2 = 0.06. 

Regardless of context, a strongly significant main effect of condition reflected the consistency of 

condition differences across contexts, F(1, 53) = 35.85, p < .001, ηp
2 = 0.40,such that the RT for 

incongruent trials was slower than congruent trials, t30%(19) = 6.20, p30% < .001, 95% CI30% 

[0.19, 0.37]; t50%(17) = 3.11, p50% = .006, 95% CI50% [0.14, 0.75]; t70%(18) = 3.55, p70% = .002, 

95% CI70% [0.25, 0.96].  

 

Table 2: Behavioral means and standard deviations across groups. 

  Context Means (M (s)) 
Measure Condition 30% 50% 70% 
Accuracy (%) Incongruent 95.25 (3.51) 95.58 (3.64) 96.70 (2.45) 
 Congruent 96.65 (2.36) 95.57 (3.13) 94.21 (4.07) 
Reaction Time (ms) Incongruent 414.36 (105.34) 447.16 (180.26) 404.48 (90.17) 

 Congruent 385.06 (90.28) 425.81 (184.98) 361.22 (75.57) 
 
 

As a potential control for conflict adjustment differences across context, summary 

measures were included as covariates for the primary behavioral analyses. Additionally, Gratton 

condition means for ACC (Figure 2A inlays) and RT (Figure 2B inlays) were analyzed to test for 

context related differences as well. For both measures, an expected Previous Trial x Current Trial 

Congruency interaction was observed, ACC: F(1, 54) = 136.29, p < .001, ηp
2 = 0.72; RT: F(1, 

54) = 12.64, p = .001, ηp
2 = 0.19. An additional previous trial main effect was observed for ACC, 

F(1, 54) = 11.18, p = .002, ηp
2 = 0.17 while no other significant effects were found (all Fs < 1). 

However, for RTs, significant differences were observed for previous trial condition, F(1, 54) = 
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17.52, p < .001, ηp
2 = 0.25, and current trial condition, F(1, 54) = 50.62, p < .001, ηp

2 = 0.48. The 

group main effect and all other interactions were not significant (all Fs < 2.6).  

 

 

Figure 2: Behavioral means for accuracy (A) and reaction time (B) ± standard error for the mean (SEM). 
Controlling for Gratton effects, participants are less accurate for conditions that occur less frequently while reaction 
time differences remain relatively consistent across proportions. Inlays depict Gratton-based averages within each 
context (labeled by color). Gratton patterns in accuracy did not significantly differ across contexts; however, when 
divided into Gratton conditions, significant reactions differences were observed for current trial condition by 
context, and previous trial condition by context separately. * p < .05, ** p < .005. 

3.2 EEG SPECTRAL MEASURES 

3.2.1 General patterns 

Though no region, time, or frequency band met significance for a context main effect, a broad 

overview of synchronous oscillations demonstrate several global and local condition and Context 

x Condition effects (see Table 4 in Appendix A for the full set of ANOVA results). In the pre-
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cue baseline, a significant alpha condition effect was observed across all regions save for the 

right frontopolar, frontal, and central (i.e., right temporal; Figure 3) regions with a Context x 

Condition interaction in the left frontal baseline (Figure 4). During the cue phase, a midline 

frontal and broad posterior condition effect was observed for theta-band synchrony where greater 

theta amplitudes were observed for incongruent trials. Additionally, a left frontal alpha and low 

beta interaction effect was complemented by wider spread midline central, parietal, and occipital, 

and right parietal/occipital effects ranging alpha- to high beta-band. 

 During the delay period, condition main effects were observed in midline central high 

beta- and right parietal gamma-bands. The interaction maps revealed significant condition 

differences near globally across the scalp for the alpha- through high beta-bands. These patterns 

will be detailed further below. Finally, during the probe phase, broad alpha-, beta-, and gamma-

band differences were observed in the midline central region and across the span of posterior 

regions with a low beta band difference in midline frontopolar. The interaction effects were less 

focal. Alpha to high-beta differences were prominent across what appeared to be a diagonal axis 

from left frontopolar to right parietal/occipital regions with no effects seen in the right and 

midline frontopolar and left occipital. Given the prominence of alpha and beta effects across both 

time and region, further detailed analyses were carried out within these regions of interest. 
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Figure 3: Incongruent-Congruent spectral mean differences collapsed across context. Frequency bands and time 
bins showing significant condition differences are outlined by white boxes. Most notably, a significant condition 
main effect reveals greater alpha synchrony in the baseline of correct incongruent trials compared to congruent 
trials. Vertical bars mark cue onset, delay start, and probe onset/offset. 
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Figure 4: Incongruent-Congruent spectral mean differences across contexts. White boxes indicate significant 
interaction effects. Correlation effects discussed reflect activity in the region marked in red. Broadly speaking, 
interaction patterns tend to follow the trend of congruent > incongruent for the 30% context and incongruent > 
congruent for the 70% context, with synchrony being mostly equal between conditions for the 50% context. Vertical 
bars mark cue onset, delay start, and probe onset/offset. 

3.2.2 Alpha band 

Analyses of alpha band amplitudes revealed two broad patterns. First, a significant condition 

main effect was observed in all scalp regions save for the right frontopolar, frontal, and central 

locations (Figure 3). Taking the midline frontal (F), F(1,54) = 18.97, p < .001 ηp
2 = 0.26, central 

(C), F(1,54) = 8.89, p = .004, ηp
2 = 0.14, and parietal (P), F(1,54) = 11.52, p = .001, ηp

2 = 0.18, 

regions as representative, the effect is driven by greater pre-stimulus activity for incongruent 

trials (MF = 7.97, sF = 2.97; MC = 7.68, sC = 3.15; MP = 10.52, sP = 4.74) than for congruent trials 

(MF = 7.60, sF = 2.71; MC = 7.39, sC = 2.89; MP = 10.16, sP = 4.56) in the 30% context, tF(19) = 

3.68, pF = .002, 95% CIF [0.16, 0.57]; tC(17) = 2.81, pC = .011, 95% CIC [0.07, 0.50]; tP(18) = 

2.37, pP = .029, 95% CIP [0.04, 0.67]. A similar pattern emerged within the parietal region in the 

70% context (MPInc = 9.91, sPInc = 3.28; MPCon = 9.62, sPCon = 3.49), t(17) = 2.12, pP = .050, 95% 

CIP [0.00, 0.58], (Figure 5A) though the effect does not meet the adjusted threshold for 

significance. No other significant condition differences were observed across the 50% and 70% 

contexts (see Table 3 for additional means and standard deviations).  

 A significant Context x Condition interaction in the delay trial phase mirrored the ACC 

interaction across all scalp regions, Frontal: F(2,54) = 11.60, p < .001, ηp
2 = 0.30; Central: 

F(2,54) = 11.30, p < .001, ηp
2 = 0.30; and Parietal: F(2,54) = 15.91, p < .001, ηp

2 = 0.37, (Figure 

4). Similar to ACC means, in the 30% context, incongruent amplitudes (MF = 6.18, sF = 2.07; MC 

= 5.95, sC = 2.16; MP = 7.30, sP = 2.84) were lower than for congruent trials (MF = 6.52, sF = 2.36; 

MC = 6.26, sC = 2.39; MP = 8.00, sP = 3.37), tF(19) = -3.13, pF = .006, 95% CIF [-0.56,- 0.11]; 
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tC(19) = -3.80, pC = .001, 95% CIC [-0.47, -0.13]; tP(19) = -4.06, pP < .001, 95% CIP [-1.06, -

0.34]. No alpha synchrony differences were observed in the 50% context (all ps > .70). An 

opposite directionality was found in the 70% context. Delay period amplitudes were greater for 

incongruent trials (MF = 5.84, sF = 2.17; MC = 6.15, sC = 2.06; MP = 7.69, sP = 2.54) compared to 

congruent trials (MF = 5.63, sF = 2.04; MC = 5.84, sC = 1.88; MP = 7.11, sP = 2.26), tF(18) = 3.27, 

pF = .004, 95% CIF [0.08, 0.35]; tC(18) = 3.36, pC = .003, 95% CIC [0.12, 0.51]; tP(18) = 4.07, pP 

< .001, 95% CIP [0.28, 0.88] (Figure 5B; Table 3). Additionally, significant interactions were 

observed during the baseline in the right frontal region; during the cue period for right and 

midline frontopolar, right frontal, midline and left parietal, and all occipital regions; and during 

the probe period for right and midline frontal, all central, and midline parietal regions (See Table 

4 for full set of all significant ANOVA results). 

 

 

 
Figure 5: Summary plots for the baseline (A) and delay (B) periods. Context by condition means ± SEM for alpha-, 
low beta-, and high beta-band amplitudes. (A) Alpha synchrony is somewhat equal in the baseline period with a 
primary incongruent > congruent relationship in the 30% context baseline. (B) During the delay, alpha shows a 
complete reversal in the ordinal relationship between the 30% and 70% contexts. Generally speaking, the low and 
high beta patterns resemble a weaker version of the alpha-band patterns. * p < .05, ** p < .005. *** p < .001. 
 

Proportion Incongruent 
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Table 3: Spectral means and standard deviations across groups. 

  Context Means (M (s)) 
Measure Condition 30% 50% 70% 

Baseline Synchrony (µV)†    

Frontal Alpha Incongruent 7.97 (2.97) 7.64 (2.84) 6.9 (2.16) 
 Congruent 7.60 (2.71) 7.52 (2.74) 6.85 (2.31) 
Central Alpha Incongruent 7.68 (3.15) 7.05 (2.22) 7.22 (2.19) 
 Congruent 7.39 (2.89) 7.07 (2.23) 7.08 (2.38) 
Parietal Alpha Incongruent 10.52 (4.74) 9.18 (3.55) 9.91 (3.28) 
 Congruent 10.16 (4.56) 9.14 (3.49) 9.62 (3.49) 

Delay Synchrony (µV)†    

Frontal Alpha Incongruent 6.18 (2.07) 6.24 (2.04) 5.84 (2.17) 
 Congruent 6.52 (2.36) 6.22 (1.93) 5.63 (2.04) 
Central Alpha Incongruent 5.95 (2.16) 6.00 (1.91) 6.15 (2.06) 
 Congruent 6.26 (2.39) 5.98 (1.80) 5.84 (1.88) 
Parietal Alpha Incongruent 7.30 (2.84) 7.32 (2.85) 7.69 (2.54) 
 Congruent 8.00 (3.37) 7.27 (2.69) 7.11 (2.26) 
Frontal Low Beta Incongruent 4.44 (1.37) 4.07 (1.21) 4.27 (1.12) 
 Congruent 4.55 (1.42) 4.07 (1.20) 4.17 (1.09) 
Central Low Beta Incongruent 4.06 (1.29) 3.68 (0.88) 4.29 (1.13) 
 Congruent 4.24 (1.40) 3.70 (0.89) 4.21 (1.10) 
Parietal Low Beta Incongruent 4.94 (1.63) 4.37 (1.22) 5.29 (1.35) 
 Congruent 5.26 (1.80) 4.37 (1.21) 5.05 (1.38) 
Frontal High Beta Incongruent 3.25 (0.80) 3.01 (1.06) 3.39 (1.08) 
 Congruent 3.30 (0.79) 3.02 (1.02) 3.34 (1.08) 
Central High Beta Incongruent 2.89 (0.75) 2.49 (0.50) 3.17 (1.00) 
 Congruent 2.96 (0.77) 2.51 (0.49) 3.17 (1.06) 
Parietal High Beta Incongruent 3.11 (0.80) 2.64 (0.50) 3.33 (0.73) 

 Congruent 3.22 (0.88) 2.65 (0.50) 3.24 (0.74) 
† Means presented are in µV; however, statistical tests were conducted with natural log transformed values.  

3.2.3 Beta bands 

Closer inspection of beta-band differences revealed  high beta interactions in midline frontal, 

F(2,54) = 9.32, p < .001, ηp
2 = 0.26, central, F(2,54) = 7.32, p = .002, ηp

2 = 0.21, and parietal, 

F(2,54) = 28.07, p < .001, ηp
2 = 0.51, regions, whereas low beta differences were only observed 

in central, F(2,54) = 8.24, p = .001, ηp
2 = 0.23, and parietal, F(2,54) = 21.82, p < .001, ηp

2 = 

0.45, regions during the delay period. Post hoc analyses of the low beta results, found the 
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interaction to highlight significantly greater low beta amplitudes for congruent trials in the 30% 

context, tC(19) = -3.94, pC < .001, 95% CIC [-0.27, -0.08]; tP(19) = -5.25, pP < .001, 95% CIP [-

0.46, -0.20] (see Table 3 for means and standard deviations). Only the parietal location showed a 

significant, and directionally opposite effect in the 70% context, tP(19) = 4.27, pP < .001, 95% 

CIP [0.12, 0.36]. A similar direction of findings (30%: incongruent < congruent; 70%: 

incongruent > congruent) was observed across the full set of high beta results. Congruent means 

were greater for the 30% context, tC(19) = -5.06, pC < .001, 95% CIC [-0.11, -0.04]; tP(19) = -

4.84, pP < .001, 95% CIP [-0.16, -0.06], and incongruent means were greater for the 70% context 

only for the parietal region, tP(18) = 4.97, pP < .001, 95% CIP [0.05, 0.13]. Interestingly, no post 

hoc condition comparison of midline frontal high beta amplitudes met threshold for significance 

suggesting the interaction is due to specific condition differences between groups that did not 

meet threshold for a significant context main effect. Though considered as a whole, the effects 

observed in the beta ranges mirror the direction of effects in the alpha-band. 

3.2.4 Correlational analyses 

Given the similarities between the alpha band and the ACC interactions, correlation analyses 

were conducted within context and condition to address a potential functional relationship. To 

avoid overly conservative multiple comparison corrections, an ad hoc intersection approach was 

taken to identify points of reliable association. Thus, correlation analyses were limited to those 

regions within the set of regions and times with significant interactions. Only those points with a 

significant relationship in at least two group/condition sets were considered for further analysis. 

From this approach, the frontal midline regions was found to correlate significantly with 

incongruent ACC in the 30% and 70% contexts (Figure 4, red outline). Closer inspection 
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revealed the general direction of Spearman coefficients to be opposite for the 30% and 70% 

contexts. Where alpha-band activity displayed a positive monotonic association with ACC in the 

30% context, rs30%(18) = 0.51, p30% = .025, 95% CI30% [0.08, 0.77], a negative monotonic 

relationship was found with ACC in the 70% context, rs70%(17) = -0.51, p70% = .028, 95% CI70% 

[-0.78, -0.07], (Figure 6). A direct comparison of these two coefficients indicated a significant 

difference between the positive relationship in the 30% context and the negative relationship in 

the 70% context, t(31.21) = 3.00, p = .006, 95% CI [0.33, 1.89]. Taken together, this set of 

patterns reveals an inverted-U relationship between alpha-band synchrony and incongruent ACC 

as the proportion of incongruent trials increases. 

 

 

Figure 6: Scatter plots of the relationship between alpha synchrony in the midline frontal region and accuracy (A). 
For incongruent, a context dependent positive monotonic association was found in the 30% context, whereas a 
negative monotonic relationship was found in the 70% context. (B) No significant relationships were found within 
reaction time. 
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4.0  DISCUSSION 

4.1 SUMMARY 

The current study sought to investigate the effect of the tonic influences of task expectation on 

cognitive control processes. We presented participants with one of three possible experimental 

contexts. The 30% and 70% contexts were matched for overall predictability—differing only in 

difficulty in the dominant trial type. The 50% case, the even split, is context-neutral and hence 

the least predictable task environment. We hypothesized two potential patterns of behavior. By 

the conflict monitoring hypothesis, an increasing degree of higher conflict events would result in 

low control trial performance resembling high control performance as behavior becomes more 

controlled overall (Botvinick et al., 2001; Cho et al., 2002; Jones et al., 2002). We did not 

observe this effect. Rather our findings appeared more consistent with the adaptation-by-binding 

hypothesis, which posits that one’s tonic control state should reflect the expectation to encounter 

more events requiring controlled processing. The resulting task set reinforcement would cause a 

behavioral tradeoff wherein performance of low controlled behaviors would suffer (Verguts, 

Notebaert, Kunde, & Wühr, 2011; Verguts & Notebaert, 2009). Both the behavioral tradeoff in 

ACC and related EEG synchrony difference support this latter interpretation. Since this effect 

was parametric with increasing incongruent proportion, the dominant task demand, rather than 

the likelihood of condition switch, appears to underlie this effect.    
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Taken as a whole, three broad patterns emerge. First, across contexts, RT differences 

maintained an expected congruency effect (i.e., incongruent > congruent). Second, the observed 

interactions between task context and condition for ACC and delay period alpha-band synchrony 

followed the predicted pattern—ACC and alpha synchrony were overall highest for the most 

common trial type within any given context. While ACC for incongruent trials improved as the 

proportion of incongruent trials increased, congruent trial performance, which taps more 

automatic response pathways, was impaired. This finding was intriguing considering the current 

task taps preparatory control. One might expect automatic behaviors to remain more stable 

considering prior warning; however, previous studies employing the POP task reliably find ACC 

to be the more sensitive behavioral measure at detecting group differences (Cho et al., 2006; 

Kieffaber & Cho, 2010; Minzenberg et al., 2010). Moreover, a consistent RT congruency effect 

may be an indicator that the cognitive decision time remains the same across contexts, and the 

differences in ACC are related to a failure in motor execution (e.g., Kieffaber, Kruschke, Cho, 

Walker, & Hetrick, 2013). Finally and unexpectedly, increased delay alpha was associated with 

increased ACC in the 30% context; however, the same alpha increase in the 70% context was 

associated with a decrease in ACC. Despite the similarity between ACC and alpha delay 

synchrony, the inverse direction of association suggests a differing functional role of alpha 

synchrony during delay period preparation. 

Additionally, significant condition differences were identified in the pre-trial baseline 

such that alpha synchrony was greater prior to correct incongruent trials than to correct 

congruent trials. One common reason for such a finding as a spurious result is the mismatch of 

trial numbers across the conditions being compared, possibly leading to spurious differences that 

arise from differences in the SNR of the respective averages. However, trial numbers were 
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carefully matched in our analyses to address this potential concern. Closer inspection revealed 

this effect to likely be driven by participants in the 30% context. While the implications of this 

result are unclear, one potential interpretation is that the cognitive or perceptual state reflected in 

alpha synchrony in which a person enters a trial is predictive of downstream successful execution 

of that trial demand (Doppelmayr, Klimesch, Pachinger, & Ripper, 1998; Klimesch, Sauseng, & 

Hanslmayr, 2007; Lou, Li, Philiastides, & Sajda, 2014; Spaak, de Lange, & Jensen, 2014). Thus 

by analyzing only correct trials, there may have been a selection bias in the particular trials 

entering the respective averages, resulting in different baseline activity despite the participant not 

being able to anticipate the upcoming trial type. Presumably, these prestimulus differences 

impact trial performance by affecting early perceptual fidelity and top-down versus bottom-up 

integration (Lou et al., 2014; Mazaheri, DiQuattro, Bengson, & Geng, 2011). Thus, one potential 

explanation for a baseline difference is that errors may occur when baseline conditions are 

suboptimal. In such cases, the baseline prior to incongruent error trials may resemble the 

congruent correct trial baseline assuming the cognitive processing leading to an incongruent 

error reflects an unprepared state. The current task design resulted in too few error trials, and so 

future testing of this idea would require a similar cognitive task design optimized to maximize 

error variability.   
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4.2 CONNECTIONS WITH PREVIOUS LITERATURE 

4.2.1 Context influence on cognitive control behaviors 

Differential patterns in RT and ACC may not be surprising considering the dissociable nature of 

the processes those measures index. Indeed, a cognitive process may take similar computational 

time, but different instantiations of that calculation can be differentially susceptible to 

interference, possibly resulting in errors. A study with a similar manipulation of trial-type 

proportions on Stroop task behaviors found a similar dissociation of control effects (Blais, 

Harris, Guerrero, & Bunge, 2012). This study found congruent RTs were sensitive to 

incongruent proportion (i.e., congruent RTs were slower when congruent trials were 

uncommon), but congruent ACC remained constant across proportion condition. By contrast, 

incongruent ACC improved when incongruent trials were more common. However, explicit 

cueing of conflict can also attenuate endogenous sequential conflict effects by reducing the 

latency of neural correlates of conflict (Correa, Rao, & Nobre, 2009). Taken together, 

improvements in cognitive control may come at the detriment of more automatic processes 

suggesting that such processes are linked to the strength and integrity of a particular goal 

representation. Hence, the enhancement of an intention is sufficient to induce response biasing 

that simultaneously improves controlled performance while impairing automatic performance. 

While we did not observe a parametric slowing of congruent RTs, we did find a similar 

parametric increase in ACC for incongruent trials. Interestingly, our data diverges from the 

pattern identified by Blais and colleagues (2012). The complementary decrease in congruent 

ACC observed in our own data suggests automatic motor responses are less robust to context 

manipulation than a more automatic and reactive process such as reading. By this logic, 
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consistency in RT congruency effect indicates stimulus processing and controlled motor 

responding is consistent across context. Yet, ACC is a function of the novelty of a stimulus, 

regardless of the probability of switching (e.g., 50% context) or the specific requirement of 

controlled action (e.g., 70% context). Although this reduction in the congruency effect has been 

observed in several studies manipulating trial-type proportions (Jiang, van Gaal, Bailey, Chen, & 

Zhang, 2013; King, Donkin, Korb, & Egner, 2012; Tzelgov, Henik, & Berger, 1992). Though to 

our knowledge, only one other study has demonstrated a similar behavioral tradeoff, albeit for a 

reactive control task (Lungu, Liu, Waechter, Willingham, & Ashe, 2007). Such a finding would 

not be well explained by the conflict monitoring hypothesis where increasing instances of high 

conflict events should enhance controlled processing overall.  

Assuming a well-tuned control system, the control adjustment that improves incongruent 

performance may impair congruent trial performance, but not beyond incongruent trial 

performance. Rather, our findings are consistent with an emerging framework highlighting 

similarities between error and novelty evaluation (Wessel, Danielmeier, Morton, & Ullsperger, 

2012). In an ERP and functional magnetic resonance imaging (fMRI) study, investigators tested 

a proposal of the adaptation-by-binding hypothesis—that errors and novel events are related due 

to their similar functional outcomes. Wessel and colleagues (2012) co-localized two well 

documented ERP phenomena to common neural architecture. The event related negativity 

(ERN), a large negative deflection in error-locked ERPs, and the novelty-related frontocentral 

N2 (novelty-N2b), a similarly negative deflection occurring soon after encountering an 

unexpected stimulus, were both isolated to the same latent component in a blind source 

separation analysis. A follow-up fMRI study revealed both event types resulted in functional 

activation of the posterior medial frontal cortex. This combined theoretical and empirical 
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impetus offers a potential framework to explain the decreased accuracy in—by traditional 

accounts—what should be an easy task condition.  

4.2.2 Alpha-band oscillations 

More traditionally, studies of alpha-band oscillations focus on event related synchronization 

(ERS) and desynchronization (ERD) from a prestimulus baseline reflecting a cortical default 

operational state (Pfurtscheller & Lopes da Silva, 1999). However, recent years have seen keen 

interest in refining our interpretation of alpha oscillations. Most notably, the inhibition-timing 

hypothesis (Klimesch et al., 2007; Klimesch, 2012), argues that alpha ERS reflect the execution 

of top-down control via active inhibition of task-irrelevant processes. Alpha ERD thus reflect a 

release of cortical inhibition and are considered indirect evidence of attention orienting and 

response preparation (Bastiaansen & Brunia, 2001; Capotosto, Babiloni, Romani, & Corbetta, 

2009; Kelly, Lalor, Reilly, & Foxe, 2006; Rajagovindan & Ding, 2011; Sauseng et al., 2005). 

The current analytical approach takes the intentional step measuring non-baselined synchrony, 

and thus more directly indexes such top-down inhibitory processes. Therefore, the presence of an 

alpha ERD can be inferred from baseline and delay period means; however, the interpretation of 

the current alpha synchrony results should be considered as indexing such inhibitory processing.  

Phrased in this manner, alpha-band synchrony during the delay likely represents the 

degree to which active inhibitory processes are adjusted in preparation for a particular action. A 

similar pattern can be observed during AX-CPT performance (Bickel et al., 2012). This task 

involves sequentially presented letters with X’s being the primary target, but only when 

presented after an A. All other letter combinations are responded to as non-targets. In performing 

this task, healthy individuals develop a prepotency toward responding to the dominant trial 
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type—typically the AX pairing (Braver et al., 2002; Henderson et al., 2012). Bickel and 

colleagues (2012) found when a no-go cue (B-cue; any non-A cue) was presented in a mostly go 

(70% AX) context, greater alpha ERS was found prior to the second stimulus. Though when a 

potential response was required in a context of mostly no-go trials (70% BX; an X presented 

after a non-A cue), alpha ERD was greater for trial cues signaling a potential go trial (AX).  

In the current study, the lower alpha synchrony for incongruent trials observed in the 

30% context versus congruent trials follows the interpretation that ERD reflect the engagement 

of attention (Capotosto et al., 2009; Rajagovindan & Ding, 2011; Sauseng et al., 2005). 

However, the positive association between alpha synchrony and ACC implies that variability in 

alpha synchrony may represent active withholding of a motor command as the greater demand is 

in withholding an improper response. Consequently, this variability, which would be masked by 

common ERS/ERD methods, may be a computational mechanism by which controlled action is 

executed—by the intentional suppression of an uncontrolled action. Comparatively, in the 70% 

context, both the mean condition difference and association direction are reversed. Lower mean 

alpha synchrony for the congruent condition indicates this to be the more cognitively demanding 

trial type. This is broadly consistent with a similar study of task conflict where higher alpha-

synchrony was observed for trial-type repetitions versus switches (Tang, Hu, & Chen, 2013). 

Yet, the positive relationship with automatic response inhibition in the 30% context disappears in 

the 70% context. Rather, the negative association implies that the continuous motor control 

required by this context serves a functionally different role of alpha. Thus, alpha synchrony 

increases when the controlled action is withholding a responds; and decreases when the 

controlled action is preparing a response.  
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4.3 STRENGTHS AND LIMITATIONS 

The present study possesses notable strengths. First, on a theoretical level, the use of a proactive 

control task provides a stronger foundation to the binding account of cognitive control by 

reducing the immediate impact of reactive control mechanism, thus emphasizing intentioned 

control (Correa et al., 2009). Furthermore, the relatively large sample size provided increased 

statistical power to detect relatively subtle within-subject differences across groups. 

Additionally, traditional cognitive neuroimaging techniques and analyses typically rely on 

baseline corrections to better compare cognitive conditions. This approach is necessary for ERP-

based analyses as the absolute magnitudes of EEG potentials are typically not easily interpretable 

and preclude the indexing of non-phase-locked activity. However, spectral analytic approaches 

facilitate indexing of nonphase-locked activity while also not necessitating baseline correction, 

which can be useful as the measured prestimulus baseline electrophysiologic activity can be 

informative. Thus, the technique allows for probing into ongoing cognitive processes throughout 

all phases of the trial, including more tonic cognitive states. In contrast with many studies that 

focus on incremental changes from baseline, the current study shows that baseline patterns are 

functionally important and reflect continuous, state-based cognitive processing. As such, unique 

patterns of activity were identified that may have otherwise been obscured.  

The current study also has some limitations. One primary difficulty resulting from our 

non-baselined approach lies with our inability to interpret scalp topography in any meaningful 

way. In this case, the topographical profile of observed frequency effects is largely global. This 

feature makes predictions regarding potential sources much more difficult, though not at the cost 

of invalidating the observed effects. Consequently, further research will be required to replicate 

and hopefully characterize the contributions of such global spectral activity patterns. Current 
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source localization techniques may need to be refined to capture such global effects within 

modality. However, a multimodal imaging approach incorporating fMRI, or considering the 

similar neural architecture underlying error and novelty processing, targeted electrophysiological 

studies of the medial frontal cortex would offer a promising constraint to the current broad result.  

Likewise, in spite of the relatively large sample size, the group sample size was modest 

(n = 18 ~ 20) to detect subtle effects. A between subjects approach was adopted in order to 

collect a sufficient number of trials for the less frequent condition within each context. 

Considering the small effect sizes for the observed interactions, a within subject design may 

elucidate context differences which were masked by intersubject variability (e.g., higher overall 

RTs for 50% context). In addition to reduced power for between group differences, the smaller 

sample sizes reduced the ability to infer a functional role of EEG synchrony patterns. Indeed, 

FDR corrections of nonparametric correlations were found to be too conservative and the 

adjusted α was determined to be zero. In the absence of a formal statistical adjustment of 

significance thresholds, the researchers attempted to reduce the impact of type 1 error ad hoc by 

only interpreting effects meeting traditional significance criteria in multiple groups. Alternative 

analytical techniques, such as Bayesian modeling or linear ballistic accumulator models, could 

address the limitations of frequentist and parametric statistical approaches and help to draw more 

direct inferences of the role of ongoing alpha synchrony to cognitive control behaviors (Brown & 

Heathcote, 2008; Donkin, Averell, Brown, & Heathcote, 2009; King et al., 2012).  
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4.4 FUTURE DIRECTIONS 

In addition to design and analytical improvements, remaining questions raised by the current 

study may be addressed in further experiments. One important direction would be further 

investigation of the inverse relationship between accurate performance and delay period alpha-

band synchrony, which raises several potential interpretations. One possibility is that the midline 

alpha patterns observed are the result of two unique generators with overlapping scalp 

distributions. If this is the case, higher alpha-band synchrony in one region facilitates accurate 

responding in low control contexts, whereas increasing synchrony in a second region impairs 

accurate responding in high control contexts. However, if both alpha patterns result from the 

same generator with different operating characteristics depending on context, it is likely that a 

secondary region is mediating the relationship between context and the influence of alpha 

synchrony on ACC.  

Another implication that warrants further investigation of the observed associations 

between alpha synchrony and behavior is that alpha synchrony may serve a mediating role 

between other neural processes and behavior. Recently, cross-frequency coupling (CFC)—

modulation of a higher frequency amplitude by the phase of a lower frequency (typically, theta to 

gamma and alpha to gamma)—has been proposed to play and important role in the dynamics and 

hierarchical organization of a variety of sensory and association cortices (Canolty & Knight, 

2010; Park et al., 2011; Tort et al., 2008). In a visual discrimination task, Cohen and van Gaal 

(2013) found functional specification in CFC patterns in medial frontal (MF) and occipital 

(OCC) regions with MF favoring theta-alpha coupling while OCC favors alpha-gamma. 

Specifically, the authors argue that that this coupling mechanism serves to integrate signals 

across functional networks—in this case facilitating adjustments after errors—by translating a 
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‘foreign’ frequency into a preferred frequency. One prediction made by the adaptation-by-

binding account is that cognitive control is exerted by strengthening all active representations. As 

the POP task is primarily a visuo-spatial control task, the observed alpha may index this 

strengthening of communication between visual and control regions.  

Assuming a relatively superficial cortical locus of alpha activity, transcranial magnetic 

stimulation (TMS) may be used to induce a temporary lesion to elucidate the causal influence of 

such synchrony on behavior. Such an approach would also address the question of a single 

versus multiple generators if performance is impaired in differentially across contexts. 

Additionally, if alpha synchrony reflects a mediating process, an alternative stimulation 

technique known as transcranial alternating current stimulation (tACS) may be used to evoke 

greater neural synchrony in the alpha band which would magnify the impact of context on 

behavior (Ali, Sellers, & Fröhlich, 2013).   

4.5 CONCLUSIONS 

In summary, two possible routes toward influencing baseline processes were tested—a more 

continuous controlled state may arise when one cannot rely on consistent trial-type expectations 

(i.e., 50% context) or when there is a reasonable expectation that most trials will require 

controlled behavior (i.e., 70% context). We demonstrated that patterns in ACC are consistent 

with a binding hypothesis of behavioral adaptation where increasing the proportion of high-

control trials results in a performance tradeoff favoring the high-control representation at the 

behavioral cost of low-control trial performance. Moreover, synchronous cortical alpha-band 

oscillation demonstrated an inverse association with ACC for low control contexts versus high 
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control contexts. Taken together, our findings indicate that alpha-band synchrony may be a 

mechanism for either representational binding or the action biasing resulting from such binding.   
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APPENDIX A 

SIGNIFICANT SPECTRAL ANALYTIC RESULTS 

Table 4: Significant differences between task conditions across context groups 

CONDITION Main Effect 

Frequency 
Band 

Trial 
Phase Region F(1, 54) p ηp

2 

Theta Cue 

Midline Frontopolar 13.48 0.001 0.20 
Left Frontal 11.29 0.001 0.17 
Midline Fronal 12.07 0.001 0.18 
Left Temporoparietal 10.63 0.002 0.16 
Midline Parietal 11.17 0.002 0.17 
Right Temporoparietal 8.53 0.005 0.14 
Left Occipital 8.55 0.005 0.14 
Midline Occipital 11.49 0.001 0.18 
Right Occipital 9.25 0.004 0.15 

Alpha Baseline 

Left Frontopolar 11.71 0.001 0.18 
Midline Frontopolar 14.48 <.0005 0.21 
Left Frontal 16.66 <.0005 0.24 
Midline Fronal 18.97 <.0005 0.26 
Left Temporal 15.64 <.0005 0.22 
Midline Central 8.89 0.004 0.14 
Left Temporoparietal 15.47 <.0005 0.22 
Midline Parietal 11.52 0.001 0.18 
Right Temporoparietal 15.51 <.0005 0.22 
Left Occipital 9.19 0.004 0.15 
Midline Occipital 15.94 <.0005 0.23 
Right Occipital 24.22 <.0005 0.31 
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CONDITION Main Effect 

Frequency 
Band 

Trial 
Phase Region F(1, 54) p ηp

2 

Alpha Probe 

Left Temporoparietal 9.83 0.003 0.15 
Midline Parietal 15.37 <.0005 0.22 
Left Occipital 13.33 0.001 0.20 
Midline Occipital 16.64 <.0005 0.24 
Right Occipital 11.60 0.001 0.18 

Low Beta Probe 

Midline Frontopolar 9.21 0.004 0.15 
Midline Central 9.43 0.003 0.15 
Left Temporoparietal 16.58 <.0005 0.23 
Midline Parietal 24.67 <.0005 0.31 
Right Temporoparietal 13.38 0.001 0.20 
Left Occipital 16.95 <.0005 0.24 
Midline Occipital 15.22 <.0005 0.22 
Right Occipital 12.6 0.001 0.19 

High Beta 

Delay Midline Central 8.54 0.005 0.14 

Probe 

Midline Central 19.19 <.0005 0.26 
Left Temporoparietal 21.02 <.0005 0.28 
Midline Parietal 18.74 <.0005 0.26 
Right Temporoparietal 16.31 <.0005 0.23 
Left Occipital 13.16 0.001 0.20 
Midline Occipital 8.75 0.005 0.14 
Right Occipital 14.54 <.0005 0.21 

Gamma 

Delay Right Temporoparietal 9.08 0.004 0.14 

Probe 

Midline Central 19.44 <.0005 0.26 
Left Temporoparietal 15.65 <.0005 0.22 
Midline Parietal 18.01 <.0005 0.25 
Left Occipital 8.63 0.005 0.14 
Midline Occipital 9.44 0.003 0.15 

CONTEXT x CONDITION Interaction Effect 

Frequency 
Band 

Trial 
Phase Region F(2, 54) p ηp

2 

Theta 
Cue Midline Central 6.06 0.004 0.18 

Right Temporoparietal 9.52 <.0005 0.26 

Probe 
Left Temporal 6.16 0.004 0.19 
Right Temporal 9.60 <.0005 0.26 

Alpha 
Baseline Left Frontal 8.01 0.001 0.23 

Cue Left Frontopolar 8.13 0.001 0.23 
Left Frontal 8.78 0.001 0.25 
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CONTEXT x CONDITION Interaction Effect 

Frequency 
Band 

Trial 
Phase Region F(2, 54) p ηp

2 

Alpha 

Cue 

Midline Parietal 10.08 <.0005 0.27 
Right Temporoparietal 13.67 <.0005 0.34 
Left Occipital 8.11 0.001 0.23 
Midline Occipital 13.81 <.0005 0.34 
Right Occipital 13.74 <.0005 0.34 

Delay 

Left Frontopolar 6.35 0.003 0.19 
Midline Frontopolar 9.33 <.0005 0.26 
Right Frontopolar 9.16 <.0005 0.25 
Left Frontal 9.99 <.0005 0.27 
Midline Fronal 11.60 <.0005 0.30 
Right Frontal 7.34 0.002 0.21 
Left Temporal 7.80 0.001 0.22 
Midline Central 11.30 <.0005 0.30 
Right Temporal 6.33 0.003 0.19 
Left Temporoparietal 7.07 0.002 0.21 
Midline Parietal 15.91 <.0005 0.37 
Right Temporoparietal 11.31 <.0005 0.30 
Left Occipital 6.04 0.004 0.18 
Midline Occipital 11.76 <.0005 0.30 
Right Occipital 13.92 <.0005 0.34 

Probe 

Left Frontal 8.06 0.001 0.23 
Midline Fronal 6.62 0.003 0.20 
Left Temporal 8.03 0.001 0.23 
Midline Central 8.78 0.001 0.25 
Right Temporal 7.71 0.001 0.22 
Midline Parietal 8.58 0.001 0.24 

Low Beta 

Cue 

Left Frontopolar 12.17 <.0005 0.31 
Midline Central 6.38 0.003 0.19 
Midline Parietal 12.82 <.0005 0.32 
Right Temporoparietal 14.55 <.0005 0.35 
Midline Occipital 10.61 <.0005 0.28 
Right Occipital 22.57 <.0005 0.46 

Delay 

Midline Frontopolar 7.47 0.001 0.22 
Right Frontopolar 8.56 0.001 0.24 
Left Frontal 8.77 0.001 0.25 
Right Frontal 10.88 <.0005 0.29 
Left Temporal 10.69 <.0005 0.28 
Midline Central 8.24 0.001 0.23 
Right Temporal 11.75 <.0005 0.30 
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CONTEXT x CONDITION Interaction Effect 

Frequency 
Band 

Trial 
Phase Region F(2, 54) p ηp

2 

Low Beta 

Delay 

Left Temporoparietal 9.97 <.0005 0.27 
Midline Parietal 21.82 <.0005 0.45 
Right Temporoparietal 15.17 <.0005 0.36 
Left Occipital 7.70 0.001 0.22 
Midline Occipital 13.73 <.0005 0.34 
Right Occipital 13.75 <.0005 0.34 

Probe 

Left Frontopolar 6.30 0.003 0.19 
Left Frontal 12.06 <.0005 0.31 
Midline Fronal 8.31 0.001 0.24 
Right Frontal 6.81 0.002 0.20 
Left Temporal 9.34 <.0005 0.26 
Midline Central 7.37 0.001 0.21 
Right Temporal 10.76 <.0005 0.28 
Midline Parietal 9.77 <.0005 0.27 
Right Temporoparietal 11.55 <.0005 0.30 
Right Occipital 7.69 0.001 0.22 

High Beta 

Cue 
Midline Parietal 8.99 <.0005 0.25 
Right Temporoparietal 6.74 0.002 0.20 
Right Occipital 8.63 0.001 0.24 

Delay 

Left Frontal 10.04 <.0005 0.27 
Midline Fronal 9.32 <.0005 0.26 
Right Frontal 6.31 0.003 0.19 
Left Temporal 7.11 0.002 0.21 
Midline Central 7.32 0.002 0.21 
Right Temporal 7.37 0.001 0.21 

High Beta 

Delay 

Left Temporoparietal 8.07 0.001 0.23 
Midline Parietal 28.07 <.0005 0.51 
Right Temporoparietal 10.65 <.0005 0.28 
Left Occipital 9.42 <.0005 0.26 
Midline Occipital 17.34 <.0005 0.39 
Right Occipital 6.59 0.003 0.20 

Probe 
Midline Central 8.94 <.0005 0.25 
Left Temporoparietal 6.38 0.003 0.19 
Right Temporoparietal 8.19 0.001 0.23 
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