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ABSTRACT PAGE 

Computer-aided drug discovery methods have played a major role in the development of 

therapeutically important molecules for decades, and some more advanced and effective methods 

have been introduced in recent years. Those methods are generally classified as either molecular 

pharmacology methods or quantitative systems pharmacology methods.  

In this thesis, with regard to molecular pharmacology computations, we assess the 

druggability of ionotropic glutamate receptors (iGluRs) N-terminal domains (NTDs) using 

molecular dynamics (MD) simulations. The simulations are performed in the presence of probe 

molecules that contain fragments shared by drug-like molecules. iGluRs are ligand-gated ion 

channels that mediate excitatory neurotransmission events in the central nervous system. 

Alterations in those receptors, especially in AMPA receptors (AMPARs) and NMDA receptors 

(NMDARs), are responsible for many neuron diseases like Huntington’s diseases and 

Parkinson’s diseases. Our study provides insights into the ligand-binding landscape of iGluR 

NTD dimers and monomers. Moreover, we build PMs for AMPARs and NMDARs, which are 

then used in a virtual screening scheme to identify lead compounds.  

Our quantitative systems pharmacology studies focus on drug repurposing upon 

computational analysis of known drug-target interactions. We use the probabilistic matrix 

factorization (PMF) method for this purpose, which is particularly useful for analyzing large 

interaction networks. Our method is shown to outperform those recently introduced for 

identifying new drug-target associations.  Finally, we integrate the results from our druggability 
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simulations and PMF calculations by comparing the drug candidates predicted to bind AMPARs 

or NMDARs by either of those methods. 

In addition, we analyzed the structure and dynamics of sodium-coupled neurotransmitter 

transporters that share the leucine transporter (LeuT) fold. We explore how the collective 

motions predicted for LeuT using the elastic network models agree with the structural changes 

experimentally observed upon ligand binding. 
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1.0  INTRODUCTION 

Drug discovery and development is generally considered to be costly and time-consuming. A 

typical drug discovery and development cycle takes around 14 years (Myers and Baker 2001) 

and costs between 0.8 and 1.0 billion USD (Moses, Dorsey et al. 2005). Due to the rapid 

development in combinatorial chemistry and high-throughput screening technologies, it enables 

huge libraries of compounds to be screened and synthesized in a short time (Ou-Yang, Lu et al. 

2012). However, because of the low efficiency and high failure rate in drug discovery, the output 

of developing a new drug is not positively proportional to the investment (Shekhar 2008). As a 

result, computational drug discovery has been developed to transform drug development, and has 

become an effective method to shorten the research cycle and reduce the cost and risk of failure.   

Computer-aided drug design (CADD) is a general term that defines computational 

approaches and sources for the storage, management, analysis and modeling of compounds 

toward drug design. It includes many aspects of drug discovery, such as tools for assessing 

potential lead candidates systematically, computer programs for designing compounds and the 

development of digital repositories for investigating chemical interactions (Song, Lim et al. 

2009).   

The traditional and widely used computational drug discovery methods can be classified 

into two broad groups: structure-based drug design, ligand-based drug design. Structure-based 

drug design methods include molecular docking, molecular dynamics (MD) simulations and 
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structure-based pharmacophore modeling (PM). They all rely on knowledge of the target 

macromolecule structure. The target molecule is usually a protein for which a drug is to be 

designed, and its structural data are obtained from crystal structures, NMR data and homology 

models (Chen, Morrow et al. 2012). In the absence of three-dimensional structure for the target, 

and even in the case where the target is not known, ligand-based drug discovery tools, such as 

quantitative structure-activity relationship (QSAR) analyses, ligand-based  PM, molecular field 

analysis and 2D or 3D similarity assessment between small molecules can offer insights into the 

construction of predictive models fit for lead discovery and optimization (Acharya, Coop et al. 

2011). Chapter 3 presents MD-based druggability simulation approaches and their application to 

ionotropic glutamate receptors (iGluRs). We consider in particular two families of iGluRs: 

AMPA receptors (AMPAR) and NMDA receptors (NMDAR). These simulations use all-atom 

models in the presence of explicit water and organic probe molecules. Based on the captured 

“druggable” sites and the binding pause of the probes observed in druggability simulations, PMs 

are built, which, in turn, are used in virtual screenings for identifying small molecules that 

potentially serve as drugs for AMPARs and NMDARs. 

Many biological functions rely on protein-protein interactions where the structure and 

dynamics of one or both proteins is affected during the course of binding. Therefore, an 

understanding of conformational flexibility of target proteins involved in protein-protein 

interaction and protein-ligand interaction is very important for structure-based drug design. 

Elastic network models (ENM) normal mode analysis (NMA) (Bahar, Atilgan et al. 1997), 

rooted in the statistical thermodynamics of polymer networks (Flory, Gordon et al. 1976), are 

broadly used to extract those more probable modes, which are near the global free energy 

minimum. Identification of these so-called ‘soft modes’ has been considered as a prerequisite for 
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structure-based drug design (Floquet, Marechal et al. 2006). A lot of work has indicated that in 

fact those soft modes conform to the structural changes associated with ligand binding and 

allosteric transitions demonstrating their relevance to function (Bahar, Lezon et al. 2010, Bahar, 

Lezon et al. 2010). Chapter 2 provides an overview of the assumptions and theory underlying 

these approaches and their application to leucine transporter (LeuT) and secondary transporters 

sharing the LeuT fold. 

Drugs are frequently withdrawn from markets and this is mainly due to their side effects 

or toxicities. Drug molecules often interact with multiple targets, termed as polypharmacology, 

and the off-target interactions can cause adverse side-effects. The philosophy of drug design has 

been transformed from ‘one drug, one target’ to ‘one drug, multiple targets’ (Hopkins 2008). 

Polypharmacology emerged as the new paradigm of drug discovery (Hopkins 2008) and became 

a major focus in recent CADD studies. Polypharmacological phenomena includes: (a) a single 

drug acting on multiple targets on a unique disease pathway or (b) a single drug acting on 

multiple targets pertaining to multiple diseases’ pathways (Hopkins 2007, Reddy and Zhang 

2013). Moreover, polypharmacology for complex disease is likely to employ multiple drugs 

acting on distinct targets, that are part of a network regulating various physiological responses 

(Hopkins 2007). The aim of polypharmacological approaches is to discover the unknown off-

targets for the existing drugs, a task also known as drug repurposing (Oprea and Mestres 2012). 

Chapter 4 provides details on the theory, assumptions and applications of probabilistic matrix 

factorization (PMF) method for predicting drug-target associations. 

Most of the methods described above are used in the present study for investigating the 

structure, dynamics and/or drug-binding properties of the NMDAR and AMPAR families of 

proteins and LeuT fold family of proteins. NMDARs and AMPARs play a major role in 
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mediating neurotransmission events in the central nervous system. NMDARs have served as 

important drug targets due to their implication in neurodegenerative diseases and neurological 

disorders, while the druggability of AMPARs has remained unknown to date. Among LeuT-fold 

family proteins, dopamine transporter (DAT) has been an important drug target for drug abuse 

and addiction research, among other neurodegenerative disorders. Discovering the structural and 

dynamic bases of their function and their ligand-binding properties, and the identification of the 

potential drug candidates may potentially provide new insights into developing better novel 

therapeutic treatments.   

1.1 COMPUTATIONAL METHODS IN MOLECULAR PHARMACOLOGY 

Computer-aided drug discovery (CADD) has actively promoted the development of 

therapeutically significant small molecules for three decades. As mentioned above, CADD 

approaches are broadly classified into two major methods—structure-based methods and ligand-

based methods. Structure-based approaches for drug design include ligand docking, PM and 

ligand design, all based on knowledge and/or modeling of the target protein structure, while 

ligand-based methods use ligand information only for predicting activity depending on 

similarities to already identified active ligands (Sliwoski, Kothiwale et al. 2014). The following 

paragraphs introduce the position of CADD in the drug discovery pipeline as well as the use of 

virtual screening, MD simulations, and PM in structure-based CADD, since those methods are 

used in our study. 
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1.1.1  CADD in the drug discovery pipeline 

CADD can achieve a better hit rate of novel drug compounds, compared to traditional high-

throughput screening (HTS) and combinatorial chemistry, due to the usage of more targeted 

search. It not only helps to understand the molecular basis of therapeutic activity but also to 

predict other possible activities which might improve therapeutic effects. In the drug discovery 

process, CADD has been employed for three main goals (Sliwoski, Kothiwale et al. 2014): (1) to 

filter large compound libraries into smaller ones which can be tested by experimentalists; (2) to 

design a new compound either by adding a functional group on a starting molecule or by putting 

chemical fragments together into novel chemotypes; and (3) to optimize lead compounds, 

whether to increase their affinity or optimize drug metabolism and pharmacokinetics properties 

including their absorption, distribution, metabolism, excretion and potential toxicity (ADMET).  

The most common use of CADD is the screening of virtual compound libraries, known as 

virtual high-throughput screening (vHTS). This enables researchers to test a series of compounds 

and provide a reduced set for further tests. In this way, researchers can identify the same number 

of hits while (experimentally) screening less compounds as they skip those less likely 

compounds, thereby saving money and time. vHTS was first introduced in 1997 (Horvath 1997) 

and it triggered an increasing rate of publications on the applications of vHTS since then 

(Ripphausen, Nisius et al. 2010). The largest fraction of hits has been obtained for G-protein-

coupled receptors (GPCRs) followed by kinases (Ripphausen, Nisius et al. 2010). 

vHTS has several components, such as compounds selection by predicted biological 

activity through QSAR models or PM, chemical similarity searches and structure-based docking 

(Enyedy and Egan 2008). All those methods can rank hits from the screened virtual compound 

library. The ranking reflects the property of the compounds, such as the percentage of similarity 
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to a query compound or the predicted biological activity or in the case of docking, an estimate of 

the relative binding affinity (often expressed as scores) for each compound bound to the targeted 

protein (Joffe 1991). 

There is a substantial cost benefit in the utilization of computational tools during the lead 

optimization phase of drug development. The cost for developing a new drug ranges from 400 

million to 2 billion USD and the synthesis and test of lead analogs contribute a large proportion 

of the sum (Basak 2012). As a result, it is significant and beneficial to use computational 

methods in hit-to-lead optimization to cover a wider chemical space while dramatically 

decreasing the number of compounds that must be tested or synthesized in vitro (Sliwoski, 

Kothiwale et al. 2014). Optimization of a hit compound computationally includes a structure-

based analysis of docking poses or energy profiles for hit analogs, ligand-based screening for 

compounds with similar chemical structure and properties or improved enhanced biological 

activity and prediction of biologically preferred ADMET properties. The comparably low cost of 

CADD, compared to chemical synthesis and biological characterization of compounds, makes it 

popular as a tool for generating more focused, reduced and diversified set of compounds in the 

the chemical space that is explored (Enyedy and Egan 2008). 

1.1.2 Use of MD simulations in CADD  

Molecular dynamics (MD) simulation can be used for binding site detection and characterization. 

The dynamics of proteins make it inappropriate to predict binding site using a single static 

structure. Several conformations are used to account for the conformational dynamics of a 

protein. Conventional MD can capture an ensemble of protein conformations starting with a 

single structure. MD simulations use classical Newtonian physics principles to compute a 
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trajectory of conformations of a target as a function of time. The trajectory is computed for a 

given number of atoms in small time steps, usually 1-10 fs (van Gunsteren and Berendsen 1990). 

Molecules simulated in classic MD approaches have a tendency of being trapped in local energy 

minima. To overcome this, some advanced MD algorithms including targeted-MD (Schlitter, 

Engels et al. 1994), SWARM-MD (Huber and van Gunsteren 1998), conformational flooding 

simulations (Grubmüller 1995), temperature accelerated MD simulations (Abrams and Vanden-

Eijnden 2010) and replica exchange MD (Sugita and Okamoto 1999) have been introduced. In 

general, these methods permit us to jump over multiple minima on the energy surface of 

proteins, thus allowing for a more complete sampling of the conformational space. One example 

of success of MD simulations is the identification of a novel binding trench in HIV integrase, 

which led to the development of raltegravir, a drug used to treat HIV infection. The MD 

simulation of the inhibitor of the same protein, 5CITEP, captured a novel binding trench which 

was not detected with a static structure previously (Schames, Henchman et al. 2004). After the 

discovery, Merck developed the antiretroviral drug raltegravir (Summa, Petrocchi et al. 2008). 

A major limitation in MD simulations is the time scale that can be explored, usually 

limited to nanoseconds-to-microseconds. More recently, the timescale has been extended to 

milliseconds (for small proteins) with the development of the special purpose machine Anton 

(Shaw, Deneroff et al. 2008). Such long simulations now provide more accurate visualization of 

drug binding events to their targets (Shan, Kim et al. 2011). Anton has been used successfully for 

full atomic resolution protein folding (Lindorff-Larsen, Piana et al. 2011). Advances in computer 

technology mean that protein flexibility can be accessed more efficiently, which may allow us to 

have a better understanding and descriptions of the effect of protein dynamics in biological 

function. 
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1.1.3 Pharmacophore modeling (PM) in CADD 

A PM of the target binding site summarizes electronic and steric features required for optimal 

interaction of a ligand with a target (Sliwoski, Kothiwale et al. 2014).  The typical properties that 

define a PM are hydrogen bond acceptors or donors, basic or acidic groups, partial charges, 

aliphatic hydrophobic moieties and aromatic hydrophobic moieties. Pharmacophore features 

have been widely used in lead optimization, virtual screening and de novo drug design (Yang 

2010). A PM for a target binding site can be used to virtually screen a compound library like 

DrugBank containing all FDA-approved drugs, or STITCH database that contains information in 

small molecules/ligands characterized to date. In addition to interrogate such databases for 

filtering the inactive compounds, PM can be used to refine drug design. 

         Structure-based PM approaches are usually developed upon analyzing the target binding 

site or target-ligand complex structure (Sliwoski, Kothiwale et al. 2014). For instance, 

LigandScout (Wolber and Langer 2005) use protein-ligand complex data to map interactions 

between ligands and targets. Usually, there is an empirical scoring algorithm, which includes 

terms to account for van der Waals interactions, metal-ligand bonding, hydrogen bonding and 

desolvation effects (Wang, Liu et al. 1998) and the algorithm can automatically develop a PM 

from target-ligand complex.A successful application is that of Brvar et al. (Brvar, Perdih et al. 

2010) who used a PM to identify novel inhibitors of bacterial DNA gyrase B, a target for 

antibacterial drugs. A PM learned from LigandScount was utilized to screen the ZINC database, 

which produced a novel class of thiazole-based inhibitors with IC50 value of 25 uM. 
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1.2 COMPUTATIONAL METHODS IN SYSTEMS PHARMACOLOGY 

Systems biology approaches have long been used in pharmacology to understand drug action. 

The application of computational and experimental systems biology methods allows us to extend 

the definition of systems pharmacology (Zou, Zheng et al. 2013), which provides a field of study 

that provides us with a comprehensive view of drug action in humans. Systems pharmacology is 

rooted in molecular interactions between drugs and their targets in the cell, and includes network 

analyses at multiple scales of biological organization to explain both therapeutic and adverse 

effects of drugs (Zhao and Iyengar 2012). In the long run, advances in systems biology will assist 

in the development of new drugs and more effective therapies for patients. Systems biology 

approaches make contributions to several clinically driven applications in drug discovery. Here, 

we introduce five recent advances and major applications in this area: (1) analysis of drug-target 

networks, (2) prediction of drug-target interactions, (3) predictions of drug combination, (4) drug 

repurposing, (5) exploration of the side effects of drugs (Zou, Zheng et al. 2013). 

1.2.1 Drug-target networks 

Quantitative analysis of drug-target networks systematically helps disclose the patterns of 

interactions between drugs and targets. Drugs usually bind multiple rather than single molecular 

targets, a phenomenon known as polypharmacology (Hopkins 2007). Quantitative topological 

analyses of drug-target networks show an overabundance of ‘follow-up’ drugs, that is to say 

drugs target those proteins already targeted by other drugs (Zou, Zheng et al. 2013). Thus, many 

proteins are targeted by more than one drug, although those drugs have distinct chemical 

structures. These observations have significant implications for drug discovery and will lay the 
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ground for future CADD work. While single-target approach remains the main strategy 

currently, a large body of work has been done to facilitate the development of ‘promiscuous 

drugs’ which can bind multiple targets. 

Integration of systems biology and polypharmacology offers the opportunities to expand 

current technologies to improve clinical efficacy and decrease adverse effects and toxicity of 

drugs.  Advances in these fields are forming the foundation of the next paradigm in drug 

discovery, that is ‘network pharmacology’ (Hopkins 2008). Along these lines, Keiser et al. 

related receptors to each other quantitatively based on the chemical similarities between the 

ligands that they are interacting with. They have shown that targets without significant sequence 

or structure similarity are still linked quantitatively based on their bioactive ligands that they 

share (Keiser, Roth et al. 2007). This type of link between drugs and targets can be used to 

predict their biological function. Moreover, another computational framework developed by Li et 

al. can be used to build disease-specific drug-protein network and help study molecular signature 

differences between different classes of drugs under different diseases conditions (Li, Zhu et al. 

2009). 

1.2.2 Predictions of drug-target interactions 

Since the observation of drug polypharmacology, this concept has motivated a large number of 

studies to predict and characterize drug- target associations (Oprea, Tropsha et al. 2007, Siegel 

and Vieth 2007, Bajorath 2008, Newman 2008, Miller, Dunham et al. 2009, Walsh and 

Fischbach 2009). Some groups have employed phenotypic and chemical similarities among 

molecules to identify those interacting with multiple targets (Wagner, Kitami et al. 2008, Young, 

Bender et al. 2008), and early drug candidates have been screened against molecular target 
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panels (Krejsa, Horvath et al. 2003). To identify new targets for known drugs, Campillos et al. 

looked for side-effects shared between two molecules and applied to marketed drugs (Campillos, 

Kuhn et al. 2008).  Several new drug-drug relations have emerged between chemically dissimilar 

drugs having different therapeutic indications, implying that they are involved in new drug-target 

associations (Paolini, Shapland et al. 2006). 

          Unlike conventional approaches based on sequence or structural similarity between 

targets, Shoichet, Roth and coworkers developed a computational tool that predicts the 

pharmacological profile of drugs (Keiser, Setola et al. 2009). They introduced the ‘similarity 

ensemble approach’ (SEA) which defines each target by its set of known ligands, searches for 

drugs with chemical structure similar to the known ligands, and then eventually predicts new 

drug-target interactions. To integrate side-effect and pharmacogenomics similarities, Takarabe et 

al. made a comprehensive prediction and pointed to some potential drug-target associations that 

were not identified by previous methods (Takarabe, Kotera et al. 2012). In addition, it is shown 

by Cheng et al. that network-based inference methods perform best on predicting drug-target 

interactions after comparison of three supervised inference approaches (Cheng, Liu et al. 2012). 

In this regard, the important role of machine learning approaches such as active learning has 

been highlighted (Murphy 2011). The application of probabilistic matrix factorization (PMF), a 

widely used machine learning method, to the prediction of drug-target interactions will be 

discussed in details in Chapter 4. 

1.2.3 Predictions of drug combinations 

In recent years, combination therapies were shown to be more beneficial to patients than using a 

single drug (Jia, Zhu et al. 2009). Systems biology approaches have been used to describe and 
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predict potential drug combinations (Fitzgerald, Schoeberl et al. 2006). Dynamical modeling has 

already been used to simulate the effect of drug combinations and generate testable intervention 

methods experimentally (Iadevaia, Lu et al. 2010, Zou, Luo et al. 2011). However, due to lack of 

knowledge on the kinetics of biochemical reactions, these dynamic models are currently 

restricted to small scales. Given that target information is usually accessible, the combined effect 

of drugs on specific targets may be assessed by analyzing the interaction pattern of targets using 

a network perspective (Zou, Ji et al. 2012). Lee et al. showed that how the progressive rewiring 

of oncogenic signaling networks over time following EGFR inhibition makes breast tumors 

vulnerable to a second and later hit with DNA-damaging drugs, indicating that time- and order-

dependent drug combinations might be more effective in killing cancer cells (Lee, Ye et al. 

2012). Lehar et al. used large-scale simulations of bacterial metabolism to simulate the inhibitory 

effects of drug combinations and gave evidence that synergistic combinations are in general 

more specific to particular cellular phenotypes than are to single agents (Lehar, Krueger et al. 

2009). Kwong et al. investigated a gated signaling model that provides a new framework to find 

synergistic drug combinations for melanoma (Kwong, Costello et al. 2012) 

1.2.4 Drug repurposing 

Drug repurposing, also called drug repositioning, one of the alternatives for drug discovery, is to 

explore new therapeutic applications for known drugs. The essential advantage for drug 

repurposing is that it can dramatically reduce the risks of drug development and promote 

repurposed drugs to advance to clinical phase more rapidly. For example, Iorio et al. developed a 

method that uses the similarities in the molecular activity signatures of all drugs so as to 

calculate pair-wise similarities between drugs in their drug mode and in their effects (Iorio, 
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Bosotti et al. 2010). Drugs were organized into a network based on the resulting similarity 

scores. Then, drugs were separated into groups of interconnected nodes (i.e., communities) using 

network theory. Those compounds with similar mode of action were grouped into same 

communities, which usually shared the same targets and pathways. By this method, drug 

repurposing shows its importance in collocating drugs within network communities, which 

identifies a shared molecular activity with other drugs in the same drug communities. Moreover, 

some systems biology methods based on genomics have been published, which aim at drug 

repurposing (Sirota, Dudley et al. 2011, Jin, Fu et al. 2012). Iskar et al. found a large set of drug-

induced transcriptional modules from genome-wide microarray data of drug-treated human cell 

lines (Iskar, Zeller et al. 2013). Those identified modules show the conservation of 

transcriptional activities in response to drugs, which provides a hint for drug repurposing. 

Gottlieb et al. developed ‘PREDICT’ algorithm that could deal with both novel compounds and 

approved drugs (Gottlieb, Stein et al. 2011). This new approach is based on the assumption that 

similar drugs are involved in similar diseases, and uses the chemical similarity of drugs as well 

as disease-disease similarity measures for predicting novel drug indications. 

1.2.5 Exploring the side effects of drugs 

One of the major challenges for drug discovery is to predict the toxicity and side-effects of drugs 

in the early stage of drug development pipeline. Assessment of drug candidates can dramatically 

change when integrating biological data and systems biology methods. Lounkine et al. utilized a 

similarity ensemble approach, which computes whether a drug will bind to a target or not based 

on the chemical properties it shares with existing ligands, and predicted the activity of marketed 

drugs on unintended ‘side-effect’ targets (Lounkine, Keiser et al. 2012). Around half of their 
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predictions were validated by experiments and a correlation metric was developed to give more 

weight to those new off-targets that explained side effects of a certain drug better than any 

known existing target of the drug. Recently, Kuhn et al. have performed a large scale analysis to 

systematically predict and identify proteins that are implicated in drug side effects (Kuhn, Al 

Banchaabouchi et al. 2013). Clinical phenotypic data and existing drug-target interactions were 

integrated to find overrepresented protein side effect associations. They demonstrated that some 

individual proteins are responsible for regulating most of complex side effects. Yang et al. have 

developed a computational chemical-protein interactome, which mimics the interactions between 

drugs known to cause at least one type of severe side effect and a group of human proteins 

(Yang, Chen et al. 2009).  They pointed out that those drugs that share similarities in their 

chemical-protein interactome profiles also share side-effects. Through exploration of the 

associations between drugs and off-targets, they also elucidated the molecular basis of several 

adverse events. There are other researches who adopted integrated systems biology and structural 

or chemoinformatics analyses, which proved to predict drug adverse effects (Chang, Xie et al. 

2010, Chen, Lu et al. 2013). 
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2.0  ELASTIC NETWORK MODELS: THEORY AND APPLICATION TO LEUCINE 

TRANSPORTER 

Proteins have the ability to go through a distribution of collective changes in conformation, or 

modes of motions at their equilibrium or native state, which accommodate their function (Bahar, 

Chennubhotla et al. 2007). Coarse-grained methods have been widely used in capturing those 

collective movements. Particularly, after the studies performed by Bahar and coworkers (Bahar, 

Atilgan et al. 1997, Haliloglu, Bahar et al. 1997) and Hinsen (Hinsen 1998), ENMs have been 

broadly used in association with normal mode analysis (NMA) and revealed that network models 

can capture global modes. The wide use of ENMs results from their three major advantages: 

simplicity, robustness of predicted modes of motions in the low frequency regime (the softest 

modes), and functional significance of these modes, as indicated by a large number of 

applications (Bahar, Lezon et al. 2009). 

In this chapter, we describe the general theory and methods of ENMs, especially the 

Anisotropic Network Model (ANM), along with its application toward understanding the specific 

features and structural dynamics of leucine transporter (LeuT). Also, we compare the 

conformation sampling ability of ANM and MD simulations for LeuT. 
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2.1 ELASTIC NETWORK MODELS 

2.1.1 Theory and methods 

The principal assumption in ENMs is that the intrinsic dynamics of a protein is defined by its 

topology which is represented as a network of nodes and springs; the nodes match the 

coordinates of individual residues and the springs simulate the interactions between residues that 

stabilize the whole structure. The Gaussian network model (GNM) (Bahar, Atilgan et al. 1997, 

Haliloglu, Bahar et al. 1997) and the anisotropic network model (ANM) (Doruker, Atilgan et al. 

2000, Atilgan, Durell et al. 2001) are the two most widely used ENMs. In both models, the 

coordinates of -carbons, which can be obtained from experiments, are identified as the 

positions of nodes, and each residue pair with -carbons located within a cutoff distance rc is 

connected by a spring of uniform force constant . In accord with the original statistical 

thermodynamics theory of random polymer networks (Flory, Gordon et al. 1976), the GNM and 

ANM potentials for a protein of N residues are: 
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where • designates the dot product,      and    
  are the instantaneous and native state distance 

vectors between residues i and j,             
  are their magnitudes and     is ijth element of the 

Kirchhoff matrix equal to -1, if      < rc , otherwise it equals to zero. Thus, the major difference 

between GNM and ANM is that GNM potential is contributed by both distance and orientation 

changes while ANM potential is only based on distance changes. Hinsen et al. was the first to 

propose a coarse-grained harmonic potential for all residue pairs, by using a distance dependent 

force constant (Hinsen 1998) while the use of uniform force constant accounts for specific and 

nonspecific interactions as the same. Modifications of ANM with more elaborate force constants 

have revealed a subtle improvement in the prediction accuracy (Yang, Song et al. 2009), such as 

negative exponents (Yang, Song et al. 2009) or an exponential decay function (Hinsen 1998). 

Recently, Bahar et al. suggested that the next level of optimization of ENM lies in the 

incorporation of secondary structure dependent force constant (Lezon and Bahar 2010). 

2.1.2 ANM-based evaluation of global modes of motion 

Previous studies have validated that the global modes of biomolecules are dominantly defined by 

the overall shape of the biomolecule or inter-residue contact distribution regardless of the 

detailed structure and energetics (Tirion 1996, Ma 2005). The most important point is that, in 

many studies, these global modes have been shown to be associated with functional motions 

(Bahar, Chennubhotla et al. 2007, Yang and Chng 2008), and thus it is essential to identify them 

computationally, and ANM is one of those methods to achieve this goal effectively (Eyal, Yang 

et al. 2006). 
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ANM modes are computed based on eigenvalue decomposition of the Hessian matrix 

(H). H is the matrix of the second derivatives of VANM with respect to residue position. 

Eigenvalue decomposition of H yields 3N-6 eigenvectors. For instance, the kth eigenvector, uk = 

(ux1, uy1,uz1,…uzN)k
T
, also called ANM mode k, describes the normalized displacements of N 

residues in the x, y and z directions as driven by mode k. It defines the normal coordinate along 

which the structure moves as residues moves along ANM mode k. Also, k, the corresponding 

eigenvalue measures the frequency of that mode and also provides information on the shape of 

the protein subject to that VANM . The obtain the displacement of all residue positions along mode 

k, we use the equation below (Xu, Tobi et al. 2003) : 

 

             
                   (3) 

 

Where   is a constant and it is a product size scaling factor, Boltzmann constant (kB) and absolute 

temperature (T).    is the initial conformation. With different values of  , we can  generate an 

ensemble of conformations along mode k. 
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2.2 LEUCINE TRANSPORTER: A MODEL SYSTEM FOR EXPLORING SODIUM-

COUPLED NEUROTRANSMITTER TRANSPORT 

Neurotransmitter symporters are integral membrane proteins which are ion-coupled transporters: 

they can drive the uphill uptake of chemical transmitter from neural synapse and terminate 

neurotransmission mediated by dopamine, serotonin, noradrenaline, glycine and 

GABA(Krishnamurthy and Gouaux 2012). LeuT is a bacterial homologue the crystal structure of 

which has offered valuable insights into the mechanism of function of mammalian 

neurotransmitter transporters. So far, there are 50 available crystal structures of LeuT fold  

family members, in distinct conformations such as outward-open, inward-open, outward 

occluded, competitive and non-competitive bound states, which have revealed a mechanistic 

framework for the transport and transport inhibition of neurotransmitter. The paragraphs below 

describe the current understanding of mechanistic and pharmacological properties of these 

mammalian neurotransmitter sodium symporters (NSSs) gained from the structures of LeuT. 

2.2.1 Structure of LeuT 

LeuT is composed of 12 transmembrane helices. The first 10 helices are correlated by an 

inverted symmetry topology: helices 1 to 5 and helices 6 to 10 are related by a pseudo two-fold 

axis of symmetry (Yamashita, Singh et al. 2005) (Figure 1). This structure indicates a 

relationship with the molecular organization of solute carrier 6 (SLC6) transporters. Helices1 and 
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 6 have discontinuous parts with loops connecting their portions ‘a’ and ‘b’. The regions where 

the helices are broken harbor the ions and substrate binding sites (Figure 1). The substrate, 

leucine, binds a binding pocket that is occluded from extracellular solvent upon closure of the 

gating residue F253 (on TM6a). The two sodium ion binding sites are located in the close 

neighborhood of the substrate binding site (Yamashita, Singh et al. 2005).  

 

 

 

Figure 1 Secondary structure of LeuT 

The positions of leucines (L; red star) and two sodium ions (blue ellipses) are depicted in the topological diagram of the 

LeuT. The structure contains 12 transmembrane helices. EL2, EL3 and EL4a-b are extracellular loops.  The diagram also 

shows the intracellular loops IL1 and IL5. 
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        Though LeuT shares structural similarities with mammalian NSS family members, the 

amino acid transport by LeuT is not chloride dependent, which is different from NSS members 

that require both sodium and chloride for effective transport (Yamashita, Singh et al. 2005). 

Forrest et al. suggested the importance of LeuT for the identification of a potential chloride site 

through homology modeling and site-directed mutagenesis on mammalian serotonin transporter 

and stated that chloride binds in a pocket close to sodium site 1 (Na1) with residues in TM7 

involved in anion coordination, and E290 in LeuT being a key site for chloride conductance 

(Forrest, Tavoulari et al. 2007). A recent report by Kantcheva et al. validated this site 

(Kantcheva, Quick et al. 2013).  

2.2.2 Transport cycle and alternating access in LeuT 

For a comprehensive understanding of LeuT transport cycle, structural data for the major LeuT 

intermediate states are required. The current available crystal structures are in the outward open, 

outward-occluded and inward-open states; and there is no available crystal structure for inward-

occluded state. To offer a complete picture of the transport cycle, we generated the inward-

occluded state structure obtained from MD simulation. 

LeuT has a group of nearly invariant helices constructing the ‘scaffold’ domain (TM3, 4, 

8 and 9) and a group of helices which undergo relatively large movement acting as the ‘core’ 

domain (TMs 1, 2, 6 and 7) (Yamashita, Singh et al. 2005, Forrest, Zhang et al. 2008). In order 

to stabilize the conformations of the outward-open and inward-open states (both are substrate-

free) when obtaining their crystal structure, the Gouaux laboratory mutated specific residues and 

used specific antibodies (Krishnamurthy and Gouaux 2012).  
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 Figure 2 illustrates the series of structures visited during the LeuT transport cycle, 

starting from the outward-open conformation (Figure 2A). TM1b and TM6a are released 

allowing them to move outward due to the mutation (Y108F) which weakens then substrate 

binding (Krishnamurthy and Gouaux 2012). We can see that the extracellular gate (labelled in 

blue circle) is open and the binding site for leucine is exposed for substrate binding. The 

intracellular gate is closed, which requires Na
+
 binding to stabilize intracellular closed 

conformation, as confirmed by single- molecule FRET studies as well (Zhao, Terry et al. 2010).  

Figure 2 Transport cycle of LeuT.          

A. outward-open (substrate-free) state (red, PDB ID: 3TT1), B. outward-occluded (substrate-

bound) (blue, PDB ID: 2A65), C. inward-occluded (substrate bound) (yellow, note: this 

conformer is obtained from simulations as the structure is not experimentally available yet. ) D. 

inward-open (substrate free) (magenta, PDB ID : 3TT3), E. Competitive-inhibitor Trp bound 

outward-open (pink, PDB ID : 3F3A), F. Non-competitive inhibitor TCA bound outward-

occluded. (cyan, PDB ID :2Q6H) 

 

 



 23 

Thus,the outward-open state is substrate-free but Na
+
-bound. Once binding leucine, LeuT 

changes conformation into the outward-occluded conformation (Figure 2B) where the 

extracellular gate is closed. Then, the outward-occluded conformation transits to the inward-

occluded state, the crystal structure of which is not available for far. Finally, the inward-occluded 

state opens its intracellular gate with leucine and Na
+
 released, it reconfigures into the inward-

open substrate-free state as a consequence of large hinge-like movements within the core domain 

relative to the scaffold domain, and shifts in extracellular loops (Krishnamurthy and Gouaux 

2012). The most notable change includes TM1a tilting by 45 degree from its position in the 

closed state as shown in Figure 2D. 

         Generally, during the LeuT transport cycle, local hinge like bending of helices are coupled 

to the formation and disruption of substrate- and sodium-binding sites, which are translated by 

almost rigid-body motion of other helices and loops and thereby opening and closing the 

extracellular and intracellular gates (Krishnamurthy and Gouaux 2012). 

        Previous structural and biophysical studies supported the alternating access mechanism in 

neurotransmitter transporter (Forrest, Zhang et al. 2008). Accordingly, the membrane proteins’ 

binding site is accessible to only one side of membrane upon opening and closing intracellular 

and extracellular gates, alternatively (Penmatsa and Gouaux 2014). Shimamura et al. found that 

in Mhp1, which is another LeuT-fold protein, outward-open and inward-open states are created 

by rigid helical movements, where four helices move against a rigid core to provide access to the 

substrate in either side of the transporter (Shimamura, Weyand et al. 2010). Also, Perez et al. 

showed that BetP transports the osmolyte betaine involving helical elements that works as a 

rigid-bodies coupled with small conformational changes (Perez, Koshy et al. 2012). In LeuT, 

TM1a moves as much as 45 degree (Figure 2D), but it has a minimal movement of 18 degree in 
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BetP (Perez, Koshy et al. 2012). To validate the large-scale changes in the position of TM1a in 

LeuT, single molecule FRET studies have been performed, which confirmed that displacements 

of TM1a are associated with the release of substrate (Zhao, Terry et al. 2011). 

2.2.3 Pharmacological properties of LeuT 

Neurotransmitter sodium-coupled symporters (NSSs) regulate endogenous neurotransmitter 

concentrations and are targets for a wide range of therapeutic agents including selective 

serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors and tricyclic 

antidepressants (TCAs) (Wang, Goehring et al. 2013), which are used to treat depression, ADHD 

and fibromyalgia as a few examples.  Therefore, LeuT has been used to examine the structure of 

the complexes NSSs form with antidepressant drugs. TCAs, such as clomipramine binds with 

weak affinity a site in the extracellular vestibule of LeuT (Singh, Yamashita et al. 2007), 

consistent with their observation that TCAs are non-competitive inhibitors of transport in LeuT 

(Figure 2F).  In the presence of bound-TCA, LeuT is locked in an occluded state. Although 

TCAs and SSRIs are non-competitive inhibitors for LeuT-coupled transport, they do not 

necessarily represent how antidepressants act on mammalian NSSs. Many studies indicate that 

anti-depressants inhibit biogenic amine transport by competitive binding (Henry, Field et al. 

2006, Andersen, Stuhr-Hansen et al. 2011). 

To illustrate the mechanism of competitive inhibition, Singh et al. tested different amino 

acids and eventually found that tryptophan (Trp) inhibited LeuT transport competitively and 

stabilized LeuT in the outward-open state (Figure 2E), while other amino acids like Ala, Gly and 

Met stabilized an occluded state through competitive inhibition (Singh, Piscitelli et al. 2008). 

Furthermore, in order to make LeuT behave like the human biogenic amine transporters, the 
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Gouaux group mutated some key residues in LeuT, and TCAs and SSRIs were found to inhibit 

this specifically mutated LeuT competitively and trap it in the outward open state as what Trp 

does for LeuT (Wang, Goehring et al. 2013). Their studies define common and simple principles 

for the action of SSRIs and TCAs on human biogenic amine transporters. In addition, using 

LeuT as a molecular model, Kristensen et al. modified residues lining the binding pocket in 

TM1, 3, 6, 8 and 9 in the noradrenaline transporter (NET), and identified the highly binding 

affinity shift of NET from talopram to citalopram which is a highly specific and most selective 

SERT inhibitor (Andersen, Stuhr-Hansen et al. 2011). All those studies highlight the role that 

LeuT plays as a template to model the structures of human neurotransmitter transporters. 
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2.3 APPLICATION OF ENM TO LEUCINE TRANSPORTER 

In this section, we apply the ANM to LeuT as a template model for NSSs.  We compare the 

ANM predictions to the principal components of structural variation deduced from principal 

component analysis (PCA) of experimental data on LeuT fold family members. Also, we 

compare the conformation sampling ability between ANM predicted conformers and full atomic 

MD simulations of LeuT. 

2.3.1 Metrics for comparing experimental data and ANM predictions 

For a give protein, if we have two structures A and B, a metric for structural change is the 3N-

dimensinal deformation vector dAB = R
A 

-R
B 

, where R
A 

and R
B
 are the respective vectors of the 

3N coordinates of N residues for the structures. To eliminate translational and rotational 

differences, the two structures are optimally superimposed and then we use the coordinates of the 

-carbons with respect to the superimposed reference frames to construct are R
A
 and R

B
. The 

correlation cosine between eigenvector uk (evaluated for one of the conformers) and deformation 

vector dAB measures the level of similarity between the direction of ANM mode k and the 

structural change dAB experimentally observed between conformers A and B. It is interesting to 

assess whether the soft modes (k = 1, 2, 3 etc.) predicted for conformer A agree with dAB, which 

would mean that the intrinsic dynamics of the protein in state A favors its structural change into 

state B. This has been the case observed in many applications, suggesting that proteins have 

evolved to favor soft modes that enable functional changes in structure. 
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Figure 3 Description of the method for comparing ANM-predicted modes with the principal structural 

variations observed in all available crystal structures with LeuT fold.  

(A) Superposition of the ensemble of 50 available crystal structures that are structurally homologous to LeuT. 

(B) Projection of the structures on the top 2 PCs. (C) Structural changes along the top three PCA modes (D) 

ANM representation of LeuT (E) Structural variations along the softest three ANM modes. (F) Overlap between 

top 6 ANM and PCA modes. 
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For a number of protein targets, there is a large ensemble of structures available in the Protein 

Data Bank (PDB). For LeuT fold family members, there are currently 50 crystal structures 

available in PDB (Figure 3A). Bakan and Bahar showed that a principal component analysis 

(PCA) of the structures can be performed to extract principal modes of structural changes based 

on experimental data, which, then, may be compared to the softest modes predicted by ANM 

(Bakan and Bahar 2009), as outlined in Figure 3.  The PCA of the ensemble of experimentally 

resolved structures, requires the evaluation of a 3Nx3N covariance matrix, C, defined as 

 

C = <      > = 
  

 
∑         ) ) ,  

 

where m is the number of structures in the ensemble and     is the deviation of conformation A 

away from the ensemble average <R>. After eigenvalue decomposition of C, C = ∑       
 
    

we get the principal components    of structural variations (eigenvectors) and the corresponding 

variances (eigenvalues) n. Among those eigenvalues, 1 is the largest variance and the 

corresponding principal vector    describes the displacement along this largest variance mode, 

also called PCA1 or PC1. Obviously,    contributes the most to the average root-mean-square 

deviations <RMSD> between structures. 

The ensemble of structures can be projected onto those top PCs defined space. Thus, each 

structure A or B can be represented by a point in the space spanned by the PCs. The points in 

Figure 3B represent such an ensemble of structures (50 of them in the case of LeuT) mapped into 

the subspace spanned by PC1 and PC2. We can see that the three different states, outward-open 

(red; 15 structures), outward-occluded (blue; 34 structures) and inward-open (purple; 1 
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structure), are clearly separated into three distinctive clusters. Compared to PC2, there is a 

broader dispersion along PC1. 

Conceptually, ANM modes are similar to PCA modes. ANM modes are based on the 

(theoretical) Hessian matrix, H, while PCA modes are based on the (experimental) covariance 

matrix C, and by definition, C is the inverse of Hessian. For PCA, the input is the ensemble of 

those experimentally resolved structures while in ANM, the native contact topology of a single 

known structure is the only input used to construct H. Thus, if the ensembles agrees completely 

with the ANM predicted displacement in structure, k = 
 

  
, and uk = pk for all k. However, this is 

not possible in reality because the experimentally resolved structures do not necessarily sample 

all accessible structures, and also ANM is a coarse-grained model which provides an estimate of 

the collective movements intrinsically defined by the protein structural topology. As a result, 

only the top-ranking modes (the largest variance PCs and softest or lowest frequency ANM 

modes) are taken into account and the overlap between them is examined. Figure 3F shows the 

overlap between the top 6 PCs and ANM modes. We can see that ANM mode 2 and PC1 exhibit 

a high overlap value. These two modes will be analyzed further in the following. This type of 

comparison enables us to identify the ANM and PCA modes that are the counterpart of each 

other, confirmed both experimentally and computationally, thus providing robust information on 

the collective change in structure accessible to the examined family of proteins. 
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2.3.2 Comparison of ANM soft modes with PC modes derived from experiments 

In previous session, we identified that PC1 and ANM2 show the highest overlap. We projected 

the ensemble of LeuT structures onto those two directions for further analysis. The residue 

motions represented by PC1 (red arrow) and ANM2 (green arrow) are shown in Figure 4C and 

individual fluctuations for those two models can be viewed in Figure 4A as well. The reference 

ANM structure is the first resolved LeuT crystal structure (2A65) and it is in leucine-bound 

outward-occluded state. Both PC1 and ANM2 capture the dramatic movement of TM1b and 

TM6a. These two helical segments form the flexible core domain, and in consistency with the 

studies performed by Gouaux et al. TM1b,TM2 and TM6a shift away from leucine-bound 

outward-occlued state to leucine-free outward-open state (Krishnamurthy and Gouaux 2012). In 

addition, the extracellular and cytoplasmic entries, has been suggested by Gouaux et al., to 

expand upon movement of surface-exposed elements, including intracellular loop1 (IL1), 

extracellular loop 2 (EL2) and extracellular loop 4 (EL4) (Yamashita, Singh et al. 2005). Indeed, 

previous work showed that both EL2 and EL4 participate in the conformational changes during 

neurotransmitter transport by NET and SERT (Stephan, Chen et al. 1997, Smicun, Campbell et 

al. 1999). Both PC1 and ANM2 capture the movement of EL2, and PC1 further captures EL4 

displacement which is the largest movement along PC1.  

Then, the level of correlation between the projections of the structures onto these two 

collective displacement directions was examined. As shown in Figure 4B, the structures perfectly 

align along these two axes (correlation coefficient of 0.99), indicating the equivalence of the 

predicted ANM2 and experimentally observed (PC1) global modes.  The figure also shows that 

the structures resolved to date are essentially conformers with different levels of deformation 

along this combined PC1/PC2 axis, apart from minor local fluctuations.                                                            
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Figure 4 Results for LeuT. 

 (A) Comparison of the weighted sum of square displacements along PC1 with this predicted along ANM2 mode. (B) Projection of 

the 50 crystal structures of LeuT onto PC1 and ANM2. (C) Structural variations along PC1 and ANM2. 
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2.3.3 Comparison of ANM-predicted conformers with the conformations sampled in MD 

simulations  

We examined the correlation between ANM2 mode and PC1 derived from MD trajectories 

generated for LeuT. These simulations permitted us to sample all the possible states visited 

during the LeuT cycle (Figure 2). As shown in Figure 5A, the ANM2 mode and PC1 have a high 

correlation of 0.96.  In addition, we compared MD simulations’ conformers with experimentally 

resolved structures, and the correlation between ANM2 and PC1 was still high. Their correlation 

dropped a little to 0.91 (Figure 5B). 

Then, we tested the sampling ability of MD simulations, in comparison to the predictions 

of ANM. First we compared how the 1
st
 essential mode obtained from simulations compare with 

ANM mode 2 (Figure 5A), which led to a good correlation (of 0.96). We then projected ANM 

predicted conformations (green dots) and MD simulation snapshots (yellow dots) onto the 

subspace spanned by the top two PCs, PC1 and PC2, derived from experimentally resolved 

structures. The ANM sampled conformations showed close overlap with the experimentally 

resolved structures especially in the outward-open occluded states (Figure 5C) while MD 

simulation conformations tend to drift away from experimental structures though some of them 

were close to the outward-facing open structures (Figure 5D). 
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Figure 5 Comparison of the conformational space sampled by MD simulations with the principal subspaces inferred 

from experiments and ANM theory.  

(A) Projection of MD snapshots onto ANM2 and the 1
st
 essential mode derived from MD. (B) Projection MD simulation 

conformations and experimental structures onto PC1 and ANM2. (C) Projection of ANM predicted conformations on top two PCs 

derived from experiments. (D) projection of MD simulation conformations on top two PCs 
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2.4 CONCLUSION AND FUTURE WORK 

 

From our results, we can see that both PCA modes and ANM modes capture the conformational 

flexibility of LeuT, consistent with experimental studies. Also, there is strong correlation (0.99) 

between ANM2 and PC1 based on the experimental structures (Figure 4C). In addition, the 

correlation is still high, though dropped slightly, based on MD conformations (0.96) (Figure 5A) 

and mixed conformations (MD conformations and experimental structures)(0.91) (Figure 5B). In 

a similar study involving HIV 1 protease, Yang et al. also reported the close similarity between 

the motions predicted by ENMs and those computed by the PCA of experimental structures only, 

PCA of MD simulation snapshots, and PCA of NMR ensembles (Yang, Song et al. 2008). 

 ANM-sampled conformations overlap with experimental structures around the outward-

occluded state. This might because we only sampled 70 ANM prediction conformations for the 

top 3 ANM modes, starting from an outward-facing occluded conformation. MD sampled 

conformations tend to drift away from the experimental structures, though some of them cluster 

around the outward-open state experimental structure. It remains to be verified if the  new cluster 

of conformations in Figure 5D is complementary to the experimental structures and provide an 

adequate representation of those unavailable (or not resolved) to date. 

 In the future, we may use of ENMs to generate conformational ensembles for docking, as 

suggested by many studies (Cavasotto, Kovacs et al. 2005, Sperandio, Mouawad et al. 2010). 

Also, a systematic study of the dynamics of families of proteins can be performed to help us 

understand the relation between sequence evolution, structure selection and functional 

promiscuity. Bahar et al. have already performed a systematic analysis for structurally resolved 
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and sequentially homologous proteins and made accessible the corresponding software, Prody 

(Bakan, Meireles et al. 2011). 

 ANM results are dependent on the overall architecture/fold of the structure.  They do not 

incorporate the effects of specific interactions or detailed atomic coordinates.  They do not offer 

information on local changes in structure and interactions. Also, sequence information is not 

included in ANM. In addition, inadequate description of non-linear effects and solvent effect etc. 

limits the applications of ENMs. In cases where such local detailed interactions are of interest, 

MD simulations can be utilized. Such simulations become particularly useful in druggability 

assessments where the specific interactions between the protein and the ligand on a local scale 

become important. We will introduce MD simulation and their use in druggability assessment in 

the next chapter.  
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3.0  DRUGGABILITY ASSESSMENT: APLLICATION TO IONOTROPIC GLUTAMATE 

RECEPTORS (IGLUR) N-TERMINAL DOMAIN AND LIGAND-BINDING DOMAIN 

Druggability assessment of a target protein has become an area of interest toward hit-to-lead 

optimization in recent years (Keller, Pichota et al. 2006). Here, we define focus on computational 

assessment of druggability which is an estimation of binding sites and binding affinities of a 

potential drug acting on a certain protein target with the help of MD simulations (Bakan, Nevins 

et al. 2012).  Recent genome analysis revealed that 10% of human genome is druggable and 50% 

of those druggable proteins are correlated to disease-causing genes (Hopkins and Groom 2002). 

Thus, early assessment of druggability may play an important role in drug discovery in saving 

the cost due to the failure at the later toxicity/efficacy test stage.  

Both NMR screening of libraries of small molecules (Hajduk, Huth et al. 2005) and 

multiple crystallography where small molecule form complex  a with the target protein (Allen, 

Bellamacina et al. 1996) have proven useful in making those assessment experimentally. Hajduk 

et al showed the correspondence between the sites experimentally observed to bind large 

fractions of fragments (or drug-like molecules) available in solutions and the sites known to have 

high ligand-binding affinity (Hajduk, Huth et al. 2005). Based on those observations, they 

suggested a metric, druggability index to compute the druggability of target proteins and built a 

model to distinguish druggable and non-druggable sites with a reasonable accuracy rate. 
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However, the experimental methods are expensive. Recently,  the computational 

screening of a library of fragment-like molecules and organic probe molecules against known 

binding sites indicated that computational methods can distinguish druggable and non-druggable 

targets successfully (Huang and Jacobson 2010). Due to dynamics of protein, some allosteric 

sites and druggable pockets can be captured by MD simulations, even though they cannot be 

identified by examination of the crystal structures (Ivetac and Andrew McCammon 2010). 

In addition, methods for incorporating water and organic probes into MD simulations 

have been developed by Guvench and Mackerell (Guvench and MacKerell Jr 2009). Further, 

Bakan et al. recently developed a similar method but with an optimized probe set. This set is 

drawn from small organic fragments overrepresented in FDA drugs, which have diverse 

physicochemical properties (Bakan, Nevins et al. 2012). They showed that MD simulation-based 

druggability assessment can capture and predict ligand-binding sites or even the allosteric sites 

for a number of targets. The method thus enables us to investigate the binding landscape of 

iGluR N-terminal domains (NTDs), especially those of AMPARs and NMDARs.   
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3.1 OUTLINE OF METHODS 

MD simulations were performed using the simulation package NAMD (Phillips, Braun et 

al. 2005) with the CHARMM (Brooks, Brooks et al. 2009) force field. The detailed protocol is 

described by Bakan et al., 2012, (Bakan, Nevins et al. 2012). Smulations were conducted for 40 -

60 ns (See Appendix A for details). Due to the fast diffusion of small probes, this time scale can 

successfully explore the entire surface of the target protein and identify most probable binding 

pockets (Bakan, Nevins et al. 2012).  

The free energy in this method is estimated based on the assumption that the probe 

molecules follow a Boltzmann distribution and thereby allow us to convert probability 

distributions into binding free energies. A grid-based method is used and the binding free energy 

at each grid i is evaluated as               
 = -RT ln(ni/n0). Here, ni/n0 is the ratio of the 

observed density of probes ni to the expected density n0, R is the gas constant and T is the 

absolute temperature (K).  Binding events are accounted for by considering probe molecules as 

independent particles. Interaction spots are identified by removing the voxels that overlap with 

the lower energy voxels. Then, usually 6 or 8 proximal (located within 5.5 to 6.5 Å) spots are 

merged to predict a so-called maximal affinity. Interaction spots (28 to 32 heavy atoms) are then 

clustered and merged to locate each binding site. The interaction spots are supposed to be 

potential druggable sites provided that the corresponding maximal affinity is 10uM (which 

corresponds to a binding free energy of -6.86 kcal/mol). The maximal affinity is calculated based 

on the premise that the free energies of different binding spots are additive. Thus, the maximal 

affinity is estimated by the sum of free energies of interaction spots in that region for each site. 
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Once all the different sites are assessed, the program ranks all the possible druggable sites in 

terms of their binding free energy from the lowest to the highest. 

All the probes in this chapter are shown as spheres and reported by their center of mass. 

They are color-coded based on the fragment name shown in Appendix A. The probes included in 

our simulations are isopropylamine (IPAM), acetate (ACET), acetamide (ACAM), imidazole 

(IMID), isopropanol (IPRO), isobutene (IBUT) and benzene (BENZ). 
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3.2 STRUCTURAL FEATURES OF IGLUR N-TERMINAL DOMAINS 

Ionotropic glutamate receptors (iGluRs) consist of a family of glutamate-gated cation channels 

that regulate the majority of neurotransmission in the central nervous system. The alterations in 

iGluRs are associated with severe acute and chronic neurodegenerative diseases. The iGluR 

family consists of three subfamilies: -amino-3-hydroxy-5methyl-4-isozazolepropionic acid 

receptors (AMPARs), kainite receptors (KRs) and N-methyl-D-aspartate receptors (NMDARs). 

Those subfamilies share an architecture of three major parts (shown in Figure 6): an extracellular 

domain (ECD), a transmembrane domain (TMD) and an intracellular carboxyl-terminal domain 

(Traynelis, Wollmuth et al. 2010). The ECD consists of a distal N-terminal domain (NTD) and 

ligand-binding domain (LBD). 

Figure 6 displays the full length structure of GluA2 AMPAR resolved by Gouaux and 

collaborators (Sobolevsky, Rosconi et al. 2009). Both NTDs and LBDs share the clamshell-like 

bilobate fold features which belong to the periplasmic binding protein (PBP)-like family 

(Quiocho and Ledvina 1996). The function of the LBD is well-studied and characterized; L-

glutamate docking to the cleft of upper lobe (UL) and lower lobe (LL) leads to the closure of 

cleft, which triggers channel activation through allosteric transition by TMD (Armstrong and 

Gouaux 2000). The function of the NTDs remains to be further studied. In NMDARs, the NTDs  

play a key role in signaling as a allosteric modulator of channel opening probability (Gielen, 

Retchless et al. 2009). And this role resulted in a surge in the development of NMDAR 

modulators /drugs. However, the allosteric modulation of NTDs in non-NMDARs is still not 

well understood and is still under debate. 

In addition, NMDARs contain Zn
2+

 binding sites and an ifenprodil molecule was found to 

bind to NMDARs which was proposed to stabilize the closed-cleft conformation of the NTDs 
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(Karakas, Simorowski et al. 2009, Traynelis, Wollmuth et al. 2010). However, for AMPARs and 

KRs, no ions or small molecules are known to bind. In this chapter we mainly explore the 

potential druggable sites on the NTDs of AMPARs and NMDARs. 
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Figure 6 Complete structure of GluA2 (left) (except for the C-terminal domain) and the structure of the NTD 

dimer of GluA2 ( right) 

GluA2 is one of the subtypes of AMPAR. This complete GluA2 crystal structure (except for the C-terminal domain) 

was obtained by Soblevsky et al. (Sobolevsky, Rosconi et al. 2009) 
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3.3 LIGAND-BINDING SITES ON IGLUR LBD 

As introduced previously, the LBD of iGluRs is a bilobate structure similar to the bacterial PBP 

proteins, which bind ligands in the cleft due to evolutionary optimization (Sukumaran, Rossmann 

et al. 2011). The ion channel opening is initiated by the binding of glutamate in the LBD cleft 

(Armstrong and Gouaux 2000). We benchmark the druggability assessment method first to see 

how well  this property of the LBD can be reproduced. We perform simulations using the GluR2 

AMPAR LBD because this domain has a lot of crystal structure bound with either agonist or 

antagonist and it is a good model for analysis (Pøhlsgaard, Frydenvang et al. 2011).  

In AMPARs, receptor desensitization is initiated by reorganization of the dimer interface.  

Though the exact mechanism is not clear yet, there is a large number of crystal structures of 

LBDs with certain mutations which give us a few insight on the structural changes relevant to 

receptor desensitization. It was reported by Sun et al. that cyclothiazide can stabilize the dimer 

interface through positive allosteric modulation (Sun, Olson et al. 2002). AMPAR currents can 

be enhanced by those positive modulator through its decreasing effect on receptor 

desensitization. In Figure 7, we show that our probes capture the binding sites of cyclothiazide at 

the interface of LBD and the locations of the probe molecules overlap with those binding sites. 

Particularly, a high affinity binding site consisting of 6 hotspots, all of which composed of 

ACAMs (yellow spheres) is identified, which closely overlaps owith the upper site for 

cyclothiazide (shown in stick representation) allosteric modulator binding. This site yielded a 

drug-like affinity of 0.413M or a binding free energy of -8.76 kcal/mol. Thus, we can see that 

the probes adopt a binding pattern similar to those experimentally detected for positive 

modulators of AMPAR LBD.  
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Figure 7 Probes that capture the known drug-binding sites in the LBD dimer of GluA2.  

The structure of GluA2 NTD dimer in the presence of two cyclothiazide molecules (PDB ID: 1LBC) is shown. Cyclothiazide is a 

known positive allosteric modulator at GluA2 LBD. GluA2 binds two cyclothiazides (shown by CPK stick representation) at the 

interface between the monomers of the LBD dimers. Probe molecules shown by spheres (coinciding with their mass center) exhibit a 

high propensity to populate this site. 
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3.4 DRUG-LIKE PROBE CLUSTERS CAPTURING DIMER INTERFACE FROM 

NTD MONOMER SIMULATION 

There are 9 distinct subtypes of iGluR NTDs crystal structures available. We have 

performed 40ns druggability simulation for 7 subtypes in monomeric forms in the presence of 

drug fragments (probes) and water. The most interesting result is the identification of monomer-

monomer interfacial regions captured by our probes (Table 1 and Figure 8). 

Residues that participate in the formation of NTDs UL and LL dimer interface are 

obtained from crystal contacts experimentally (Jin, Singh et al. 2009, Karakas, Simorowski et al. 

2009, Kumar and Mayer 2010, Guorui, Yinong et al. 2011). However, for the NMDARs, no 

distinct LL interface is identified for NMDAR homo/hetero dimers, only UL results are reported.  

 The high-affinity binding sites (clusters of 6 or 7 probes) which contain more than 2 

probes within 5Å of the interfacial UL and HL regions are reported, which are proposed to be the 

potential drug-like binding sites.  Those probes that bind the interfacial regions are called 

‘interfacial probes’. 

 Figure 8A shows that the druggability simulations accurately capture the high-affinity 

binding sites at the monomer-monomer UL and LL interfaces of GluA3 NTD (shown as 

spheres). At the UL interface (Figure 8B, the magnification of the UL interface), there are 7 

probes with total affinity of 18.31nM. Six of the probes are within 5 Å of the interfacial residues 

(shown in purple sticks) and 4 of them are within 4 Å; whereas for the LL interface (Figure 8C), 

3 out of 7 probes bind the interfacial region. Both sites bind isopropanols (IPROs). 
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Figure 8  Interlobe (UL-UL and LL-LL) interface regions at the NTD dimer of GluA3, 

identified by druggability simulation to have a high propensity for binding small molecules. 

(A) GluA3 monomer NTD (PDB ID: 3O21) chain C used in simulations is shown in white and the other chain 

(chain D) is shown in light blue. The residues that line the interface are shown in purple sticks. The interfacial 

region preferentially binds IPRO probes, which are shown in green spheres.  

(B) Magnification of UL-UL interface. (C) Magnification of LL-LL interface. 
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For all iGluRs NTDs which have known UL and LL interfacial regions, except for GluA2 

and GluK2, high-affinity sites for interfacial probes were identified. We can see that non-polar 

hydrophobic molecules, such as isopropanol (IRPO) and isobutane (IBUT), are the two 

dominating probes at those binding sites. The binding sites that contain 6 interfacial probes out 

of 7 are labelled in red (Table 1). 

 GluK3 has the largest number of interfacial probes at both the UL and LL interfaces, 

which indicates that it has a higher probability to form interfacial interactions or to stabilize a 

dimeric form. We also concluded that among AMPARs and NMDARs, GluA3 and GluN2B 

were more likely to form interfaces in terms of the number of interfacial probes in the binding 

sites. Generally, for all subtypes, the UL interfacial residues are captured by high affinity binding 

probe clusters, which indicates that the ULs are more likely to form interfaces compared to the 

LLs. 

 We note that this method helps identify protein-protein interfaces consistent with 

experiments and it has future implications on the identification of other unknown protein-protein 

interfaces. In the next session, we will further discuss the druggability simulations performed for 

the NTD dimers of iGluRs.  
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Table 1 High affinity binding sites on iGluR monomers 

The table reports the high affinity binding sites which contain more than 2 hot spots within 5Å from the UL 

or  LL interface. For NMDARs, there were no LL interface binding probes. Thus only UL interface results are 

reported for NMDARs. 

iGluRs UL interface result for NTD monomer simulation 

 

No. of interfacial 

probes 

Probe 

composition 

Binding free 

energy 

(kcal/mol) 

Affinity 

(nM) 

GluA1 2 6 IBUT, 1 IPRO -11.71 2.90 

GluA2 6 7 IBUT -10.98 9.90 

GluA3 6 7 IPRO -10.61 18.31 

GluK2 4 2 IBUT, 5 IPRO -10.10 43.60 

GluK3 6 6 IBUT, 1 IPRO -12.19 1.29 

NR1 3 5 IBUT, 2 IPRO -12.08 1.55 

NR2B 4 6 BENZ, 1 IPRO -10.72 15.36 

 

(Note: Probe abbreviations: isopropanol (IPRO), isopropyl amine (IPAM), Benzene (BENZ), and isobutane (IBUT)) 

 

 

 

 

iGluRs LL interface result from NTD monomer simulation 

 

No. of interfacial 

probes 

Probe 

composition 

Binding Free 

energy 

(kcal/mol) 

Affinity 

(nM) 

GluA1 2 4 IPRO, 3 IBUT -11.53 3.96 

GluA2 - - - - 

GluA3 3 7 IPRO -11.56 3.72 

GluK2 - - - - 

GluK3 6 4 IPRO, 3 IBUT -10.89 11.59 
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3.5 DRUGGABILITY ASSESSMENT OF IGLUR NTD DIMER  

In this section, we proceed to evaluate the druggable sites in AMPARs and NMDARs. Among 

AMPARs, as we saw in previous section, GluA3 has a relatively larger interface accessible to 

probe molecules. We picked up GluA3 for NTD dimer simulations. For NMDARs, we used the 

GluN1-GluN2B heterodimer NTD structure complexed with ifenprodil. Ifenprodil is a well-

known small molecule used to treat neurological diseases. It specifically inhibits the GluN1 and 

GluN2B subunits of NMDAR (Karakas, Simorowski et al. 2011). 

 

3.5.1 Druggability assessment of GluA3 NTD dimer 

In the druggability simulation of GluA3 NTD dimer, two potential drug-binding sites were 

identified, located at the UL and LL interfaces, respectively (Figure 9). Residues within 4.5 Å of 

the probe clusters were considered to interact with the probes. Residues on 3,2 and L1 flap, 

which are key conserved UL interfacial residues were found to interact with the probes at the UL 

interface (Table 2).  The UL probes clustered all at close proximity of the corresponding residues 

that formed the binding pocket that contribute majorly to the binding affinity (Figure 10A). 

Examination of the LL site (Figure 10C), on the other hand, showed that all 7 probes identified 

to bind most frequently the interface make close contacts with key residues on 5, 6 and 7. 

Particularly, one IPRO was observed to consistently make close contacts (within 4 Å) with R163.  
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The LL interface is largely polar. Especially R163 and R184 project towards together interface to 

generate positive electrostatic potential and the charge repulsion presumably contributes to the 

greater separation  if the lobes compared to other AMPARs NTD subtypes (Jin, Singh et al. 

2009). Thus, the IPRO here, which interacts with R163, prevents the same charge repulsion and 

helps stabilize the NTD LL interface in a tightly packed conformation.  In addition, two other 

hydrophobic probes (IPROs) interact with M150 to contribute to the binding affinity as well. 

Another potential drug binding site is the binding pocket formed by M150 by two 5 (Figure 

10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Potential drug binding sites deduced from GluA3 NTD dimer 

simulations 

Two binding sites are shown, at the UL and LL interfaces of the GluA3 NTD dimer. The 

residues located within 4.5 Å interatomic distance from the probes are shown in sticks. Probe 

molecules are shown in spheres. 
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Table 2 Druggability of GluA3 NTD dimer 

Probe cluster 

(binding sites) 

Interacting 

residues 

Binding free 

energy(kcal/mol) 

Affinity Probe cluster 

compositions 

Charge 

UL interface 3: T86, 

S87, A91 

2 : N54, 

F56 

L1 flap: 

A317 

-8.21 1.04uM 3 ACAM 

3 IPRO 

-0.04e 

LL interface 

(sol 1) 
5: L146 to 

A152 

6: E180 

7 : R163 

 

-12.19 1.31nM 5 IPRO 

1 ACTT 

1 IPAM 

1e 

LL interface 

(sol 2) 

M150 on two 

5 

-12.25 1.17nM 5 IPRO 

2 IPAM 

2e 
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Figure 10 Binding sites at GluA3 NTD dimer interface and corresponding PMs. 

(A) Magnification of probe-binding site at the UL interface and (B) its corresponding PM (shown using OpenEye) 

(C) Magnification of probe-binding site at the LL interface and (D ) its corresponding PM (shown using OpenEye) 

(D) Magnification of probe-binding site at the LL interface and (D ) its corresponding PM (shown using OpenEye) 

 

5 

M150 

M150 

F56 N54 

T86TM

S87 

A317L3 A91 

L146 
Q147 M150 

R163 E180

5 

A 

D 
C 

B 

E LL interface solut 2 F 

5 

5 

7 6 

ACAM IPRO ACET IPAM 

LL interface solution 1 

UL interface 

M150 

M150 

T86 



 52 

3.5.2 Druggability assessment of GluN1-GluN2B NTD dimer 

In previous studies for NMDARs, the allosteric drug-binding site at NTD was usually located at 

the interface between two NTD subunits (Karakas, Simorowski et al. 2011). In druggability 

simulation of GluN1-GluN2B NTD dimer, three potential drug-binding sites are captured by the 

probe clusters (Figure 11 and Table 3). The first two sites are located at the NTD hetero-dimer 

interface, and the third is located between 7, 2 and loop1  and is presumed to be the possible 

allosteric regulation site in GluN2B.  

At the UL interface, the key residues belonging to L1 flap, 3 and 6 were found to be in 

close contact (within 4.5 Å) with site 1 probe clusters (Figure 12A). Particularly, residue T103 

interacting with an IPRO probe, on a loop extended from 3, has been identified as a key residue 

for both ifenprodil- and zinc-binding (Rachline, Perin-Dureau et al. 2005), which maintains the 

architecture of the zinc-binding pocket and the GluN2B NTD clamshell structure as a whole 

(Karakas, Simorowski et al. 2009). 

Site 2 is located in the LL interface. Therein residues in 5, participating in the interface 

region, were observed interact with the probe cluster (Figure 12C). In addition, one of the probes 

is close to K131 on a loop which may play a role upon drug binding on the NMDARs (Karakas, 

Simorowski et al. 2011). 

In addition to those binding sites located in the UL or LL interface regions, we also 

identified a third binding site which binds in a pocket formed by loop, an  helix and a  sheet. 

This site exhibits a binding affinity of 0.152uM and is proposed to be an allosteric binding site 

yet to be experimentally validated. 
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The PMs for the above three sites are  shown in Figure 12BDF. These will be used for 

virtual screening for further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site 1 
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Site 3 

Figure 11 Potential drug-binding sites captured by GluN1-GluN2B dimer 

druggability simulation 

The residues within 4.5 Å of the binding sites probes are shown in sticks. Probe molecules are 

shown in spheres. GluN1 NTD is colored silver and GluN2B NTD, purple. 
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Table 3 Druggability of GluN1-GluN2B NTD dimer 

Probe cluster 

(binding 

sites) 

Interacting 

residues 

Binding free 

energy 

(kcal/mol) 

Affinity Probe cluster 

compositions 

Charge 

Site 1 GluN1 NTD: 

L1 flap: from 

N311 to I314 

3: Y114 

GluN2B NTD: 

6 : E235, T238 

Loop: T103 

-9.50 0.12uM 5 IPRO 

1 IPAM 

I BENZ 

-1.90e 

Site 2 GluN1 NTD: 

Loop: K131 

GluN2B NTD 

5: Q180 to 

N184, R187 

-7.43 3.83M 5 IPRO 

1 BENZ 

0.15e 

Site 3 7 helix: V293, 

R294 

2 sheet: V68 

Loop1: F59 

-9.35 0.152uM 4 IPRO 

2 ACTT 

1 IBUT 

-1.45e 

(Probe abbreviations: isopropanol (IPRO), isopropyl amine (IPAM), Benzene (BENZ), acetate (ACTT), acetamide 

(ACAM) and isobutene (IBUT) )  
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Figure 12 Binding sites at GluN1-GluN2B NTD dimer and corresponding PMs 

(A) Magnification of Site 1 and its PM (B). Magnification of Site 1 and its PM. (C) Magnification of Site 2 and its PM (D).                  

(E) Magnification of Site 3 and its PM (F). 

(B)  

(C)  
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3.6 CONCLUSION 

In this chapter, we assessed the druggabilities of iGluRs NTD monomers and dimers. To detect 

high affinity binding sites, only those drug-like probe clusters (6 to 7 probes) were reported as 

potential drug-binding sites. At the beginning, we benchmarked this method by investigating the 

well-characterized ligand binding sites of GluA2 LBD dimer. And we found that our probe 

cluster captured the known drug binding site and some probes overlapped with the residues in 

the known drug.  

Then, we further explored the potential binding sites of iGluR NTD monomers. Drug 

probes identified residues involved in the interfacial region for each NTD subtype and the 

corresponding high affinity binding sites were reported as well. This suggests that we can use 

this method to accurately predict proten-protein interaction interfaces. Among the iGluRs, 

GluA3 showed the most accessible interfacial region for binding probes, due to the high 

flexibility of GluA3 (Dutta, Shrivastava et al. 2012). The identified high affinity binding sites in 

the interface region suggest likelihood of  drug binding site at the interface of GluA3 NTD. 

Finally, we explored the druggable sites in the GluA3 NTD dimer and GluN1-GluN2B 

NTD dimer. The simulation of GluA3 dimer provided an interesting result: we found two high 

affinity binding sites at the interfacial regions and some key interfacial residues were found to be 

in close contact with our probes, which further strengthen our hypothesis that there exists sites 

that may potentially bind drugs at the LL GluA3 NTD interface. We characterized the 

pharmacophore features of the high affinity site found by probe clusters. The PM can be 

employed as a template for virtual screening of compounds (from known libraries of chemical 

compounds) to identify potential molecules conforming to the PMs. And those hits can be further 

optimized with higher efficacy to GluA3 and eventually be tested experimentally.  
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This study offers a new insight into the identification of allosteric regulatory binding sites 

in GluA3 NTD where few drugs have been found to bind to it yet. For NMDARs, the 

druggability analysis of GluN1-GluN2B NTD dimer also identified possible drug binding sites at 

the interface region though there are fewer interacting interfacial residues in the binding pocket 

compared to GluA3. Additionally, we identified another binding site, though not close to 

interface region located in a pocket formed by helices and loop. PMs have been built for those 

sites as well and we will use them for further virtual screening. 
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4.0  PREDICTING DRUG-TARGET INTERACTIONS USING PROBABILISTIC MATRIX 

FACTORIZATION 

Quantitative analysis of known drug-target interactions emerged in recent years as a useful 

approach for drug repurposing and assessing side effects. In the present study, we present a 

method that uses Probabilistic Matrix Factorization (PMF) for this purpose, which is particularly 

useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent 

variables show phenotypic similarity even in the absence of 3D shape similarity. Benchmarking 

computations show that the method outperforms those recently introduced provided that the 

input dataset of known interactions is sufficiently large - which is the case for enzymes and ion 

channels, but not for GPCRs and nuclear receptors. Runs performed on DrugBank after hiding 

70% of known interactions show that, on average, 88 of the top 100 predictions hit the hidden 

interactions. De novo predictions permit us to identify new potential interactions. Drug-target 

pairs implicated in neurobiological disorders are overrepresented among de novo predictions. 
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4.1 ANALYSIS OF DRUG-TARGET INTERACTION NETWORK  

Drug discovery and development became increasingly challenging in recent years, evidenced by 

the estimated cost of around $1.8 billion for the development of a novel molecular entity with 

suitable pharmacological properties (Paul, Mytelka et al. 2010). This cost increase partly 

originates from the failure of many drug candidates in Phase II or III clinical trials due to their 

toxicity or lack of efficacy (Berg, Rogers et al. 2010).  The efficiency of drug discovery and 

development might be improved by adopting a systemic approach that takes into consideration 

the interaction of existing drugs and candidate compounds with the entire network of target 

proteins and other biomolecules in a cell (Csermely, Korcsmáros et al. 2013). Indeed, the “one 

gene, one drug, one disease” paradigm is widely recognized to fail in describing experimental 

observations (Hopkins, Mason et al. 2006). Many drugs act on multiple targets, and many targets 

are themselves involved in multiple pathways. For example, -lactam antibiotics and most 

antipsychotic drugs exert their effect through interactions with multiple proteins (Sorger, 

Allerheiligen et al. 2011). Biological networks are highly robust to single-gene knockouts, as 

recently shown for yeast where 80% of the gene knockouts did not affect cell survival 

(Hillenmeyer, Fung et al. 2008). Similarly, 81% of the 1,500 genes knocked out in mice did not 

cause embryonic lethality, further corroborating the robustness of biological networks against 

single target perturbagens (Zambrowicz and Sands 2004). These results suggest that quantitative 

systems pharmacology strategies that take account of target (and drug) promiscuities can present 

attractive alternative routes to drug discovery.  

 

Recent years have seen many network-based models adopted to reduce the complexity of, and 

efficiently explore, drug-target interaction systems (Berger and Iyengar 2009). In particular, the 
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development of computational methods that can efficiently assess potential new interactions 

became an important goal. In this regard, the important role that machine learning approaches 

such as Active Learning (AL) can play has been recently been highlighted (Murphy 2011). 

Computational approaches used to predict unknown drug-target interactions can be divided into 

roughly four categories: chemical-similarity-based methods (Keiser, Roth et al. 2007), target-

similarity-based methods (Li, An et al. 2011), integrative (both target- and chemical-similarity-

based) methods (Yamanishi, Araki et al. 2008), holistic approaches (Gottlieb, Stein et al. 2011, 

Sirota, Dudley et al. 2011). The first two posit that if two entities are chemically or structurally 

similar they will share interactions. The integrative approaches combine the chemical- and 

target-similarity methods. While the intuition behind these approaches is very reasonable, their 

performance has been observed to be tied to the underlying similarity computation method. We 

also note that the utility of different methods may depend on the size of the dataset being 

analyzed, e.g., computing chemical-chemical and target-target similarity matrices can be 

problematic for large databases like STITCH (Kuhn, Szklarczyk et al. 2012) (that contains 

information on the interactions between more than 2.6 million proteins and 300,000 chemicals). 

To overcome these limitations, holistic methods have been introduced, which utilize a number of 

different data sources such as gene expression perturbation (Dudley, Sirota et al. 2011) or high-

throughput screening (Cheng, Li et al. 2011). 

 

In this study, we propose a novel approach by using a collaborative filtering algorithm to 

predict interactions without reliance on chemical/target similarity or external data collection. We 

validate the utility of Probabilistic Matrix Factorization (PMF) for predicting unknown drug-

target interactions with the help of a detailed investigation of its performance. The method is 
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shown to group drugs according to their therapeutic effects, irrespective of their 3-dimensional 

(3D) shape similarity. Benchmarking computations show that the method outperforms recent 

methods (Yamanishi, Araki et al. 2008, Yamanishi, Kotera et al. 2010, Gönen 2012)when 

applied to large datasets of protein-drug associations, such as those of enzyme- and ion channel-

drug pairs; whereas it performance falls short of these methods' with decreasing size of the 

examined dataset (e.g. GPCR- and nuclear receptor-drug datasets). The ability of the method to 

efficiently analyze, and make inferences from, large datasets of protein-drug interactions 

suggests that with growing sizes of those datasets, the utility (and accuracy) of the method will 

further improve.   

 

Application of the same benchmarking procedure to DrugBank (Knox, Law et al. 2011) 

confirms its ability to disclose hidden data: 88 out of top 100 predictions (or 587 out of 1,000) 

are found to hit known (but hidden) interactions, when only 30% of the entire data is used for 

training.  Finally, when the method is trained on the entire dataset of drug-target interactions 

compiled in DrugBank, de novo predictions for drug repurposing can be made along with the 

corresponding confidence levels. Top predictions include many drugs indicated for 

neurodegenerative diseases or neurobiological disorders, including drug-target pairs apparently 

supported by previous experiments (not reported in DrugBank), e.g., ergotamine–serotonin 

receptor 1A (5HT1A) (Tfelt-Hansen, Saxena et al. 2000), amoxapine–5-HT2A (Pälvimäki, 

Majasuo et al. 1996),  verapamil–calmodulin (Epstein, Fiss et al. 1982). 

 

In conclusion, the newly introduced computational method provides an efficient approach 

for identifying potential drug-target association between chemicals and targets, and formulating 
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new hypotheses for repurposable drugs or side effects, thus complementing those deduced from 

chemical-chemical or target-target similarities.   

4.2 OVERVIEW OF METHODS 

The drug-target interaction network is a bipartite graph with two types of nodes; drugs, and 

targets. Each edge represents an interaction between a drug and a target. The drug-target 

interaction identification problem is to determine the missing edges that are likely to exist given 

all nodes and some of the edges in the network. 

4.2.1 Dataset 

We used DrugBank (version of September 20, 2011) as database (Knox, Law et al. 2011).  All 

drugs annotated therein as approved, along with their annotated targets, are included in our 

dataset (i.e., we excluded compounds annotated as withdrawn or nutraceutical), resulting in N = 

1,413 drugs and M = 1,050 targets with 4,731 interactions among them. The interaction network 

displays small-world characteristics: many nodes have low degree and a few, very high degree, 

as illustrated in the panels b and c of Figure S1, in line with previous studies on drug-target 

networks (Yıldırım, Goh et al. 2007). On average, there are 3.35 interactions per drug, and 4.50 

interactions per target. 
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4.2.2 Probabilistic Matrix Factorization (PMF) 

PMF is a member of the Collaborative Filtering family of Machine Learning algorithms that 

decomposes the connectivity matrix, RN x M, of a bipartite graph of N drugs and M targets as a 

product of two matrices of latent variables (LVs) (Salakhutdinov and Mnih 2008). RN x M is 

defined as: 

 

 

The matrix RN x M is modeled as the product of two matrices U
T

N x D and VD x M, that express each 

drug/target in terms of a set of D LVs. Our objective is to find the best approximation for LVs, 

while avoiding over-fitting. The predicted  N x M is then expressed as: 
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dimensional. The PMF adopts a probabilistic linear model with Gaussian noise to model the 

interaction. Therefore, the conditional probability over observed interactions is represented as 
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where f((x | u,
2
)  is the Gaussianly distributed probability density function for x, with mean u 

and variance 
2
, and Iij is the indicator function equal to 1 if the entry Rij is known, and 0 

otherwise. Therefore, p(R | U, V, 
2
) gives us a probabilistic representation of the connectivity 

matrix, R (Mnih and Salakhutdinov 2007). Using zero-mean, spherical Gaussian priors on LVs, 

we can write 
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Which lead to the log-likelihood of U and V given by 

 

Here C is a term that does not depend on LVs; the first term on the right-hand side is the squared 

error function to be minimized; and the two summations over the square magnitudes of ui and vj  

are regularization terms that favor simpler solutions and penalize over-fitting. The above log-

likelihood directly follows from the Bayes’ rule where R stands for data, and U and V represent 

the model (see Supplementary Material for details). To learn an optimal model means to find the 

U and V matrices, or the D-dimensional LV vectors, ui (1 ≤ i ≤ N) and vj  (1 ≤ j ≤ M)), that 

maximize the log-likelihood function.  

 

The PMF method yields the optimal ui and vj vectors corresponding to each drug, di, and each 

target tj, respectively.  The basic idea is that the model is forced towards making a ‘no-
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interaction’ prediction by the regularization – i.e. there is a penalty associated with any non-zero 

value in the LV matrices. However, there is also a penalty for failing to capture known 

interactions– i.e., if the dot product of the LV vectors corresponding to an interacting drug-target 

pair is close to zero. Therefore the learning of a model means to optimally balance out two 

objectives: developing a sufficiently complex model to describe the known interactions, but not 

overly complex to end up in over-fitting.  In this study, we use gradient descent for optimization.  

The adoption of higher D values usually yields more accurate results, although beyond a certain 

limit the increase in complexity and decrease in efficiency may not warrant the marginal 

improvement, if any, in prediction accuracy. D = 50 is adopted here as an optimal dimensionality 

for prediction runs. The method is highly efficient: a 50-dimensional model is trained on the 

entire DrugBank in approximately 2 seconds using a 2.00 GHz AMD Opteron processor. 

Moreover, the computing time to learn a PMF model scales linearly with the number of 

interactions, and as such, the method can be advantageously used for much larger datasets. 

4.2.3 Active Learning (AL) using PMF 

The AL strategy adopted in the present study is, in part, motivated by the success reported by 

Warmuth et al (Warmuth, Liao et al. 2003).  who demonstrated that hit maximization is a viable 

AL strategy applicable to predicting drug-target interactions. The AL strategy adopted here also 

prioritizes the discovery of unknown interactions. Our method differs in that we aim at capturing 

the interactions between all drugs and targets, as opposed to predicting activity against a single 

target.  
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The procedure is the following: We begin with the set of N drugs and M targets, and 

known associations. The purpose is to identify new associations. For each candidate interaction, 

say the possible interaction between di and tj, we compute the model’s estimate, (Eq 3). The dot 

product ui 
T
vj serves as a weight ij for the edge/connector between di and tj. Clearly, ij, or the 

likelihood of association between di and tj, is high when ui and vj have both large values of the 

same sign at the same dimension(s). For example, a relatively large weight may originate from 

the 2nd component of both ui and vj, which means that the predicted association is mainly due to 

latent variable 2. We evaluated the statistical weights ij(di, tj) for the N x M pairs of drug-

targets for two purposes: (i) benchmarking the methodology via an iterative AL scheme, and (ii) 

making de novo predictions. In the former case, the method is benchmarked by hiding 70% of 

known interactions and examining whether the top-ranking prediction is a ‘hit’, i.e., whether it 

corresponds to a known (but hidden) interaction. The outcome from this test is fed back to the 

model, to repeat the calculation for the next prediction. Therefore, the AL model is updated at 

each iteration using the newly acquired ‘hit’ or ‘miss’ data until a predetermined number (m) of 

predictions are made. The passive learner (PL) makes the m predictions simultaneously without 

updating its model.  

 

In the case of de novo predictions, all DrugBank data were used as input. De novo 

predictions also lend themselves to an AL scheme provided that the top-ranking prediction is 

experimentally tested and then the new hit or miss data are incorporated in the model to perform 

a new prediction, and so on, until the experimentation budget is exhausted. 
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4.3 PMF CLUSTERS DRUGS WITH THERAPEUTIC SIMILARITIES, 

IRRESPECTIVE OF THEIR CHEMICAL-STRUCTURAL SIMILARITIES  

To assess whether the LVs provide us with a pharmacologically meaningful metric, we examined 

the clustering of drugs in the D-dimensional space of the latent vectors. The clustering was 

performed for D = 30 - the value that gave the lowest Akaike information criterion I (Akaike 

1974), using as basis the drug-drug distance L1(di, dj) = k |uik  - ujk | where uik designates the kth 

component of ui, and the summation is performed over D components. 

 

Inasmuch as our method evaluates drugs based on their interaction profiles with targets, 

which in turn refer to specific therapeutic or phenotypic actions, the similarity of a pair of drugs 

should be high when their therapeutic effects are comparable and vice versa. Thus, the method 

will tend to cluster drugs that exhibit similar patterns of interactions (with target proteins), which 

we term as functionally similar drugs. 

 

The heat map in Figure 13 displays the resulting organization of drugs in 30 clusters 

(indicated by different colors and indices along the axes). The dark regions on the map indicate 

high functional similarity. The dark blocks along the diagonal show that most clusters include 

highly similar members, except for two (clusters 29 and 30), which apparently combine the 

outliers.  
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Given that (promiscuous) proteins present more than one site for ligand-binding, different 

functionalities may be modulated by chemical-structurally different drugs, depending on the 

Figure 13 . Comparison of pairwise similarities of drugs 

Comparison of pairwise similarities of drugs, based on their (a) therapeutic targets compiled in DrugBank and 

(b) 3D structure. Panel a displays the 30 clusters of drugs deduced from the PMF of 1,413 approved drugs and 

corresponding 1,050 targets compiled in DrugBank. By definition, drugs belonging to a given cluster share similar 

interaction patterns with respect to targets. Panel b displays their 3D similarities, with the drugs being ordered as in 

panel a. Dark regions indicate high similarity based on LVs (panel a) or 3D similarities (panel b). Comparison of the 

panels shows that close proximity in LV space (which indicates functional similarity) does not necessarily imply 3D-

structure similarity. LV distances were distributed in the range [0, 1]; with the distribution of values also skewed in 

different ways. To render the two sets comparable, we performed rank normalization on both the LV similarities and 

3D similarities. Selected boxes are enlarged in Figure 13 (white) and 4 (yellow). 
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binding site on the target (e.g. catalysis, substrate recognition, or allosteric signaling). 

Furthermore, a shared phenotype may arise from the targeting of different proteins along a given 

pathway. In order to make a better assessment of the properties of drugs grouped in those 

clusters, we examined their 3D structural similarities. High similarities would suggest that they 

bind similar epitopes, if not similar (or identical) structural domains or proteins.  If, on the 

contrary, they are structurally dissimilar, this might indicate a different site on the same protein, 

or a different target on the same pathway, or other indirect effect due to drug-target network 

connectivity. 

 

The extent of 3D structure similarity between pairs of drugs was computed using the OpenEye 

Scientific software (http://www.eyesopen.com/). 3D similarity was reported to be a better 

predictor than 2D methods for off-target interactions, and to perform equally well in on-target 

interactions (Yera, Cleves et al. 2011), although 3D methods may suffer from more noise due to 

the conformational flexibility of the small molecule. We generated for each drug all possible 

stereoisomers using OpenEye FLIPPER (Hawkins, Skillman et al. 2010), and up to 200 

conformers per stereoisomer using OpenEye OMEGA (Hawkins, Skillman et al. 2010). All 

combinations of conformers accessible to the examined pair of drugs were examined using 

OpenEye Shape (Swann, Brown et al. 2011) toolkit; and the best matching pair was adopted to 

assign a 3D similarity score. This computationally expensive task led to the heat map presented 

in panel b of Figure 13. The drugs (along the axes) are ordered as in panel a to enable visual 

comparison.  
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The comparison of Figure 13 shows that some clusters of functionally similar drugs (panel a) 

also exhibit some 3D similarities (panel b), whereas others display little structural similarity. We 

examined more closely the individual clusters to see if shared therapeutic functions were 

captured even when 3D similarities were absent. Figure 14 illustrates the results for cluster 14. 

This cluster essentially consists of anti-anxiety drugs, the majority of which are both functionally 

(panel b) and structurally (panel c) similar. However, the cluster also includes a structurally 

dissimilar drug, ethchlorvynol (panel a), which shares the same type of phenotypic action (as a 

sedative) as the majority of the cluster membership (mostly targeting GABA receptors). The 

present approach thus detects chemically or structurally distinctive drugs that share common 

activities, which would have been missed by methods based on ligand fingerprint similarities.  

 

Another interesting observation concerns the cross-correlations between different clusters (i.e. 

the off-diagonal regions of the heat maps). We note for example that cluster 11 also contains a 

set of sedatives. LVs are able to capture the commonality between the clusters 11 and 14 as may 

be seen by the strong signal (dark region) at the off-diagonal region enlarged in Figure 15b. The 

3D similarity, on the other hand, cannot recognize the functional similarity and potential 

interference/side effects between these drugs in these two clusters (Figure 15c). The LVs thus 

provide information on drug groups that potentially share pathways or exhibit similar activity 

patterns despite their distinct physicochemical properties. 
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Figure 14 Latent variables can capture therapeutic action similarities when 3D similarity metrics cannot. 

Closer examination of the similarities between the members of the cluster 14 in Figure 13 (enclosed in white boxes in Figure 13, 

enlarged in panels b and c here) shows that the cluster contains a series of anti-anxiety drugs. A few members of this cluster (indicated by 

orange boxes along the abscissa of panels b and c) are displayed in panel a, to illustrate their shared structural features, also indicated by the 

panel c that reflects their 3D similarities. The same cluster however contains ethchlorvynol, also used as a sedative, which would have been 

missed if we had used exclusively used 3D similarity to identify functionally similar drugs. 
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Figure 15 Strong cross-correlations between different clusters of drugs are consistent with their similar therapeutic 

functions 

Cluster 11, color-coded cyan, is essentially composed of hypnotics and sedatives. Cluster 14 (dark gray) contains anti-

anxiety drugs. The drugs in these two clusters are located very closely on the drug-target interaction network, as shown in panel a, 

consistent with their similar actions. The LV-derived heat maps capture the functional similarity between these two clusters (as 

indicated by strong signals, or the dark region, in panel b); the maps based on 3D similarity (panel c) do not. In panel a drugs are 

shown in blue, protein targets in red. Most drugs and targets are part of a single connected component. Data are retrieved from 

DrugBank. Cytoscape is used for visualization(Smoot, Ono et al. 2011). 
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4.4 BENCHMARKING COMPUTATIONS SUPPORT THE UTILITY OF THE 

METHOD FOR ANALYZING LARGE DATASETS 

To evaluate the performance of the method in comparison to previous work, we considered three 

important studies in this area, one recently published by Gonen (Gönen 2012) and two by 

Yamanishi et al. (Yamanishi, Araki et al. 2008, Yamanishi, Kotera et al. 2010). Gonen used a 

Kernel-based matrix factorization (KBMF) with chemical and genomic similarities to predict 

multiple targets. Yamanishi et al., on the other hand, integrated chemical, genomic and 

pharmacological data to map all drugs and targets to the same unified feature space where each 

protein-compound pair closer than a predefined threshold was predicted to interact. Our 

approach differs from both studies, in that PMF assumes an independent LV for each row and 

column with Gaussian priors; whereas KBMF employs LVs spanning all rows and columns with 

Gaussian process priors, and Yamanishi et al project drugs and targets into a pharmacological 

space based on the eigenvalue decomposition of the graph-based similarity matrix. 

The benchmarking procedure that we adopted is a five-fold cross-validation of drugs on four 

target classes: Enzymes, Ion channels, G-protein coupled receptors (GPCRs) and Nuclear 

Receptors. In order to achieve comparable results, we used the same protocol as that adopted 

earlier, i.e., we divided our dataset into five subsets, and each was used as a test set, and the 

others, as training sets. Due to the randomness involved in the selection of subsets, we repeated 

the cross-validation experiments 100 times with randomly selected subsets and evaluated the 

average AUC (area under the receiver operating curve) for each subset. The first four rows in 

Table 4 compare the results (columns 6-10) for the four classes, and the 5th row lists the average 

performances weighted by the size of the interaction space. Our method performs best when 

applied to large datasets (e.g. enzymes and ion channels); whereas Gonen’s performs best in the 
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case of GPCRs, and Yamanishi et al.(2010) exhibits the highest performance for nuclear 

receptors, where the present method yields a relatively low (0.642) AUC value.  Examination of 

the statistical significance of our results indicates that the mean AUC values obtained for all four 

sets are highly robust. Their covariance vary from 2% (Enzymes and Ion Channels) to 11% 

(Nuclear Receptors). Finally, the application of the same benchmarking protocol to DrugBank 

yielded an accuracy rate of 79.4 ± 0.01% (Table 4), supporting the utility of the method when 

applied to large datasets.  

Table 4 Properties of the space of proteins-drugs, and performance of present method in comparison 

to others  

 

 

(a)The last four columns present the comparison with Yamanishi’s and Gonen’s results for the same 

dataset. 

(b) weighted-average mean and covariances, evaluated using the number of interactions as weights 
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In principle, it might be intrinsically harder to make accurate predictions for larger 

datasets as the size of the potential interaction space N×M grows quadratically when the number 

of drugs and targets grow linearly, particularly if the number of known interactions is small. The 

occupancy of the N×M interaction matrix is only 1.5% in the Enzyme class, which could make it 

difficult to learn an informative model. The present PMF technique, however, successfully 

learned an informative model and handled the complexity of interactions in this space of 

interactions, apparently due to the availability of a sufficiently large (absolute) number of known 

interactions. 

 

Ion Channel-drug class has the second largest number of known interactions among the 

four. Although the size of interaction space is one order of magnitude smaller than Enzyme class, 

there are 776 known interactions leading to a percent occupancy of 5.37% of all possible ion 

channel-drug associations.  The success of our method in this case may be attributed to both the 

relatively large number of known interactions and the rich annotation of that class of 

interactions.  

 

The two other classes, GPCRs and nuclear receptors, are significantly smaller in terms of 

their interaction space and/or occupancy of that space. Nuclear receptors comprise only 27 drugs 

and 22 targets, and 44 interactions. A method that relies solely on connectivity, like ours, cannot 

presumably formulate an informative model when the set of ‘edges’ to construct the network 

connectivity matrix is incomplete. In those cases, the data that come from other sources, e.g. 

chemical similarity and genomic patterns amend this lack of information. Consequently, methods 

that incorporate such features (Yamanishi, Kotera et al. 2010, Gönen 2012) outperform ours.  
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To put the results into perspective, we indicated by a vertical dashed line in each panel 

the fraction of data (80%) used in previous studies (Yamanishi, Kotera et al. 2010, Gönen 

2012)for training purposes.  Consistent with the above findings, Ion Channels yield the best 

result: previous AUC values (Gönen 2012) (of 0.799; Table 4) are matched with about only 35% 

of the data. On the Enzyme group, we match the performance of Yamanishi et al. (Yamanishi, 

Kotera et al. 2010)(AUC of 0.845) with roughly 70% of the data used for training. GPCRs and 

Nuclear Receptors yield AUC values lower than those previously attained, irrespective of the 

fraction of hidden interactions.  

In summary, the method is particularly suitable for screening and inferring repurposable 

drugs or potential side effects from large datasets where computational assessment of structure 

similarity kernels become prohibitively expensive. In cases where the dataset of known 

interactions is too small, on the other hand, 2D or 3D similarity metrics provide more accurate 

assessments. 
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4.5 THE ABSOLUTE NUMBER OF KNOWN INTERACTIONS OVERRIDES THE 

SCARCITY OF THE DATA IN DETERMINING THE ACCURACY RATE OF PMF 

ACTIVE LEARNER 

As a more stringent test, 3,318 (70%) of the known 4,731 interactions in DrugBank were 

randomly hidden, reducing the average number of interactions per drug from 3.35 to 1. The 

resulting ‘incomplete’ interaction matrix was then used to predict the hidden interactions, one at 

a time (rank-ordered by statistical weights ij(di, tj)) as described in the Methods. The outcome 

was checked in a simulated experiment to assess whether the predicted interaction is a true 

positive (TP) or a false positive (FP). If the prediction is an existing, but hidden, interaction, the 

result is considered a TP (or hit), otherwise a FP (or miss). Then the model is updated in line 

with our AL scheme, and this loop is repeated until the completion of m = 1,000 predictions. At 

that point, the simulation is halted and the overall performance of the model, or the hit ratio, is 

evaluated. Note that this method gives us a lower bound for hit ratio because the predictions are 

labeled as hits only if they are annotated in DrugBank, although they can be true but not yet 

observed experimentally or annotated in DrugBank. 

  

The results are presented in Figure 16. The figure displays the number of hits as a 

function of the number of predictions, obtained with three approaches: active learning (dark blue 

curves), passive learning (dark red curves) and random (green). The approach is able to achieve, 

on average, 587 hits out of 1,000 predictions via AL, 407 hits, via PL; and the corresponding 

variances (indicated by the dashed curves) are 35 and 46, respectively. Compared to the random 

probability of 2.23 hits per 1,000 predictions, the AL result is a 263-fold improvement over 

random.  The improvement of AL over PL is 1.44 fold. The AL  improvement over random was  
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Figure 16 Ability of PMF to recapitulate hidden drug-target interactions.        

  The number of drug-target interactions per drug was reduced from 3.35 (average) to 1 by hiding 70% of known 

interactions, selected randomly. Simulations were repeated n = 96 times for each of the 1 < m < 1,000 predictions (abscissa) 

and the number of hits (correctly identified hidden interactions) is plotted for each run, along the ordinate. The dark blue 

and dark red solid curves refer to the average performance obtained by active learning and passive learning protocols, 

respectively, using D = 50,  = 3,  = 0.01, and u = 0.9 in the adopted PMF algorithm. Dashed curves show the 

corresponding variances (by one standard deviation) above and below the mean value. The green curves (practically 

overlapping with the abscissa) refer to  results from random predictions. The inset shows a close-up of the first 100 

predictions. AL reaches an accuracy rate (hit ratio) of 88.0 ± 4.7% and 58.7± 3.5 % in the respective cases of m = 100 and 

1,000 predictions.                                                            
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reported to be up to 3.19-fold in a previous SVM-based study for predicting the activity of 1,316 

drugs against a single target.38 The same study also reported 1.59-fold improvement between 

passive and active learners. Closer examination of the results from the top 100 predictions 

(enlarged in the inset) further shows that hit ratios of 88.0 ± 4.7% and 82.2 ± 6.4% are obtained 

by the respective AL and PL protocols.  

 

 

 

 

 

 

Figure 17 Improvement in prediction accuracy by active learning (AL) over random (panel a) and over passive 

learning (PL) (panel b), as a function of the latent space dimensionality 

Fold-improvement is based on hit ratios obtained at the end of 1,000 predictions, using same parameters as Figure 16. The AL 

performance levels off at about D = 50 in panel a. The last bar in each panel refers to the work of Warmuth et al. (2003). 
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The results are obtained with D = 50, which yields optimal results, as can be seen from  Figure 

17 display the dependence of the results on D, in support of the choice of D = 50. 

These results permit us to draw two conclusions. First, a hit ratio of 88% is attainable in 

the top 100 predictions (and 59% in top 1,000) upon adopting a PMF-based AL strategy for 

identifying hidden/unknown interactions in a sparse (0.32% occupancy) dataset of about 1.5 

million potential interactions. Second, the AL method outperforms random by two orders of 

magnitude and PL by a ratio of 1.5 approximately, in support of AL strategy for predicting new 

interactions. 
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4.6  DE NOVO PREDICTIONS OF DRUG-TARGET INTERACTIONS 

We used our method to predict new (potential) drug-target interactions after training our model 

on the latest available version of DrugBank (Sept 10, 2013) comprised of 5,041 interactions 

between 1,502 approved drugs and 1,138 targets. The highest confidence pairs obtained for 

twenty distinct drugs are presented in Table 5. 

Table 5 De novo predictions, rank-ordered based on confidence 

 

(a)Abbreviations: GABA: -aminobutyric-acid receptor; 5-HT: 5-hydroxytryptamine (or serotonin) receptor. NET: 

norepinephrine (or noradrenaline) transporter; ADRA1A: adrenoreceptor 1 A; DAT: dopamine transporter.  

(b)The cases listed as ‘indirect’ refer to interactions of the drugs with different subtypes of the identified target 

(c) orphenadrine inhibits norepinephrine reuptake thus potentiating the effect of norepinephrine There are several 

drugs acting as norepinephrine-dopamine reuptake inhibitors, and ophenadrine might exhibit same behavior. 

Drug  Target Support from previous experiments (ref)  

Ergotamine                    1A (5-HT1A
a
) direct(Tfelt-Hansen, Saxena et al. 2000)  

Amoxapine                     2A (5-HT2A) direct(Pälvimäki, Majasuo et al. 1996) 

Minaprine histamine receptor H1 - 

Trimipramine  2A adrenergic receptor           
Amitriptyline                     2C (5-HT2c)           
Tramadol                     2C (5-HT2c)           
Clozapine  D(1B) dopamine receptor           
Doxepin  D(1A) dopamine receptor           
Nicardipine histamine receptor H1 - 

Flunitrazepam  GABA
a             

Paliperidone                    7 (5-HT7) direct(Kast 2010) 

Iloperidone  2B adrenergic receptor           
Propericiazine 1A adrenergic receptor (ADRA1A

a
)           

Asenapine  1B adrenergic receptor           
Verapamil  calmodulin direct (Petersen and Mørk 1996) 

Meperidine Na
a
 channel 10, type  direct (Wagner, Eaton et al. 1999) 

Cinnarizine calmodulin direct(ZIMMER and HOFMANN 1987) 

Paroxetine (paxil) histamine receptor H1 direct(Fava 1999) 

Orphenadrine DAT
a
           

Citalopram Na
a
-dependent  NET

a
 indirect(Petersen and Mørk 1996) 
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The pairs therein were observed to lie frequently among the top-ranking 10 pairs (in the space of 

N × M = 1.7x10
6
 potential interactions), deduced from 10

4
 independent runs initiated with 

different random numbers.   

 

We note that the list of de novo predictions in Table 5 is dominated by drugs used for 

neurological or psychiatric disorders, consistent with the known pharmacological promiscuity of 

this of drugs. The last column 2 lists the experimental support from the literature, if any, for the 

possible interaction of the drug-target pair in each row.  Among pairs supported by previous 

experiments, we note ergotamine–serotonin receptor 1A (5HT1A) (Tfelt-Hansen, Saxena et al. 

2000), amoxapine–5-HT2A (Pälvimäki, Majasuo et al. 1996),  verapamil–calmodulin (Epstein, 

Fiss et al. 1982), paliperidone–5-HTc (Kast 2010), meperidine–sodium channels (Wagner, Eaton 

et al. 1999), cinnarizine–calmodulin (ZIMMER and HOFMANN 1987). We also note that 

chronic treatment with paroxetine has been recently reported to increase the mRNA levels of 

histamine receptor H1, indicating an association between paroxetine and Histamine receptor H1 

(Rahmadi, Narita et al. 2011). Although paroxetine is a potent serotonin reuptake inhibitor, its 

weight gain side effect has been attributed to its medication action on histamine receptors(Fava 

1999). 

 

Many others (indicated as ‘indirect’) are interactions known to occur either with subtypes 

of the listed targets or proteins implicated in the same phenotype (e.g., citalopram induces 

norepinephrine receptor hypoactivity (Petersen and Mørk 1996), which may relate to 
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norepinephrine transport by NET). Yet, the validity of these predictions need to be established by 

experiments. 

4.7 DISCUSSION 

Over the last couple of years, there have been a number of computational studies performed to 

identify targets of existing drugs and drug candidates other than those originally known/proposed 

to be targeted.  A pioneering study is that of Roth, Shoichet and coworkers (Keiser, Roth et al. 

2007, Keiser, Setola et al. 2009) based on compound chemical similarities. Dudley et al focused 

on inverse correlations between gene expression profiles in the presence of a drug and in a 

disease state (Dudley, Sirota et al. 2011). Yamanishi and his colleagues represented drugs and 

targets in an integrated ‘pharmacological space’ (Yamanishi, Araki et al. 2008, Yamanishi, 

Kotera et al. 2010).Gonen used a KBMF method where chemical and genomic similarities were 

integrated (Gönen 2012).We proposed a PMF-based AL methodology that can be 

advantageously used for large datasets.   

The applicability of the method to large datasets is worth further attention, given that we 

will increasingly have access to bigger data (e.g. STITCH Database (Kuhn, Szklarczyk et al. 

2012)), which will be exploited for repurposable drug identification. The software developed 

here, made accessible in http://www.csb.pitt.edu/Faculty/bahar/files/, is readily scalable. For 

very large datasets, which typically have more known interactions, the PMF is able to construct a 

better model using the plethora of available data; whereas when the number of known 

interactions is limited, the use of chemical and genomic kernels allows KBMF to outperform 

PMF. The application of KBMF to large datasets may, however, become challenging, For 
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example, STITCH contains on the order of 106 proteins and 105 compounds, implying that 1012 

sequence and 1010 chemical similarity comparisons are needed to make predictions.  However, 

the PMF method is independent of chemical, structural or other similarity metrics, and its 

computation time scales linearly with the number of known interactions; and it proves to perform 

well on large datasets. The datasets reporting drug-target interactions are constantly improving in 

quality and quantity, and therefore expected to give even better results when analyzed by an 

efficient tool. Finally, the extension of the method to analyzing big data (with millions of nodes) 

is foreseeable in the near future. The recently introduced GraphChi tool (Kyrola, Blelloch et al. 

2012) can be used for optimized and parallelized model learning for further performance 

improvements. 

The fact that the PMF is independent of 2D/3D shape comparison methods commonly 

employed in drug-target pair inferences implies that the derived LVs capture similarities based 

on the interaction patterns of drugs at the cellular level, even if their molecular structures are 

dissimilar (see Figure 13 and Figure 14). As such, the method may be advantageously used for 

lead hopping, thus complementing those (e.g. SVM classification algorithms) used in 

conjunction with 2D or 3D pharmacophoric fingerprints (see Saeh et al. (Saeh, Lyne et al. 

2005)). Inasmuch as the currently proposed method does not require structural data for proteins 

but knowledge of drug-target interactions, it can be advantageously applied to membrane 

proteins (major drug targets) for which structural data still remain sparse.  It can also be used to 

make predictions across major drug or target classification boundaries. One implication is that 

the de novo predictions are not restricted to major drug or target classification boundaries.  

A major utility of the developed tool is the ability to deliver testable hypotheses with 

regard to repurposable drugs, thus significantly reducing the search space for identifying potent 
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applications of existing drugs (that proved to meet ADMET requirements). The number of 

experiments that can be efficiently conducted is usually limited, e.g. of the order of 102 if not 

101 for high-confidence assays as opposed to the complete space of ~1.5 million combinations 

for the dataset used in this study. The fact that the top-ranking predictions exhibit a hit ratio of 

59% (for the top 1,000 predictions; or 88% for top 100 predictions) suggest that de novo 

predictions made by the presently introduced method of approach applied to increasingly large 

datasets are likely to provide useful guidance for experimentally testing, streamlining or 

prioritizing existing or investigational drugs or new compounds.  Another important by-product 

is the probabilistic assessments on potential side effects, a topic that will become increasingly 

important with advances in personalized medicine.   
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5.0  CONCLUSION AND FUTURE WORK 

In this thesis, we have performed analysis of several neuron-signaling membrane proteins: LeuT 

and iGluR family, using both computational molecular and systems-level approaches: ENM 

analysis, all-atom MD simulations based druggability assessment as well as probabilistic matrix 

factorization (PMF) in analysis of drug-target interaction network. 

Using NMA-ENM, we gained a better understanding of the conformation sampling 

ability of ANM in LeuT. The advantage of this approach is that it can help us to extend the 

conformational space accessible to LeuT based on a single structure among the available LeuT 

crystal structures and it is fast without depending on the availability of numerous representative 

structures (that are needed for PCA analysis, for instance.) The consistency between ENM-

predicted motion and the dominate motion computed by PCA of experimental structures enables 

us to use ENM to decipher a pathway of communication via residues identified from the intrinsic 

topology of the protein. The most cooperative motion identified by the native topology network 

models is highly correlated with the potential structural changes in different forms.  

The flexibility of proteins and ligands has been widely recognized important for 

identifying binding sites in proteins. MD simulation of proteins in the presence of small organic 

molecules and water, which takes entropy and enthalpy into account, enables us to capture those 

allosteric binding sites which is hard to be captured by experimental approaches due to protein 

flexibility.  Using this druggability assessment method, we described a landscape of binding sites 
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for  iGluR NTDs monomers and dimers. Particularly, we have identified binding sites at the UL 

and LL interfaces of GluA3 NTD dimer and GluN1-GluN2B NMDA heterodimer. PMs have 

been built for those potential binding sites captured by probe clusters in the previous GluA3 

NTD dimers and GluN1-GluN2B NTD dimers druggability simulation.  

Based on those pharmocophore models, virtual screenings have been done to find 

potential hit compounds for NMDAR (GluN1-GluN2B) and AMAPR (GluA3). As shown in 

Table 6, no literature evidence have been found to offer hint about whether the predicted drugs 

bind to our targets.  However, for Marimastat, which is predicted by NMDAR PM, as a top-

ranking drug predicted by PMF for AMPAR. Also, Arbutamine which targets -adrenergic 

receptors is captured by both NMDAR and AMPAR PMs, which might suggest it is likely to 

bind the iGluRs.  

Table 6 Drugs predicted using pharmacophore models 

Targets Position of the 

binding sites 

Drugs Supporti

ng evidence 

NMDAR(GluN1-GluN2B) Site 1 (UL interface) Arbutamine - 

Site 2(LL interface) Adenosine - 

Site 3(helices and 

loops interface) 

Marimastat Indirect 

(Captured by 

PMF) 

AMPAR(GluA3) UL interface Carteolol - 

LL interface  Arbutamine - 

 

 

De novo prediction of the above two targets via PMF has been performed as well. Table 

7 lists the top-ranking 10 drugs based on confidence levels. For NMDAR (GluN1), among the 

top 10 drugs, 3 have direct literature support for their binding to the target (highlighted in red) 

and 6 hae indirect support either binding to subtypes of GluN1 or reveal some binding profiles 

indicating it might bind to the target from previous experiments. Also, among those 10 drugs, all, 
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except Felbamate andMemantine, are antagonists of sodium-dependent noradrenaline transporter 

and sodium-dependent serotonin transporter. Therefore, they have been employed as 

antidepressant drugs or neuropathic pain analgesia. Chlorpheniramine and Atomoxetine can 

target dopamine transporter as well. 

 

Table 7 Top-ranking 10 drugs predicted by PMF for NMDA GluN1 and GluN2B subunits 

Target Top10 predicted 

Drugs 

Supporting evidence from DrugBank or 

Literature 

NMDAR    

(GluN1) 
Tramadol Indirecta (GluN3A) 

 Tapentadol Indirect(Schäfer 2009, Vadivelu, Mitra et al. 

2010) 

 Chlorpheniramine Indirect(Díaz-Trelles, Novelli et al. 2000) 

 Felbamate Indirecta(GluN2B, GluN2A GluN3A) 

 Atomoxetine Direct(Ludolph, Udvardi et al. 2010) 

 Levomilnacipran Direct(Shuto, Takada et al. 1995) 

 Desvenlafaxine Indirect(Raabe and Gentile 2008) 

 Cocaine - 

 Dextromethorphan Indirecta(GluN3A) 

 Memantine Direct(Kotermanski, Wood et al. 2009) 

 

NMDAR 

(GluN2B) 

Tramadol Indirecta (GluN3A) 

 Orphenadrine Indirecta(GluN1, GluN2D, GluN3A, GluN3B) 

 Ketamine Indirect (GluN3A) 

 Amantadine Indirecta(GluN3A) 

 Mirtazapine Direct(Bienkowski, Krzascik et al. 2001) 

 Halothane Indirecta (GluN3A, GluN3B, GluN2A) 

 Amisulpride - 

 Thiothixene - 

 Dopamine - 

 Sulpride - 

AMPAR 

(GluA3 subunit)

  

Marimastat Indirect(Captured by NMDA PM) 

 Zonisamide Indirect(Sarid-Segal, Knapp et al. 2009) 

 Dalfampridine - 

 Miconazole - 

 Halothane Indirecta (GluN3A, GluN3B, GluN2A) 

 Antithymocyte globulin - 

 Bosutinib - 
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 Amiloride - 

 L-Carnitine Indirect(Castorina, Maria Ambrosini et al. 

1993, Zanelli, Solenski et al. 2005) 

 Drotrecogin alfa - 

Note: a.The cases listed as ‘indirect’ refer to interactions of the drugs with different subtypes of the 

identified target from DrugBank. 

 

 For NMDAR (GluN2B), among the top 10 drugs, only the first 6 drugs have either direct 

or indirect supporting evidence. Tramadol ranks first in both GluN1 and GluN2B, and it has been 

found to directly interact with GluN3A. The top 10 drugs for AMPAR (GluA3) have much less 

supporting evidence and most of the predicted drugs are ion channel blockers. This is due to 

those AMPARs, especially GluA3, which have much fewer known existing drugs binding to 

them compared to NMDARs. And in the dataset we used for de novo prediction, there is only 

one known interaction which is between GluA3 and lithium. Lack of known interactions affects 

PMF performance as discussed in chapter4. Interestingly, Marimastat ranking first among PMF 

de novo predictions made for AMPAR, is also captured by NMDAR PM based on druggability 

simulations.  

 In summary, the results from the application of PMF and druggability simulations based 

PM may be advantageously combined to obtain consensus hit compounds. PMF outperforms the 

latter in terms of new drug-target associations prediction. However, there is still overlap between 

those two models like drug Marimastat. The PMF method relies on the existing known 

interaction information for that specific target.  

Thus, in the presence of knowledge in ligand-binding profile, PMF emerges as a 

powerful approach for predicting repurposable drugs. On the other hand, for exploring potential 

binding site on those targets, especially when there are fewer data on drugs, druggability 

simulations provides valuable testable hypotheses. 
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APPENDIX A 

DETAILS OF DRUGGABILITY SIMULATION 
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