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Angiogenesis is a process of vessel outgrowth from a pre-existing capillary that is implicated in 

many physiological and pathological conditions. Profilin-1 (Pfn1), a ubiquitously expressed 

actin-binding protein, has been previously shown to be up-regulated in vascular endothelial cells 

during capillary morphogenesis and required for endothelial cell migration, morphogenesis and 

invasion in vitro. In the first part of this study, we demonstrated that depletion of Pfn1 interferes 

with sprouting angiogenesis in vitro and ex vivo. In the second part, we further explored how 

Pfn1 might be biochemically regulated. Our studies suggested that a significant fraction of Pfn1 

could exist in a number of phosphorylated states in cells. We showed that Pfn1 can be 

phosphorylated by Protein Kinase A (PKA) in vitro and in a PKA-dependent manner in vivo. By 

mass-spectrometry, we identified several potential PKA phosphorylation sites of Pfn1, one of 

which, T89, at least also appeared to be a bona fide modification site of Pfn1 in vivo. We 

performed biochemical and in silico analyses to determine the potential consequence of this 

phosphorylation on the properties of Pfn1.  Finally, we showed that activating the PKA pathway 

affects ligand binding of Pfn1 in cells and negatively impacts both endothelial cell migration and 

sprouting angiogenesis. Collectively, these observations implicate a possible role for Pfn1 post-

translational modification in the PKA-mediated regulation of sprouting angiogenesis. 
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1.0  INTRODUCTION 

1.1 THE HUMAN PROFILINS 

There are four known Profilin (Pfn) genes in the human genome – namely, PFN1, PFN2, PFN3, 

and PFN4 – that exhibit very distinct expression patterns [2-5]. In general, Pfns have been well-

conserved through evolution and at least one Pfn gene has been found in nearly every eukaryotic 

cell type, from yeast and amoebae to plants and animals [6]. Pfn1, the only ubiquitously-

expressed member and the focus of this study, is expressed throughout embryonic development 

and in every cell type except skeletal muscle upon adulthood [7, 8]. Pfn2a, the more common 

splice variant of Pfn2, is expressed most abundantly in the brain and certain phases of mouse 

embryogenesis although its mRNA is found in a variety of tissues. Expression of the Pfn2b 

variant is relatively limited [3, 9, 10]. Pfn3 and Pfn4 are exclusively expressed in the testes in 

spermatids and during spermatogenesis respectively [4, 5]. The sequence homologies of these 

Pfns and even comparable genes in other species are low, but in vivo function is relatively 

consistent. However, homozygous knockout of the PFN1 gene in mice resulted in embryonic 

lethality at the two-cell stage due to deficiencies in cytokinesis that could not be compensated by 

the more weakly expressed Pfn2a, highlighting its unique importance in cell survival and 

division [6, 7]. Because Pfn1 was originally isolated as a monomeric, globular (G)-actin 

sequestration factor, most studies, including the work presented hereafter, have focused on its 
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impact on the actin cytoskeleton [2, 11]. To put these studies in perspective, it is necessary to 

introduce them in the context of the understood mechanisms of actin polymerization and cell 

motility. 

1.1.1 Proflin-1 Structure and Ligand Binding 

Pfn1 has been found to complex with G-actin, poly-L-proline (polyproline) motif-bearing ligands, 

and membrane phosphoinositides. It is through these interactions that Pfn1 is thought to impact 

the actin cytoskeleton and cell migration [2, 12, 13]. The specific residues on Pfn1 involved in its 

interaction with these binding partners are well-established and have been confirmed through a 

series of mutagenesis studies [14-16]. At the same time, the three-dimensional (3D) structure of 

human Pfn1 has been solved through the use of both nuclear magnetic resonance (NMR) 

spectrometry and X-ray diffraction [1]. In general, Pfn1 folds into a single, compact globular 

domain that is bisected by an anti-parallel β-sheet (Figure 1) [17]. On one side both the amino 

(N)-terminal and carboxy (C)-terminal α-helices align roughly parallel to one another, while the 

other side is comprised of three smaller helices. A complex of Pfn1, G-actin, and polyproline 

peptide was also analyzed using X-ray diffraction by several groups [18, 19]. The polyproline 

peptide bound to Pfn1 between the N- and C-terminal helices and G-actin bound to Pfn1 on the 

opposite side showing specifically how Pfn1 could simultaneously interact with these two 

ligands. To date, no 3D structural analysis has been performed regarding the interaction of Pfn1 

and phosphoinositides, but mutagenesis suggests the region of interaction overlaps both its G-

actin and polyproline binding sites [15, 16]. 
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Figure 1. The Molecular Structure of Human Profilin-1. The molecular structure of human Pfn1 as determined by 

multidimensional heteronuclear NMR spectroscopy [1]. The cartoon depicts both α-helices (red) and an anti-parallel 

β-sheet (yellow). The N-terminal and C-terminal α-helices are displayed at the top. The cartoon was generated using 

OpenAstex 3D Viewer. 

1.2 PROFILIN-1-G-ACTIN INTERACTION: IMPACT ON THE DYNAMICS OF 

THE ACTIN CYTOSKELETON 

Pfn1 was originally discovered in a complex with G-actin from echinoderm sperm that was 

termed profilactin (short for “profilamentous” or unpolymerized actin) [11]. As such, Pfn1 was 

unknowingly one of the first actin-binding proteins isolated [2]. Our understanding of the 

specific effect of Pfn1 on the actin cytoskeleton has evolved over time through numerous 

experiments and is still somewhat of a controversial subject. Though Pfn1 has several known 
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binding partners, the impact of its interaction with G-actin on the actin cytoskeleton has by far 

been the most thoroughly studied. To understand the context in which the role of the Pfn1-G-

actin interaction, and Pfn1 in general, is currently defined, the model of actin polymerization 

must first be introduced. 

1.2.1 Actin Polymerization 

Purified G-actin that has been extracted from cells will spontaneously polymerize in solutions 

containing salt [20]. Under these conditions it was determined that, kinetically, the self-assembly 

can be segregated into three main phases: nucleation, elongation, and steady state. 

Initially, unstable trimers of actin molecules will slowly form and act as nuclei from 

which filaments can grow [21-23]. Indeed, spiking a polymerization-competent solution with 

increasing concentrations of cross-linked actin nuclei significantly and proportionally reduced 

the time needed to reach steady state without affecting final filament length [24]. This implicates 

nucleation as the major rate-limiting step in spontaneous actin polymerization. 

Filaments will then elongate bi-directionally [25]. There are two mechanisms by which 

we understand an actin filament can grow, though they are not mutually exclusive. The first 

mechanism is called exchange diffusion [26, 27]. In cells, G-actin is found almost exclusively 

bound to adenosine-5’-triphosphate (ATP) while filaments are largely composed of adenosine-

5’-diphosphate (ADP)-bound actin monomers. As a result, it was originally thought that a 

hydrolysis reaction accompanied filament incorporation; however, further study revealed a lag 

between incorporation and conversion to ADP [26, 28, 29]. Radioactive labeling permitted the 

establishment of both ATP-bound and phosphate-bound ADP (ADP-Pi)-bound filament 

monomer intermediates upon ATP-G-actin incorporation into a growing filament [28]. Exchange 
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diffusion is a manner of growth where ATP-G-actin associates at either end of the filament and 

ATP-G-actin, ADP-Pi-bound G-actin (ADP-Pi-G-actin), and ADP-bound G-actin (ADP-G-actin) 

dissociate from the same end. Although ADP-Pi-G-actin and ADP-G-actin have begun to or have 

undergone nucleotide hydrolysis, once dissociated they are capable of nucleotide exchange [30]. 

This newly replenished ATP-G-actin, or previously established ATP-G-actin, can then be 

recycled back to the same end from which it dissociated. 

Monomer incorporation would then be a function of the kinetic on- and off-rates for each 

nucleotide state. ATP-G-actin is generally readily incorporated where the conversion to an ADP-

Pi-bound subunit is very fast. The completion of the hydrolysis reaction, resulting in an ADP-

bound subunit, is relatively slow. ADP-bound filament monomers incorporated in this way are 

more stable than their ATP-bound counterparts and lack the capacity to regenerate ATP [30, 31]. 

In a condition in which both ends of the growing actin filament exhibited equal kinetic behavior, 

net polymerization or depolymerization in both directions would be equal; however, this is not 

the case. Hydrolysis of ATP-G-actin was observed to occur primarily on one end of the filament, 

called the barbed (or (+)) end [32]. Because hydrolysis of these subunits is both random and fast, 

exchange diffusion would suggest that a greater concentration of ATP-bound filament monomers 

are found at the barbed end. This phenomenon has been verified kinetically where the on-rate of 

ATP-G-actin at the barbed end was approximately 10-fold higher than that at the pointed (or (-)) 

end while off-rates were comparable [33, 34]. The critical concentrations of the filament ends – 

the concentrations of G-actin that are at equilibrium with either the barbed end (ACB) or the 

pointed end (ACP) respectively – are both functions of these kinetic values and are often used as 

characteristic quantities when defining actin filament growth. Due to the aforementioned 

differences in reaction kinetics, it is not surprising to find that ACB and ACP differ by 12-fold [35]. 
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A concentration of G-actin above either ACB or ACP results in net association and growth at the 

respective end while lower G-actin concentrations result in net dissociation. Together, this means 

that if the concentration of available G-actin is maintained between ACB and ACP, polymerization 

will occur quickly at the barbed end while depolymerization will occur slowly at the pointed end. 

These observations led to defining the other mechanism of filament growth, 

‘treadmilling’ [26]. Though similar to exchange diffusion, in this case dissociated monomers are 

recycled exclusively from the pointed end to the barbed end rather than returning to the end from 

which they originally dissociated. Upon re-association at the barbed end, monomers move along 

the filament, undergoing ATP hydrolysis along the way. Confirmation of this in living cells came 

from Fluorescence Recovery After Photobleaching (FRAP) assays using fluorescent G-actin 

where recovery began at the membrane and progressed toward the cytoplasm [36]. Exchange 

diffusion and treadmilling are not mutually exclusive pathways and, in fact, both will occur 

simultaneously during filament elongation in cells. 

Upon reaching steady state, when filament length no longer changes over time, the 

concentration of unpolymerized, unbound G-actin is typically referred to as the critical 

concentration (AC). Based on biochemical analyses, the concentration of free, ATP-G-actin in 

cells is maintained at a value that kinetically yields no net growth or loss [37]. Additionally, 

polymerization as a function of only ATP-G-actin and filamentous (F)-actin results in 

treadmilling, or turnover, rates far slower than those observed in vivo [38]. Likewise, steady state 

is never reached in vivo as filament growth and destruction must be carefully and quickly 

regulated to promote actin-driven processes. As a result, the generation of actin filaments in cells 

likely involves co-factors and actin-binding proteins that alter critical concentration values. The 

rate of treadmilling is proportional to the difference between ACB and ACP, therefore any factor 
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that alters these values will impact filament turnover. Similarly, altering AC could also play a 

role in filament turnover and length. Incidentally, critical concentration values can be influenced 

by several factors, most notably the association of G-actin with either ADP or ATP in its 

nucleotide binding site and the presence of certain actin-binding proteins. 

1.2.2 Factors that Affect Critical Concentrations: Nucleotide Interaction 

Although filament monomers are subjected to irreversible nucleotide hydrolysis, once 

dissociated they are capable of undergoing nucleotide exchange [30]. This cycle should provide 

the necessary supply of ATP-G-actin for re-incorporation at the barbed end, but it is theoretically 

possible to generate F-actin from pools of ADP-G-actin [33]. In this case, all three characteristic 

critical concentration values increased several-fold while the difference between ACB and ACP 

diminished meaning ADP-G-actin is less likely to be incorporated and treadmilling slows, but 

filaments are still present. It also suggests that nucleotide hydrolysis alone does not account for 

the marked difference in filament end kinetics and the innate structure of G-actin monomers can 

sufficiently yield polar filaments, though the difference is significantly less dramatic. Whether 

this is a physiologically relevant means of filament generation remains to be seen. 

1.2.3 Factors that Affect Critical Concentrations: Profilin-1 

Initial in vitro actin filament polymerization studies characterized Pfn1 as a G-actin-

sequestration molecule that inhibited actin polymerization [39-41]. These conclusions were 

drawn from the fact that the presence of Pfn1 resulted in shorter filaments at steady state. Pure 

sequestration factors would reduce the pool of polymerization-competent G-actin while having 
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no impact on filament end dynamics, thus yielding shorter filaments. By the law of mass action, 

AC would be independent of the presence of sequestration molecules; however, Pfn1 results in a 

well-documented reduction to AC. Therefore, sequestration must be an incomplete explanation of 

Pfn1’s impact of actin polymerization. 

Pfn1 can also catalyze the nucleotide exchange of G-actin [42]. This would increase the 

ratio of ATP:ADP-G-actin and, because ATP-G-actin has a lower AC than ADP-G-actin, the net 

result would be a pool of G-actin with an overall lower AC. This catalytic capacity, however, 

does not likely contribute because nucleotide exchange is not rate-limiting in the absence of Pfn1 

and plant Pfns that lack this capability reduce AC as expected [43, 44]. 

Further analysis of Pfn1’s role in actin polymerization revealed that the Pfn1-G-actin 

complex could interact with the barbed end and, following Pfn1 dissociation, the actin monomer 

incorporated into the filament [45-49]. This was proven to be the case for both ATP-G-actin and 

ADP-G-actin; however, Pfn1 fails to reduce AC in pools of ADP-G-actin without the presence of 

ATP [50-52]. Therefore, the capacity of the Pfn1-G-actin complex to add to the barbed end alone 

does not sufficiently detail the reason for Pfn1’s overall reduction of AC, and the cause likely 

involves the hydrolysis of the G-actin-conjugated ATP. 

In the presence of only ATP-G-actin, filaments grow mainly at the barbed end such that 

ATP-G-actin is incorporated and then converted to an ADP-bound monomer following a lag 

period. The presence of Pfn1 introduces a new population of ATP-G-actin that interacts with the 

barbed end with an association rate constant that is nearly indistinguishable from ATP-G-actin 

alone [47, 52]. The subsequent requirement of Pfn1 dissociation from its bound actin monomer 

to promote filament incorporation has been found to be mechanistically linked to ATP hydrolysis 

[48, 53]. Both ATP-G-actin and Pfn1-bound ATP-G-actin participate in filament growth in the 
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presence of Pfn1, but if the free energy change differed, one pathway would be favored. This 

energy imbalance is thought to be the cause of the observed reduction in AC as Pfn1-mediated 

filament growth is slightly more energetically favorable. To this effect, two theories have been 

developed to explain the mechanistic link between ATP hydrolysis and Pfn1 dissociation. 

The first and probably most widely-accepted theory involves the direct coupling of Pfn1-

driven barbed end elongation to ATP hydrolysis [50]. This theory largely comes from the fact 

that Pfn1 displays a dramatically lower binding affinity for ADP-G-actin than ATP-G-actin [50, 

54]. In this case, a Pfn1-ATP-G-actin complex will interact with the barbed end where it will 

remain until ATP hydrolysis results in Pfn1 release due to reduced affinity. This is supported by 

the fact that barbed end growth in the presence of high concentrations of Pfn1-ATP-G-actin was 

limited by the rate of ATP hydrolysis [51, 54]. 

The more recent theory involves an indirect coupling pathway [53]. In this case, the ATP 

hydrolysis of a specific monomer is not a requirement for Pfn1 dissociation. This theory relies on 

exchange diffusion as the mechanism of filament growth. In general, Pfn1 can increase the rate 

of exchange diffusion by acting as pump that concentrates ATP-G-actin at the barbed end. This 

arises from the fact that Pfn1-bound ATP-G-actin can only be incorporated at the barbed end as 

it can’t interact with the pointed end [47]. Pfn1 adds monomer in the same fashion as before, but 

the increased ATP-G-actin presence, incorporation, and hydrolysis leads to higher energy 

filaments that can provide the energy for dissociation. This mechanism is therefore Pfn1-

dependent, but does not require Pfn1 dissociation to be directly coupled to a specific hydrolysis 

event. Many aspects of this theory are still being developed as it is still in its infancy. It is 

important to note, though, that thermodynamic analyses supported the legitimacy of both models 

with regard to Pfn1-mediated reduction of AC [44]. 
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In addition, in agreement with the same thermodynamic study, Pfn1 is thought to 

decrease ACB as a result of the slightly energetically favorable incorporation of Pfn1-bound ATP-

G-actin compared to that of unbound ATP-G-actin. This would increase the difference between 

ACB and ACP leading to greater turnover. In fact, in vitro F-actin polymerization experiments 

have verified Pfn1, while causing filament length to be relatively shorter at steady state, does 

indeed increase the rate of turnover [43]. Both of these effects are in line with Pfn1 decreasing 

AC and ACB. 

1.2.4 Profilin-1 Works in Tandem with Other Factors to Promote Elongation and 

Turnover 

Besides Pfn1, a number of other factors can impact critical concentration values. These proteins 

have a synergistic effect when combined with Pfn1 in solution to either further enhance turnover 

or elongation. Though there are many actin-binding proteins, those that have been thoroughly 

studied in combination with Pfn1 include Actin Depolymerizing Factor (ADF)/cofilin-1, 

Thymosin-β4, and Capping Protein (Actin Filament) Muscle Z-Line (CapZ). 

ADF/cofilin-1 (cofilin), as its name would suggest, induces the rapid depolymerization of 

F-actin in vitro [55]. Much like Pfn1, the exact activity of cofilin in actin polymerization is 

controversial with its role constantly evolving with new findings. Cofilin preferentially binds 

both ADP-G-actin and ADP-bound filament monomers compared to their ATP-bound 

counterparts [56]. This interaction allows it to play a role in the kinetics of filament growth in an 

end-specific manner, much like Pfn1. In general, it is thought cofilin interacts with ADP-bound 

filament monomers at the pointed end and induces their dissociation. This characteristic alone 

would dramatically increase ACP, and although AC is also increased, the difference between ACB 
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and ACP would be such that the rate of treadmilling would increase. Though cofilin has more 

recently been shown to participate in filament severing at low concentrations and filament 

stabilization at higher concentrations, filament disassembly is likely its primary role at 

physiological concentrations [57]. Cofilin, then, primarily acts to increase ACP in cells. Though 

not necessarily always additive, when combined with the capacity for Pfn1 to reduce both AC 

and ACB, cofilin and Pfn1 work synergistically to increase filament turnover to rates that 

approach those observed in cells [58]. 

Actin sequestration molecules play an important role in the ability of cells to rapidly 

produce filaments. The concentration of G-actin in resting cells is between 600- and 1200-fold 

higher than AC [59, 60]. A large portion of this, then, would need to be made polymerization-

incompetent to prevent spontaneous filament assembly. While there are conditions under which 

Pfn1 might act as a sequestration factor, Pfn1-associated G-actin levels cannot account for the 

observed neo-F-actin content in stimulated cells [61-63]. Other G-actin-sequestering molecules, 

such as Thymosin-β4, contribute to a greater extent [42, 64]. Consequently, the total G-actin pool 

sequestered by Thymosin-β4 is enough to describe the increase in F-actin content in stimulated 

platelets [65]. Though intracellular concentrations of this protein widely vary depending on the 

cell type, it is generally found in much larger quantities than Pfn1 [66]. G-actin bound to 

Thymosin-β4 cannot participate in either nucleation or elongation. Though pure sequestration 

factors would have no effect on AC, Thymosin-β4 lowers AC in a concentration-dependent 

fashion [67]. This suggests behavior that affects the energetics of actin polymerization that has 

not been explored. Though not obvious from their individual effects on the characteristic critical 

concentration values, Thymosin-β4 and Pfn1 can work synergistically to increase turnover. 

Mechanistically, it is thought Thymosin-β4 further decreases AC by creating a pool of G-actin 
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from which Pfn1, now at a higher concentration relative to polymerization-competent G-actin, 

can continuously draw [50]. Kinetically this is a far more complicated case that may or may not 

involve ternary complexes. In general, however, by combining Thymosin-β4 and Pfn1 

polymerization rates of F-actin approached the membrane velocity of fish keratocytes [47, 50, 

68]. 

CapZ is the most abundant barbed end capping protein in human cells [38]. Though there 

are pointed end capping proteins, such as tropomodulin, the specific relevance of pointed end 

polymerization is not known. Therefore the general term ‘capping proteins’ typically refers 

exclusively to barbed end capping proteins and shall so be here. In terms of actin polymerization, 

capping proteins have a number of functions, not the least of which is there propensity to 

associate with the barbed end, preventing elongation. They have also been shown to be involved 

in nucleation and regulating Z-disk content in muscle cells [69]. With regard to their capacity to 

regulate barbed end growth, the presence of capping proteins increases AC in a concentration-

dependent manner [70, 71]. While this should theoretically slow overall turnover and result in 

shorter filaments, the side effect would be a dramatic increase in the elongation rate of uncapped 

filaments. This phenomenon is enhanced by the presence of Pfn1 acting to lower AC [72]. Here 

the synergism is limited to enhancing the turnover of select filaments; however, the 

polymerization rates of even those uncapped filaments do not compare to those found in cells 

[71]. This, however, becomes an interesting mechanism by which cells can regulate the growth 

of specific filaments. 

Pfn1 is generally considered a promoter of actin polymerization, but the current 

understanding of its capacity in this role requires that it bind G-actin. As of yet, there is no model 

of a G-actin-independent means by which Pfn1 can promote actin polymerization. Given this, 
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however, less than 20% of triton-soluble Pfn1 was found in complex with G-actin among several 

tested mammalian cell lines [73]. Interestingly, microinjection of actin nuclei and G-actin into 

quiescent epithelial cells resulted in filaments composed exclusively of exogenous actin [74, 75]. 

This suggests cells do not maintain large quantities of polymerization-competent Pfn1-G-actin 

complex. There are likely further regulatory steps that have yet to be described behind which a 

pool of polymerization-incompetent G-actin is kept until properly released. In addition, this 

shows unregulated actin polymerization is probably not a realistic pathway by which filaments 

are generated in vivo. Therefore, nucleation and elongation are most likely a function of other 

actin-binding proteins that are subject to more stringent regulation. This does not, however, 

diminish the roles of the proteins above as their activities in manipulating critical concentration 

values is still the key force that drives filament production by these nucleation and elongation 

factors. Pfn1 actually cooperates with a number of these actin-binding proteins to enhance their 

activity by providing polymerization-competent G-actin in much the same way as it promotes 

barbed end elongation. 

1.3 PROFILIN-1-POLYPROLINE INTERACTION: IMPACT ON THE ACTIN 

CYTOSKELETON 

Both Pfn1 and Pfn1-G-actin complexes can be purified using polyproline affinity 

chromatography [12, 76]. This property was known for nearly a decade before Vasodilator-

Stimulated Phosphoprotein (VASP) was identified to bind Pfn1 through a polyproline-mediated 

interaction [77]. Because of Pfn1’s relevance with regard to the actin cytoskeleton, a number of 

other actin-binding proteins with polyproline stretches were investigated. Currently known 
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interacting partners include Neuronal-Wiskott-Aldrich Syndrome Protein (N-WASP), WASP 

family Verprolin-homologous protein (WAVE), WASP Interacting Protein (WIP), VASP, 

Mammalian Enabled (Mena), Enabled/VASP-Like (EVL), Diaphanous homologs, Formin-Like 

1 (FMNL1), palladin, Rap1-GTP-Interacting Adaptor Molecule (RIAM), and ALL1-Fused Gene 

From Chromosome 6 (AF6) [78-84]. A number of these proteins directly enhance the 

polymerization of F-actin by nucleating new filaments or promoting barbed end elongation. 

In addition to its more classical role with regard to the actin cytoskeleton, Pfn1 interacts 

with the polyproline regions of a number of other factors involved in a myriad of cellular 

processes. Pfn1 has been shown to interact with proteins involved in cell-trafficking – Valosin 

Containing Protein (VCP), Clathrin, Huntingtin, and Annexin 1 [8, 85, 86]. Synaptic scaffolding 

proteins have also been found to be ligands – Gephyrin, Drebrin, Aczonin, and Delphin [87-89]. 

Finally, Pfn1 interacts with several nuclear factors – Exportin 6, Survival Motor Neuron Protein 

(SMN), and Myb-Related Transcription Factor, Partner Of Profilin (p42POP) [90-92]. While the 

physiological relevance of many of these factors has not yet been investigated, it is clear that 

Pfn1-polyproline interaction may be imperative in a number of vital signaling cascades. 

Peptide-based analyses suggest Pfn1 requires at least six consecutive proline residues, 

and more likely between eight and ten residues, for efficient binding; however, many of the 

known ligands lack a sequence with this number [93, 94]. Investigation of the polyproline 

stretches of the proteins with which Pfn1 is known to interact reveals five uninterrupted proline 

residues is typical, but there is no consensus and a variety of lengths are found [95]. Based on the 

sequence of its polyproline stretch, VASP could be eluted from Pfn1 by a peptide comprised of 

three repeats of glycine (G) followed by five prolines (P) – (GP5)3 – showing five prolines was 

sufficient, but affinity was low [77]. A different site on VASP contains a stretch of prolines 
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separated by an alanine (A) and a leucine (L) – (GPPPAPPLP) – for which Pfn1 has a far greater 

affinity [18]. Together, there does not appear to be a defined polyproline sequence that Pfn1 

binds, but rather other proximal residues and 3D conformation are probably also determinants. 

1.3.1 Actin Nucleation Factors 

Nuclei composed of a trimer of G-actin are unstable and their spontaneous formation far too 

slow to allow a cell to readily adapt and respond to stimuli. To this effect, several factors have 

been discovered that greatly enhance the speed at which surfaces capable of supporting 

elongation are generated. 

The Actin-related protein 2/3 (Arp2/3) complex was the first molecule identified that 

could initiate new filament polymerization. When combined with a Nucleation Promoting Factor 

(NPF) such as WASP or WAVE family proteins, the Arp2/3 complex is activated promoting the 

polymerization of a daughter filament oriented at a 70o angle relative to the growth of the mother 

filament [96, 97]. It is thought that the Arp2/3-NPF complex presents Arp2 and Arp3 in a 

conformation that mimics an actin dimer and is able to recruit at least a single G-actin molecule 

[98]. Further, while Arp2/3 does not interact with Pfn1, activation is greatly enhanced through 

the recruitment of Pfn1-G-actin complexes by WASP and WAVE. Arp2/3-mediated nucleation 

and branching is often referred to as dendritic branching and is typically associated with 

lamellipodial protrusion. Filaments nucleated in this fashion can only grow at the barbed end 

because they remain capped at the pointed end by Arp2/3. 

Formins are another class of nucleating factors. Unlike Arp2/3-mediated nucleation, there 

is no requirement of a pre-existing filament. The Formin Homology Domain 2 (FH2) domain 

found in formins is both required and sufficient to promote actin filament nucleation [99]. This 
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means that, while necessary for formin function in other aspects of cytoskeletal dynamics that 

will be discussed later, Pfn1 does not play a role in formin-mediated nucleation. Though not 

completely understood, the mechanism by which formins nucleate filaments is related to actin 

dimer stabilization [100]. While Arp2/3 acts as a pointed end capping protein, formins cap the 

barbed end and protect it from inhibitory capping proteins such as CapZ. However, unlike many 

other capping proteins, formins do not prevent barbed end elongation and instead appear to 

‘walk’ along the growing filament as they actually promote the association of G-actin [101]. 

Though classically associated with the formation of stress fibers, formins are found abundantly at 

the leading edge of motile cells [102]. Diaphanous-related formins appear to be highly activated 

at the leading edge of membrane ruffles and protrusions suggesting this pathway of nucleation 

may be responsible for a number of the observed filaments in a protruding lamellipodium [103, 

104]. In direct support of this, electron tomography revealed that the actin mesh commonly 

observed in the lamellipodial region is not necessarily comprised of a high population of 

branched actin filaments but rather is densely populated by unbranched filaments with a high 

degree of overlap [105]. Comparative studies attempting to discern the supposed mutually 

exclusive roles of formin- and Arp2/3-mediated nucleation, due to the differences in post-

elongation filament structure, have revealed both pathways are vital to proper lamellipodial 

protrusion and filopodial initiation and growth [106, 107]. 

Spire is a more recently discovered actin nucleation factor. Spire contains four sequential 

WASP-Homology 2 (WH2) domains, a G-actin-binding domain also found in a number of other 

actin-binding proteins, separated by short linking sequences [108]. Analysis using electron 

microscopy revealed that G-actin associated with Spire aligns approximately linearly. In vitro 

analyses showed nucleation by this factor proceeded at a rate similar to formins but generally 



 17 

slower than Arp2/3. Indeed, over-expression of Spire resulted in Arp2/3-independent actin 

filament formation in mammalian cells [109]. Like Arp2/3 and formins, Spire appears to remain 

associated with the end of the growing filament, but there is evidence of association with both 

the barbed and pointed ends [110]. The proteins Cordon bleu (Cobl) and Leiomodin (Lmod) 

seem to nucleate actin filaments in a similar fashion, though each has only three actin-binding 

domains [111, 112]. None of these factors are known to interact with Pfn1. 

1.3.2 Actin Elongation Factors 

An abundant presence of inhibitory capping proteins in vivo makes it unlikely that most 

filaments grow freely at their barbed ends unless those capping proteins have been somehow 

inactivated locally [113]. Therefore, factors that can both protect barbed ends from capping 

protein inhibition and promote polymerization are probably responsible for most positive 

intracellular filament growth. To date, both formins and the Enabled/VASP (Ena/VASP) family 

of proteins have been identified as such factors. 

 As previously described, formins not only have the capacity to nucleate filaments, but 

will remain associated and continue to promote barbed end growth. Adjacent to the FH2 domain 

required for nucleation, the Formin Homology Domain 1 (FH1) can interact with Pfn1-G-actin 

complexes creating a locally available pool of polymerization-competent G-actin, though the 

mechanism of addition remains elusive [114]. The presence of both the FH1 domain and Pfn1 

are required of formin-mediated elongation. Formins have been shown to increase the rate of 

elongation by as much as 5-fold relative to the growth of a free barbed end, but there is a high 

degree of variability among the classified formins [115]. 
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Like formins, the Ena/VASP family of proteins can remain associated with a growing 

barbed end and promote its elongation [116, 117]. These proteins can also interact with Pfn1-G-

actin complexes to create a local pool of utilizable G-actin, but this is not a requirement as it is 

with formins [18, 118]. Investigation of its role in the protection of the growing barbed end 

suggested VASP must be tethered to a substrate and clustered to elicit its effect [119]. In this 

light, Ena/VASP proteins are known to be capable of forming tetramers and, at least for short 

periods of growth, these complexes can protect barbed ends from capping proteins [120]. 

Likewise, Ena/VASP proteins can be recruited to the membrane of the growing lamellipodial 

edge by Lamellipodin (Lpd) where they are thought to be most active [121]. Although more 

modest than some formins, human VASP was found to increase the rate of filament elongation 

by as much as 2-fold over that of free barbed ends [119]. 

1.3.3 Profilin-1 Enhances the Activity of Some Actin-Binding Proteins through 

Polyproline Interaction 

Although a number of techniques that assess the rate of actin polymerization have been 

developed, the use of certain mobile bacteria, such as listeria monocytogenes (listeria) and 

shigella, or beads coated with a specific factor of study, all of which utilize the native or some 

designated set of cytoskeletal components, has been common practice. Though the physiological 

relevance of such systems is not clear, they provide a somewhat high-throughput means of 

delineating how sets of factors cooperate in promoting actin polymerization. Minimalistic in 

vitro studies utilizing these tools have shown only Pfn1, cofilin, capping proteins, and Arp2/3 are 

required to produce polymerization speeds comparable to observed cell speeds [122]. Further 

study into the mechanism by which such a pool of actin-binding proteins could effectively 
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polymerize F-actin determined that these bacteria were coated with the protein ActA, a noted 

NPF with structural similarity to WASP [123]. It is therefore not surprising that WASP-coated 

beads also produced similar results in the same solution [124]. This has also been extended to the 

use of formin-coated beads. In this case, minimalistic studies showed only Pfn1 and cofilin were 

required to induce speeds that were much quicker than those of Arp2/3-mediated WASP-coated 

beads [125]. Pfn1 therefore appears to be an essential cog in both of the canonical, seemingly 

mutually exclusive pathways through which F-actin structures are produced; however, these 

findings do not define the impact of the Pfn1-polyproline interaction as its G-actin binding 

capacity alone, when in the presence of cofilin, can result in greatly enhanced filament turnover, 

a far more important property in listeria propulsion than filament length [58]. Because Pfn1 can 

interact with G-actin and polyproline simultaneously, the specific relevance of Pfn1-polyproline 

interaction can be studied by mutagenesis [14].  

Interestingly, both a lack of Pfn1 and the presence of a Pfn1 that lacks polyproline 

binding-capacity are detrimental to the propulsion of listeria, suggesting an important role for 

this interaction [126-128]. The mobility of WASP-coated beads is increased by the presence of 

Pfn1 and, following depletion, could not be rescued by a polyproline binding-deficient mutant of 

Pfn1 [129]. Similarly, Pfn1 that lacked the capacity to bind to the formins found in yeast, a 

system commonly used to study formins because of their essential role in cytokinesis, whether 

because of mutation or interspecies incompatibility, led to deficiencies in cytokinesis due to 

diminished actin polymerization [100, 130]. In addition to WASP and formins, Pfn1 also 

enhances the capabilities of the elongation factor VASP. While not required for basal movement, 

VASP presents asymmetric surface association and has been found to be necessary for efficient, 

directional listeria propulsion [131, 132]. Further analysis revealed VASP required Pfn1 
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interaction to promote enhanced listeria motility [133]. This can be partially explained by the 

fact that VASP maximally enhanced the rate of barbed end elongation in the presence of 

polyproline binding-competent Pfn1 [120]. In motile breast cancer cells, Fluorescence 

Resonance Energy Transfer (FRET) analysis showed that Pfn1-VASP interaction is most highly 

concentrated in the membrane ruffles at the leading edge [134]. These data suggest Pfn1 

promotes the polymerization of actin in cells through its interaction with other actin-binding 

proteins. 

1.4 PROFILIN-1-PHOSPHOINOSITIDE INTERACTION: IMPACT ON THE ACTIN 

CYTOSKELETON 

Pfn1 was first shown to interact with phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) using 

lipid micelles in solution [13]. The first evidence of phosphoinositide interaction in vivo came 

from the observation of a population of Pfn1 that was localized at the membrane in regions with 

no discernible actin structures, but whether this was a result of  PI(4,5)P2 interaction is not 

known [135]. Further examination revealed Pfn1 has a greater affinity in vitro for 

phosphoinositides with a phosphate at the D3 position of the inositol ring – phosphatidylinositol-

3,4-bisphosphate (PI(3,4)P2) and phosphatidylinositol-3,4,5-triphosphate (PIP3); however, 

PI(4,5)P2 is the most abundant phosphoinositide, so it is likely that Pfn1 binds to the cell 

membrane predominantly through interaction with PI(4,5)P2 even if its affinity is lower [136, 

137]. Additionally, whether these affinities are relevant to true interaction in vivo has not been 

determined. 
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Compared to both actin and polyproline interactions, far less is known about the 

physiological relevance of Pfn1’s interaction with membrane phosphoinositides. One attempt at 

understanding its impact used high-resolution imaging to visualize Pfn1 on the surface of 

PI(4,5)P2 micelles, where Pfn1 interaction resulted in PI(4,5)P2 aggregation and overall 

membrane instability [138]. A more recent study determined Pfn1 could play a G-actin binding-

independent role in cell motility through its phosphoinositide binding-capacity by inhibiting the 

production of PI(3,4)P2. It was theorized this was a result of blocking PI(4,5)P2 metabolism, but 

specific evidence of this sequestration phenomenon remains elusive [139, 140]. This, in turn, led 

to the down-regulation of VASP localization to the membrane causing a general inhibition of 

membrane protrusion and reduced cell migration [141]. A number of other actin-binding proteins 

interact with phosphoinositides including cofilin and WASP as well as the cytoskeletal 

regulatory proteins, the Rho family of small GTPases (Rho GTPases), and these interactions are 

imperative to their function [142, 143]. Likewise, differential levels of these lipids correlate with 

cell polarization as a consequence of directed actin polymerization [144]. Therefore, Pfn1-

phosphoinositide interaction is not likely benign and requires further investigation. 

1.5 CELL MIGRATION AND THE ACTIN CYTOSKELETON 

Most of our understanding of cell migration comes from two-dimensional (2D) single-cell 

motility time-lapse imaging. The results of such assays have led to a well-characterized series of 

steps which have been found to be both highly reproducible and universal among a variety of cell 

types. While the cytoskeleton is commonly segregated into three components – actin 

microfilaments, intermediate filaments, and microtubules – actin microfilaments, or the actin 
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cytoskeleton, are the most dynamic element allowing the cell to readily adapt to both chemical 

and mechanical stimuli by contributing to cell morphology and permitting motor protein-

independent locomotion [38]. Accordingly, cell movement correlates with marked change in the 

actin cytoskeleton, where a mobile cell has extremely rapid and directed polymerization and 

turnover [37]. The cell will first polarize, defined by a ‘front’ and ‘rear’ correlating with 

differential protein localization and expression. At the front, or leading edge, F-actin formation 

and polymerization in the lamellipodium pushes the membrane forward creating an underlying 

large, flat region called a lamella [145]. Additionally, filopodia are long, finger-like projections 

that often arise from a sub-population of the F-actin growth in lamellipodia and likely play a role 

in environmental exploration [146]. Adhesions form and mature on the new surface providing a 

strong anchor for the final step – rear retraction resulting from actomyosin contraction and 

weakened rear adhesion. The sum of these events provides a net displacement in the desired 

direction. Therefore, cell migration is very much a function of proper cytoskeletal organization 

as well as the capacity of the cell to regulate the polymerization and depolymerization of 

structures in a coordinated manner. 

1.5.1 Molecular Regulation of the Actin Cytoskeleton and Cell Migration 

While there are a myriad of factors known to participate in the regulation of the actin 

cytoskeleton, the most thoroughly characterized and seemingly universal moderators of actin 

cytoskeletal dynamics are the Rho GTPases, [147]. They are thought to mediate polarization, 

protrusion, and the formation of focal adhesions and stress fibers by activating a series of protein 

kinases as well as a variety of actin-binding proteins, including elongation and nucleating factors. 

This implicates them in nearly every aspect of cell movement. Rho GTPases themselves require 
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the presence of various phosphoinositides and therefore are spatially regulated by their 

metabolism, one mechanism linking extracellular signaling to site-specific actin polymerization 

[148, 149]. In agreement with this hypothesis, it was determined that differential 

phosphoinositide levels correlated with cell polarization and directed cell movement [144]. The 

three most studied Rho GTPases remain among those first discovered: Ras homology family 

member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1), and cell division control 

42 (cdc42). 

RhoA is often associated with long, unbranched actin filaments [150]. In its most 

classically defined role, RhoA was found to be imperative in cell retraction during migration, 

presumably through stress fiber formation and regulation [151]. While not typically associated 

with lamellipodial growth, it has been suggested RhoA is not only active at the growing front but 

temporally supersedes the activity of both Rac1 and cdc42 [152]. Regardless of the location, 

RhoA mediates the activity of formins. Upon activation downstream RhoA, formins not only 

have the capacity to facilitate actin filament nucleation by stabilizing actin dimers but can also 

remain perpetually associated promoting filament elongation [100, 125, 153]. There is evidence 

that formins play a role in both lamellipodial protrusion and filopodial extension, but the 

isoforms thus far studied in this context can also be activated downstream both Rac1 and cdc42 

[154]. In addition, RhoA activates Rho-associated coiled-Coil Kinase-1 (ROCK1) which can in 

turn activate LIM Domain Kinases (LIMKs), kinases that phosphorylate and deactivate cofilin 

[155]. Through this pathway, it has been theorized that RhoA acts to limit destructive protrusive 

activity and promote persistent movement [156]. Therefore, RhoA can both positively and 

negatively regulate lamellipodial development, likely as a function of other factors and time. 
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In neutrophils, a common cell type in migration studies PIP3 accumulation on the plasma 

membrane corresponds with directed actin polymerization. This was found to occur because it 

led to the activation of Rac1, a Rho GTPase often associated with the formation of dense, highly-

branched actin networks and lamellipodial protrusions [150, 157-159]. This type of actin 

structure is most commonly associated with the activation of N-WASP, a ubiquitous member of 

the WASP family of proteins that is activated downstream Rac1 [160]. In some cell types, N-

WASP has been shown to be indispensable in cell migration [161]. This, in turn, provides a 

platform on which Arp2/3 can bind and be activated, nucleating a new actin filament [162]. 

According to the temporal relationship established in the only study to simultaneously 

investigate RhoA, Rac1, and cdc42, Rac1 acts to stabilize RhoA-mediated membrane protrusion 

[152]. In fact, Rac1 and RhoA exhibit mutual inhibition of one another [163, 164]. This 

antagonism parallels the different actin structures each factor promotes. 

Constitutively active cdc42 induces the production of numerous filopodia [165]. Much 

like Rac1, cdc42 has been shown to induce the activity of WASP; however subsequent inhibition 

of the WASP family proteins did not prevent filopodial formation [166]. It was later determined 

that the formin Diaphanous-Related Formin 3 (mDia2) can also be activated by cdc42 and is 

imperative to cdc42-mediated filopodial extension [167]. In addition, cdc42 does indeed play a 

role in lamellipodial protrusion. In fact, cdc42 can itself activate Rac1, where cdc42-null cells 

often exhibit reduced Rac1 activity [168, 169]. In agreement with the fact that filopodia often 

play a sensory role, cdc42 has been found to be imperative in chemotaxis, or movement along a 

chemical gradient, and directed cell migration in several cell types [170]. 
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1.5.2 Transcriptional Regulation of the Actin Cytoskeleton and Cell Migration 

Serum response factor (SRF) is a transcription factor that acts downstream RhoA in a G-actin-

dependent manner and has been shown to be important in the transcriptional regulation of a 

number of factors involved in the regulation of the actin cytoskeleton [171]. Some of the relevant 

target genes include actin, Arp3, Pfn1, Mena, ADF, cofilin, and gelsolin [172]. As expected, SRF 

knockout mouse models exhibited impaired embryogenesis at the gastrulation stage highlighted 

by a complete lack of a mesoderm, presumably from reduced cell migratory capacity [173]. 

Similarly, conditional SRF knockout in the mouse forebrain resulted in deficiencies in neuronal 

migration [174]. In both cases, a significant decrease in F-actin content was observed, illustrating 

the imperative role of the actin cytoskeleton and its regulation to understanding the process of 

cell migration. 

1.5.3 Impact of Profilin-1 Expression on Cell Migration 

Based on its relevance with regard to the actin cytoskeleton, it stands to reason that Pfn1 

expression would have a significant impact on cell migration. Previous analysis of the impact of 

Pfn1 on actin polymerization both with and without the presence of other actin-binding proteins 

revealed Pfn1 increases the rate of F-actin elongation and turnover. To this end, a variety of 

depletion studies have implicated Pfn1 as a positive regulator of cell migration. Chronologically, 

the first study assessing its influence showed Pfn1 expression was required for proper F-actin 

formation in Dictyostelium discoideum (soil-living amoeba), impacting both cytokinesis and 

motility [175]. This significance was also observed in the migratory processes involved in the 

development of a variety of higher-order, multi-cellular organisms. Deletion of chickadee, a Pfn1 
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homolog, in Drosophila melangaster (fruit fly) resulted in a number of defects downstream 

malformation of the actin cytoskeleton and deficiencies in the migration of some cell types [176]. 

In Strongylocentrotus purpuratus (purple sea urchin), mesenchymal cells undergoing migration 

and morphological change during gastrulation exhibited dramatically increased Pfn1 expression 

[177]. By corollary, it was found that Pfn1 activity downstream Daam1, a formin homolog, in 

Xenopus (African clawed frogs) was required for blastopore closure [178]. Similarly, an 

antisense morpholino oligonucleotide for Pfn1 impaired cell movement during gastrulation in 

zebrafish [179]. As for mice, several studies have shown Pfn1 knockout models are not viable 

and typically arrest at the two-cell stage; however, conditional knockout in the brain permits 

sufficient development for study [7]. It was determined that radial migration of cerebellar 

granule neurons during brain development required the expression of Pfn1 and in general, mice 

with brain-specific knockout of Pfn1 exhibited defects typical of impaired neuronal migration 

[180]. 

Though the previous studies uniformly confirm Pfn1 as a positive regulator of cell 

migration, its role in human cells is not as clear. Expression is actually down-regulated in a 

number of invasive adenocarcinomas [181-184]. Further study using metastatic breast cancer cell 

lines revealed Pfn1 expression was inversely correlated with a number of actin cytoskeleton-

mediated activities, including cell migration [185, 186]. Interestingly, this phenomenon was also 

observed with non-cancerous mammary epithelial cells. Conversely, knockdown of Pfn1 in 

endothelial cells reduced random motility in both 2D and 3D settings and was characterized as 

having reduced protrusion velocity [187, 188]. Taken together, Pfn1 plays a role in cell 

migration and is important for a variety of processes, but there is not likely a universal definition 

for the impact of Pfn1 on cell migration. 
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1.6 ANGIOGENESIS REQUIRES CELL MIGRATION  

Angiogenesis describes the formation of new capillary vessels from outgrowths of the pre-

existing vascular network. It has been shown to be important in many pathological and 

physiological events including wound-healing and tumor progression [189]. In contrast, 

vasculogenesis describes the de novo formation of the vasculature in developing animals; 

however, most late-development and postnatal vascular remodeling and repair proceeds through 

the angiogenesis cascade [190]. Endothelial cells are basally quiescent where homeostasis is 

maintained through low levels of autocrine Vascular Endothelial Growth Factor-A (VEGF-A) 

[191]. Sprouting angiogenesis is initiated by comparatively high levels of pro-angiogenic factors, 

including VEGF-A and VEGF-C, leading to the activation of certain endothelial cells, known as 

‘tip’ cells. Delta-like-4-Notch1 signaling suppresses the propensity of the tip cell phenotype in 

adjacent endothelial cells, preventing mass activation and promoting a higher level of control of 

vessel sprouting [192, 193]. The insult to these cells promotes loss of cell-cell barrier function 

and activation of Matrix Metalloproteinases (MMPs) that degrade the basement membrane and 

extracellular matrix (ECM) permitting invasion along a cytokine gradient [194-196]. As the 

sprout progresses, underlying ‘stalk’ cells dynamically compete for the lead position resulting in 

a high degree of cellular rearrangement [197]. Tip cells are characterized by the presence of long, 

thin directional actin-mediated protrusions known as filopodia that permit the assessment of 

various attractive and repulsive cues and ultimately guide growth [198, 199]. Similar to the 

axonal growth cone during the development of the nervous system, filopodia also facilitate tip 

cell-tip cell contact, supporting their essential role in tip cell function [200]. Finally, upon inter-

sprout contact, the tip cell phenotype is suppressed and pericytes are recruited, promoting 

anastamosis [194-196, 201, 202]. 
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Many of the understood steps in sprouting angiogenesis require proper cell migration and 

morphogenesis. Pro-angiogenic factors, such as VEGF-A, are known to promote endothelial cell 

migration and invasion [203]. Conversely, many anti-angiogenic factors elicit their effect, at 

least partially, by inhibiting endothelial cell migration [204-206]. The relevant migratory 

mechanisms involved in angiogenesis involve a combination of chemotaxis, haptotaxis, and 

mechanotaxis [207, 208]. Chemotactic migration, or movement resulting from a chemical cue or 

gradient, in response to VEGF-A is linked to Rho GTPase activity downstream Vascular 

Endothelial Growth Factor Receptor 2 (VEGFR2). Several in vitro and in vivo studies have 

shown inhibition of Rho GTPases to be detrimental to angiogenesis [209-212]. Tip cell filopodia 

require cdc42 [199, 213]. Rac1 is implicated in endothelial cell lamellipodial development and is 

required for directed migration [214]. Finally, RhoA contributes to, among other things, the 

activation of PI3K in endothelial cells which mediates membrane-bound phosphoinositide 

content, key regulators of actin cytoskeletal dynamics and cellular polarization [215]. 

Accordingly, VEGF-A-mediated endothelial cell migration and morphogenesis requires SRF 

[216]. Endothelial cell-specific knockout of SRF was embryonic lethal at Embryonic day 14.5 

(E14.5) due to severe subcutaneous hemorrhaging and decreased vascular density as a result of 

deficient cell migration; however, endothelial cell differentiation and early vascular 

morphogenesis were not affected, leading to the hypothesis that vasculogenesis may not be as 

harshly impacted [217]. Conditional knockout of SRF negatively impacted angiogenesis in both 

physiological and pathological contexts. Postnatal re-vascularization of the retina was 

significantly reduced while tumor-mediated angiogenesis was decreased leading to impaired 

tumor growth [218]. SRF is also paramount to tip cell filopodia formation, where deletion leads 
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to improper vessel connections, highlighting the importance of the regulation of the actin 

cytoskeleton throughout the cascade of events describing sprouting angiogenesis [217, 218]. 

Much less is known about the regulatory pathways involved in endothelial cell 

haptotactic migration, or movement along a gradient of ECM-conjugated chemoattractant or 

adhesion site concentration, and mechanotactic migration, or movement resulting from 

mechanical stimuli. Before an endothelial cell can invade, the underlying ECM must be degraded 

by MMPs. Depending on the material encountered, migration can be promoted independent of 

chemoattractants [219]. The physiological relevance of this, however, has yet to be elucidated. 

Mechanotaxis is presumably more important for larger vessels, but it has been shown even in the 

microcirculation, migratory endothelial cells orient their lamellipodia parallel to the direction of 

flow. Rho GTPases are also closely tied to mechanotransduction and their localization correlates 

with the forces experienced by the cell; however, they appear to have a greater impact on the 

microtubule network in this context [207]. 

1.6.1 Profilin-1 in Angiogenesis  

Morphogenesis in the context of angiogenesis is taken to be the formation of tubes in both 2D 

and 3D environments. Because of the migratory aspects involved, it is not surprising that several 

actin regulatory proteins – gelsolin, VASP, and Pfn1 – are up-regulated during this process [220]. 

Further characterization revealed Pfn1 was required for proper cord- and tube-morphogenesis 

[187, 188]. On a single-cell basis, Pfn1 generally promotes the activity of the actin cytoskeleton 

in endothelial cells and is imperative for proper migration and proliferation. In order to promote 

such activity, it was determined Pfn1 must maintain both G-actin and polyproline binding 

capacity. Additionally, while the pathway is unclear, Pfn1 also reduced secretion of MMP2, a 
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type IV collagenase, ultimately negatively impacting ECM invasiveness [188]. These data 

would support Pfn1 as a positive regulator of angiogenesis, but the impact of Pfn1 on 

sprouting angiogenesis has not been addressed (Specific Aims 1 and 3). 

1.7 POST-TRANSLATIONAL MODIFICATION OF PROFILIN-1  

Advances in post-translational modification detection and purification as well mass spectrometry 

have revealed Pfn1 is modified on a number of residues (See Table 1). These studies included a 

variety of cell lines and tissue samples to investigate the proteome downstream a diverse set of 

treatments and conditions. In nearly every case the proteome was purified by some means for the 

modification of interest. It is important to note that most of this data was collected within the last 

5 years and the physiological relevance of a majority of these modifications has yet to be 

investigated. 
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Table 1. Known Profilin-1 Post-Translational Modifications. A list of established Pfn1 post-translational 

modifications with their sources. Modifications surrounded by parentheses represent post-translational modification 

found from in vitro sample or treatment. All other modifications represent post-translational modification 

established using mass spectrometry from tissue or cell sample. (* only found with Mus musculus Pfn1) 

 

Residue Modification Function Citation 

Y6 Phosphorylation Unknown [221] 

K37 Ubiquitination Unknown [222] 

K53 Ubiquitination Unknown [222-228] 

S56 Phosphorylation Unknown [229, 230] 

S57 Phosphorylation Unknown [230] 

Y59 Phosphorylation Unknown [231, 232] 

K69 Ubiquitination Unknown [222, 225, 227, 228] 

S84 Phosphorylation Unknown [233] 

K90 Ubiquitination Unknown [222, 227] 

S91 Phosphorylation Unknown [230, 232] 

K104 Acetylation Unknown [234, 235] 

K104 Ubiquitination Unknown [222, 225-227] 

K107 Acetylation Unknown [235] 

K107 Ubiquitination Unknown [222, 227] 

T108 Phosphorylation Unknown [230] 

K115* Ubiquitination Unknown [228] 

K125 Acetylation Unknown [235] 

K125 Ubiquitination Unknown [222, 225, 227, 228] 

K126* Ubiquitination Unknown [228] 

Y128 Phosphorylation Increases Affinity for G-actin [231, 232, 236-249] 

S137 (Phosphorylation) Affects ligand affinity [250-252] 

Y139 (Nitration) 

Increases affinity for polyproline 

peptide and decreases affinity for 

G-actin 

[253, 254] 

1.7.1 Regulation of Profilin-1-Ligand Interaction  

The first attempt to describe the regulation of Pfn1-ligand interaction came from the fact that the 

phosphoinositide binding region overlaps both its G-actin and polyproline binding sites. In this 
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light, Pfn1 was shown to block phospholipase C-γ1 (PLCγ1)-mediated hydrolysis of PI(4,5)P2 in 

vitro unless PLCγ1 was modified with a tyrosine phosphorylation. This effect, in turn, was 

theorized to free Pfn1 to bind G-actin and polyproline and promote actin polymerization [12, 13, 

255, 256]. PI(4,5)P2 therefore acts to sequester Pfn1, effectively inhibiting its activity. This 

model has yet to be either confirmed or refuted, but further information regarding the regulation 

of Pfn1 has come from its propensity to be post-translationally modified. The first such evidence 

of this came from the in vitro phosphorylation of Pfn1 at Serine 137 (S137) by Protein Kinase C-

ζ (PKCζ) in the presence of PI(4,5)P2, and to a lesser extent with other D3 and D4 

phosphoinositides [250-252]. Treatment with PKCζ resulted in increased Pfn1 association with 

G-actin and polyproline peptide in vitro while no effect was observed on Pfn1 association with 

PI(4,5)P2 [257]. Similarly, Rho-associated coiled-Coil Kinase-1 (ROCK1) can also 

phosphorylate Pfn1on S137 in vitro; however, mutagenesis at S137 decreased Pfn1 association 

with polyproline [86]. While contradictory, it should be noted that neither mass spectrometry nor 

phospho-enrichment was performed during the discovery of S137 phosphorylation as they were 

unavailable at the time, so the presence of confounding post-translational modifications is 

possible. Since this initial finding, a number of post-translational modifications of Pfn1 have 

been detected using more advanced techniques (See Table 1). To date, only modification at 

Tyrosine 128 (Y128) has been investigated. With regard to Pfn1-ligand binding, phosphorylation 

at Y128 moderately increased G-actin binding without affecting polyproline interaction in 

endothelial cells [232]. Similarly, interaction with PI(4,5)P2 micelles was also unchanged. No 

other effort has been made to clarify what regulatory pathways mediate these modifications or 

their downstream impact (Addressed in Specific Aims 2 and 3). 
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1.8 HYPOTHESIS AND SPECIFIC AIMS 

Through its interaction with G-actin and polyproline, Pfn1 promotes the polymerization of the 

actin cytoskeleton resulting in membrane protrusion and promoting cell motility [258]. These 

processes are integral in sprouting angiogenesis and so Pfn1 may be an important factor. In this 

regard, Pfn1 has been found to be up-regulated during tube morphogenesis and is required for 

endothelial cell migration and invasion [187, 188, 220]. Therefore, I hypothesized that Pfn1 

promotes sprouting angiogenesis. In addition, Pfn1-ligand interaction has proven vital to its 

intracellular function in endothelial cells [188]. Along with the discovery of a number of post-

translational modifications that have been implicated in regulating Pfn1-ligand binding-capacity, 

I hypothesized that Pfn1’s involvement in the regulation of the actin cytoskeleton is determined 

by its post-translational modification state. Finally, because of the importance of the actin 

cytoskeleton in cell migration and angiogenesis, I postulated that Pfn1’s regulation of the actin 

cytoskeletal dynamics of endothelial cells undergoing angiogenesis is governed by post-

translational modification. To test the overall hypothesis, I proposed the following aims: 

 

Specific Aim 1: To determine whether Pfn1 is required for sprouting angiogenesis. 

Specific Aim 2: To determine whether Pfn1 is post-translationally modified in 

unstimulated cells and what regulatory pathways may be involved. 

Specific Aim 3: To explore the impact of the determined regulatory pathway on Pfn1 and 

sprouting angiogenesis. 

 

The completion of these aims would advance our understanding of sprouting 

angiogenesis by not only confirming the previously implicated importance of Pfn1 but also 
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introducing a novel layer of regulation – via Pfn1 post-translational modification – that may act 

as a signaling link between various extracellular stimuli and actin cytoskeletal dynamics. 

Unregulated actin polymerization is not likely a realistic pathway by which filaments are 

generated in vivo. There are a series of regulatory steps, many of which probably have yet to be 

described, behind which a pool of polymerization-incompetent G-actin is kept until properly 

released. Significant effort has been put forth in defining how actin-binding proteins are 

regulated such that actin polymerization can occur in a predictable manner, but Pfn1 is often 

overlooked and simply thought to seamlessly facilitate the function of a variety of nucleation and 

elongation factors. This study will begin to elucidate the regulation of Pfn1 in the context of 

sprouting angiogenesis. Because of the direct impact Pfn1 has on the actin cytoskeleton, 

knowledge of how it can be controlled and manipulated might provide a means of globally 

inhibiting angiogenesis regardless of the stimulant. Many anti-angiogenic therapies fail because 

they only target a single or possibly several pro-angiogenic pathways. Pfn1 activity, however, 

may be a ubiquitous necessity in the capacity of these stimulants to promote angiogenesis and 

therefore becomes a target for general suppression. 
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2.0  MATERIALS AND METHODS 

2.1 CELL CULTURE 

An immortalized Human Microvascular Endothelial Cell line (HMEC-1) and Human Embryonic 

Kidney 293 (HEK-293) were used for all in vitro experiments. HMEC-1 were cultured in 

MCDB-131 (Life Technologies) growth medium [10% (v/v) FBS (Corning), 1 µg-mL-1 

hydrocortisone (Sigma), 50 U-mL-1 Penicillin (Life Technologies), 50 µg-mL-1 Streptomycin 

(Life Technologies)] supplemented with 10 mM L-Glutamine (Life Technologies) and 1 ng-mL-1 

EGF (Life Technologies). Cells were obtained at passage 18 and used between passages 20-30 

for experimentation. HEK-293 were cultured in DMEM/F12 (1:1) (Life Technologies) growth 

medium [10% (v/v) FBS, 100 U-mL-1 Penicillin, 100 µg-mL-1 Streptomycin]. HEK-293 were 

maintained on culture dishes (Corning) coated with type I collagen (BD Biosciences) for all 

experiments. 

2.2 ANTIBODIES AND REAGENTS 

Antibodies used in this study included: Pfn1 polyclonal antibody (Abcam), α-Tubulin 

monoclonal antibody (Sigma), c-myc polyclonal antibody (Sigma), GFP monoclonal antibody 

(Clontech), GFP polyclonal antibody (Life Technologies), actin monoclonal antibody (BD 
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Biosciences), VASP monoclonal antibody (BD Biosciences), acetylated-lysine monoclonal 

antibody (Cell Signaling), pRRXS/T PKA Substrate monoclonal antibody (Cell Signaling), Anti-

phosphotyrosine monoclonal antibody (BD Biosciences) HRP-conjugated goat anti-mouse Ig 

monoclonal antibody (BD Bioscience), Peroxidase-conjugated mouse anti-rabbit IgG 

monoclonal antibody (Jackson Immunoresearch). For immunoblotting, the following 

concentrations were used: Pfn1 (1:2500) and α-Tubulin (1:2000), c-myc (1:1000), GFP 

monoclonal (1:1000) actin (1:1000), VASP (1:1000), acetylated-lysine (1:500), pRRXS/T PKA 

Substrate (1:1000), Anti-phosphotyrosine (1:1000), HRP-conjugated goat anti-mouse Ig 

monoclonal antibody (1:1000), Peroxidase-conjugated mouse anti-rabbit IgG monoclonal 

antibody (1:1000). Forskolin (Sigma) and H89 (Sigma) were prepared according to 

manufacturer’s instructions. 

2.3 CONSTRUCTS 

Mus musculus Pfn1 was cloned into pGEX-5X-1 (GE Healthcare) bacterial expression vector. 

Phospho-mimetic point mutations were made using the following primers: S57D (sense: 5’-

GGCAAAGACCGGTCAGATTTTTTCGTC-3’), S89D (sense: 5’-

GGATCTTCGTGACAAGAGCACCGG-3’), S91D (sense: 5’-

CGTACCAAGGACACCGGAGGAG-3’), T92D (sense: 5’-CCAAGAGCGACGGAGGAGCC-

3’). For expression in eukaryotic cells, myc-tagged Mus musculus Pfn1 was cloned into pIRES2-

AcGFP1 (Clontech) bicistronic expression vector. Phospho-dead point mutations were made 

using the following primers: T89V (sense: 5’-GGATCTTCGTGTCAAGAGCACCGG-3’). For 

production of retrovirus, EGFP-tagged Mus musculus Pfn1 and Pfn1-H133S was cloned into 
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pQCXIP (Clontech) retroviral vector as previously described [188]. Phospho-dead and phospho-

mimetic mutation was made using the following primers: S137A (sense: 5’-

CTCACCTGCGGCGTGCCCAGTACTG-3’), S137E (sense: 5’-

CTCACCTGCGGCGTGAACAGTACTG-3’). 

2.4 SIRNA TRANSFECTION 

The single-target Pfn1 siRNA was previously described with sense strand 5’-

AGAAGGUGUCCACGGUGGUUU-3’ (Thermo Scientific) [187]. A smart pool of non-

targeting control siRNA (Thermo Scientific) contains the following sense strands: 5’-

GGCCAGAAAUGUUCGGUGAUU-3’, 5’-GUGGUUUGAUCAACAAGAAUU-3’, 5-

CAAUGUCACUGUCACCAAGUU-3’, and 5’-GGUGGAACGCCUACAUCGAUU-3’. 

Transfection was performed with DharmaFECT reagent 1 (Thermo Scientific) and appropriate 

buffer from the same source with 100 nM siRNA according to the manufacturer’s instructions. 

Cells were incubated in siRNA-containing solution for 24 hours and washed several times where 

this time point is considered ‘24 hours after transfection’. Extent of knockdown was analyzed 72, 

96, or 120 hours after transfection. 
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2.5 DNA TRANSFECTION 

DNA transfection was performed using XtremeGENE HP transfection reagent (Roche) 

according to manufacturer’s instructions. Cells were re-plated for experiment 24 hours after 

transfection. Proteins were assayed 48 hours after transfection. 

2.6 PROTEIN EXTRACTION FOR WESTERN BLOT 

Cells were washed twice with ice-cold DPBS (Lonza) and maintained on ice throughout the 

extraction process. Lysis Buffer [25 mM Tris (Fisher Scientific) pH 7.5, 150 mM NaCl (Fisher 

Scientific), 5% (v/v) Glyercol (Fisher Scientific), 1 mM EDTA (Fisher Scientific), 1% (v/v) NP-

40 (Sigma)] was supplemented with 0.1% (w/v) SDS (Bio-Rad), 5 µg-mL-1 Leupeptin (Sigma), 

10 µg-mL-1 Aprotinin (Sigma), 1 mM PMSF (Sigma), 5 µg-mL-1 Pepstatin (Sigma), 1 mM 

activated Sodium Vanadate (Sigma), and 50 mM Sodium Fluoride (Sigma). Cells were scraped 

in the presence of Lysis Buffer, collected into a microcentrifuge tube, and incubated on ice for 30 

minutes. Lysates were spun at 13000 RPM for 30 minute at 4oC. The protein concentration of the 

supernatant was measured using a coomassie-based protein assay kit (Bio-Rad) and aliquots 

stored at -80oC for Western blot analysis. 



 39 

2.7 WESTERN BLOT 

Equal masses of protein were reduced by boiling for 5 minutes in the presence of 2-

mercaptoethanol (Fisher Scientific). Proteins were loaded on 15% or 17% Tris-HCl 

polyacrylimide gels and SDS-PAGE carried out using the Mini-Protean Tetra Cell 

electrophoresis system (Bio-Rad) according to manufacturer’s instructions. Gels were washed of 

SDS by equilibrating in Bjerrum and Schaefer-Nielsen Transfer Buffer [48 mM Tris pH 9.2, 39 

mM Glycine (Bio-Rad), 20% (v/v) Methanol (Fisher Scientific)] for 15 minutes. Proteins were 

transferred onto Nitrocellulose paper (Bio-Rad) in the same Transfer Buffer using Bio-Rad’s 

system. Membranes were washed in TBS [50 mM Tris pH 7.5, 150 mM NaCl] for 5 minutes and 

blocked with TBS containing 5% (w/v) non-fat dry milk (Carnation) for 1 hour at room 

temperature with mild agitation. Incubation with primary antibody was carried out overnight at 

4oC with mild agitation in TBST [50 mM Tris pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween 20 

(Bio-Rad)] containing 5% (w/v) non-fat dry milk. Membranes were washed extensively with 

TBST and incubated with appropriate HRP-conjugated secondary antibody in TBST containing 

5% (w/v) non-fat dry milk. Another round of washing was performed before proteins were 

visualized with ECL Western Blotting Substrate (Thermo Scientific) using Kodak Imaging 

Device. 

2.8 PROTEIN EXTRACTION FOR 2D ELECTROPHORESIS 

Cells were washed twice with ice-cold DPBS followed by two washes with ice-cold Tris/Sucrose 

Buffer [10 mM Tris, 250 mM Sucrose (Invitrogen)] and maintained on ice throughout the 
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extraction process. Dishes were placed at oblique for 5 minutes to collect residual fluid. Cells 

were scraped in the presence of 2D Lysis Buffer [2 M Urea (Fisher Scientific), 7 M Thiourea 

(Invitrogen), 4% (w/v) CHAPS (Sigma), 50 mM DTT (Roche)] and collected into a Bead-beater 

tube (Biospec) containing 50 mg Glass Beads (Sigma). Lysates were pulsed 4 times for 20 

seconds each in a Mini Beadbeater (Biospec) with 2 minutes on ice between pulses. 0.1 U 

Benzoase Nuclease (Sigma) and 2 mM MgCl2 (Fisher Scientific) were then added and solution 

incubated on ice for 30 minutes. The lysates were collected into microcentrifuge tubes and 

subjected to 2 rounds of centrifugation. The first round was 3500 RPM for 5 minutes to separate 

glass beads, where the supernatant was then subjected to 13000 RPM for 20 minutes to remove 

debris. The protein concentration of the supernatant was measured using the RC DC Protein 

Assay Kit (Bio-Rad) and aliquots stored at -80oC or immediately subjected to isoelectric 

focusing. 

2.9 ISOELECTRIC FOCUSING AND EQUILIBRATION 

Isoelectric focusing was performed using the Zoom IPGRunner System (Invitrogen) and carried 

out per manufacturer’s instructions with modification. Equal masses of proteins were used to 

make Rehydration Buffer [final concentrations: 2 M Urea, 7 M Thiourea, 4% (w/v) CHAPS, 50 

mM DTT, 0.5% (v/v) Carrier Ampholytes (Invitrogen), 0.005% (w/v) Bromophenol Blue (Fisher 

Scientific), 50-150 µg Proteins]. Rehydration buffer was loaded into a Zoom IPGRunner 

Cassette (Invitrogen) and incubated with ZOOM IPG Strips (Invitrogen) as recommended for 1 

hour at room temperature. In all cases, the pH range of the Carrier Ampholytes and IPG Strip 

were identical. Greater than 95% of the rehydration buffer was taken up by the IPG strip. IPG 
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strips underwent isoelectric focusing using the following program: 175 V for 30 minutes; linear 

ramp 175-2000 V over 45 minutes; 2000 V for 45-105 minutes depending on pH range. IPG 

strips were then stored at -80oC or immediately equilibrated. IPG strips were incubated with 

Equilibration Buffer [6 M Urea, 2% (w/v) SDS, 50 mM Tris pH 8.8, 20% (v/v) Glycerol, 2% 

(w/v) DTT] for 25 minutes at room temperature with gentle agitation. IPG strips were briefly 

washed with Running Buffer [25 mM Tris pH 8.3, 192 mM Glycine, 0.1% (w/v) SDS] and 

sealed on Tris-HCl polyacrylimide gels with Running Buffer containing 0.5% Agarose 

(Invitrogen) and 0.005% (w/v) Bromophenol Blue. These gels were subjected to Western blot as 

previously described. 

2.10 TIME-LAPSE IMAGING 

Cells were sparsely-plated (~150000) in a 6-well plate (Corning) either coated with type I 

collagen (Millipore) or untreated and incubated over night. Time-lapse imaging was carried out 

using an Olympus IX71 Inverted Microcope (Olympus) in a LiveCell Microscope Stage 

Incubator (Pathology Devices) to maintain temperature at 37oC, CO2 at 5%, and relative 

humidity at 80%. Images were collected for 120 minutes at a 1 minute time interval using 

MetaMorph (Universal Imaging). Cell location was assessed using the center-of-mass of the 

nucleus and tracked using ImageJ. 
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2.11 MOUSE AORTIC RING ANGIOGENESIS ASSAY 

The aortic ring angiogenesis assay was performed according to the protocol described by Baker, 

et al. with modification [259]. Thoracic aortas of 9-11 week-old mice were isolated and cleaned 

of fatty tissue and branching vessels until a uniform white tube was observed. Following 

excision and throughout the cleaning process, aortas were maintained in ice-cold Opti-MEM 

(Life Technologies) and kept in this state for no more than 4 hours to maintain the health of the 

cells. Cold Opti-MEM was carefully injected into the lumen to flush out any residual blood. The 

cleaned aortas were cut evenly with a width of ~1 mm. If the aortic rings were to be subjected to 

siRNA treatment, the rings were collected and 15-20 rings placed into a single 24-well plate 

(Corning) well for each condition. Transfection was carried out as described with appropriate 

volumes for a 24-well plate well per the manufacturer’s instructions and rings treated for 24 

hours at 37oC. Aortic rings that did not undergo siRNA treatment were immediately embedded. 

Aortic rings were embedded in either 1 mg-mL-1 type I collagen diluted in DMEM (Life 

Technologies) or Growth Factor-Reduced Matrigel (BD Biosciences) in a 96-well plate 

(Corning). Matrices were polymerized by incubating at 37oC for 45 minutes. Each well was 

supplemented with 150-µL Opti-MEM containing 2.5% (v/v) FBS and 30 ng-mL-1 VEGF-A 165 

(Cell Signaling) and incubated for up to 96 hours at 37oC. Sprouts were imaged 48, 72, and 96 

hours following embedding. 
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2.12 IMMUNOFLUORESCENCE OF AORTIC RINGS 

Immunofluorescent labeling of aortic rings was performed according to the protocol described by 

Baker, et al. with modification [259]. Aortic rings were washed once with DPBS and fixed using 

DPBS containing 3% (v/v) Formalin (Fisher Scientific) for 30 minutes at room temperature. The 

rings were then permeabilized by two consecutive treatments of DPBS containing 0.25% (v/v) 

Triton-X-100 (Fisher Scientific) for 15 minutes each at room temperature. Blocking was 

performed using DPBS containing 10% (v/v) Goat Serum (Sigma) for 1 hour at room 

temperature. To visualize Pfn1, aortic rings were incubated with DPBS containing 10% (v/v) 

Goat Serum and Pfn1 polyclonal antibody (1:200) overnight at 4oC with mild agitation. The 

rings were then extensively washed with DPBS containing 0.1% (v/v) Triton-X-100. To 

visualize endothelial cells, 0.05 mg-mL-1 Rhodamine-conjugated Lectin (Sigma) was added to 

DPBS containing 10% (v/v) goat serum and Fluorescein (FITC)-conjugated Goat Anti-Rabbit 

(1:100; Jackson Immunoresearch) and incubated with the aortic rings for 2 hours at room 

temperature with mild agitation. This was followed by further washing and rinsing once with 

MilliQ water (Millipore). Fluorescence was viewed on an Olympus IX71 inverted microscope at 

a 4x magnification and imaged using MetaMorph. 

2.13 GENERATION OF PROFILIN-1 CONDITIONAL KNOCKOUT ANIMALS 

C57BL/6 genetic background mice that express Cre recombinase under the transcriptional 

control of the endothelial-specific receptor tyrosine kinase Tie2 (Tie2-Cre+/-) were purchased 

from The Jackson Laboratory.  These mice were crossed with C57BL/6 genetic background mice 
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with two copies of Pfn1 with loxP sequences flanking exon 1 (Pfn1fl/fl) to create mice with 

endothelial-cell specific knockout of a single allele of Pfn1 (Pfn1EC,+/-). Offspring were 

backcrossed with Pfn1fl/fl mice to create endothelial cell-specific Pfn1 knockout mice (Pfn1EC,-/-). 

All animal experiments were performed in compliance with an approved protocol by the 

Institutional Animal Care Committee of the University of Pittsburgh. 

2.14 GENOTYPING OF PROFILIN-1 CONDITIONAL KNOCKOUT ANIMALS 

The genomic DNA of both the tails of pups and segments of aorta following sacrifice was 

extracted using a commercial kit (Promega). The presence of the loxP sequence was assessed 

using the following primers: (Primer 1; forward) 5’-TGGAGCGGATCCAGCGAAGG-3’ and 

(Primer 2; reverse) 5’-GTCCCCAGCAGTCGGGACG-3’. The presence of Tie2-Cre was 

determined according to The Jackson Laboratory using the following primers: (Tie2-Cre; 

forward) 5’-GCGGTCTGGCAGTAAAAACTATC-3’, (Tie2-Cre; reverse) 5’-

GTGAAACAGCATTGCTGTCACTT-3’, (PCR positive control; forward) 5’-

CTAGGCCACAGAATTGAAAGATCT-3’, and (PCR positive control; reverse) 5’-

GTAGGTGGAAATTCTAGCATCATCC-3’. The recombinase activity of Cre was assessed 

using Primer 1 above and the following primer: (Primer 3; reverse) 5’-

GGACACCAACCTCAGCTGGC-3’. All primers were purchased from IDT. Thermocycling 

was carried out using the StepOnePlus PCR Machine (Applied Biosciences) and performed 

according to recommendations from animal sources. 
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2.15 GENERATING ENDOTHELIAL CELL SPHEROIDS 

750 HMEC-1 were suspended in MCDB-131growth medium containing 0.25% (w/v) 

methylcellulose (Sigma) and seeded into non-adherent round-bottom 96-well plates (Corning). 

The cells were allowed to aggregate for 24 hours at 37oC. 

2.16 ENDOTHELIAL SPHEROID SPROUTING ANGIOGENESIS ASSAY 

In vitro sprouting angiogenesis of endothelial spheroids was assessed using a protocol described 

by Korff, T., et al. with modification [260, 261]. Collagen solution [1 mg-mL-1 type I collagen, 

0.25% (w/v) methylcellulose] was made diluted in MCDB-131] and pH-adjusted using 5 N 

NaOH (approximately 1-µL-mL-1 solution). Spheroids were collected and mixed with the chilled 

collagen solution and 600-µL (typically containing 15-20 spheroids) was seeded into a pre-

warmed 24-well plate (Corning). To permit complete polymerization, the gels were incubated at 

37oC for 1 hour. After polymerization, 500-µL of MCDB-131 growth medium was added to each 

well and incubated at 37oC for 24 hours before analysis. 

2.17 MASS SPECTROMETRY 

Samples for mass spectrometric analysis were subjected to SDS-PAGE. The gels were washed 2 

times with MilliQ water for 5 minutes each to remove SDS then stained with Coomassie Stain 

[0.1% (w/v) R250 (Fisher Scientific), 40% (v/v) Ethanol (Decon), 10% (v/v) Acetic Acid (Fisher 
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Scientific)]. Gels were destained using Destaining Solution [10% (v/v) Ethanol, 7.5% (v/v) 

Acetic Acid] until bands could be clearly discerned from background. The bands were excised 

with a sterile razor blade and placed in a microcentrifuge tube containing MilliQ water. These 

samples were delivered to the University of Pittsburgh Proteomics Facility for processing and 

analyzation. Gel bands were digested with trypsin and peptides were analyzed by nano reverse 

phase HPLC interfaced with an LTQ linear ion trap mass spectrometer. The tandem mass spectra 

(MS/MS) were analyzed by the SEQUEST search engine and identified peptides and proteins 

were further statistically validated with the Scaffold software. This project used the UPCI Cancer 

Biomarkers Facility that is supported in part by award P30CA047904. 

2.18 IMMUNOPRECIPITATION 

Cells were extracted and lysates prepared as described under the section Protein Extraction for 

Western Blot without SDS. Equal amount of protein were pre-cleared by constant mixing with 

15-µL Protein G Plus/Protein A-conjugated Agarose Beads (Calbiochem) at 4oC for 1 hour. 

Brief centrifugation was used to separate bead fraction and supernatant collected into pre-chill 

microcentrifuge tube. Lysates were incubated with 5 µg of appropriate antibody overnight at 4oC 

with constant rotation. This was mixed with 50-µL Protein G Plus/Protein A-conjugated Agarose 

Beads and rotated at 4oC for 2 hours. The beads were washed 3 times with Lysis Buffer and 

proteins eluted by boiling for 5 minutes in the presence of 2-mercaptoethanol. The eluate was 

directly loaded for SDS-PAGE and Western blot or stored at -80oC. 
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2.19 GENERATION OF RETROVIRUS 

Appropriate pQCXIP constructs and pVSVG (Clontech) were co-transfected into the packaging 

cell line GP2-293 (Clontech) as described. Cells were washed twice after 24 hours transfection 

and virus allowed to collect for following 48 hours. The conditioned media was collected and 

filtered through 0.45 µm Cellulose Acetate Filter (VWR) and used immediately for infection. 

2.20 RETROVIRAL INFECTION AND CELL SELECTION 

HMEC-1 were plated sub-confluently and treated with 4-mL retrovirus-containing conditioned 

medium in the presence of 2.5 µg-mL-1 Polybrene (Sigma) for 3 hours at 37oC. MCDB-131 

growth medium was then added to 10-mL and cell incubated 24 hours at 37oC. This process was 

repeated once. Cells were washed several times with DPBS and allowed to recover in MCDB-

131 growth medium for 24 hours. Cell selection was achieved using MCDB-131 growth medium 

containing 1 µg-mL-1 Puromycin (Sigma). Cells were selected until cell death subsided and 

maintained in MCDB-131 growth medium containing 0.25 µg-mL-1 Puromycin. 

2.21 PHOSPHATASE TREATMENT 

Cells were extracted and lysates prepared as described under the section Protein Extraction for 

Western Blot without SDS. Equal amounts of protein was aliquoted for each condition and 

supplemented with appropriate 10x buffer and 10x MnCl2 and either MilliQ water or 1 U-ug-1 λ-
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Protein Phosphatase (NEB). Samples were incubated at 30oC for 30 minutes. These samples 

were used to make Rehydration Buffer for 2D electrophoresis and subjected to isoelectric 

focusing. The presence of higher salt concentrations did not significantly affect focusing 

resolution. 

2.22 PROTEIN EXPRESSION AND AFFINITY PURIFICATION 

pGEX contructs were transformed into DH5α (Life Technologies) competent cells. Cells were 

grown at 37oC under constant agitation in the presence of antibiotics until the optical density at 

600 nm was between 0.6 and 0.9. Cells were induced with 0.1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) (Sigma) for 3 hours. Cells were lysed by sonication in the 

presence of Lysis Buffer containing bacterial protease inhibitors (Sigma). The lysates were 

allowed to incubate on ice for 30 minutes then centrifuged at 13000 RPM for 30 minutes. 

Supernatants were mixed with reconstituted Glutathione-Agarose Beads (Sigma) for 2 hours at 

4oC with constant rotation. Beads were washed 5 times with Lysis Buffer and either underwent 

in vitro kinase treatment (See In vitro Kinase Assay section for further details) or incubated with 

lysates generated from HEK-293 as previously described overnight at 4oC with constant mixing. 

The beads were then washed 5 times with Lysis Buffer and proteins eluted by boiling for 5 

minutes in the presence of 2-mercaptoethanol. The eluate was directly loaded for SDS-PAGE 

and Western blot or coomassie stain as previously described. 
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2.23 IN VITRO KINASE ASSAY 

For GST-Pfn1, following washes with Lysis Buffer, beads were washed an additional 2 times 

with Kinase Buffer [20 mM BES (Sigma) pH 7, 20 mM EGTA (Fisher Scientific), 6 mM MgCl2 

(Fisher Scientific), 5 mM ATP (Sigma), 10 mM Phosphocreatine (Sigma), 1 mM DTT]. For His-

Pfn1 (Cytoskeleton), 1.5 µg was added to Kinase Buffer for each treatment condition: with or 

without 0.5 U µL-1 Protein Kinase A (PKA) from bovine heart (Sigma). GST-Pfn1 beads were 

separated into three treatment groups: No treatment (maintained on ice) and with or without 0.5 

U-µL-1 PKA. For the latter two groups, the GST-Pfn1 beads or His-Pfn1 was incubated at 30oC 

for 1 hour with gentle mixing every 15 minutes. The reaction was stopped and proteins eluted by 

boiling for 5 minutes in the presence of 2-mercaptoethanol. Eluate was directly loaded for SDS-

PAGE and Western blot of coomassie stain as previously described. 

2.24 MULTIPLE SEQUENCE ALIGNMENT 

Multiple sequence alignment was done using Clustal Omega (EMBL-EBI). 

2.25 HOMOLOGY MODELING 

A homology model of Mus musculus Pfn1 was created from a crystal structure of bovine Pfn1 

bound to actin (PDB 2BTF).  The model was created by manually performing the following 

mutations using Pymol: N9S, N41S, I49V, I100V, and M122L. All mutations could be 
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performed without introducing significant steric clashes. Additional Pfn1 models were created by 

mutating T89 to either valine or aspartic acid to mimic a phospho-dead and phosphorylated state. 

All simulations were performed with Amber version 12.3. The homology modules were solvated 

to form an octahedral water box that extends 12 Å beyond the protein.  The system was 

neutralized with Na+ or Cl- ions.  The system then underwent two rounds of minimization. A 

100 ps equilibration run was performed with weak positional restraints on the protein during 

which the temperature was warmed from 0 K to 300 K.  Simulations were performed using the 

particle mesh Ewald (PME) method with a nonbonded cutoff of 10 Å.  Constant pressure 

periodic boundaries and isotropic position scaling were used to maintain a pressure of 1 atm.  

Langevin dynamics were used for temperature control. Simulations were performed at the Center 

for Simulation and Modeling using equipment funded through NSF Grant 12-29064. Three 

simulations of each model were run and every simulation was run for 144 hours, resulting in 

approximately 360ns of simulation per a run (an I/O error terminated the T89V simulation early) 

[Reproduced with the permission of Dr. David Koes, University of Pittsburgh (Collaborator)]. 
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3.0  PROFILIN-1 IS REQUIRED FOR SPROUTING ANGIOGENESIS 

3.1 INTRODUCTION 

Cell migration requires the coordinated regulation of the actin cytoskeleton to produce 

membrane protrusion and rear retraction [38]. Pfn1, a G-actin-binding protein, participates in 

barbed end elongation and enhances the activity of other actin-binding proteins to promote actin 

polymerization [258]. Accordingly, a number of studies have implicated Pfn1 as being vital to 

cell migration in a variety of contexts [175-180]. Angiogenesis is the outgrowth of new vessels 

emerging from the existing vasculature and is critically dependent on endothelial cell invasion 

and migration [189]. It is therefore not surprising that Pfn1 has proven imperative to endothelial 

cell motility and morphology in vitro [187, 220]. Angiogenesis, however, is a more complex 

process that requires the coordinated actions of multiple cells that are dynamically regulated to 

invade and differentiate ultimately giving rise to a functional vessel. In this regard, Pfn1 has not 

been investigated in the context of endothelial cell undergoing sprouting angiogenesis. 
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3.2 RESULTS 

3.2.1 Knockdown of Profilin-1 Reduces Endothelial Cell Motility on Multiple Substrates 

The substrate on which or along which cells move plays a vital role in their behavior. Therefore 

assessing movement on relevant substrates will be necessary to begin to study the importance of 

Pfn1 in endothelial cells undergoing angiogenesis. Previous studies on the role of Pfn1 in general 

endothelial cell movement assessed single-cell random motility on plastic with no ECM 

component [187]. We first wanted to verify that the observed phenotype was not a function of 

the substrate on which the motility was assessed. Suppression of Pfn1 in HMEC-1, an 

immortalized microvascular endothelial cell line, was achieved by transiently transfecting a 

previously characterized single-target Pfn1 siRNA (Pfn1 siRNA) for the time indicated [187]. 

With this, greater than 95% knockdown of Pfn1 was achieved (Figure 2A). We seeded these 

cells on either plastic (untreated culture dishes) or collagen-coated dishes and assessed the 

average single-cell random 2D speed using nuclear tracking (Figure 2B). Pfn1 knockdown 

resulted in a 37% decrease in average cell speed on plastic, comparable to the previous report. 

Similarly, a 36% decrease in cell speed was observed on collagen substrate. Although there was 

a trend of lower overall speed for cells seeded on collagen, the decrease was not significant. 

These conditions, while limited to 2D analysis, indicate Pfn1 may play a general, yet vital, role 

in endothelial cell motility and therefore becomes an interesting potential target for regulating 

angiogenesis. 
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Figure 2. Dependence of Profilin-1 siRNA-Mediated Reduction in HMEC-1 Motility on Substrate.(A) Western blot 

showing suppression of Pfn1 expression in HMEC-1 treated with either smart pool non-target (Control) or single-

target Pfn1 siRNA (Pfn1 siRNA) after 96 hours. (B) Box-and-whisker plots of the average cell speed of either 

Control or Pfn1 siRNA-treated HMEC-1 seeded on either an untreated cell culture dish (Plastic) or a collagen-

coated dish (Collagen) normalized to the Control cells seeded on Plastic. The average speed of the Control cells on 

Plastic was 0.76 µm-min-1. Time-lapse imaging was carried out 96 hours post-transfection after cells were incubated 

24 hours on appropriate substrate. (* p<0.001; NS Not Significant) 
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3.2.2 Treatment with Profilin-1 siRNA Decreases Sprouting of Explanted Aortic Rings 

Pfn1 has been implicated in some aspects of angiogenesis, but no study has directly explored its 

importance in neo-vessel sprouting [187, 188]. In this regard, we adopted the ex vivo mouse 

aortic ring assay to assess the overall impact of Pfn1 on sprouting angiogenesis [259, 262]. 

Aortic rings derived from three female FVB background mice were first treated with either 

Control or Pfn1 siRNA. These rings were subsequently embedded in collagen containing no 

serum and incubated with medium containing 2.5% FBS and 30 ng-mL-1 VEGF-A for 96 hours. 

Representative images for both Control and Pfn1 siRNA-treated rings following the 120 hour 

protocol are shown in Figure 3A. For Pfn1 siRNA-treated rings, the number of sprouts counted 

using phase contrast microscopy was significantly reduced at all time points (Figure 3B). The 

counts for the numbers of sprouts at the final time point were verified using an endothelial cell-

specific lectin stain (Figure 3C-D). The decrease in the number of sprouts for Pfn1 siRNA-

treated rings was found to be equally significant, where the counts using phase contrast 

microscopy were slightly conservative for both groups. 
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Figure 3. Effect of Profilin-1 siRNA Treatment on Aortic Ring Sprouting Angiogenesis. (A) Representative images 

of Control or Pfn1 siRNA-treated aortic rings cultured for 96 hours following 24 hours transfection. Arrows indicate 

sprouts that were counted in respective images (B) The number of sprouts was quantified using phase contrast 

microscopy 72, 96, and 120 hours after beginning transfection. (C) Representative images of Control or Pfn1 

siRNA-treated aortic rings at the final time point stained with fluorescent-tagged lectin. (D) The number of sprouts 

was quantified, verifying the accuracy of the previous counts. (* p<0.05) 

3.2.3 Sprouts Exhibiting Attenuated Profilin-1 Expression Appear Normal 

Interestingly, there were a number of sprouts originating from aortic rings treated with Pfn1 

siRNA that displayed global suppression of Pfn1 expression. That is, while individual sprouts 

likely contain multiple cells, the expression of Pfn1 was either comparable to the sprouts from 

the control-treated aortic rings or relatively low throughout the entire sprout. The Pfn1 
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expression of individual sprouts was determined using immunofluorescence (Figure 4A). Sprouts 

from aortic rings treated with Pfn1 siRNA were segregated as either having nearly unobservable 

levels of Pfn1 (Low Pfn1) or not (Avg Pfn1) and representative images of sprouts from each 

group are shown in Figure 4B. The ratio of sprouts designated as Low Pfn1 or Avg Pfn1 for both 

Control and Pfn1 siRNA-treated aortic rings is shown in Figure 4C. Treatment with control 

siRNA did not yield any sprouts that could be defined as having Low Pfn1. Of the sprouts that 

grew from Pfn1 siRNA-treated aortic rings, approximately 35% exhibited almost complete loss 

of Pfn1. This ratio can also be used as a crude measure of the efficacy of the siRNA treatment in 

attenuating Pfn1 expression in the ex-vivo system. Analysis of the properties of the individual 

sprouts between the segregated groups indicated that neither the length, as measured from the 

edge of the aortic ring to the end of the sprout, nor the frequency of bifurcation, as bifurcations 

per sprout, were not statistically different (Figure 4D-E). 
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Figure 4. End-point Analysis of Sprouts with Contrasting Profilin-1 Expression Levels. (A) Representative images 

of Control or Pfn1 siRNA-treated aortic rings at the final time point stained for lectin and Pfn1. The yellow arrow 

indicates a sprout defined as having visible levels of Pfn1 (Avg Pfn1) while white arrows indicate sprouts designated 

as having low levels of Pfn1 (Low Pfn1). (B) Representative images of sprouts defined as having either Low Pfn1 or 

not Avg Pfn1. Aortic rings were stained with fluorescent-tagged lectin (red) and Pfn1 (green) and co-localization 

observed (Merge). (C) The number of sprouts in each of the Avg Pfn1 and Low Pfn1 groups were counted and 

displayed as a portion of 100% as a measure of the extent of knockdown. (D) The lengths of the sprouts between the 

two groups were compared. (E) The number of bifurcations per sprout was compared between groups. (NS Not 

Significant) 

3.2.4 Endothelial Cell-Specific Profilin-1 Knockout Mice are Not Viable 

While the prior experiments indicate Pfn1 is a factor that is generally important in angiogenic 

sprouting, the specific impact of Pfn1 on endothelial cells was not addressed due to the presence 

of a number of other cell types that were subjected to the same siRNA treatments. To look more 

specifically at the importance of Pfn1 in endothelial cells during sprouting angiogenesis, we 

attempted to create an endothelial cell-specific knockout mouse model. Using a Cre-loxP system 

for conditional knockout of specific genes, we mated Pfn1fl/fl mice (See Figure 5A) with Tie2-

Cre+/- mice. Cre successfully removed the first exon creating Pfn1EC,+/- mice (See Figure 5B for 

typical genotying results). Pfn1EC,+/- mice were born at the expected frequency (See Table 2) and 

did not exhibit any obvious deficiencies compared to their Pfn1EC,+/+ littermates. 

To generate Pfn1EC,-/- mice, Pfn1EC,+/- mice were backcrossed with Pfn1fl/fl mice and the 

resulting genotype frequencies illustrated in Table 3. No Pfn1EC,-/- mice were born and using a 

binomial distribution, we found that the frequency is highly significant meaning this is not likely 
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a random occurance. Therefore, endothelial cell-specific knockout of Pfn1 is a lethal genotype, 

further implicating its importance in endothelial cell function. 

 

 

 

Figure 5. Creation of an Endothelial-Specific Heterozygous Profilin-1 Mouse Model. (A) A representation of the 

Pfn1 gene with loxP sequences and the locations of the primers used for genotyping. (B) Representative genotyping 

results. PCR conducted with Primer 1 and Primer 2 reveals the Pfn1 genotype. The lower molecular weight band 

(240 bp) is the wild-type allele while the higher molecular weight band (340 bp) is a Pfn1 allele containing the loxP 

sequence. The presence of Tie2-Cre was assessed using a single set of primers along with a set of PCR positive 

control primers. The activity of Cre was assessed using a PCR conducted with Primer 1 and Primer 3 where a 700 

bp band is present when the first exon has been deleted. 
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Table 2. Genotype Frequency for the Creation of Pfn1EC,+,-. A summary of the genotypes of the pups generated 

under the breeding scheme to create heterozygous mice comparing actual frequency to theoretical frequency. 

Pfn1EC,+/+ (* any mouse that is Tie2-Cre-/- is considered Pfn1EC,+/+) and Pfn1EC,+/- were generated as expected. 

 

 

 

Table 3. Genotype Frequency for Creation of Pfn1EC,-/-. A summary of the genotypes of the pups generated under 

the breeding scheme to create knockout mice comparing actual frequency to theoretical frequency. Pfn1EC,+/+ (* any 

mouse that is Tie2-Cre-/- is considered Pfn1EC,+/+) and Pfn1EC,+/- were generated as expected while no Pfn1EC,-/- were 

born. (** p<0.005) 
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3.2.5 Heterozygous Knockout of Profilin-1 in Endothelial Cells Delays Sprouting 

Angiogenesis in Matrigel 

Although Pfn1EC,-/- mice could not be generated, the aortas from Pfn1EC,+/- and their Pfn1EC,+/+ 

littermates were isolated and prepared as previously described to begin to address the specific 

importance of Pfn1 in endothelial cells undergoing sprouting angiogenesis. Aortic rings were 

embedded in growth factor-reduced matrigel and incubated with medium containing 2.5% FBS 

and 30 ng-mL-1 VEGF-A for 96 hours. The sprouts were counted using phase contrast 

microscopy at the time points indicated. Representative images of the 72 hour time point of 

sprouts from aortic rings of Pfn1EC,+/- and Pfn1EC,+/+ mice are shown in Figure 6A. Compared to 

collagen, sprouts formed in matrigel are generally shorter and more cord-like. Similarly, the 

sprouts are more unstable and began to dissipate between 96 and 120 hours; however, no 

difference in rate of decay was observed between sprouts originating from Pfn1EC,+/- and 

Pfn1EC,+/+ aortic rings. Pfn1EC,+/- aortic rings exhibited a delay in sprouting as there was a 

significant decrease in the number of sprouts at 72 hours, but at 96 hours, the time of maximum 

sprouting, there was no statistical difference (Figure 6B). Aortic rings from these mice were also 

embedded in collagen using the same setup. Representative images of the resulting sprouting are 

shown in Figure 6C. Unlike matrigel, embedding in collagen did not yield a significant 

difference at any time point with the results at the final stage shown in Figure 6D. It is possible 

that there is a substrate-dependent effect or endothelial cell-specific heterozygous knockout of 

Pfn1 is simply not sufficient to produce a deficiency in sprouting. 
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Figure 6. Effect of Pfn1EC,+/- Genotype on Aortic Ring Sprouting Angiogenesis. (A) Representative images of 

Pfn1EC,+/- and Pfn1EC,+/+ aortic rings embedded in matrigel and incubated for 72 hours. (B) Quantification of the 

number of sprouts using phase contrast microscopy after 48, 72, and 96 hours. (C) Representative images of 

Pfn1EC,+/- and Pfn1EC,+/+ aortic rings embedded in collagen and incubated for 96 hours. (D) Quantification of the 

number of sprouts using phase contrast microscopy after 96 hours. (* p<0.05; NS Not Significant) 

3.2.6 Attenuation of Profilin-1 is Detrimental to Endothelial Cell Spheroid Sprouting 

Endothelial cell-specific Pfn1 knockout mice could not be generated nor was endothelial cell-

specific heterozygous knockout of Pfn1 sufficient for reproducing the suppression of sprouting 

angiogenesis observed for the initial siRNA-mediated knockdown model. While it is certainly 

possible Pfn1 attenuation had a more significant impact on other cell types resulting in the lower 
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sprout count, the vital role Pfn1 plays in general endothelial cell movement begs for further 

analysis. Therefore, to gain an understanding of the importance of Pfn1 in endothelial cells 

undergoing sprouting angiogenesis, the in vitro spheroid sprouting angiogenesis assay was 

adopted. In this assay, a sphere of 750-1000 tightly-packed endothelial cells are embedded in 

collagen and allowed to sprout. Although other cell types are absent, spheroids can produce 

sprouts of sufficient length for meaningful quantification, though they do not approach the size 

of sprouts generated from aortic rings. Spheroids were embedded in collagen 72 hours after 

either Control or Pfn1 siRNA treatment and incubated for 48 hours. The extent of knockdown 

both 72 hours and 120 hours after siRNA treatment is depicted in Figure 7A and representative 

images of spheroids are shown in Figure 7B. Knockdown of Pfn1 resulted in a significant 

decrease in the number of sprouts compared to control (Figure 7C). Together, these findings 

show that Pfn1 is required for endothelial cells to undergo efficient sprouting angiogenesis. 
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Figure 7. Importance of Profilin-1 in Sprouting Endothelial Cells. (A) Western blot showing suppression of Pfn1 

expression in HMEC-1 treated with either Control or Pfn1 siRNA after 72 and 120 hours. (B) Representative images 

of spheroid sprouting following 48 hours incubation. (C) Quantification of the number of sprouts per spheroid 

normalized to the cross-sectional area of the sprout just after embedding. (* p<0.0001) 

3.3 DISCUSSION 

Depletion studies have indicated that Pfn1 is required for cell migration in a number of 

physiological and pathological contexts [175-180]. As it pertains to endothelial cells, this and 

other studies have demonstrated Pfn1 generally promotes cell motility in both HMEC-1 and 

Human Vein Umbilical Endothelial Cells (HUVEC) [187, 188, 232]. Conversely, attenuation of 
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Pfn1 in mammary epithelial cells and the metastatic breast cancer cell line MDA-MB-231 

enhanced single-cell motility [139]. While nuclear displacement, a typical measure of cell 

movement also used in this study, was enhanced, closer examination of these cells revealed that 

loss of Pfn1 actually slowed the rate of membrane protrusion. This phenomenon was similarly 

observed in endothelial cells where loss of Pfn1 resulted in dramatically lower membrane 

protrusion velocities [188, 263]. Cell motility is a function of a number of processes and 

determining Pfn1’s specific role in any one of those cannot be achieved solely from displacement 

analysis; however, membrane protrusion is largely based on F-actin dynamics and is directly 

proportional to the rates of F-actin polymerization and turnover. Therefore, there is strong 

evidence for Pfn1 as a promoter of F-actin polymerization in cells, in agreement with prior 

studies utilizing in vitro assay. Given this though, the impact of Pfn1 on cell migration and 

physiological processes that depend on cell movement likely cannot be generalized and each cell 

or system of interest needs to be individually considered. 

Sprouting angiogenesis requires the coordinated actions of multiple cells to promote neo-

vessel formation. This process involves invasion and dynamic morphological modification, both 

highly dependent on rapid actin polymerization and turnover. Accordingly, Pfn1 becomes an 

interesting factor for investigation. Because of the apparent context-specific role of Pfn1 in cell 

migration, we first determined that suppression of Pfn1 expression resulted in reduced 

endothelial cell single-cell speeds on both plastic, the previously studied substrate, and collagen, 

a more relevant substrate. Though the control speeds differed somewhat, Pfn1 knockdown 

slowed the cells to roughly the same extent. This implicates Pfn1 as a general promoter of 

endothelial cell motility and warrants the study of its role in the angiogenic cascade. Previous 

studies examining Pfn1 in the context of angiogenesis have relied on morphogenesis assays 
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[220]. In general, attenuation of Pfn1 expression resulted in decreased 2D and 3D cord 

formation; however, the relevance of these assays toward sprouting angiogenesis is not clear. 

Morphogenesis assays involve endothelial cells at sub-confluent levels that are randomly seeded 

and allowed to assemble into cord- or tube-like structures [264]. This process is therefore 

qualitatively more comparable to the model of vasculogenesis. Sprouting angiogenesis, in 

comparison, is the development of an outward growing vessel or cord originating from an 

approximately confluent layer of cells lining a pre-existing blood vessel [265]. In this regard, we 

demonstrated that Pfn1 is a factor that generally promotes angiogenic sprouting using the ex vivo 

mouse aortic ring assay in conjunction with siRNA-mediated suppression of Pfn1 expression. 

Fewer sprouts were observed for the aortic rings treated with Pfn1 siRNA but fluorescent 

staining revealed the presence of sprouts consisting exclusively of cells with low levels of Pfn1 

expression. As a result, we quantitatively segregated sprouts as having either low or normal 

levels of Pfn1 to analyze differences in characteristic qualities. Interestingly, when comparing 

these groups there was neither a difference in length nor a difference in propensity to bifurcate. 

Essentially, without knowledge of the differential Pfn1 expression levels, the two groups of 

sprouts were qualitatively indistinguishable. In conjunction with the fact that fewer sprouts were 

observed for Pfn1 siRNA-treated aortic rings, it appears the main role of Pfn1 may be as a 

promoter of sprout initiation while having a less impactful role once sprouting has begun. 

While meaningful in its own right, the previous experiment does not clarify the specific 

importance of Pfn1 in endothelial cells undergoing sprouting as the use of RNA interference to 

down-regulate Pfn1 exhibits no cell type specificity. To resolve this, we attempted to generate 

endothelial cell-specific Pfn1 knockout transgenic mice. Heterozygous mice were born at the 

expected frequency and did not exhibit any obvious deficiencies compared to their wild-type 
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littermates. Use of the aortas from these mice in the aortic ring assay only mildly impacted 

sprouting as a delay was observed only for those rings embedded in matrigel compared to wild-

type. It is possible that single-allele knockout is not sufficient to produce a phenotype. 

Unfortunately, the effort to generate knockout mice was not successful as this genotype appears 

to be embryonic lethal. While detrimental to the current study, this leads to a possible role for 

Pfn1 in developmental angiogenesis or vasculogenesis. To continue our pursuit of the 

importance of Pfn1 in sprouting angiogenesis, we adopted the in vitro spheroid sprouting assay. 

Using this system, we showed that Pfn1-deficienct spheroids exhibited far fewer sprouts. This 

3D system has several advantages over the previously utilized morphology assays, not the least 

of which is the formation of sprouts from an existing structure. 

In conclusion, we have identified Pfn1 as a critical factor in endothelial cells undergoing 

sprouting angiogenesis. As a result, Pfn1 becomes an interesting therapeutic target. Pfn1 activity 

has direct consequences on the actin cytoskeleton, a key structural element vital to the 

angiogenic cascade. As such, all pro-angiogenic pathways must promote dynamic change of 

these structures to promote cellular invasion and morphologic change. Because Pfn1 acts directly 

on these processes, it becomes a necessary central factor for a number of angiogenic stimulants. 

Therefore, inhibition of Pfn1 may be one means by which angiogenesis can be generally 

shutdown. This has important implications in cancer therapeutics, among others, where most 

anti-angiogenic therapies fail because they target single stimulants and compensatory factors 

survive. Whether such a therapeutic agent can be realistically created remains to be seen and 

much more testing will be needed, but it is an interesting starting point. The specific means by 

which Pfn1 promotes angiogenic sprouting remains unknown. Both G-actin and polyproline 

binding were required for Pfn1 to promote lamellipodial protrusion and single-cell random 
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motility in endothelial cells [188]. Similarly, these interactions were imperative for cord 

morphogenesis. Therefore, it stands to reason that Pfn1 acts through G-actin and polyproline 

interaction to promote F-actin polymerization permitting endothelial cells to more readily invade 

and adapt. This hypothesis will be examined in Specific Aim 3. 
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4.0  PROFILIN-1 CAN BE POST-TRANSLATIONALLY MODIFIED BY PROTEIN 

KINASE A 

4.1 INTRODUCTION 

Numerous studies have identified Pfn1 as a vital cog in the machinery that regulates actin 

polymerization. Though its specific role has evolved over time, the general consensus is that 

Pfn1 promotes barbed end elongation and actin turnover by coordinately decreasing AC and ACB. 

As such, this role requires G-actin interaction. As of yet, there is no model of a G-actin-

independent means by which Pfn1 can promote actin polymerization; however, cells do not 

readily maintain a large pool of Pfn1-G-actin complex [73]. Interestingly, microinjection of actin 

nuclei and G-actin into quiescent epithelial cells resulted in filaments composed exclusively of 

exogenous actin that polymerized far slower than endogenous filaments [74, 75]. This shows 

unregulated actin polymerization is probably not a realistic pathway by which filaments are 

generated in vivo. There are likely further regulatory steps that have yet to be described behind 

which a pool of polymerization-incompetent G-actin is kept until properly released. Significant 

effort has been put forth in defining how actin-binding proteins are regulated such that actin 

polymerization occurs in a predictable manner, but Pfn1 is often overlooked and simply thought 

to seamlessly facilitate the function of a variety of nucleation and elongation factors. 
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With advances in mass spectrometry and more sensitive tools for the purification of 

modified proteins, a number of recent proteomics studies have identified Pfn1 as a target for 

post-translational modification (See Table 1). While these exploratory studies have augmented 

our understanding of the proteome, a myriad of cell types and conditions were used to collect 

these data, so individual modifications cannot be assumed to be ubiquitous. Similarly, the 

upstream regulation and downstream impact of the identified Pfn1 post-translational 

modifications have largely not been investigated. To date, the only modification fully 

characterized in a cellular context is phosphorylation of Y128, an event found to occur 

downstream VEGF-A stimulation in a VEGFR2- and Src-mediated fashion [232]. This 

modification increased Pfn1 association with G-actin and generally promoted endothelial 

migration.  That Pfn1 interaction with G-actin can be regulated has important implications in the 

effort to fully understand the dynamics of the actin cytoskeleton. While the fraction of Pfn1 

found associated with G-actin is low in unstimulated cells, this shows Pfn1 is itself regulated to 

uptake G-actin upon cell activation. 

Beyond this, only phosphorylation of S137 has been examined. Both PKCζ and ROCK1 

treatment led to S137 phosphorylation in vitro, but study of its impact on Pfn1-ligand interaction 

was inconsistent [86, 250, 251]. No other post-translational modifications of Pfn1 have been 

investigated. It therefore becomes imperative to address the modification states of Pfn1 in cells 

and assess their causal upstream pathways and downstream effects to more completely elucidate 

the regulation of Pfn1. 
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4.2 RESULTS 

4.2.1 Profilin-1 is Post-Translationally Modified in Unstimulated Cells 

To investigate the modification status of Pfn1 we utilized 2D electrophoresis. To begin our 

analysis, we wanted to determine whether or not the endogenous Pfn1 of HMEC-1 was subjected 

to modification under typical culture conditions (Figure 8A). The theoretical isoelectric point of 

endogenous, unmodified Pfn1 is ~8.3, therefore we used pH 6-10 IPG strips to maximize 

resolution. With this, we observed populations of Pfn1 at several isoelectric points in HMEC-1 

maintained in growth medium suggesting Pfn1 is indeed post-translationally modified. 

The isoelectric point of Pfn1 is basic and isoelectric focusing becomes more difficult 

because DTT, the reducing agent, becomes negatively charged and migrates away from basic 

proteins [266]. To combat this, we expressed an acidic, myc-tagged Pfn1 (myc-Pfn1; isoelectric 

point ~6.1) to improve resolution and more clearly observe the populations of Pfn1 charge states. 

Both expression in HMEC-1 and HEK-293 showed a similar pattern where the most basic spot 

represented a very small fraction of the total myc-Pfn1 population (Figure 8B-C). The patterns of 

the exogenous myc-Pfn1 and endogenous Pfn1 were comparable where it is possible that the 

streaking observed in the endogenous Pfn1 truly represents multiple populations that were not 

sufficiently resolved. Therefore there are at least 2, and more likely 3, charge states of Pfn1 and 

myc-Pfn1 in HMEC-1 and HEK-293 being maintained in appropriate growth medium. Because 

of the similarity among groups, subsequent 2D electrophoresis experiments will assess the state 

of exogenously-expressed myc-Pfn1 in HEK-293. 
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Figure 8. 2D Electrophoresis of Profilin-1 and myc-Pfn1 Expressed in Unstimulated Cells. (A) 2D electrophoresis 

of endogenous Pfn1 from HMEC-1 maintained in growth medium. Isoelectric focusing was conducted using a pH 6-

10 IPG strip. In all cases, the relative locations of the anode and cathode are labeled. (B) 2D electrophoresis of 

exogenously-expressed myc-Pfn1 from HMEC-1 maintained in growth medium. Isoelectric focusing was conducted 

using a pH 4-7 IPG strip. (C) 2D electrophoresis of exogenously-expressed myc-Pfn1 from HEK-293 maintained in 

growth medium. Isoelectric focusing was conducted using a pH 4-7 IPG strip. 

4.2.2 Profilin-1 is Phosphorylated on a Non-Tyrosine Residue in Unstimulated Cells  

Table 1 provides a list of known Pfn1 post-translational modifications. There are many varieties 

of post-translational modification, most of which have not been investigated using proteomic 
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techniques, so this list is presumably not exhaustive. Phosphorylation is the most widely studied 

and best-characterized post-translational modification that has implications in every cellular 

process. It has been suggested that 30% of all proteins in eukaryotic cells are phosphorylated on 

at least one residue [267]. To assess whether the charge states of myc-Pfn1 resulted from a 

phosphorylation modification, cell lysate was treated with λ-Protein Phosphatase, a promiscuous 

phosphatase with low specificity (Figure 9A). A single phosphorylation will alter the net surface 

charge of a protein by -1, so the basic shift of a significant population of myc-Pfn1 indicates that 

it is phosphorylated in cells maintained in growth medium. Further investigation using a 

phosphotyrosine-specific antibody revealed no appreciable level of phosporylated tyrosine. Myc-

Pfn1 is therefore phosphorylated on either serine or threonine residues (Figure 9B). In addition to 

phosphorylation, Pfn1 can also be acetylated on several lysine residues. Like phosphorylation, 

acetylation modification of a lysine residue will change the net surface charge of a protein by -1. 

However, none of the spots recognized by an acetylated-lysine-specific antibody aligned with 

myc-Pfn1, suggesting this is not a major modification under these conditions (Figure 9C). 
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Figure 9. Assessing the Identity of the Post-Translational Modifications of Profilin-1. (A) 2D electrophoresis 

comparing samples either treated with λ-Protein Phosphatase (λ-Phosphatase) or not (Control). Isoelectric focusing 

was conducted using a pH 4-7 IPG strip. In all cases, the relative locations of the anode and cathode are labeled. (B) 

2D electrophoresis of HEK-293 proteins immunoblotted for anti-phosphotyrosine (red) and subsequently 

immunoblotted for myc-Pfn1 (green) on the same membrane and aligned. Isoelectric focusing was conducted using 

a pH 4-7 IPG strip. (C) 2D electrophoresis of HEK-293 proteins immunoblotted for anti-acetylated-lysine (red) and 

subsequently immunoblotted for myc-Pfn1 (green) on the same membrane and aligned. Isoelectric focusing was 

conducted using a pH 4-7 IPG strip. 

4.2.3 Protein Kinase A Phosphorylates Profilin-1 on Threonine 89 in vitro 

There are several serine and threonine residues previously reported to be phosphorylated on Pfn1, 

but the upstream regulation has not been characterized. To begin to understand what pathways 
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could regulate Pfn1, we employed a series of computational prediction algorithms to filter 

potential targets [268-271]. Although these programs attempt to characterize a variety of kinases, 

they only represent a small fraction of those that are expressed in a cell, indicating a clear bias in 

this strategy. Nonetheless, the AGC (Protein Kinase A, G, and C) family kinases consistently 

scored well with high stringency searches. Of particular interest was Protein Kinase A (PKA) as 

it was a predicted kinase for several residues, some of which overlapped with previously 

discovered phosphorylation sites. To test this hypothesis, we treated His-tagged Pfn1 (His-Pfn1) 

with PKA in vitro. This treatment resulted in the acidic shift of a significant population of His-

Pfn1 (unmodified isoeletric point pH ~6.5) presenting several new charge states and suggesting 

phosphorylation on several sites (Figure 10A). To determine the specific residues that were 

modified, these samples were trypsin-digested and subjected to High Performance Liquid 

Chromatography (HPCL)-tandem mass spectrometric (MS/MS) analysis. 53% coverage was 

achieved and three phospho-peptides were identified: DRSpS57FYVNGLTLGGQK, 

pT89KSTGGAPTFNVTVTK, and SpT92GGAPTFNVTVTK (Figure 10B). His-Pfn1 treated 

without PKA yielded no phospho-peptides. 

His-Pfn1 is a C-terminally-tagged fusion protein and it has been established that tagging 

Pfn1 on its C-terminus completely abrogates polyproline interaction [272]. This suggests some 

conformational change in Pfn1. Both the N- and C- terminal helices are in close proximity and 

participate in polyproline interaction and N-terminal tags do not impact Pfn1 as severely. 

Although PKA lacks a polyproline stetch, the site of Pfn1-PKA interaction is not known, so we 

wanted to verify PKA-mediated phosphorylation was not a function of tagging. To accomplish 

this, we repeated the in vitro kinase assay with N-terminally-tagged Glutathione-S-Transferase 

(GST)-Pfn1. In this case, 81% coverage was achieved and one phospho-peptide was identified: 
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DRSpS57FFVNGLTLGGQK. As with His-Pfn1, GST-Pfn1 treated without PKA did not yield 

any phospho-peptides. It should be noted that Threonine 89 (T89) was not covered in this 

analysis so its status is unknown. Additionally, the Pfn1 in GST-Pfn1 was Mus musculus Pfn1 

while that of His-Pfn1 was human Pfn1. 

Multiple sequence alignment of Pfn1 in vertebrates revealed a high degree of 

conservation of T89 and its surrounding residues, suggesting this region may be important in the 

protein structure or some regulatory pathway (Figure 10C). To investigate if the identified 

phosphorylation sites could explain any of the acidic Pfn1 populations, phospho-dead S57 

(S57A), T89 (T89V), and T92 (T92V) were expressed in cells maintained in unstimulated 

conditions and extracted for 2D analysis (Figure 10D). Only T89V resulted in the consistent and 

significant basic shift of a population of myc-Pfn1. Though somewhat modest in terms of 

absolute amounts of Pfn1, T89V resulted in nearly a 3.5-fold increase in the intensity of the most 

basic spot relative to that of wild-type. (Figure 10E). While this does not prove phosphorylation, 

it implicates T89 as an important residue for investigation. Together, these findings suggest a 

possible role for PKA and T89 phosphorylation in the regulation of Pfn1. 
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Figure 10. PKA-Mediated Phosphorylation of Profilin-1 on Threonine 89. (A) His-Pfn1 was treated with buffer 

containing ATP with or without PKA followed by 2D electrophoresis and visualized by silver staining. Isoelectric 

focusing was conducted using a pH 4-7 IPG strip. In all cases, the relative locations of the anode and cathode are 

labeled. (B) Mass spectrometry reveled PKA-treated His-Pfn1 was phosphorylated on T89. (C) Multiple sequence 

alignment of Pfn1 focused on T89. (D) 2D electrophoresis of wild-type and phospho-dead S57A, T89V, and T92V 
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mutant myc-Pfn1 expressed in HEK-293 maintained in growth medium. Isoelectric focusing was conducted using a 

pH 4-7 IPG strip. (E) The fold increase in the intensity of the most basic spot relative to that of the appropriate 

control. The error bar for T89V represents the variance of the data over three experiments. 

4.2.4 Phospho-mimetic Mutation of Profilin-1 at Threonine 89 Results in Insolubility  

Although we do not definitively know whether Pfn1 is phosphorylated at T89 in cells, it is of 

interest to consider the consequences of such a modification. To this end, both phospho-mimetic 

(T89D) and phospho-dead (T89V) mutants of myc-Pfn1 were generated to assess their impact on 

Pfn1-ligand interaction. Interestingly, neither the T89V mutant nor the T89D mutant was 

completely soluble in NP-40 buffer where T89D was nearly completely insoluble (Figure 11A). 

In addition, T89D mutation consistently exhibited lower expression when extracted using 

Laemmli sample buffer. These facts make investigation of T89D mutation on ligand-binding 

using extra-cellular assay difficult. 

4.2.5 In Silico Simulation of Threonine 89 Phosphorylation Confers Backbone 

Availability for G-Actin Interaction  

Therefore, to explore the impact of T89 phosphorylation on actin binding, we utilized computer 

simulation. We investigated the effect of the T89 mutations by running molecular dynamics 

simulations on monomeric homology models of Pfn1.  The dynamics of the backbone carboxylic 

acid functional group of T89 were assayed. The double-bonded backbone oxygen of the 

carboxylic acid functional group of T89 makes a hydrogen bond with Y166 of actin in the bound 

state (distance ≤ 3.0 Å) and does not make an intramolecular hydrogen bond with the nitrogen of 

the backbone amino functional group of Phenylalanine 98 (F98) (Figure 11B). The distances are 
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such that T89 cannot interact with both residues simultaneously. Simulation was performed 

without the influence of actin. The distance between the double-bonded oxygen and the nitrogen 

of the backbone amino functional group of F98 on Pfn1 over the course of the simulation is 

shown in Figure 11C-E. In the wild-type simulation, T89 not only samples a conformation where 

this internal backbone hydrogen bond is made, but also the bond appears to be stable once 

formed. The T89V mutant also samples this conformation, but it does not appear to be as stable. 

In contrast, the T89D mutant never samples this conformation.  Since the internal hydrogen bond 

is not being made, the backbone oxygen is free to bond elsewhere, such as to Y166 of actin. 

Therefore, based on these simulations, it appears that T89D-mutated Pfn1 presents a more ‘actin-

friendly’ interface. [Portions reproduced with the permission of Dr. David Koes, University of 

Pittsburgh (Collaborator)] 
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Figure 11. Phospho-mimetic Mutation of Threonine 89 Confers an Actin-Friendly Interface. (A) myc-Pfn1 or the 

T89D and T89V mutants were expressed in HEK-293 and extracted using the indicated buffers and solubility 
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assessed using Western blot. (B) Molecular model of the Pfn1 (blue)-G-actin (yellow) complex (PDB 2BTF). The 

enhanced view shows the Pfn1 T89-Actin Y166 hydrogen bond as well as Pfn1 T89-Pfn1 F98 proximity. Dashed 

green lines represent the two potential hydrogen bonds. (C-E) The distance between the double-bonded oxygen of 

the carboxylic acid functional group of T89 and the nitrogen of the backbone amino functional group of F98 on Pfn1 

over the course of the simulations. A value ≤ 3.0 Å means a hydrogen bond is being made. The three colors 

represent three unique simulations. Every simulation was run for 144 hours, resulting in approximately 360ns of 

simulation per run (an I/O error terminated the T89V simulation early). [Simulation results and molecular model 

reproduced with the permission of Dr. David Koes, University of Pittsburgh (Collaborator)] 

4.3 DISCUSSION 

The advent of advanced mass spectrometry techniques and tools for concentrating proteins with 

modification has led to the discovery of a number of Pfn1 post-translational modifications. Pfn1 

exerts its influence on the actin cytoskeleton through its interaction with G-actin, polyprolines, 

and phosphoionsitides [258]. Correspondingly, many of the identified modifications of Pfn1 are 

either adjacent to or within the regions responsible for interaction. Previous study with regard to 

Pfn1 post-translational modification is limited, but both investigated sites, namely Y128 and 

S137, had strong impacts on regulating Pfn1-ligand binding [86, 232, 257]. With these 

exceptions, no other modifications have been characterized. 

 To begin to investigate Pfn1 post-translational modification and its downstream 

implications, we wanted to determine if it was basally modified. By utilizing 2D electrophoresis, 

we showed endogenous Pfn1 and exogenous myc-Pfn1 exhibit a comparable pattern and exist at 

three distinct isoelectric points. By combining modification-specific antibodies and phosphatase 

treatment, we determined at least some population of Pfn1 was phosphorylated on either a serine 
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or threonine residue under these unstimulated culture conditions. Both serine and threonine 

phosphorylation of Pfn1 is not without precedent as several such sites have been discovered, but 

their upstream regulation is completely unknown. Following several bioinformatics searches, we 

found PKA could phosphorylate Pfn1 in vitro on at least three residues: S57, T89, and T92. Two 

of these modifications, T89 and T92, are novel and have yet to be seen in vivo. In testing if 

phosphorylation at any of these sites was at least partially responsible for the acidic shifts 

previously observed using 2D analysis we found that phospho-dead mutation of T89 resulted in 

the basic shift of a small, but repeatable population of Pfn1. Though this does not prove that T89 

is phosphorylated in vivo, the 3D molecular model of Pfn1 indicated the backbone of T89 forms 

a hydrogen bond with Y166 of actin, implicating it as a residue of interest. 

 To better understand T89 modification on Pfn1 function, we wanted to assess its impact 

on Pfn1-G-actin binding. Interestingly, neither the phospho-dead T89V nor the phospho-mimetic 

T89D was completely soluble in non-denaturing NP-40 buffer, where T89D was completely 

insoluble. Previous studies have mutated residues near and adjacent to T89, including R88 and 

K90, with no impact on solubility [15, 273]. However, several residues of Pfn1 found to be 

mutated in familial Amyotrophic Lateral Sclerosis (ALS) resulted in protein insolubility, so such 

behavior is not completely unfounded [274]. These facts further implicate T89 as a residue that is 

important for Pfn1 function and possibly stability, although the solubility issue presents a 

complication in exploring its impact on Pfn1-ligand interaction using conventional means. As a 

result, we relied on computer simulation to determine if T89 phosphorylation had any structural 

importance and what effect it might have on the backbone hydrogen bond with Y166 of actin. 

The simulations were run starting from the G-actin-bound conformation of Pfn1 and without the 

influence of actin. Wild-type Pfn1 repeatedly stabilized to a conformation where the backbone of 
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T89 interacted intramolecularly with F98. We observed that when this interaction is made, the 

backbone of T89 is unavailable for interaction with Y166 of actin. Similarly, T89V also reached 

this state, but with less consistency and less stability. T89D, however, never sampled this 

conformation at any time point over the course of any of the simulations. Accordingly, the 

backbone of T89D was maintained at a distance that would permit hydrogen bonding with Y166 

of actin. We therefore hypothesize that T89 phosphorylation would result in an ‘actin-friendly’ 

conformation because an extra hydrogen bond could be made, increasing the strength of 

interaction. The physiological implications of such regulation of Pfn1 by PKA are not yet known 

but phosphorylation at T89 might push equilibrium toward an increase in levels of Pfn1-G-actin 

complex, at least locally. PKA activity has been linked with Rho GTPase activation [275]. In this 

way PKA might promote cytoskeletal reorganization by increasing Pfn1-G-actin while 

concomitantly promoting the activity of actin elongation and nucleation factors. PKA, however, 

can also be detrimental to protrusion [276]. Therefore, the meaning behind this regulatory event 

requires further study. 

 In conclusion, Pfn1 can be phosphorylated at T89 by PKA in vitro, and this modification 

would result in both insolubility and an ‘actin-friendly’ conformation. We theorize that this 

would lead to a general increase in G-actin binding, though whether this would have a positive or 

negative impact on Pfn1 function must be investigated. While increasing the pool of Pfn1-G-

actin should theoretically promote F-actin polymerization, Pfn1 must be able to release its G-

actin. If, for instance, the increase in complex stability is too great, Pfn1 may simply sequester 

the G-actin, making it unavailable for polymerization. It also remains to be seen whether PKA 

can regulate Pfn1 in vivo. This and the impact of PKA on sprouting angiogenesis will be 

addressed in Specific Aim 3. 
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5.0  PROTEIN KINASE A-MEDIATED POST-TRANSLATIONAL MODIFICATION 

OF PROFILIN-1 CORRELATES WITH IMPAIRED SPROUTING ANGIOGENESIS 

5.1 INTRODUCTION 

We demonstrated that Pfn1 is required for proper sprouting angiogenesis and is subject to PKA-

mediated phosphorylation in vitro. These modifications, along with those investigated in 

previous studies, suggest a role for the post-translational modification of Pfn1 in regulating its 

ligand interaction. Both Pfn1-G-actin and Pfn1-polyproline interactions were critical in 

endothelial cell migration and invasion [188]; however, the role of these interactions in sprouting 

angiogenesis and whether they can be regulated downstream PKA has not been addressed. 

5.2 RESULTS 

5.2.1 Forskolin Treatment Causes a Protein Kinase A-Dependent Post-Translational 

Modification of Profilin-1  

The physiological regulation of Pfn1-ligand interaction is largely not understood. Because PKA 

can phosphorylate Pfn1 in vitro, we wanted to investigate whether this phenomenon was relevant 

in cells. Treating HEK-293 with Forskolin, a potent activator of PKA, resulted in the acidic shift 
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of a small, but repeatable population of myc-Pfn1 (Figure 12A). Unexpectedly, the acidic shift 

observed was more than 1 pH unit, a dramatic change not typically observed; however, there is 

evidence that Pfn2a, having the same isoelectric point as the myc-Pfn1 construct, undergoes 

post-translational modification downstream ROCK2 resulting in a similar shift [277]. Although 

observed shift can be a function of a number of parameters including unmodified isoelectric 

point and size, many outliers exist and each protein must be considered individually [278]. 

Blocking PKA activity with the PKA-specific inhibitor H89 prevented the observed acidic shift 

indicating that Forskolin treatment acts through PKA to induce Pfn1 post-translational 

modification (Figure 12B). Together, this suggests a role for PKA in the regulation of Pfn1 in 

cells. 
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Figure 12. Forskolin Mediates Profilin-1 Post-Translational Modification through PKA. (A) 2D electrophoresis of 

myc-Pfn1 from HEK-293 treated with 50 µM Forskolin (Fsk) or DMSO for 30 minutes. Isoelectric focusing was 

conducted using a pH 4-7 IPG strip. In all cases, the relative locations of the anode and cathode are labeled. Spot 

representing acidic shift denoted with arrow (B) 2D electrophoresis of myc-Pfn1 from HEK-293 treated with 10 µM 

H89 or DMSO in the presence of 50 µM Forskolin (Fsk) for 30 minutes. Cells were pre-treated with 10 µM H89 or 

DMSO for 10 minutes before changing to Forskolin-containing medium. Isoelectric focusing was conducted using a 

pH 4-7 IPG strip. Spot representing acidic shift denoted with arrow. 



 87 

5.2.2 Forskolin Treatment Reduces Profilin-1-Polyproline Interaction Downstream 

Protein Kinase A  

Because Forskolin induces a PKA-dependent post-translational modification in Pfn1, we next 

wanted to determine whether this correlated with any interaction changes. Forskolin induced a 

time-dependent decrease in Pfn1-VASP interaction (Figure 13A). Incidentally, VASP is 

phosphorylated by PKA at Serine 157 (S157), a residue adjacent to its polyproline region. This 

event, however, does not affect Pfn1 interaction, so binding changes could be due to 

modification of Pfn1 [279]. Verification of PKA activity is seen by the apparent mass shift of 

VASP during electrophoresis, as phosphorylation at S157 results in a 2-3 kDa shift (Figure 13B). 

Inhibiting the activity of PKA rescued the Forskolin-induced decrease in Pfn1-VASP binding, 

suggesting the regulation of this interaction works downstream PKA (Figure 13C). Forskolin, 

therefore, inhibits Pfn1-VASP binding in a PKA-mediated manner. 

 

 

 



 88 

 

 

Figure 13. Forskolin Mediates Profilin-1-Polyproline Interaction through PKA. (A) Co-immunoprecipitation of 

VASP with myc-Pfn1 from HEK-293 treated with 50 µM Forskolin or DMSO for the indicated times. (B) Relative 

protein levels of VASP and myc-Pfn1 that were subjected to co-immunoprecipitation. The apparent mass shift of 

VASP is a function of phosphorylated S157, indicating PKA is strongly activated by Forksolin. (C) Co-

immunoprecipitation of VASP with myc-Pfn1 from HEK-293 treated with 10 µM H89 or DMSO in the presence of 

50 µM Forskolin (Fsk) for 30 minutes. Cells were pre-treated with 10 µM H89 or DMSO for 10 minutes before 

changing to Forskolin-containing medium. 

5.2.3 Profilin-1-Polyproline Interaction is Required for Endothelial Cell Spheroid 

Sprouting 

While we established that Pfn1 is required to promote proper sprouting angiogenesis, we wanted 

to determine if Pfn1-polyproline interactions were playing a role. To investigate this, we used 

green fluorescent protein (GFP)-tagged Pfn1 that was modified with two silent point mutations 
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that do not affect protein translation or peptide sequence, but negatively impact the recognition 

of our Pfn1 siRNA [188]. With this system, we can introduce mutant Pfn1 in an endogenous 

Pfn1-null background and explore its specific effect on various cellular processes. Here, we have 

expressed either wild-type GFP-Pfn1 or GFP-Pfn1-H133S, a mutation that strongly abrogates 

polyproline interaction [14]. The efficiency of our system in introducing specific Pfn1 constructs 

to HMEC-1 is seen in Figure 14A. GFP-Pfn1 is expressed at a slightly higher level compared to 

endogenous Pfn1, but is completely immune to Pfn1 siRNA treatment. Additionally, greater than 

95% knockdown of endogenous Pfn1 is maintained for 48 hours. Use of these cells in the 

spheroid sprouting assay showed a significant reduction in sprouting in the H133S group (Figure 

14B-C). These data suggest Pfn1 requires polyproline interaction to promote sprouting 

angiogenesis. 
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Figure 14. Impact of Profilin-1-Polyproline Interaction on Endothelial Cell Spheroid Sprouting. (A) Western blot 

of HMEC-1 cells expressing siRNA-resistant GFP-Pfn1 or H133S mutant with Control (C) or Pfn1 siRNA (P). (B) 

Representative images of spheroid sprouting following 48 hours incubation. (C) Quantification of the number of 

sprouts per spheroid normalized to the cross-sectional area of the sprout just after embedding. (* p<0.001) 
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5.2.4 Forskolin Treatment Inhibits Endothelial Cell Motility Partially through Protein 

Kinase A Activity  

Pfn1-polyproline interaction is required for endothelial cell motility and can be negatively 

regulated by Forskolin in a PKA-mediated manner; therefore we next determined the effect of 

PKA on endothelial cell migration. In general, Forskolin treatment significantly reduced single-

cell random motility of HMEC-1 while H89 alone had no impact (Figure 15A). The Forskolin-

induced drop in motility could be partially, but significantly, rescued by H89 indicating that 

Forskolin inhibits endothelial cell migration, at least partially, through PKA. 

5.2.5 Forskolin Inhibits Endothelial Cell Spheroid Sprouting  

Similarly, Pfn1-polyproline interaction was shown to be imperative for proper spheroid sprouting. 

In this regard, HMEC-1 spheroids incubated in the presence of Forskolin exhibited a significant 

reduction in the number of sprouts (Figure 15B-C). Together, these data show Forskolin 

treatment results in a similar phenotype to polyproline binding-deficient Pfn1, although no direct 

relationship is established. 
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Figure 15. Forskolin Inhibits Endothelial Cell Motility and Spheroid Sprouting. (A) Box-and-whisker plots of the 

average cell speed of Forskolin- (Fsk), H89-, Forskolin/H89-, and DMSO-treated HMEC-1 seeded on a collagen-

coated dish normalized to the DMSO group. The average speed of the DMSO cells was 0.81 µm-min-1. (B) 

Representative images of spheroid sprouting following 48 hours incubation. (C) Quantification of the number of 

sprouts per spheroid normalized to the cross-sectional area of the sprout just after embedding. (* p<0.05; ** 

p<0.005; *** p<0.0001; NS Not Significant) 
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5.2.6 Phospho-mimetic Mutation of Profilin-1 on Protein Kinase A Targets Does Not 

Affect Profilin-1-Ligand Interaction  

Together, the prior data suggest PKA plays a role in regulating Pfn1-polyproline interaction and 

forskolin mediates a phenotype in endothelial cells similar to that of polyproline binding-

deficient Pfn1. To attempt to link these two correlative observations through Pfn1, it is necessary 

to determine what specific residue PKA is modifying. Therefore, we next examined whether the 

previously determined targets of in vitro PKA phosphorylation, namely Serine 57 (S57), T89, 

and Threonine 92 (T92), could impact Pfn1-ligand interaction using a pulldown assay. In 

addition to these three sites, Serine 91 (S91) was also included in the analysis because it is the 

only residue in Pfn1 with a consensus sequence for PKA phosphorylation (Arginine-X-X-Serine, 

where X can be any amino acid). Phospho-mimetic mutation of these residues had no effect on 

Pfn1-VASP or Pfn1-G-actin binding (Figure 16A). Interestingly, much like eukaryotic cells, 

Pfn1-T89D could not be extracted from bacteria. 

5.2.7 Protein Kinase A May Phosphorylate Profilin-1 on Serine 137 in vitro  

It is possible that other sites were phosphorylated by PKA but mass spectrometric analysis 

missed them because of low levels or poor coverage. One such site is Serine 137 (S137). Using 

tryptic digestion, S137 will reside on a peptide comprised of four amino acids, too small for mass 

spectrometric analysis, and will therefore always be missed. Using a PKA phosphorylated 

substrate antibody raised against phosphorylated Arginine-Arginine-X-Serine/Threonine 

(pRRXS/T), where X can be any amino acid, we see both PKA-treated GST-Pfn1 and His-Pfn1 

are recognized (Figure 16B-C); however, Pfn1 contains no such sequence. In fact, the only 
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consecutive Arginine residues reside on the N-terminal side of S137 (RRS). How stringent this 

antibody is with regard to the presence of the amino acid separating the RR and S is not clear, 

but this suggests Pfn1 may be phosphorylated at S137 by PKA in vitro. 

5.2.8 Phospho-mimetic Mutation of Profilin-1 at Serine 137 Inhibits Profilin-1-

Polyproline Interaction  

Although several studies have assessed the impact of S137 phosphorylation on polyproline 

interaction, the results were not consistent. This could possibly be due to confounding factors or 

some sort of context-specificity. Therefore, we wanted to determine the significance of S137 

phosphorylation on interaction changes in endothelial cells. Phospho-mimetic S137 (S137E) 

mutation resulted in nearly complete ablation of Pfn1-VASP interaction while phospho-dead 

S137 (S137A) had a more mild effect (Figure 16D). Therefore, it is likely that S137 

phosphorylation negatively impacts Pfn1-polyproline interaction in endothelial cells. 
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Figure 16. PKA May Negatively Regulate Profilin-1-Polyproline Interaction through Serine 137 Phosphorylation. 

(A) Parallel Western blot and coomassie stain following GST pulldown using the indicated Pfn1 mutant constructs. 

Proteins were eluted from beads and supernatant equally split for analysis. The presence of GST in all groups is a 
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result of residual GST-conjugated beads following pre-clear of the whole-cell lysate, but GST group alone confirms 

it had no impact on pulldown. (B) Parallel Western blot and coomassie stain of GST-Pfn1 following in vitro PKA 

kinase assay. Proteins were similarly eluted from beads and split equally. Treatments are indicated. (C) Parallel 

Western blot and coomassie stain of His-Pfn1 following in vitro PKA kinase assay. Protein was split equally. (D) 

Co-immunoprecipitation of VASP with GFP-Pfn1 or S137 mutants from HMEC-1. 

5.2.9 Phospho-mimetic Mutation of Profilin-1 at Serine 137 Reduces Endothelial Cell 

Motility  

The importance of Pfn1-ligand interaction on endothelial cell migration has been previously 

discussed [188]. It was determined that Pfn1 must maintain both polyproline and actin 

interaction to promote single-cell random motility. Because phospho-mimetic mutation of Pfn1 

at S137 reduced Pfn1-VASP interaction in endothelial cells, we wanted to determine if it had a 

similar impact on cell migration. To accomplish this, we employed the same Pfn1 siRNA-

resistant GFP-Pfn1 construct and expressed both the S137A and S137E mutations. The success 

of this system in this regard can be seen in Figure 17A. S137E mutation significantly reduced 

endothelial cell motility while, as previously seen while assessing polyproline interaction, S137A 

had a mild and insignificant effect (Figure 17B). Phospho-mimetic mutation of S137, therefore, 

produces the same phenotype as other polyproline binding-deficient Pfn1 mutations. 
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Figure 17. Phospho-mimetic Mutation of Profilin-1 at Serine 137 Reduces Endothelial Cell Motility. (A) Western 

blot of HMEC-1 cells expressing siRNA-resistant GFP-Pfn1 or S137A or S137E mutants with Control (C) or Pfn1 

siRNA (P). (B) Box-and-whisker plots of the average cell speed of Pfn1 siRNA-treated HMEC-1 expressing 

respective constructs seeded on a collagen-coated dish normalized to the GFP-Pfn1 group. The average speed of the 

GFP-Pfn1 cells was 0.31 µm-min-1. Time-lapse imaging was carried out 96 hours post-transfection after cells were 

incubated 24 hours. (* p<0.01; NS Not Significant) 



 98 

5.3 DISCUSSION 

This study previously demonstrated the importance of Pfn1 in sprouting angiogenesis and the 

capacity for it to be phosphorylated by PKA in vitro. To combine these observations, we asked 

what impact PKA might have on Pfn1 function in vivo and endothelial sprouting. We first 

determined that Pfn1 was post-translationally modified in vivo downstream PKA. Additionally, 

Pfn1-polyproline interaction, as assessed by Pfn1-VASP interaction, was disrupted downstream 

PKA. Although VASP is strongly phosphorylated by PKA, this modification has no impact on 

Pfn1-VASP interaction, so binding changes could be due to modification of Pfn1 [279]. These 

data suggest a role for PKA in the regulation of Pfn1 function. 

Similar to polyproline binding-deficient Pfn1, Forskolin treatment inhibited single-cell 

random migration downstream PKA. Accordingly, Forskolin treatment also inhibited endothelial 

cell spheroid sprouting. Because it had yet to be investigated, we next determined that Pfn1 must 

maintain polyproline interaction to promote sprouting. This result is not surprising as polyproline 

binding-deficient Pfn1 inhibited both endothelial cell migration and morphogenesis [188]. 

Therefore, we have correlative observations that (1) Pfn1-polyproline interaction is inhibited 

downstream PKA; (2) Pfn1 must maintain polyproline binding-capacity to promote sprouting 

angiogenesis; and (3) PKA negatively regulates endothelial cell migration and spheroid 

sprouting similar to polyproline binding-deficient Pfn1. It follows that we must determine which 

residues on Pfn1 are specifically regulated downstream PKA to establish a complete relationship; 

however, none of the residues previously identified to be phosphorylated by PKA in vitro 

affected Pfn1-ligand interation. The only exception was T89 because, just like with eukaryotic 

cells, it could not be extracted from bacteria using non-denaturing buffer. In general, T89 cannot 

be commented on, but its position relative to the polyproline binding site may indicate that it 
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would not be involved. A phosphorylated substrate-specific antibody (pRRXS/T) recognized 

both GST-Pfn1 and His-Pfn1 following PKA treatment in vitro. S137 was the most likely target 

of this antibody as it is the only residue in Pfn1 adjacent to two consecutive arginines (RRS). 

Interestingly, phospho-mimetic mutation of S137 both decreased endothelial cell migration and 

inhibited Pfn1-polyproline interaction, making it an interesting target for future study. 

In conclusion, we have established a possible role for Pfn1 in PKA-mediated inhibition of 

sprouting angiogenesis. To determine whether PKA inhibits endothelial cell function through its 

action on Pfn1, the specific post-translational modification to which Pfn1 is subjected must be 

identified. We presented evidence that S137 could be one such residue, but proof of its 

phosphorylation in cells is lacking. Mass spectrometry could be used if Pfn1 is digested using a 

different enzyme. In addition, a phospho-dead S137 could be treated with PKA to determine if 

the utilized antibody was truly recognizing S137 phosphorylation. Other previously identified 

serine and threonine phosphorylation sites could also be considered in a similar manner. 

Ultimately, the capacity to rescue the PKA-mediated decrease in endothelial sprouting by 

introducing a phospho-dead mutation will need to be examined to establish a causal relationship. 

This will lead to knowledge that PKA can negatively impact endothelial cell function and 

sprouting angiogenesis by directly affecting the regulation of the actin cytoskeleton in a novel 

manner. 
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6.0  CONCLUSIONS 

We determined that Pfn1 is required for endothelial sprouting using both in vitro and ex vivo 

angiogenesis assays. Further characterization revealed that in order to promote such behavior, 

Pfn1 must maintain its polyproline binding-capacity. This interaction, however, was disrupted by 

Forskolin downstream PKA. Similarly, Pfn1 was post-translationally modified downstream PKA 

in vivo. Although this does not prove PKA directly phosphorylates Pfn1 in cells, use of an in 

vitro kinase assay suggested this event is possible. Mass spectrometry identified Pfn1 was 

phosphorylated on S57, T89, and T92. Further characterization using a post-translational 

modification-specific antibody – anti-pRRXS – suggested S137 may also be modified by PKA. 

Using computer-aided simulation, we determined T89 phosphorylation might confer Pfn1 into a 

conformation that permits increased G-actin binding, but proof of this in cells was made difficult 

due to its insolubility. Phospho-mimetic mutation of the other sites determined by mass 

spectrometry did not affect Pfn1-polyproline interaction, but S137 mutation caused dramatically 

reduced binding. Accordingly, S137 mutation also impaired endothelial cell motility much like 

PKA activation. These data support a role for Pfn1 in PKA-mediated inhibition of endothelial 

cell motility and sprouting angiogenesis. 
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7.0  FUTURE DIRECTIONS 

7.1 EXPLORING THE IMPORTANCE OF PROFILIN-1 IN SPROUTING 

ANGIOGENESIS IN VIVO 

The present study establishes endothelial cell-specific knockout of Pfn1 as an embryonic lethal 

genotype, preventing study of its impact in an animal setting. To attempt to remedy this, an 

inducible mouse model can be generated by mating our Pfn1fl/fl mice with a commercially 

available Cdh5-Cre-ERT2 mouse (Cancer Research Technology). This transgenic mouse strain 

expresses Cre-ERT2 (under the Cdh5 or VE-Cadherin promoter, specific to endothelial cells), a 

fusion protein that consists of Cre fused to a mutant form of human estrogen receptor (ER) which 

only binds to a synthetic ER ligand such as 4-hydroxytamoxifen (OHT). The same mating 

scheme can be used to create Pfn1fl/fl/ Cdh5-Cre-ERT2+/- mice. To study angiogenesis using the 

reteinal angiogenesis assay, post-natal knockout can be achieved by injecting pups with OHT in 

their stomach daily for 3 days from post-natal day 1 (P1) to P3. 

Additionally, these mice can be used to study angiogenesis in the context of other 

physiological and pathological processes by inducing knockout at a later stage of life. Both 

would healing and cancer are highly dependent on angiogenesis. Mice generated using the 

schematic above should be theoretically viable and grow to adulthood. Injection of OHT into the 

local bloodstream should sufficiently knockout Pfn1 in the adjacent endothelial cells in the area 
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of interest. These mice can then be subjected to typical wound healing or tumor development and 

dissemination assays. Depending on the process that is being studied, either wound closure or 

tumor growth can be observed. Especially in the case of tumor development, these experiments 

could begin to elucidate the specific importance of vessels that arise from the native vasculature, 

as this has become a point of interest in some recent studies. 

7.2 USE OF THE ENDOTHELIAL CELL-SPECIFIC PROFILIN-1 KNOCKOUT 

MICE 

Pfn1 was also implicated as an important factor in endothelial cell-mediated activities during 

embryogenesis. Prior investigation into the role of the actin cytoskeleton during development 

showed knockout of all three mammalian Ena/VASP proteins – VASP, Mena, and EVL – 

exhibited deficiencies in vascular morphology as well as severe hemorrhaging due to reduced 

barrier function [280]. This mouse model was not endothelial cell-specific, so other deformities 

were observed, but this, along with other studies establishes a role for the actin cytoskeleton in 

the development of the vasculature [217]. It is not known to what stage of development Pfn1EC,-/- 

mice reach, but Tie2 is expressed as early as the first endothelial cells arise in the late primitive 

streak [281]. Therefore, investigation into the role of Pfn1 in endothelial development will begin 

during the gastrulation phase. Indeed, Pfn1 depletion impaired cell movement during gastrulation 

for several organisms, so it is possible Pfn1 is required for endothelial cell function as early as 

they are first differentiated [177, 179]. It would be interesting to determine how Pfn1 regulates 

endothelial cell function and fate in these early embryonic mice. 
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7.3 CHARACTERIZATION OF PROFILIN-1 POST-TRANSLATIONAL 

MODIFICATIONS 

Finally, although this study attempted to characterize some known post-translational 

modifications of Pfn1, there are a number of others that have yet to be investigated. Not only 

determining how they are specifically regulated, but how they change Pfn1 intracellular function 

or localization. Phosphorylation of Pfn1 as a regulator of interaction has some precedence, but no 

study has considered lysine-acetylation and its role. In addition, it will be interesting to see how 

Pfn1 might be differentially regulated in other cell types, like cancer. Pfn1 associates with a 

number of proteins involved in many aspects of cellular homeostasis and signaling through its 

polyproline interaction, so knowledge of this will enhance our understanding of many aspects of 

cellular function. 
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